JP2001053302A - Method for eliminating short-circuited part of solar cell - Google Patents

Method for eliminating short-circuited part of solar cell

Info

Publication number
JP2001053302A
JP2001053302A JP11228519A JP22851999A JP2001053302A JP 2001053302 A JP2001053302 A JP 2001053302A JP 11228519 A JP11228519 A JP 11228519A JP 22851999 A JP22851999 A JP 22851999A JP 2001053302 A JP2001053302 A JP 2001053302A
Authority
JP
Japan
Prior art keywords
voltage
reverse voltage
solar cell
short
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11228519A
Other languages
Japanese (ja)
Other versions
JP3143616B2 (en
Inventor
Katsuhiko Hayashi
克彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP11228519A priority Critical patent/JP3143616B2/en
Priority to AU22398/00A priority patent/AU766466B2/en
Priority to US09/532,111 priority patent/US6365825B1/en
Priority to AT00106128T priority patent/ATE329372T1/en
Priority to EP00106128A priority patent/EP1052704B1/en
Priority to EP06005885A priority patent/EP1670067B1/en
Priority to DE60038990T priority patent/DE60038990D1/en
Priority to AT06005885T priority patent/ATE396505T1/en
Priority to DE60028452T priority patent/DE60028452T2/en
Priority to ES06005885T priority patent/ES2303705T3/en
Publication of JP2001053302A publication Critical patent/JP2001053302A/en
Application granted granted Critical
Publication of JP3143616B2 publication Critical patent/JP3143616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for surely eliminating short-circuited parts generated in a thin-film solar cell, while preventing the condition of the short-circuited parts from degrading rather than better by application of voltage in the reverse direction. SOLUTION: Leak current is measured, while voltage in a reverse direction having a prescribed value is applied to both provide and negative electrodes of a solar cell and the reverse-biasing process is finished, when the leak current has reached the permissible value or smaller. Also, a leakage current I1 is measured, while voltage in reverse direction having a specified voltage value is applied and a leakage current I2 is measured while voltage in the reverse direction having a higher voltage value than the previous voltage value is applied, when the leakage current I1 exceeds the permissible value. Leakage current is measured, while voltage in the reverse direction having a still voltage value is applied, when the leak current I2 does not show tendency to increase. The reverse-biasing and measuring operation is repeated and is finished, when the leakage current I2 shows the tendency to increase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非晶質半導体など
を用いた薄膜太陽電池に生じた短絡部を除去する方法に
関する。さらに詳しくは、本発明は、上記薄膜太陽電池
において、発電に寄与する光電変換半導体層を挟む基板
側電極と裏面側電極の電極間に耐電圧以下の逆方向電圧
を印加して、その際に発生したジュール熱により短絡部
を除去または酸化して絶縁する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a short-circuit portion generated in a thin film solar cell using an amorphous semiconductor or the like. More specifically, the present invention provides, in the above-mentioned thin-film solar cell, applying a reverse voltage less than the withstand voltage between the substrate-side electrode and the back-side electrode sandwiching the photoelectric conversion semiconductor layer contributing to power generation. The present invention relates to a method for removing or oxidizing a short-circuit portion by using generated Joule heat to insulate the device.

【0002】[0002]

【従来の技術】図3に薄膜太陽電池10の構造を示す。
図3に示されるように、薄膜太陽電池10は、絶縁性基
板1の一つの面に、第1の電極2、光電変換半導体層
3、および第2の電極4をそれぞれ所定のパターンに加
工して順次積層することにより構成される太陽電池セル
5を複数設けた構造を有する。光電変換半導体層3は、
たとえばpin接合を有するアモルファスシリコン系半
導体層により構成されている。こうした構造により、太
陽電池セル5aの第1の電極2aと隣接する太陽電池セ
ル5bの第2の電極4b、太陽電池セル5bの第1の電
極2bと隣接する太陽電池セル5cの第2の電極4cが
直列に接続される。
2. Description of the Related Art FIG. 3 shows a structure of a thin-film solar cell 10.
As shown in FIG. 3, a thin-film solar cell 10 has a first electrode 2, a photoelectric conversion semiconductor layer 3, and a second electrode 4 formed on one surface of an insulating substrate 1 in a predetermined pattern. And has a structure in which a plurality of solar battery cells 5 configured by sequentially laminating are provided. The photoelectric conversion semiconductor layer 3 is
For example, it is composed of an amorphous silicon-based semiconductor layer having a pin junction. With such a structure, the second electrode 4b of the solar cell 5b adjacent to the first electrode 2a of the solar cell 5a, and the second electrode of the solar cell 5c adjacent to the first electrode 2b of the solar cell 5b 4c are connected in series.

【0003】このような薄膜太陽電池において、例えば
製造時に光電変換半導体層にピンホールが生じると、太
陽電池セルの第1の電極と第2の電極とが短絡すること
がある。短絡が生じた太陽電池セルは発電に寄与しなく
なるため、太陽電池の光電変換効率が低下する。この問
題に対処するために、太陽電池セルの正負の電極間に逆
方向電圧(逆バイアス電圧)を印加して短絡部を除去す
る処理(逆バイアス処理)が行われる。この処理では、
光電変換半導体層に逆方向電圧を印加することにより短
絡部に電流を集中させ、発生したジュール熱によって短
絡部の金属を飛散させたり金属を酸化して絶縁体とする
ことにより短絡部を除去する。
[0003] In such a thin-film solar cell, for example, when a pinhole occurs in the photoelectric conversion semiconductor layer during manufacturing, the first electrode and the second electrode of the solar cell may be short-circuited. Since the short-circuited solar cell does not contribute to power generation, the photoelectric conversion efficiency of the solar cell decreases. In order to address this problem, a process of applying a reverse voltage (reverse bias voltage) between the positive and negative electrodes of the solar cell to remove the short-circuit portion (reverse bias process) is performed. In this process,
By applying a reverse voltage to the photoelectric conversion semiconductor layer, current is concentrated at the short-circuited portion, and the generated short-circuited portion is scattered by the generated Joule heat or the metal is oxidized to form an insulator, thereby removing the short-circuited portion. .

【0004】例えば図3において、太陽電池セル5bの
光電変換半導体層3bに生じた第1の電極2bと第2の
電極4bとの短絡部を除去する場合について説明する。
この場合、太陽電池セル5bの第2の電極4bおよび隣
接する太陽電池セル5cの第2の電極4c(この第2の
電極4cは、太陽電池セル5bの第1の電極2bに直列
接続されている)にそれぞれ第1および第2のプローブ
6a、6bを接触させ、発電に寄与する光電変換半導体
層3bを挟む第1の電極2bと第2の電極4b間に耐電
圧以下の逆方向電圧を印加する。
For example, referring to FIG. 3, description will be given of a case where a short-circuit portion between a first electrode 2b and a second electrode 4b generated in a photoelectric conversion semiconductor layer 3b of a solar cell 5b is removed.
In this case, the second electrode 4b of the solar cell 5b and the second electrode 4c of the adjacent solar cell 5c (the second electrode 4c is connected in series to the first electrode 2b of the solar cell 5b. ), The first and second probes 6a and 6b are brought into contact with each other, and a reverse voltage less than the withstand voltage is applied between the first electrode 2b and the second electrode 4b sandwiching the photoelectric conversion semiconductor layer 3b contributing to power generation. Apply.

【0005】従来は、第1および第2のプローブ6a、
6b間に直流の逆方向電圧またはパルス状の矩形波をな
す逆方向電圧を供給することにより逆バイアス処理を実
施していた。
Conventionally, first and second probes 6a,
Reverse bias processing has been performed by supplying a DC reverse voltage or a reverse voltage in the form of a pulsed rectangular wave between 6b.

【0006】ここで、一般的に太陽電池セルの逆耐圧は
8〜10Vである。こうした太陽電池セルに対して、図
1の従来技術に示すように、最初から4V以上(耐電圧
以下)の比較的高い直流の逆方向電圧またはパルス状の
矩形波をなす逆方向電圧を印加すると、かえって短絡部
が除去しにくい状態になることがある。すなわち、短絡
部が除去されずに残っている状態では本来的に逆方向電
圧とリーク電流(短絡部を流れる電流)とは比例してリ
ニアなV−I特性を示し、短絡部が除去された後にリー
ク電流が急激に減少するはずである。しかし、最初から
比較的高い逆方向電圧を印加した場合には観測されるリ
ーク電流が想定されるV−I特性の直線よりも大きくな
ることがある。こうした太陽電池セルに対して最初の電
圧値よりも高い電圧値を有する逆方向電圧を印加して
も、さらにリーク電流の増加傾向が顕著になり、短絡部
をより一層除去しにくくなることが多い。
Here, the reverse withstand voltage of the solar cell is generally 8 to 10V. As shown in the prior art of FIG. 1, a relatively high direct current reverse voltage of 4 V or more (withstand voltage or less) or a reverse voltage in the form of a rectangular pulse wave is applied to such a solar cell from the beginning. On the contrary, the short-circuited portion may be hardly removed. That is, in a state where the short-circuit portion remains without being removed, the reverse voltage and the leak current (current flowing through the short-circuit portion) inherently show linear VI characteristics in proportion to the short-circuit portion, and the short-circuit portion is removed. Later the leakage current should decrease sharply. However, if a relatively high reverse voltage is applied from the beginning, the observed leakage current may be larger than the assumed VI characteristic line. Even if a reverse voltage having a voltage value higher than the initial voltage value is applied to such a solar cell, the tendency of the leak current to increase further becomes prominent, and it is often more difficult to remove the short-circuit portion. .

【0007】[0007]

【発明が解決しようとする課題】本発明は、薄膜太陽電
池に生じた短絡部を除去する際に、逆方向電圧の印加に
よりかえって短絡部の状態が悪化することを防止しなが
ら短絡部を除去することができ、太陽電池の光電変換特
性の改善に有利な方法を提供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, in removing a short-circuit portion generated in a thin-film solar cell, the short-circuit portion is removed while preventing the condition of the short-circuit portion from deteriorating by application of a reverse voltage. It is an object of the present invention to provide a method that is advantageous for improving the photoelectric conversion characteristics of a solar cell.

【0008】[0008]

【課題を解決するための手段】本発明の太陽電池の短絡
部除去方法は、逆方向電圧を印加してリーク電流を測定
し、その結果をフィードバックしてその後の逆方向電圧
印加処理の条件を変更するものである。
According to the method for removing a short-circuit portion of a solar cell according to the present invention, a reverse voltage is applied, a leak current is measured, the result is fed back, and the condition of a subsequent reverse voltage application process is determined. To change.

【0009】本発明の太陽電池の短絡部除去方法は、基
板上に第1の電極層、半導体層、第2の電極層が順次形
成された1又は複数の太陽電池セルを含む太陽電池の短
絡部を除去する方法であって、各太陽電池セルの正負の
両極に対して、所定の電圧値を有する逆方向電圧を印加
してリーク電流を測定し、リーク電流が許容値以下にな
った時点で逆方向電圧印加処理を終了することを特徴と
する。
The method for removing a short-circuit portion of a solar cell according to the present invention is a method for short-circuiting a solar cell including one or a plurality of solar cells in which a first electrode layer, a semiconductor layer, and a second electrode layer are sequentially formed on a substrate. A method of removing a portion, applying a reverse voltage having a predetermined voltage value to both the positive and negative electrodes of each solar cell and measuring a leak current, and when the leak current falls below an allowable value. End the reverse voltage application process.

【0010】本発明の太陽電池の短絡部除去方法では、
各太陽電池セルの正負の両極に対して、所定の電圧値を
有する逆方向電圧を印加してリーク電流を測定し、リー
ク電流が許容値を超えている場合に前回の電圧値よりも
高い電圧値を有する逆方向電圧を印加して再度リーク電
流を測定する。そして、リーク電流が増加傾向を示すか
否かに応じて、その後の逆方向電圧印加処理を終了する
か続行するかを決定する。具体的には、リーク電流が増
加傾向を示さない場合にはより高い電圧値を有する逆方
向電圧を印加してリーク電流を測定する処理を繰り返
す。この場合、最終的にリーク電流が許容値以下になっ
た時点で逆方向電圧印加処理を終了する。一方、リーク
電流が増加傾向を示した場合にはその時点で逆方向電圧
印加処理を終了する。
In the method for removing a short-circuit portion of a solar cell according to the present invention,
A leak voltage is measured by applying a reverse voltage having a predetermined voltage value to both the positive and negative electrodes of each solar cell, and when the leak current exceeds an allowable value, a voltage higher than the previous voltage value A reverse voltage having a value is applied, and the leak current is measured again. Then, depending on whether or not the leakage current shows an increasing tendency, it is determined whether to terminate or continue the subsequent reverse voltage application processing. Specifically, when the leak current does not show an increasing tendency, the process of applying a reverse voltage having a higher voltage value and measuring the leak current is repeated. In this case, the reverse voltage application processing ends when the leak current finally becomes equal to or less than the allowable value. On the other hand, when the leakage current shows an increasing tendency, the reverse voltage application processing ends at that point.

【0011】本発明においては、複数回の逆方向電圧印
加処理の際に測定されるリーク電流の変化の傾向から、
その太陽電池セルの短絡部が除去可能であるか、または
除去しにくくなる性質のものであるかを判断できること
を利用している。本発明によれば、太陽電池セルの短絡
部が除去可能である場合にはより高い電圧値で逆方向電
圧印加処理を続行して短絡部を確実に除去し、短絡部が
除去しにくくなる性質のものである場合には逆方向電圧
印加処理を終了して短絡部がさらに悪化するのを防止す
るという判断を適切に決定でき、最適な逆方向電圧印加
処理が可能になる。
In the present invention, from the tendency of the change in the leakage current measured during the reverse voltage application process a plurality of times,
Utilizing the fact that it is possible to determine whether the short-circuit portion of the solar cell is removable or has a property that makes it difficult to remove. According to the present invention, when the short-circuit portion of the solar battery cell can be removed, the reverse voltage application process is continued at a higher voltage value to reliably remove the short-circuit portion, and the property that the short-circuit portion is difficult to remove In the case of this, it is possible to appropriately determine the termination of the reverse voltage application process and to prevent the short-circuit portion from further deteriorating, so that the optimal reverse voltage application process becomes possible.

【0012】本発明の方法においては、最初の処理時に
印加する逆方向電圧の電圧値は2V以下に設定される。
これは、上述したように最初から高い電圧値を有する逆
方向電圧を印加すると、短絡部の除去が困難になるおそ
れがあるためである。
In the method of the present invention, the value of the reverse voltage applied during the first processing is set to 2 V or less.
This is because if a reverse voltage having a high voltage value is applied from the beginning as described above, it may be difficult to remove the short-circuit portion.

【0013】本発明においては、逆方向電圧は直流また
はパルス状の矩形波でもよいが、周期的に変化する波形
を示す逆方向電圧を印加することが好ましい。このよう
な逆方向電圧の波形としては、正弦波、正弦波の半波ま
たはノコギリ波が挙げられる。
In the present invention, the reverse voltage may be a DC or pulse-shaped rectangular wave, but it is preferable to apply a reverse voltage having a periodically changing waveform. Such a reverse voltage waveform may be a sine wave, a half sine wave or a sawtooth wave.

【0014】なお、逆方向電圧の周波数は、太陽電池の
容量Cと逆方向の抵抗Rで定義される時定数にマッチン
グさせることが好ましい。逆方向電圧の周波数を上記の
ように設定すると、印加電圧の波形を電源電圧の波形に
追随させることができる。具体的には、逆方向電圧の周
波数は20〜1000Hz、さらに50〜120Hzの
範囲に設定される。
The frequency of the reverse voltage is preferably matched to a time constant defined by the capacity C of the solar cell and the resistance R in the reverse direction. When the frequency of the reverse voltage is set as described above, the waveform of the applied voltage can follow the waveform of the power supply voltage. Specifically, the frequency of the reverse voltage is set in a range of 20 to 1000 Hz, and further, in a range of 50 to 120 Hz.

【0015】[0015]

【発明の実施の形態】本発明にかかる太陽電池の短絡部
除去方法についてより詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The method for removing a short-circuit portion of a solar cell according to the present invention will be described in more detail.

【0016】図3に示したように、薄膜太陽電池10
は、絶縁性基板1上に、第1の電極2、光電変換半導体
層3および第2の電極4をそれぞれ所定のパターンに加
工して順次積層することにより構成される太陽電池セル
5を複数設けた構造を有し、各太陽電池セル5a、5
b、5cは互いに直列に接続されている。
As shown in FIG. 3, the thin-film solar cell 10
Is provided with a plurality of solar cells 5 formed by processing a first electrode 2, a photoelectric conversion semiconductor layer 3, and a second electrode 4 into a predetermined pattern and sequentially stacking them on an insulating substrate 1. And each of the solar cells 5a, 5a
b and 5c are connected to each other in series.

【0017】絶縁性基板1としてガラス基板や透明性樹
脂基板などを用いた場合、第1の電極2としてはITO
(Indium Tin Oxide:酸化錫を混入した酸化インジウ
ム)などの透明電極材料が、第2の電極4としては金属
電極材料が用いられる。一方、絶縁性基板1として透光
性を示さない基板材料を用いた場合、第1の電極2とし
て金属電極材料が、第2の電極4として透明電極材料が
用いられる。
When a glass substrate or a transparent resin substrate is used as the insulating substrate 1, the first electrode 2 is made of ITO.
A transparent electrode material such as (Indium Tin Oxide: indium oxide mixed with tin oxide) is used, and a metal electrode material is used for the second electrode 4. On the other hand, when a substrate material that does not show translucency is used as the insulating substrate 1, a metal electrode material is used as the first electrode 2, and a transparent electrode material is used as the second electrode 4.

【0018】半導体層3としては、非晶質シリコン系半
導体の場合、非晶質シリコン、水素化非晶質シリコン、
水素化非晶質シリコンカーバイド、非晶質シリコンナイ
トライドなどのほか、シリコンとゲルマニウムや錫など
の他の金属との非晶質シリコン系合金などの材料が用い
られる。また、半導体層はシリコン系に限られず、Cd
S系、GaAs系、InP系などの材料を用いて構成し
てもよい。これらの非晶質半導体層または微結晶半導体
層はpin型、nip型、ni型、pn型、MIS型、
ヘテロ接合型、ホモ接合型、ショットキーバリアー型ま
たはこれらを組み合わせた形をなすように構成される。
The semiconductor layer 3 is made of amorphous silicon, hydrogenated amorphous silicon,
In addition to hydrogenated amorphous silicon carbide and amorphous silicon nitride, a material such as an amorphous silicon-based alloy of silicon and another metal such as germanium or tin is used. Further, the semiconductor layer is not limited to a silicon-based material, and Cd
You may comprise using materials, such as S type | system | group, GaAs type | system | group, and InP type | system | group. These amorphous semiconductor layers or microcrystalline semiconductor layers are of pin type, nip type, ni type, pn type, MIS type,
It is configured to be a heterozygous type, a homozygous type, a Schottky barrier type or a combination thereof.

【0019】本発明においては、各太陽電池セルの正負
の両極に対して、最初に2V以下の電圧値を有する逆方
向電圧を印加してリーク電流を測定する。その結果、リ
ーク電流が許容値以下になった時点で逆バイアス処理を
終了する。たとえば、図1(A)は、1Vの逆方向電圧
を印加した時にリーク電流が許容電流値以下になったた
め逆バイアス処理を終了した場合を示している。
In the present invention, a leakage current is measured by first applying a reverse voltage having a voltage value of 2 V or less to both the positive and negative electrodes of each solar cell. As a result, when the leak current becomes equal to or less than the allowable value, the reverse bias processing ends. For example, FIG. 1A shows a case where the reverse bias processing is terminated because the leak current has become equal to or less than the allowable current value when a reverse voltage of 1 V is applied.

【0020】また、最初の逆方向電圧を印加した時に測
定されたリーク電流が許容電流値を超えていた場合の処
理の例を図1(B)に示す。この場合、1回目に1Vの
逆方向電圧を印加した時に測定されるリーク電流値I1
は許容電流値を超えている。そこで、1回目の電圧値よ
りも高い電圧値(この例では1回目の2倍の2V)を有
する逆方向電圧を印加して再びリーク電流値I2を測定
し、2回目のリーク電流値I2を1回目のリーク電流値
1と比較する。たとえば、1回目に対する2回目のリ
ーク電流値の比(I2/I1)が2倍より小さい(増加傾
向を示さない)場合には、その太陽電池セルの短絡部は
除去可能であると判断できる。そこで、さらに2回目の
電圧値よりも高い電圧値(この例では3V)を有する逆
方向電圧を印加して再びリーク電流値I3を測定し、3
回目のリーク電流値I3を1回目または2回目のリーク
電流値と比較する。上記と同様に3回目のリーク電流が
増加傾向を示さない場合には、短絡部は除去可能である
と判断できる。そこで、さらに3回目の電圧値よりも高
い電圧値(この例では4V)を有する逆方向電圧を印加
して再びリーク電流値を測定する。この例では、4Vの
逆方向電圧を印加したことによりリーク電流値が許容電
流値以下になっているので、その時点で逆バイアス処理
を終了する。このような方法により、除去可能な短絡部
を確実に除去することができる。
FIG. 1B shows an example of processing when the leak current measured when the first reverse voltage is applied exceeds the allowable current value. In this case, the leak current value I 1 measured when the reverse voltage of 1 V is applied for the first time.
Exceeds the allowable current value. Therefore, a reverse voltage having a voltage value higher than the first voltage value (in this example, twice the voltage of the first time, 2 V) is applied, the leak current value I 2 is measured again, and the second leak current value I 2 2 is compared with the first leak current value I1. For example, if the ratio (I 2 / I 1 ) of the second leak current value to the first leak current value is smaller than twice (does not show an increasing tendency), it is determined that the short-circuit portion of the solar cell can be removed. it can. Therefore, a reverse voltage having a higher voltage value (3 V in this example) than the second voltage value is applied, and the leak current value I 3 is measured again.
The times th leakage current value I 3 is compared with the first or second leakage current value. If the third leakage current does not show an increasing tendency, it can be determined that the short-circuit portion can be removed. Therefore, a reverse voltage having a voltage value higher than the third voltage value (4 V in this example) is applied, and the leak current value is measured again. In this example, since the leak current value has become equal to or less than the allowable current value due to the application of the reverse voltage of 4 V, the reverse bias processing ends at that point. With such a method, the removable short-circuit portion can be reliably removed.

【0021】一方、最初の逆方向電圧を印加した時に測
定されたリーク電流が許容電流値を超えていた場合の別
の処理の例を説明する(図1には図示せず)。この場合
も、1回目に1Vの逆方向電圧を印加した時のリーク電
流値I1が許容電流値を超えているものとする。そこ
で、1回目の電圧値よりも高い電圧値(この例では2
V)を有する逆方向電圧を印加して再びリーク電流値I
2を測定し、2回目のリーク電流値I2を1回目のリーク
電流値I1と比較する。このとき、両者のリーク電流値
の比(I2/I1)が2倍を超え、たとえば3倍以上であ
る(増加傾向を示している)場合には、その太陽電池セ
ルの短絡部は除去が困難になる性質を示している判断で
きる。そこで、こうしたリーク電流の増加傾向が観測さ
れた場合には、その時点で逆バイアス処理を終了する。
このような方法により、短絡部の状態がさらに悪化する
ことを防止できる。
On the other hand, another example of the processing when the leakage current measured when the first reverse voltage is applied exceeds the allowable current value will be described (not shown in FIG. 1). Also in this case, it is assumed that the leak current value I 1 when the first reverse voltage of 1 V is applied exceeds the allowable current value. Therefore, a voltage value higher than the first voltage value (2 in this example)
V) and a leakage current I
2 were measured, comparing the second leak current value I 2 1 round of the leakage current value I 1. At this time, if the ratio (I 2 / I 1 ) of the two leakage current values is more than twice, for example, three times or more (indicating an increasing tendency), the short-circuit portion of the solar cell is removed. Can be judged to indicate that the property becomes difficult. Therefore, when such a tendency of the increase of the leakage current is observed, the reverse bias processing is terminated at that time.
According to such a method, it is possible to prevent the state of the short circuit portion from being further deteriorated.

【0022】リーク電流値が増加傾向を示すか否かを判
定する方法としては、上記のように1回目のリーク電流
値I1に対する2回目のリーク電流値I2の比が、1回目
の逆方向電圧値に対する2回目の逆方向電圧値の比より
大きいか小さいかを判定する方法のほかに、以下のよう
な方法を用いることもできる。たとえば、1回目に1V
の逆方向電圧を印加してリーク電流値I1を求め、2回
目に2Vの逆方向電圧を印加してリーク電流値I2を求
めた後、3回目の処理として再度1Vの逆方向電圧を印
加してリーク電流値I1’を求める。そして、3回目の
リーク電流値I1’が1回目にリーク電流値I1よりも大
きく、たとえば1.5倍になった場合にリーク電流値が
増加傾向を示していると判定し、その時点で逆バイアス
処理を終了する。
As a method for judging whether or not the leak current value shows an increasing tendency, as described above, the ratio of the second leak current value I 2 to the first leak current value I 1 is equal to the first reverse current value. In addition to the method of determining whether the ratio of the second reverse voltage value to the direction voltage value is larger or smaller, the following method can be used. For example, the first time 1V
To obtain a leakage current value I 1 by applying a reverse voltage of 2 V for a second time to obtain a leakage current value I 2 , and then apply a reverse voltage of 1 V again as a third process. The leakage current I 1 ′ is obtained by applying the voltage. When the third leak current value I 1 ′ is larger than the first leak current value I 1 , for example, by 1.5 times, it is determined that the leak current value indicates an increasing tendency. Ends the reverse bias processing.

【0023】なお、各々の太陽電池セルによって短絡部
の状況は異なるため、上記のような処理は各太陽電池セ
ルごとに様々な態様で逆バイアス処理がなされる。
Since the condition of the short-circuit portion differs depending on each solar cell, the above-described processing is performed in various ways for each solar cell by performing reverse bias processing.

【0024】本発明においては、太陽電池セルの正負の
両極間に周期的に変化する波形を示す逆方向電圧を供給
することが好ましい。このような逆方向電圧の波形の例
を図2(A)〜(C)に示す。図2(A)に示す逆方向
電圧の波形は正弦波である。図2(B)に示す逆方向電
圧の波形は正弦波の半波である。図2(C)に示す逆方
向電圧の波形はノコギリ波である。
In the present invention, it is preferable to supply a reverse voltage having a periodically changing waveform between the positive and negative electrodes of the solar cell. Examples of such a reverse voltage waveform are shown in FIGS. The waveform of the reverse voltage shown in FIG. 2A is a sine wave. The waveform of the reverse voltage shown in FIG. 2B is a half sine wave. The waveform of the reverse voltage shown in FIG. 2C is a sawtooth wave.

【0025】上記のような波形を示す逆方向電圧を印加
することによって、逆方向電圧値がピーク値から徐々に
0V近傍に近づくにつれて、第1および第2の電極2、
4間に蓄積された電荷を減少させることができ、正常な
部分の破壊を抑制できる。
By applying a reverse voltage having a waveform as described above, as the reverse voltage gradually approaches the vicinity of 0 V from the peak value, the first and second electrodes 2 and
The charge accumulated between the four portions can be reduced, and destruction of a normal portion can be suppressed.

【0026】本発明においては、周期的に変化する波形
を示す逆方向電圧は、逆方向成分を主として、一部順方
向成分(−0.5V以下)を含んでいてもよい。このよ
うに、順方向成分を含む逆方向電圧を印加すると、順方
向成分の印加時に第1および第2の電極2、4間に蓄積
された電荷をさらに減少させることができ、正常な部分
の破壊を抑制できる。
In the present invention, the reverse voltage having a periodically changing waveform may include a forward component (-0.5 V or less), mainly a backward component. As described above, when the reverse voltage including the forward component is applied, the charge accumulated between the first and second electrodes 2 and 4 when the forward component is applied can be further reduced, and the normal portion can be reduced. Destruction can be suppressed.

【0027】実際に、本発明の方法および従来の方法に
従って逆バイアス処理を行い、効果を比較した。60個
の太陽電池セルを直列に集積した太陽電池の各セルに対
して、本発明による逆バイアス処理を行った場合、60
個のセルのうち55個のセルで良好な光電変換特性が認
められた。一方、従来の方法に従い、ピーク値4Vの矩
形波パルスを印加して逆バイアス処理を行った場合、6
0個のセルのうち良好な光電変換特性が認められたのは
50個だけであった。これらの結果から、本発明による
短絡部除去方法は極めて有効であることがわかる。
Actually, reverse bias processing was performed according to the method of the present invention and the conventional method, and the effects were compared. When the reverse bias processing according to the present invention is performed on each of the solar cells in which 60 solar cells are integrated in series,
Good photoelectric conversion characteristics were observed in 55 of the cells. On the other hand, when a reverse bias process is performed by applying a rectangular wave pulse having a peak value of 4 V according to the conventional method,
Out of 0 cells, only 50 cells exhibited good photoelectric conversion characteristics. From these results, it is understood that the method of removing a short-circuit portion according to the present invention is extremely effective.

【0028】[0028]

【発明の効果】以上詳述したように本発明の太陽電池の
短絡部除去方法を用いれば、短絡部を除去する際に、逆
方向電圧の印加によりかえって短絡部の状態が悪化する
ことを防止しながら短絡部を確実に除去することができ
るので、太陽電池の光電変換特性の改善に大きく寄与す
る。
As described in detail above, the use of the method for removing short-circuited portions of a solar cell according to the present invention prevents the deterioration of the short-circuited portions by the application of a reverse voltage when the short-circuited portions are removed. Since the short-circuit portion can be removed without fail, this greatly contributes to the improvement of the photoelectric conversion characteristics of the solar cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明および従来の逆バイアス処理によるリー
ク電流の変化を示す図。
FIG. 1 is a diagram showing a change in leakage current due to the present invention and a conventional reverse bias process.

【図2】本発明による逆方向電圧の波形を示す図。FIG. 2 is a diagram showing a waveform of a reverse voltage according to the present invention.

【図3】太陽電池の構成と短絡部除去方法を説明する
図。
FIG. 3 is a diagram illustrating a configuration of a solar cell and a method for removing a short-circuit portion.

【符号の説明】[Explanation of symbols]

1…絶縁性基板 2…第1の電極 3…光電変換半導体層 4…第2の電極 5…太陽電池セル 6…プローブ 10…太陽電池 DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2 ... 1st electrode 3 ... Photoelectric conversion semiconductor layer 4 ... 2nd electrode 5 ... Solar cell 6 ... Probe 10 ... Solar cell

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年3月27日(2000.3.2
7)
[Submission date] March 27, 2000 (2003.
7)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【請求項6】 前記逆方向電圧の周波数が50〜120
Hzであることを特徴とする請求項5記載の太陽電池の
短絡部除去方法。 ─────────────────────────────────────────────────────
6. The frequency of the reverse voltage is 50 to 120.
6. The method for removing a short-circuited portion of a solar cell according to claim 5 , wherein the frequency is Hz. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年10月12日(2000.10.
12)
[Submission date] October 12, 2000 (2000.10.
12)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に第1の電極層、半導体層、第2
の電極層が順次形成された1又は複数の太陽電池セルを
含む太陽電池の短絡部を除去する方法であって、各太陽
電池セルの正負の両極に対して、所定の電圧値を有する
逆方向電圧を印加してリーク電流を測定し、リーク電流
が許容値以下になった時点で逆方向電圧印加処理を終了
することを特徴とする太陽電池の短絡部除去方法。
A first electrode layer, a semiconductor layer, and a second electrode layer on a substrate;
A method for removing a short-circuit portion of a solar cell including one or a plurality of solar cells in which electrode layers are sequentially formed, wherein a reverse voltage having a predetermined voltage value is applied to both positive and negative electrodes of each solar cell. A method for removing a short-circuit portion of a solar cell, comprising: measuring a leak current by applying a voltage; and ending the reverse voltage applying process when the leak current becomes equal to or less than an allowable value.
【請求項2】 前記各太陽電池セルの正負の両極に対し
て、所定の電圧値を有する逆方向電圧を印加してリーク
電流を測定し、リーク電流が許容値を超えている場合に
前回の電圧値よりも高い電圧値を有する逆方向電圧を印
加してリーク電流を測定し、リーク電流が増加傾向を示
さない場合にはより高い電圧値を有する逆方向電圧を印
加してリーク電流を測定する処理を繰り返し、リーク電
流が増加傾向を示した場合には逆方向電圧印加処理を終
了することを特徴とする請求項1記載の太陽電池の短絡
部除去方法。
2. A leak current is measured by applying a reverse voltage having a predetermined voltage value to both the positive and negative electrodes of each of the solar cells, and when the leak current exceeds an allowable value, Apply a reverse voltage with a voltage value higher than the voltage value and measure the leak current.If the leak current does not show an increasing tendency, apply a reverse voltage with a higher voltage value and measure the leak current 2. The method according to claim 1, wherein the reverse voltage application process is terminated when the leakage current shows a tendency to increase.
【請求項3】 最初の処理時に印加する逆方向電圧の電
圧値が2V以下であることを特徴とする請求項1または
2記載の太陽電池の短絡部除去方法。
3. The method according to claim 1, wherein a value of the reverse voltage applied at the time of the first processing is 2 V or less.
【請求項4】 前記逆方向電圧が周期的に変化する波形
を示すことを特徴とする請求項1ないし3いずれか記載
の太陽電池の短絡部除去方法。
4. The method according to claim 1, wherein the reverse voltage has a waveform that changes periodically.
【請求項5】 前記逆方向電圧の波形が正弦波、正弦波
の半波またはノコギリ波であることを特徴とする請求項
4記載の太陽電池の短絡部除去方法。
5. The method according to claim 4, wherein the waveform of the reverse voltage is a sine wave, a half sine wave or a sawtooth wave.
【請求項6】 前記逆方向電圧の周波数が20〜100
0Hzであることを特徴とする請求項4または5記載の
太陽電池の短絡部除去方法。
6. The frequency of the reverse voltage is 20 to 100.
The method for removing a short-circuit portion of a solar cell according to claim 4 or 5, wherein the frequency is 0 Hz.
【請求項7】 前記逆方向電圧の周波数が50〜120
Hzであることを特徴とする請求項6記載の太陽電池の
短絡部除去方法。
7. The frequency of the reverse voltage is 50 to 120.
7. The method for removing a short-circuited portion of a solar cell according to claim 6, wherein the frequency is Hz.
JP11228519A 1999-05-14 1999-08-12 How to remove short circuit part of solar cell Expired - Lifetime JP3143616B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP11228519A JP3143616B2 (en) 1999-08-12 1999-08-12 How to remove short circuit part of solar cell
AU22398/00A AU766466B2 (en) 1999-05-14 2000-03-20 Reverse biasing apparatus for solar battery module
AT00106128T ATE329372T1 (en) 1999-05-14 2000-03-21 GENERATOR PROVIDING A REVERSE BIAS FOR A SOLAR CELL MODULE
EP00106128A EP1052704B1 (en) 1999-05-14 2000-03-21 Reverse biasing apparatus for solar battery module
EP06005885A EP1670067B1 (en) 1999-05-14 2000-03-21 Reverse biasing method and apparatus for solar battery module
DE60038990T DE60038990D1 (en) 1999-05-14 2000-03-21 A reverse bias generator for a solar cell module
US09/532,111 US6365825B1 (en) 1999-05-14 2000-03-21 Reverse biasing apparatus for solar battery module
AT06005885T ATE396505T1 (en) 1999-05-14 2000-03-21 GENERATOR PROVIDING A REVERSE BIAS FOR A SOLAR CELL MODULE
DE60028452T DE60028452T2 (en) 1999-05-14 2000-03-21 A reverse bias generator for a solar cell module
ES06005885T ES2303705T3 (en) 1999-05-14 2000-03-21 PROCEDURE OF INVERSE POLARIZATION AND APPARATUS FOR A SOLAR CELL MODULE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228519A JP3143616B2 (en) 1999-08-12 1999-08-12 How to remove short circuit part of solar cell

Publications (2)

Publication Number Publication Date
JP2001053302A true JP2001053302A (en) 2001-02-23
JP3143616B2 JP3143616B2 (en) 2001-03-07

Family

ID=16877705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228519A Expired - Lifetime JP3143616B2 (en) 1999-05-14 1999-08-12 How to remove short circuit part of solar cell

Country Status (1)

Country Link
JP (1) JP3143616B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064167A1 (en) * 2003-01-10 2004-07-29 Kaneka Corporation Transparent thin-film solar cell module and its manufacturing method
WO2009122575A1 (en) * 2008-04-02 2009-10-08 パイオニア株式会社 After-treatment apparatus and method of after-treatment
JP2011054482A (en) * 2009-09-03 2011-03-17 Micronics Japan Co Ltd Device and method for removing battery short-circuited portion, and device and method for determining battery short-circuited portion removing voltage
EP2782183A4 (en) * 2011-11-14 2015-09-23 Nihon Micronics Kk Repair device for sheet-shaped battery
TWI581444B (en) * 2010-07-09 2017-05-01 傲思丹度科技公司 Solar cell and method of operating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104881A1 (en) * 2010-02-26 2011-09-01 株式会社エヌエフ回路設計ブロック Solar cell refurbishment method, solar cell manufacturing method, solar cell manufactured by said manufacturing method, solar cell refurbishment device, solar cell manufacturing device and inspection device, and solar cell manufactured by a process using said devices
WO2011104880A1 (en) * 2010-02-26 2011-09-01 株式会社エヌエフ回路設計ブロック Solar cell refurbishment method, solar cell manufacturing method, solar cell manufactured by said manufacturing method, solar cell refurbishment device, solar cell manufacturing device and inspection device, and solar cell manufactured by a process using said devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064167A1 (en) * 2003-01-10 2004-07-29 Kaneka Corporation Transparent thin-film solar cell module and its manufacturing method
WO2009122575A1 (en) * 2008-04-02 2009-10-08 パイオニア株式会社 After-treatment apparatus and method of after-treatment
JP2011054482A (en) * 2009-09-03 2011-03-17 Micronics Japan Co Ltd Device and method for removing battery short-circuited portion, and device and method for determining battery short-circuited portion removing voltage
CN102013448A (en) * 2009-09-03 2011-04-13 日本麦可罗尼克斯股份有限公司 Apparatus and method for removing battery short circuit portion and apparatus and method for determining battery short circuit portion removing voltage
TWI581444B (en) * 2010-07-09 2017-05-01 傲思丹度科技公司 Solar cell and method of operating the same
US9722533B2 (en) 2010-07-09 2017-08-01 Ostendo Technologies, Inc. Alternating bias hot carrier solar cells
US9882526B2 (en) 2010-07-09 2018-01-30 Ostendo Technologies, Inc. Alternating bias hot carrier solar cells
EP2782183A4 (en) * 2011-11-14 2015-09-23 Nihon Micronics Kk Repair device for sheet-shaped battery
US9799927B2 (en) 2011-11-14 2017-10-24 Kabushiki Kaisha Nihon Micronics Repair apparatus of sheet type cell

Also Published As

Publication number Publication date
JP3143616B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
EP1039553B1 (en) Method for removing short-circuited sections of a solar cell
US4806496A (en) Method for manufacturing photoelectric conversion devices
JP2005506703A (en) Stacked switchable elements and diode combinations
US4618873A (en) Thin film device
JP3143616B2 (en) How to remove short circuit part of solar cell
JP2001274447A (en) Method of manufacturing integrated thin film solar battery
CN114361330B (en) Lithium niobate semiconductor structure
JP4171166B2 (en) Photovoltaic device and manufacturing method thereof
JP2004221437A (en) Photovoltaic device and manufacturing method thereof
JP2001053297A (en) Solar cell short circuit part removing device and method
JPH0323677A (en) Repairing method of semiconductor device
JP2001053303A (en) Short-circuit section removing method of solar cell
JP5379586B2 (en) Battery short-circuit removing device and method
JPS62176173A (en) Manufacture of photoelectric conversion device
JPS62176174A (en) Manufacture of photoelectric conversion device
JPS62176172A (en) Manufacture of photoelectric conversion device
JP3050546B1 (en) How to remove short circuit part of solar cell
JP2013183026A (en) Bonding pad electrode and bonding pad electrode formation method
JP3049241B1 (en) How to remove short circuit part of solar cell
JP3085180B2 (en) Field effect solar cell
JPH09148600A (en) Solar battery and its manufacture
US8679862B2 (en) Method and device for manufacturing thin film photoelectric conversion module
JP2003031831A (en) Photovoltaic element and its manufacturing method
JPS6486567A (en) Manufacture of amorphous silicon solar cell
JPS61268077A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3143616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term