JP2001051208A - Observation device obtaining three-dimensional image of object to be inspected using microscope - Google Patents

Observation device obtaining three-dimensional image of object to be inspected using microscope

Info

Publication number
JP2001051208A
JP2001051208A JP11226125A JP22612599A JP2001051208A JP 2001051208 A JP2001051208 A JP 2001051208A JP 11226125 A JP11226125 A JP 11226125A JP 22612599 A JP22612599 A JP 22612599A JP 2001051208 A JP2001051208 A JP 2001051208A
Authority
JP
Japan
Prior art keywords
microscope
inspected
light source
light
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11226125A
Other languages
Japanese (ja)
Inventor
Manabu Saruwatari
学 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HYBRID KK
Original Assignee
NIPPON HYBRID KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HYBRID KK filed Critical NIPPON HYBRID KK
Priority to JP11226125A priority Critical patent/JP2001051208A/en
Publication of JP2001051208A publication Critical patent/JP2001051208A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate observation of the side part or the like of an object to be inspected by making two reflection mirrors individually rotatable, to observe the object to be inspected from directly above by rotating one reflection mirror to a specified position, to obtain the clear image of the object to be inspected by providing an optical filter and also to adjust the optical path and the light quantity of a light beam, with which the object to be inspected is illuminated so as to obtain clear image of the object to be inspected. SOLUTION: This device possesses a light source 32 to illuminate the object to be inspected 8, a first reflecting mirror 48 whose angle is variable and which receives the light beam reflected by the object 8 with a certain angle with an optical axis 42 of a microscope and a second reflection mirror 50 whose angle is variable and which is provided at position, including the optical axis 42 of the microscope and receives a light beam reflected by the first reflecting mirror 48 and guides the beam to the lens barrel of the microscope. Also, a filter is provided at an optical path adjusting part 33 between the light source 32 and the object 8, and the optical path and the light quantity of the light beams with which the object 8 is illuminated are adjusted to obtain the clear image of the object 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は顕微鏡を用いて被検
査物の3次元イメージを求める観察装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an observation apparatus for obtaining a three-dimensional image of a test object using a microscope.

【0002】[0002]

【従来の技術】半導体チップの端子のボンディング不
良、超小型電子部品の半田付け不良等の検査は、被検査
物(被検査部或いは被検査対象)が微細なために顕微鏡
を用いて被検査物の拡大イメージを求める必要がある。
しかし、単に顕微鏡で拡大して得た被検査物の2次元イ
メージだけでは正確な検査は困難である。つまり、被検
査物を真上から見た画像イメージだけでは正確な検証は
期待できない。このため、顕微鏡を用いて微細な被検査
物の3次元画像イメージを求める観察装置が提案されて
いる。
2. Description of the Related Art Inspections such as bonding failure of terminals of a semiconductor chip and soldering failure of an ultra-small electronic component are performed by using a microscope because the inspection object (inspection portion or inspection object) is minute. It is necessary to seek an enlarged image of.
However, accurate inspection is difficult only with a two-dimensional image of the inspection object obtained by simply enlarging with a microscope. In other words, accurate verification cannot be expected only from an image viewed from directly above the inspection object. For this reason, an observation device for obtaining a three-dimensional image of a fine inspection object using a microscope has been proposed.

【0003】顕微鏡を用いて被検査物の3次元イメージ
を求める従来の観察装置は、被検査物を照明する光源
と、被反射物で反射し且つ顕微鏡の光軸と角度を有して
反射した光線を受ける第1の反射ミラーと、顕微鏡の光
軸を含む位置に設けられ且つ上記第1の反射ミラーで反
射した光線を受けて顕微鏡の鏡筒に光線を導く第2の反
射ミラーとを有している。
A conventional observation apparatus for obtaining a three-dimensional image of an object to be inspected by using a microscope includes a light source for illuminating the object to be inspected, a light reflected from the object to be reflected, and reflected at an angle to the optical axis of the microscope. A first reflection mirror for receiving the light beam, and a second reflection mirror provided at a position including the optical axis of the microscope and receiving the light beam reflected by the first reflection mirror and guiding the light beam to the lens barrel of the microscope. are doing.

【0004】即ち、被検査物で斜めに反射された光線を
上記の第1の反射ミラーで反射し、この反射光線を第2
の反射ミラーで顕微鏡の鏡筒に導き、被検査物の3次元
イメージを求めている。
That is, the light beam obliquely reflected by the inspection object is reflected by the first reflecting mirror, and the reflected light beam is reflected by a second reflecting mirror.
The mirror is guided to the lens barrel of the microscope by a reflecting mirror, and a three-dimensional image of the inspection object is obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
第1及び第2夫々の反射ミラーはその設置角度が固定さ
れているため、被検査物において所定角度で斜めに反射
した光線のみが観察される。つまり、所定角度以外の斜
め反射光線を顕微鏡の鏡筒に導くことが出来ないという
問題があった。この問題を解決するためには、異なった
角度に設置した第1及び第2反射ミラーの組(即ちミラ
ーユニット)を複数個用意し、これらのミラーユニット
を必要に応じて選択し、観察装置に挿入するという煩雑
な操作が必要であった。更に、複数のミラーユニットを
揃えることは装置全体のコスト及び保管場所などの面に
おいても不都合があった。
However, since the installation angles of the conventional first and second reflection mirrors are fixed, only light rays obliquely reflected at a predetermined angle on the inspection object are observed. . That is, there has been a problem that obliquely reflected light rays other than the predetermined angle cannot be guided to the lens barrel of the microscope. In order to solve this problem, a plurality of sets of first and second reflection mirrors (ie, mirror units) installed at different angles are prepared, and these mirror units are selected as necessary, and the observation unit is used. A complicated operation of inserting was required. Further, aligning a plurality of mirror units has disadvantages in terms of the cost of the entire apparatus and the storage space.

【0006】更に、被検査物を真上から見た2次元イメ
ージも検査には不可欠であるが、従来の観察装置ではミ
ラーユニットを装置から取り外す必要があり操作上煩雑
な問題があった。
Further, a two-dimensional image of the object to be inspected viewed from directly above is also indispensable for the inspection. However, in the conventional observation apparatus, it is necessary to remove the mirror unit from the apparatus, and there is a problem in operation.

【0007】更に又、被検査物で反射した光線を顕微鏡
で拡大して得たイメージを電荷結合装置カメラ(CCD
カメラ)等で撮影する場合、光源からの光が被検査物で
乱反射して所謂ハレーションを起こすという不具合があ
った。しかしながら、従来の3次元イメージ観察装置は
この問題を解決する提案は存在しない。
Further, an image obtained by enlarging a light beam reflected by the object to be inspected with a microscope is used as a charge coupled device camera (CCD).
In the case of photographing with a camera, etc., there is a problem that light from a light source is irregularly reflected on an inspection object and causes so-called halation. However, there is no proposal for the conventional three-dimensional image observation apparatus to solve this problem.

【0008】更に又、上述の従来の観察装置では、被検
査物を照明する光源は、本願と同様に、顕微鏡の鏡筒の
周囲を囲むリング状の光源である。しかし、光源からの
光線はその光路が常に一定であるため、形状の異なる種
々の被検査物のイメージ゛を得る必要があるため、被検
査物の形状及び設置場所によっては、得られたイメージ
の一部がハレーション等を起こして不鮮明になるという
問題があった。
Further, in the above-mentioned conventional observation apparatus, the light source for illuminating the object to be inspected is a ring-shaped light source surrounding the periphery of the lens barrel of the microscope, as in the present application. However, since the optical path of the light beam from the light source is always constant, it is necessary to obtain images 種 々 of various inspected objects having different shapes. There was a problem that some parts caused halation and became unclear.

【0009】[0009]

【発明の目的】従って、本発明は、顕微鏡を用いて被検
査物の3次元イメージを求める従来の観察装置が有する
種々の問題を解決することをその課題とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve various problems of a conventional observation apparatus for obtaining a three-dimensional image of an object to be inspected using a microscope.

【0010】[0010]

【課題を解決するための手段】本発明に係る観察装置
は、被検査物を照明する光源と、上記被検査物において
顕微鏡の光軸と角度を有して反射した光線を受ける角度
可変の第1の反射ミラーと、顕微鏡の光軸を含む位置に
設けられ、上記第1の反射ミラーで反射した光線を受け
て顕微鏡の鏡筒に光線を導く角度可変の第2の反射ミラ
ーと、設けている。
According to the present invention, there is provided an observation apparatus comprising: a light source for illuminating an object to be inspected; A reflecting mirror provided at a position including the optical axis of the microscope, and a second angle-variable reflecting mirror that receives the light reflected by the first reflecting mirror and guides the light to the lens barrel of the microscope. I have.

【0011】更に、本発明に係る観察装置は、被検査物
を照明する光源と;上記被検査物において顕微鏡の光軸
と角度を有して反射した光線を受ける角度可変の第1の
反射ミラーと;顕微鏡の光軸を含む位置に設けられ、上
記第1の反射ミラーで反射した光線を受けて顕微鏡の鏡
筒に光線を導く角度可変の第2の反射ミラーとを有し、
角度可変の上記第2の反射ミラーは、上記第1及び第2
の反射ミラーを介さないで上記被検査物を直接観察でき
る位置に変位可能である。
The observation apparatus according to the present invention further comprises a light source for illuminating the object to be inspected; and a first reflecting mirror having a variable angle for receiving light reflected at an angle with the optical axis of the microscope on the object to be inspected. And a second reflecting mirror which is provided at a position including the optical axis of the microscope and receives the light reflected by the first reflecting mirror and guides the light to the lens barrel of the microscope.
The second variable reflection mirror of which the angle is variable includes the first and second reflection mirrors.
Can be displaced to a position where the inspection object can be directly observed without passing through the reflection mirror.

【0012】更に、本発明に係る観察装置は、被検査物
を照明する光源と、上記被検査物において顕微鏡の光軸
と角度を有して反射した光線を受ける角度可変の第1の
反射ミラーと、顕微鏡の光軸を含む位置に設けられ、上
記第1の反射ミラーで反射した光線を受けて顕微鏡の鏡
筒に光線を導く角度可変の第2の反射ミラーと、上記被
検査物と上記光源との間に設けた光フィルターと、角度
可変の上記第2の反射ミラーは、上記第1及び第2の反
射ミラーを介さないで上記被検査物を直接観察できる位
置に変位可能である。
Further, the observation apparatus according to the present invention comprises a light source for illuminating the object to be inspected, and a first reflecting mirror having a variable angle for receiving the light reflected at an angle with the optical axis of the microscope on the object to be inspected. A second reflecting mirror provided at a position including the optical axis of the microscope and receiving light reflected by the first reflecting mirror and guiding the light to the lens barrel of the microscope; The optical filter provided between the light source and the second reflecting mirror whose angle is variable can be displaced to a position where the inspection object can be directly observed without passing through the first and second reflecting mirrors.

【0013】更に、本発明に係る観察装置は、上記被検
査物において顕微鏡の光軸と角度を有して反射した光線
を受ける角度可変の第1の反射ミラーと、顕微鏡の光軸
を含む位置に設けられ、上記第1の反射ミラーで反射し
た光線を受けて顕微鏡の鏡筒に光線を導く角度可変の第
2の反射ミラーと、上記被検査物と上記光源との間に設
けた光フィルターと、上記被検査物と上記光源との間に
設けられ、該光源の光路を変更する光路変更手段とを有
し、角度可変の上記第2の反射ミラーは、上記第1及び
第2の反射ミラーを介さないで上記被検査物を直接観察
できる位置に変位可能である。
Further, the observation apparatus according to the present invention is characterized in that the inspection object has an angle-variable first reflection mirror that receives light reflected at an angle with the optical axis of the microscope, and a position including the optical axis of the microscope. A second reflecting mirror that receives light reflected by the first reflecting mirror and guides the light to the lens barrel of the microscope; and an optical filter that is provided between the inspection object and the light source. And an optical path changing means provided between the inspection object and the light source for changing an optical path of the light source, wherein the angle-variable second reflection mirror includes the first and second reflection mirrors. The inspection object can be displaced to a position where the inspection object can be directly observed without a mirror.

【0014】[0014]

【発明の実施の形態】本発明に係る実施の形態を添付の
図1〜図7を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described with reference to FIGS.

【0015】図1は、本発明が応用される観察装置4の
概略を示す図である。観察装置4は、顕微鏡を用いて被
検査物の3次元イメージを求める装置であるが、本明細
書では、説明を簡単にするために単に観察装置という場
合がある。
FIG. 1 is a view schematically showing an observation apparatus 4 to which the present invention is applied. The observation device 4 is a device that obtains a three-dimensional image of the inspection object using a microscope, but may be simply referred to as an observation device in this specification for the sake of simplicity.

【0016】観察装置4の下には、X軸−Y軸方向に移
動可能なテーブル6が設けられ、このテーブル6の上に
被検査物8が載せられる。被検査物8は、超小型電子部
品、ICチップ等である。
A table 6 movable in the X-axis and Y-axis directions is provided below the observation device 4, and the inspection object 8 is placed on the table 6. The inspection object 8 is a microelectronic component, an IC chip, or the like.

【0017】観察装置4の一部を構成する顕微鏡10の
上部には、CCDカメラ12が設けられ、CCDカメラ
12から出力する映像信号はライン14を介してモニタ
装置(図示せず)に送出される。顕微鏡10の鏡筒11
は支持部16に支持されている。この支持部16は観察
装置4全体を上下方向に移動させる上下移動部18を有
する。この移動部18のつまみ20を回転させて装置全
体を上下方向に移動させることが出来る。支持部16は
適当な不動部22に固定されている。
A CCD camera 12 is provided above a microscope 10 which forms a part of the observation device 4, and a video signal output from the CCD camera 12 is sent to a monitor device (not shown) via a line 14. You. Barrel 11 of microscope 10
Are supported by the support portion 16. The support unit 16 has a vertical moving unit 18 that moves the entire observation device 4 in the vertical direction. By rotating the knob 20 of the moving section 18, the entire apparatus can be moved in the vertical direction. The support 16 is fixed to a suitable stationary part 22.

【0018】図1において、24は顕微鏡の絞り部分を
示し、26は顕微鏡のズーム部分を示している。これら
の部分は本発明に直接関係がないので詳細な説明は省略
する。
In FIG. 1, reference numeral 24 denotes a stop portion of the microscope, and reference numeral 26 denotes a zoom portion of the microscope. Since these parts are not directly related to the present invention, detailed description will be omitted.

【0019】図1において、本発明に直接関係するの
は、被検査物8で反射した光線を選択して顕微鏡10に
導く反射光線選択部28と、この反射光線選択部28及
び後述の光路調整部33を顕微鏡の光軸を中心にして任
意の位置に回転させる回転駆動部30と、被検査物8を
照明するリング状の光源32と、光源32から出力した
光線の光路を調整する光路調整部33とである。図1か
らは明らかではないが、リング状の光源32は、顕微鏡
10の下端部の周囲を囲むように取り付けられている。
光路調整部33は、光源32から出力した光線の光路に
設けたフィルタをも具えている。
In FIG. 1, what is directly related to the present invention is a reflected light selecting section 28 for selecting a light ray reflected by the inspection object 8 and guiding it to the microscope 10, a reflected light selecting section 28 and an optical path adjustment described later. A rotation driving unit 30 for rotating the unit 33 to an arbitrary position around the optical axis of the microscope, a ring-shaped light source 32 for illuminating the inspection object 8, and an optical path adjustment for adjusting the optical path of the light beam output from the light source 32 Part 33. Although not clear from FIG. 1, the ring-shaped light source 32 is attached so as to surround the periphery of the lower end of the microscope 10.
The light path adjusting unit 33 also includes a filter provided in the light path of the light beam output from the light source 32.

【0020】図2は、反射光線選択部28及びその周辺
部の詳細を示す図である。回転駆動部30(図1)は、回
転ベアリング40を介し、反射光線選択部28及びフィ
ルタ付きの光路調整部33を顕微鏡の光軸42を中心と
して360度回転させることができる。44は顕微鏡の
視野領域を示し、11は顕微鏡10の鏡筒の一部を示し
ている。
FIG. 2 is a diagram showing the details of the reflected light selecting section 28 and its peripheral portion. The rotation drive unit 30 (FIG. 1) can rotate the reflected light selection unit 28 and the optical path adjustment unit 33 with a filter through the rotation bearing 40 by 360 degrees about the optical axis 42 of the microscope. Reference numeral 44 denotes a field of view of the microscope, and reference numeral 11 denotes a part of the lens barrel of the microscope 10.

【0021】リング状の光源32は、顕微鏡の光軸42
に対して角度を有して被検査物8を照明する(即ち被検
査物を斜め上方から照明する)。
The ring-shaped light source 32 is provided with an optical axis 42 of the microscope.
The object 8 is illuminated at an angle to (ie, the object is illuminated obliquely from above).

【0022】反射光線選択部28は、2個の反射ミラー
48及び50を有する。請求項では、反射ミラー48及
び50を夫々第1及び第2の反射ミラーとしている。
The reflected light selecting section 28 has two reflecting mirrors 48 and 50. In the claims, the reflection mirrors 48 and 50 are first and second reflection mirrors, respectively.

【0023】反射ミラー48は支点52を中心に回転
し、被検査物8で反射した光線を入射角約30度から4
5度で受けて反射ミラー50の方向に反射する。換言す
れば、反射ミラー48の反射面は、顕微鏡の光軸42に
対して図示の角度α(可変)を有して設置され、この角
度αは45度から約30度まで変化する。反射ミラー4
8はミラー回転角度αを調整する角度調節手段(図示せ
ず)により回転角度が調整される。この回転角度調整
は、1回の角度調節で反射ミラー48を所定角度(例え
ば0.5度或いは1度)づつ調整(変化)させるように
してもよく、或いは、連続的に角度調整するようにして
も良い。上述の所定角度(約30度から45度)は単な
る例示であることに留意されたい。角度調整手段自体は
簡単な構成により実現できるので詳細な説明は省略す
る。
The reflection mirror 48 rotates about the fulcrum 52, and converts the light reflected by the inspection object 8 from an incident angle of about 30 degrees to 4 degrees.
The light is received at 5 degrees and reflected in the direction of the reflection mirror 50. In other words, the reflecting surface of the reflecting mirror 48 is installed at an angle α (variable) shown with respect to the optical axis 42 of the microscope, and this angle α changes from 45 degrees to about 30 degrees. Reflection mirror 4
8, the rotation angle is adjusted by angle adjusting means (not shown) for adjusting the mirror rotation angle α. In this rotation angle adjustment, the reflection mirror 48 may be adjusted (changed) by a predetermined angle (for example, 0.5 degree or 1 degree) by one angle adjustment, or the angle may be continuously adjusted. May be. It should be noted that the predetermined angles described above (about 30-45 degrees) are merely exemplary. Since the angle adjusting means itself can be realized by a simple configuration, a detailed description is omitted.

【0024】反射ミラー50は、支点54を中心にし
て、顕微鏡の光軸42に対して45度から0度の範囲で
回転可能である。上述の光軸42との角度αを利用して
説明すれば、反射ミラー50は、支点54を中心にし
て、角度αが45度から0度の範囲で回転可能である。
即ち、反射ミラー50が、顕微鏡の光軸42に対して0
度の位置(α=0)になると(即ちミラー50の反射面
が光軸と平行になると)、被検査物8を真上から観察す
ることができる。この様子を図3に示す。尚、反射ミラ
ー48の場合と同様に、反射ミラー50は、ミラー回転
角度を調整する角度調節手段(図示せず)により回転角
度が調整される。上述の場合と同様に、回転角度調整
は、1回の角度調節で反射ミラー50を所定角度(例え
ば0.5度或いは1度)づつ調整(変化)させるように
してもよく、或いは、連続的に角度調整するようにして
も良い。上述の角度変化の範囲は単なる例示であること
に留意されたい。
The reflection mirror 50 is rotatable about a fulcrum 54 in the range of 45 degrees to 0 degrees with respect to the optical axis 42 of the microscope. If described using the above-mentioned angle α with the optical axis 42, the reflection mirror 50 can rotate around the fulcrum 54 in the range of 45 ° to 0 °.
That is, the reflection mirror 50 is positioned at 0 ° with respect to the optical axis 42 of the microscope.
When the degree position (α = 0) is reached (that is, when the reflection surface of the mirror 50 is parallel to the optical axis), the inspection object 8 can be observed from directly above. This is shown in FIG. As in the case of the reflection mirror 48, the rotation angle of the reflection mirror 50 is adjusted by angle adjusting means (not shown) for adjusting the mirror rotation angle. As in the case described above, the rotation angle may be adjusted (changed) by a predetermined angle (for example, 0.5 degrees or 1 degree) by one angle adjustment, or may be continuously adjusted. The angle may be adjusted at the same time. Note that the range of angle changes described above is merely exemplary.

【0025】上述のミラー回転角度調整は、手動で行っ
ても良く、或いは、モータを使用しこのモータの駆動を
制御して角度調整するようにしても良い。
The mirror rotation angle adjustment described above may be performed manually, or a motor may be used to control the drive of the motor to adjust the angle.

【0026】反射ミラー48及び50の角度の両方を適
当に調節することによって被検査物の側部からの反射光
を観察できる。例えば、反射ミラー48の入射角を30
度とし、反射ミラー50での入射角度を45度とすれば
(例えば図2の実線で示した反射光線の場合)、被検査
物8からの反射光の内で光軸42に対して30度で反射
する光線を顕微鏡に導くことが出来る。更に、反射ミラ
ー48の入射角を30度とし、反射ミラー50での入射
角度を45度から約5度大きくして約50度とすれば
(即ちα=40度)、被検査物8からの反射光の内で光
軸42に対して35度で反射する光線を顕微鏡に導くこ
とが出来る(例えば図2の破線で示した反射光線の場
合)。つまり、反射ミラー48及び50を、夫々光軸4
2に対して45度の位置(α=45度)からβ度及びγ
度づつ時計方向(図面上)に回転させた位置とすれば、
被検査物8からの反射光の内で光軸42に対して(β+
γ)度で反射する光線を顕微鏡に導くことが出来る。勿
論、被検査物8からの光線がミラー48及び50で捕捉
できるという条件を満たさなければならない。
By appropriately adjusting both the angles of the reflection mirrors 48 and 50, the reflected light from the side of the inspection object can be observed. For example, the incident angle of the reflection mirror 48 is set to 30
If the incident angle at the reflection mirror 50 is 45 degrees (for example, in the case of a reflected light ray shown by a solid line in FIG. 2), 30 degrees with respect to the optical axis 42 in the reflected light from the inspection object 8 Can be guided to the microscope. Further, if the angle of incidence of the reflecting mirror 48 is set to 30 degrees and the angle of incidence at the reflecting mirror 50 is increased by about 5 degrees from 45 degrees to about 50 degrees (that is, α = 40 degrees), Among the reflected light, light reflected at 35 degrees with respect to the optical axis 42 can be guided to the microscope (for example, in the case of the reflected light indicated by a broken line in FIG. 2). That is, the reflecting mirrors 48 and 50 are respectively
From 45 degrees (α = 45 degrees) to 2 degrees and β degrees and γ
If the position is rotated clockwise (on the drawing) every time,
In the reflected light from the inspection object 8, (β +
Light rays reflected at γ) degrees can be directed to a microscope. Of course, the condition that the light beam from the inspection object 8 can be captured by the mirrors 48 and 50 must be satisfied.

【0027】このように、反射ミラー48及び50の角
度の両方を適当に調節することによって被検査物の側部
からの反射光を観察でき、更に、反射ミラー50を光軸
42と平行になるように移動させれば(図3に示す)、
被検査物を真上から観察することが出来る。
As described above, by appropriately adjusting both the angles of the reflecting mirrors 48 and 50, the reflected light from the side of the inspection object can be observed, and the reflecting mirror 50 becomes parallel to the optical axis 42. (Shown in FIG. 3)
The inspected object can be observed from directly above.

【0028】図2において、実線で示す光線の場合の被
検査物8の位置が、破線で示す光線の場合には上方に移
動している(8’で示す)。しかし、実際には、被検査
物8の位置は変化せず、観察装置4を下方に下げるよう
にする。これは、反射ミラー48及び50の回転に応じ
て変化する光線の光路長を、観察装置4を上下させて顕
微鏡の焦点距離に合わせるためである。
In FIG. 2, the position of the inspection object 8 in the case of the light beam indicated by the solid line is moving upward (indicated by 8 ') in the case of the light beam indicated by the broken line. However, actually, the position of the inspection object 8 does not change, and the observation device 4 is lowered. This is because the optical path length of the light beam that changes according to the rotation of the reflection mirrors 48 and 50 is adjusted to the focal length of the microscope by moving the observation device 4 up and down.

【0029】上述したように、観察装置4は、被検査物
8の内、顕微鏡の光軸に対して直角でない部分のイメー
ジを得ることが出来る。つまり、被検査物の3次元イメ
ージを得ることが出来るので、被検査物8の端部の側面
に限らず、被検査物8の上部平面部に存在する凹部或い
は凸部の映像も求めることが出来る。
As described above, the observation device 4 can obtain an image of a portion of the inspection object 8 that is not perpendicular to the optical axis of the microscope. That is, since a three-dimensional image of the inspection object 8 can be obtained, it is necessary to obtain not only the side surface of the end portion of the inspection object 8 but also the image of the concave portion or the convex portion existing in the upper flat portion of the inspection object 8. I can do it.

【0030】光路調整部33を、図4〜図7を参照して
説明する。
The optical path adjusting unit 33 will be described with reference to FIGS.

【0031】本明細書で具体例を説明する光路調整部3
3は、図4で示す薄い円盤状の部品60と、この部品と
同構成の部品(60’及び60”とする)を2枚、即ち
合計3枚の円盤状の部品を使用する。図4に示す円盤状
の部品60の中心部の穴61は、この穴61の中心と顕
微鏡の光軸42とが一致するようになっており、顕微鏡
の視野44が収まる大きさである。4個の扇形の窓(或
いは開口部)62a〜62dの全部或いは一部に光フィ
ルターを設ける。光フィルターとしては、例えば、偏光
板、光拡散板等の種々のフィルターがある。光フィルタ
ーを設けることにより、被検査物の鮮明なイメージを得
ることができる。隣接する窓(62a〜62d)の中間
部(夫々64a〜64dで示す)は光源33からの光を
遮断する部分である。
An optical path adjusting unit 3 of which a specific example will be described in this specification
Reference numeral 3 uses a thin disk-shaped part 60 shown in FIG. 4 and two parts (referred to as 60 ′ and 60 ″) having the same configuration as this part, that is, a total of three disk-shaped parts. The hole 61 at the center of the disc-shaped part 60 shown in FIG. 4 is such that the center of the hole 61 and the optical axis 42 of the microscope coincide with each other, and the size of the field of view 44 of the microscope can be accommodated. An optical filter is provided on all or a part of the fan-shaped windows (or openings) 62a to 62d, for example, various filters such as a polarizing plate and a light diffusing plate. A clear image of the inspected object can be obtained, and the intermediate portions (shown by 64a to 64d) of the adjacent windows (62a to 62d) are portions that block light from the light source 33.

【0032】尚、図4に示す円盤状の部品は、必ずしも
形状が円盤である必要はなく、窓62a〜62dを設け
ることができれば、その形状(外形)が楕円或いは多角
形でもよい。
The disk-shaped part shown in FIG. 4 does not necessarily have to be a disk, but may have an oval or polygonal shape (outer shape) if windows 62a to 62d can be provided.

【0033】光フィルタの設置について更に詳しく説明
する。例えば、円盤状の部品62の4個の扇形の窓62
a〜62dの全部に同一のフィルタを設けもよく、或い
は、4個の窓62a〜62dの夫々に異なる特性を有す
るフィルタを設けてもよい。更に、2枚目の円盤状部品
62’の4個の窓(62a〜62dに相当するため62
a’〜62d’とする)にも同一又は特性の異なるフィ
ルタを設けるか、或いは全部又は一部を素透しとしても
よい。更に又、3枚目の円盤状の部品62”の4個の窓
(62a〜62dに相当するため62a”〜62d”と
する)にも同一又は特性の異なるフィルタを設けるか、
或いは全部又は一部を素透しとしてもよい。つまり、フ
ィルタの設ける窓の選択及びフィルタ自体の選択等は、
撮像装置(CCDカメラ等)の撮像素子の種類、光源か
ら照射される光線の種類等の種々の条件を考慮して行わ
れる。
The installation of the optical filter will be described in more detail. For example, four fan-shaped windows 62 of a disc-shaped part 62
The same filter may be provided for all of a to 62d, or a filter having different characteristics may be provided for each of the four windows 62a to 62d. Furthermore, four windows (62a to 62d, corresponding to 62a to 62d,
a ′ to 62d ′) may be provided with the same or different filters, or may be entirely or partially transparent. Furthermore, the same or different filters may be provided in the four windows of the third disc-shaped part 62 ″ (62a ″ to 62d ″, corresponding to 62a to 62d).
Alternatively, all or a part may be transparent. In other words, the selection of the window provided with the filter, the selection of the filter itself, etc.
This is performed in consideration of various conditions such as the type of an imaging device of an imaging device (such as a CCD camera) and the type of a light beam emitted from a light source.

【0034】図4の円盤部品60及びこれと同構成の部
品60’及び60”を3枚重ねて使用し、3枚の円盤部
品62、62’及び62”を30度づつずらして重ねれ
ば図5のようになる。この場合、リング状の光源32か
らの光は完全に遮断される(勿論このような使用例は実
際には考えられないが)。
If three disk parts 60 of FIG. 4 and parts 60 'and 60 "having the same configuration are used in a stacked state, and three disk parts 62, 62' and 62" are shifted by 30 degrees and stacked one upon another, As shown in FIG. In this case, the light from the ring-shaped light source 32 is completely blocked (although such a use example is of course not considered).

【0035】図6は、上述の3枚重ねた円盤部品62、
62’及び62”の内の部品62’を30度時計方向に
ずらして場合の様子を示す。この場合、斜線で示した部
分の窓が開くことになる。
FIG. 6 shows the above-mentioned three stacked disc parts 62,
A state is shown in which the part 62 'of 62' and 62 "is shifted clockwise by 30 degrees. In this case, the window indicated by the hatched portion is opened.

【0036】図7は、上述の3枚重ねた円盤部品62、
62’及び62”の内、2枚の円盤状の部品62’及び
62”を夫々60度及び30度づつ時計方向にずらして
場合の様子を示す。この場合、斜線で示した部分の窓が
開くことになる。
FIG. 7 shows the above-described three stacked disk components 62,
A state in which two disk-shaped parts 62 'and 62 "of 62' and 62" are shifted clockwise by 60 degrees and 30 degrees, respectively, is shown. In this case, the window indicated by the hatched portion is opened.

【0037】上述の場合は、円盤状の部品62’及び/
又は62”を回転させて窓を開けているが、他の円盤状
部品62も同様に回転させて窓を開けることが可能であ
る。更に、本実施例の場合、4個所の窓を同時に開ける
ことが出来る。最大の窓を開けたときには円盤の中心に
おける窓の角度が60度であるが、4個所の窓の夫々の
大きさを、円盤の中心における角度で0度から60度ま
での範囲で自由に決めることができる。
In the above case, the disc-shaped part 62 'and / or
Or 62 "is rotated to open the window, but the other disc-shaped parts 62 can be similarly rotated to open the window. Further, in this embodiment, four windows are opened at the same time. When the largest window is opened, the angle of the window at the center of the disk is 60 degrees, but the size of each of the four windows is in the range of 0 to 60 degrees in the angle at the center of the disk. You can decide freely.

【0038】複数枚の円盤部品62、62’及び62”
の夫々の回転位置調整は、円盤の外縁部を手で回すこと
によって行ってもよいし、モータを含む公知の調整機構
を使用してもよい。
A plurality of disc components 62, 62 'and 62 "
The adjustment of the respective rotational positions may be performed by manually turning the outer edge of the disk, or a known adjusting mechanism including a motor may be used.

【0039】上述の実施例では3枚の円盤部品60、6
0’及び60”を用意したが、本発明はこの枚数に限定
されることはない。例えば、円盤部品60と同様の円盤
部品を2枚又は4枚以上使用してもよい。この場合の光
線遮断部を設ける場所は上述の説明から明らかである。
In the above embodiment, three disk parts 60, 6
Although 0 ′ and 60 ″ are prepared, the present invention is not limited to this number. For example, two or four or more disk components similar to the disk component 60 may be used. The location where the blocking portion is provided is apparent from the above description.

【0040】上述したように、本発明は、複数の特徴、
即ち、2個の反射ミラーの夫々を回転可能すること、1
個の反射ミラーを光軸と平行にして被検査物を真上から
撮影すること、被検査物をフィルターを通して照明する
こと、光源からの光線の通過量及び通過場所を制御でき
ること、を有する。これらの特徴を夫々独立して使用す
るもできるし、或いは、上記特徴を組み合わせ使用する
こともできる。
As described above, the present invention provides a number of features,
That is, each of the two reflection mirrors can be rotated.
The method includes: photographing the inspection object from directly above with the reflection mirrors being parallel to the optical axis; illuminating the inspection object with a filter; and controlling the amount and location of light rays from the light source. Each of these features can be used independently, or a combination of the above features can be used.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
2個の反射ミラーの夫々を回転可能にしたので、被検査
物の側部を観察する場合に、設置角度を固定した2個の
反射ミラーを具えたユニットを交換する煩雑さを回避で
きる。更に、反射ミラーの一個を顕微鏡の光軸と平行に
なるようにすることが出来るので、従来のように、反射
ミラーユニットを取り外すという面倒な操作を必要とし
ない。更に、本発明によれば、被検査物をフィルターを
通して照明するので、鮮明な映像を得ることが出来る。
更に又、光源からの光線の通過量及び通過場所を制御で
きるので、映像の所謂ハレーションなどを防止して鮮明
なイメージを得ることができるという効果を有する。
As described above, according to the present invention,
Since each of the two reflecting mirrors is rotatable, when observing the side of the object to be inspected, it is possible to avoid the trouble of exchanging a unit including two reflecting mirrors whose installation angles are fixed. Furthermore, since one reflection mirror can be made parallel to the optical axis of the microscope, it is not necessary to perform a troublesome operation of removing the reflection mirror unit as in the related art. Further, according to the present invention, the object to be inspected is illuminated through the filter, so that a clear image can be obtained.
Furthermore, since the amount and location of the light beam from the light source can be controlled, there is an effect that a so-called halation of an image can be prevented and a clear image can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る観察装置の全体を示す図。FIG. 1 is a diagram showing an entire observation apparatus according to the present invention.

【図2】本発明に直接関係する反射光線選択部、フィル
タ付きの光路調整部などを詳細に示した図。
FIG. 2 is a diagram showing in detail a reflected light selecting unit, an optical path adjusting unit with a filter, and the like, which are directly related to the present invention.

【図3】図2に示した反射光線選択部において、被検査
物を真上から観察する様子を示す図。
FIG. 3 is a diagram showing a state in which an object to be inspected is observed from directly above in a reflected light selecting unit shown in FIG. 2;

【図4】本発明に係るフィルタ付きの光路調整部の一部
品を示す図。
FIG. 4 is a diagram showing one component of an optical path adjusting unit with a filter according to the present invention.

【図5】本発明に係るフィルタ付きの光路調整部を説明
する図。
FIG. 5 is a diagram illustrating an optical path adjustment unit with a filter according to the present invention.

【図6】本発明に係るフィルタ付きの光路調整部を説明
する図。
FIG. 6 is a diagram illustrating an optical path adjusting unit with a filter according to the present invention.

【図7】符本発明に係るフィルタ付きの光路調整部を説
明する図。
FIG. 7 is a diagram illustrating an optical path adjustment unit with a filter according to the present invention.

【号の説明】[Description of Issue]

4:顕微鏡を用いて被検査物の3次元イメージを求める
観察装置 6:被検査物を搭載するX軸及びY軸方向に移動可能な
テーブル 8:被検査物 10:顕微鏡 12:CCDカメラ 16:観察装置を支持する支持部 18:観察装置上下移動機構 28:反射光線選択部 30:反射光線選択部などを顕微鏡の光軸を中心にして
回転させる回転駆動部 32:リング状の光源 33:フィルタを有する光路調整部 42:顕微鏡の光軸 44:顕微鏡の視野範囲 48:第1の反射ミラー 50:第2の反射ミラー 60、60’及び60”:光路調整部を構成する一部品 62a〜62d:フィルタを設けることが出来る扇型の
窓(開口部) 64a〜64d:部品60の光線透過窓 64a’〜64d’:部品60’の光線透過窓 64a”〜64d”:部品60”の光線透過窓
4: Observation device for obtaining a three-dimensional image of the inspection object using a microscope 6: Table on which the inspection object is mounted and movable in the X-axis and Y-axis directions 8: Object to be inspected 10: Microscope 12: CCD camera 16: Supporting portion for supporting the observation device 18: Vertical movement mechanism of the observation device 28: Reflected light selecting portion 30: Rotation driving portion for rotating the reflected light selecting portion and the like about the optical axis of the microscope 32: Ring-shaped light source 33: Filter 42: Optical axis of microscope 44: Field of view of microscope 48: First reflecting mirror 50: Second reflecting mirror 60, 60 ′ and 60 ″: One component constituting optical path adjusting unit 62a to 62d : Fan-shaped window (opening) in which a filter can be provided 64a to 64d: Light transmission window of component 60 64a 'to 64d': Light transmission window of component 60 '64a "to 64d": Component 60 Light transmittance window of

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】被検査物を照明する光源と、 上記被検査物において顕微鏡の光軸と角度を有して反射
した光線を受ける角度可変の第1の反射ミラーと、 顕微鏡の光軸を含む位置に設けられ、上記第1の反射ミ
ラーで反射した光線を受けて顕微鏡の鏡筒に光線を導く
角度可変の第2の反射ミラーと、 を有する顕微鏡を用いた被検査物の3次元イメージを得
る観察装置。
1. A light source for illuminating an object to be inspected, a first reflecting mirror having a variable angle for receiving light reflected at an angle with the optical axis of the microscope on the object to be inspected, and an optical axis of the microscope A second reflecting mirror, which is provided at a position and receives light reflected by the first reflecting mirror and guides the light to the lens barrel of the microscope; and a three-dimensional image of the inspection object using the microscope having: Observation device to get.
【請求項2】角度可変の上記第2の反射ミラーは、上記
第1及び第2の反射ミラーを介さないで上記被検査物を
直接観察できる位置に変位可能である、請求項1記載の
顕微鏡を用いた被検査物の3次元イメージを得る観察装
置。
2. The microscope according to claim 1, wherein said second reflecting mirror having a variable angle is displaceable to a position where said object to be inspected can be directly observed without passing through said first and second reflecting mirrors. Observation device that obtains a three-dimensional image of an object to be inspected using a computer.
【請求項3】上記被検査物と上記光源との間に設けた光
フィルターを更に有する請求項1又は2記載の顕微鏡を
用いた被検査物の3次元イメージを得る観察装置。
3. An observation apparatus for obtaining a three-dimensional image of an inspection object using a microscope according to claim 1, further comprising an optical filter provided between the inspection object and the light source.
【請求項4】上記被検査物と上記光源との間に設けら
れ、該光源の光路を変更する光路変更手段を更に有する
請求項1〜3の何れかに記載の顕微鏡を用いた被検査物
の3次元イメージを得る観察装置。
4. An object to be inspected using a microscope according to claim 1, further comprising an optical path changing means provided between the object to be inspected and the light source and changing an optical path of the light source. Observation device for obtaining a three-dimensional image.
【請求項5】上記第2の反射ミラーで反射し、顕微鏡で
拡大した被検査物の3次元イメージを得るカメラを更に
有する請求項1〜4の何れかに記載の顕微鏡を用いた被
検査物の3次元イメージを得る観察装置。
5. An inspection object using a microscope according to claim 1, further comprising a camera that reflects the second reflection mirror and obtains a three-dimensional image of the inspection object magnified by the microscope. Observation device for obtaining a three-dimensional image.
【請求項6】上記光源は上記顕微鏡の光軸に対して角度
を有して上記被検査物を照明するリング状の光源である
請求項1〜5の何れかに記載の顕微鏡を用いた被検査物
の3次元イメージを得る観察装置。
6. A light source using a microscope according to claim 1, wherein said light source is a ring-shaped light source for illuminating said inspection object at an angle with respect to an optical axis of said microscope. An observation device that obtains a three-dimensional image of an inspection object.
【請求項7】被検査物を照明する光源と、7. A light source for illuminating an object to be inspected, 【請求項8】上記被検査物において顕微鏡の光軸と角度
を有して反射した光線を受ける角度可変の第1の反射ミ
ラーと、 顕微鏡の光軸を含む位置に設けられ、上記第1の反射ミ
ラーで反射した光線を受けて顕微鏡の鏡筒に光線を導く
角度可変の第2の反射ミラーとを有し、 角度可変の上記第2の反射ミラーは、上記第1及び第2
の反射ミラーを介さないで上記被検査物を直接観察でき
る位置に変位可能である、顕微鏡を用いた被検査物の3
次元イメージを得る観察装置。上記被検査物と上記光源
との間に設けた光フィルターを更に有する請求項7記載
の顕微鏡を用いた被検査物の3次元イメージを得る観察
装置。
8. An angle-variable first reflecting mirror for receiving a light beam reflected at an angle to the optical axis of the microscope on the object to be inspected, and a first mirror provided at a position including the optical axis of the microscope. An angle-variable second reflection mirror that receives the light reflected by the reflection mirror and guides the light to the lens barrel of the microscope, wherein the angle-variable second reflection mirror includes the first and second angles.
Of a test object using a microscope, which can be displaced to a position where the test object can be directly observed without passing through a reflecting mirror
An observation device that obtains a two-dimensional image. 9. An observation apparatus for obtaining a three-dimensional image of an inspection object using a microscope according to claim 7, further comprising an optical filter provided between the inspection object and the light source.
【請求項9】上記被検査物と上記光源との間に設けら
れ、該光源の光路を変更する光路変更手段を更に有する
請求項7又は8記載の顕微鏡を用いた被検査物の3次元
イメージを得る観察装置。
9. A three-dimensional image of an inspected object using a microscope according to claim 7, further comprising an optical path changing means provided between the inspected object and the light source for changing an optical path of the light source. Observation device to obtain.
【請求項10】被検査物を照明する光源と、 上記被検査物において顕微鏡の光軸と角度を有して反射
した光線を受ける角度可変の第1の反射ミラーと、 顕微鏡の光軸を含む位置に設けられ、上記第1の反射ミ
ラーで反射した光線を受けて顕微鏡の鏡筒に光線を導く
角度可変の第2の反射ミラーと、 上記被検査物と上記光源との間に設けた光フィルターと
角度可変の上記第2の反射ミラーは、上記第1及び第2
の反射ミラーを介さないで上記被検査物を直接観察でき
る位置に変位可能である、顕微鏡を用いた被検査物の3
次元イメージを得る観察装置。
10. A light source for illuminating an object to be inspected, a first reflecting mirror whose angle is variable with respect to an optical axis of the microscope at the object to receive light reflected at an angle, and an optical axis of the microscope A second reflecting mirror that is provided at a position and receives light reflected by the first reflecting mirror and guides the light to the lens barrel of the microscope; and a light provided between the inspection object and the light source. The filter and the second reflecting mirror whose angle is variable include the first and second reflecting mirrors.
Of a test object using a microscope, which can be displaced to a position where the test object can be directly observed without passing through a reflecting mirror
An observation device that obtains a two-dimensional image.
【請求項11】被検査物を照明する光源と、 上記被検査物において顕微鏡の光軸と角度を有して反射
した光線を受ける角度可変の第1の反射ミラーと、 顕微鏡の光軸を含む位置に設けられ、上記第1の反射ミ
ラーで反射した光線を受けて顕微鏡の鏡筒に光線を導く
角度可変の第2の反射ミラーと、 上記被検査物と上記光源との間に設けた光フィルター
と、 上記被検査物と上記光源との間に設けられ、該光源の光
路を変更する光路変更手段とを有し、 角度可変の上記第2の反射ミラーは、上記第1及び第2
の反射ミラーを介さないで上記被検査物を直接観察でき
る位置に変位可能である、顕微鏡を用いた被検査物の3
次元イメージを得る観察装置。
11. A light source for illuminating an object to be inspected, a first reflecting mirror whose angle is variable with respect to the optical axis of the microscope at the object to receive light reflected at an angle, and an optical axis of the microscope A second reflecting mirror that is provided at a position and receives light reflected by the first reflecting mirror and guides the light to the lens barrel of the microscope; and a light provided between the inspection object and the light source. A filter provided between the inspection object and the light source; and an optical path changing unit configured to change an optical path of the light source.
Of a test object using a microscope, which can be displaced to a position where the test object can be directly observed without passing through a reflecting mirror
An observation device that obtains a two-dimensional image.
JP11226125A 1999-08-10 1999-08-10 Observation device obtaining three-dimensional image of object to be inspected using microscope Pending JP2001051208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11226125A JP2001051208A (en) 1999-08-10 1999-08-10 Observation device obtaining three-dimensional image of object to be inspected using microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11226125A JP2001051208A (en) 1999-08-10 1999-08-10 Observation device obtaining three-dimensional image of object to be inspected using microscope

Publications (1)

Publication Number Publication Date
JP2001051208A true JP2001051208A (en) 2001-02-23

Family

ID=16840243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11226125A Pending JP2001051208A (en) 1999-08-10 1999-08-10 Observation device obtaining three-dimensional image of object to be inspected using microscope

Country Status (1)

Country Link
JP (1) JP2001051208A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312681A1 (en) * 2003-03-21 2004-10-28 Carl Zeiss Microscope system, with two deflection mirrors in front of a lens, gives views of the specimen from a variety of angles without moving the microscope chassis
KR100455801B1 (en) * 2001-06-22 2004-11-09 (주)미래로시스템 Novel three dimensional topographic image technology in scanning electron microscope
WO2008102332A1 (en) * 2007-02-25 2008-08-28 Micro Components Ltd. Optically monitoring an alox (tm) fabrication process
JP2009109276A (en) * 2007-10-29 2009-05-21 Canon Machinery Inc Inspection apparatus and inspection method
JP2009186728A (en) * 2008-02-06 2009-08-20 Sony Corp Video microscope and adapter for observation
JP2009229155A (en) * 2008-03-21 2009-10-08 Nikon Corp Substrate inspection apparatus, and manufacturing method of substrate for mask
CN102859414A (en) * 2010-02-19 2013-01-02 金佑濬 Optical system for forming square optical path and method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455801B1 (en) * 2001-06-22 2004-11-09 (주)미래로시스템 Novel three dimensional topographic image technology in scanning electron microscope
DE10312681A1 (en) * 2003-03-21 2004-10-28 Carl Zeiss Microscope system, with two deflection mirrors in front of a lens, gives views of the specimen from a variety of angles without moving the microscope chassis
DE10312681B4 (en) * 2003-03-21 2005-09-15 Carl Zeiss microscopy system
WO2008102332A1 (en) * 2007-02-25 2008-08-28 Micro Components Ltd. Optically monitoring an alox (tm) fabrication process
JP2009109276A (en) * 2007-10-29 2009-05-21 Canon Machinery Inc Inspection apparatus and inspection method
JP2009186728A (en) * 2008-02-06 2009-08-20 Sony Corp Video microscope and adapter for observation
JP2009229155A (en) * 2008-03-21 2009-10-08 Nikon Corp Substrate inspection apparatus, and manufacturing method of substrate for mask
CN102859414A (en) * 2010-02-19 2013-01-02 金佑濬 Optical system for forming square optical path and method thereof
US9075239B2 (en) 2010-02-19 2015-07-07 Woo Jun Kim Optical system for forming optical path of oblique angle and method thereof

Similar Documents

Publication Publication Date Title
Xiao et al. Real‐time confocal scanning optical microscope
JP4150592B2 (en) Automatic focusing method
US20070057164A1 (en) Scheimpflug normalizer
US7008060B2 (en) Projector optical system and projector apparatus using the same
KR100272329B1 (en) Video microscope
KR102005210B1 (en) Microscopic device and microscopic observation method
JP2001051208A (en) Observation device obtaining three-dimensional image of object to be inspected using microscope
JP6945533B2 (en) A scanning device that scans an object for use in a scanning microscope.
JP2002174771A (en) Microscope
JP2003043363A (en) Confocal microscope
JPH1172717A (en) Microscopic digital photographing system
US6385403B1 (en) Photometric apparatus for microscope
JP4529108B2 (en) Defect inspection equipment
JPH10260359A (en) Image rotating device
JP2005024596A (en) Confocal scanning microscope
JP2002196218A (en) Microscope
JP2003307678A (en) Imaging apparatus with compound prism optical system
JPH10227738A (en) Light radiating device for cleavage of caged reagent
JP4300601B2 (en) Binocular microscope and imaging method using binocular microscope
JP2000121553A (en) Infrared microscope
TWI527651B (en) Laser irradiation apparatus
JP2009192606A (en) Imaging apparatus
Dlugan et al. Update on the use of digital micromirror devices in quantitative microscopy
JPH0423219Y2 (en)
JP2003084208A (en) Microscope device