JP2001051200A - Conforcal microscope device - Google Patents

Conforcal microscope device

Info

Publication number
JP2001051200A
JP2001051200A JP11224323A JP22432399A JP2001051200A JP 2001051200 A JP2001051200 A JP 2001051200A JP 11224323 A JP11224323 A JP 11224323A JP 22432399 A JP22432399 A JP 22432399A JP 2001051200 A JP2001051200 A JP 2001051200A
Authority
JP
Japan
Prior art keywords
moving mechanism
driving
confocal microscope
correction
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11224323A
Other languages
Japanese (ja)
Other versions
JP3729241B2 (en
Inventor
Takeo Tanaami
健雄 田名網
Nobuhiro Tomosada
伸浩 友定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP22432399A priority Critical patent/JP3729241B2/en
Publication of JP2001051200A publication Critical patent/JP2001051200A/en
Application granted granted Critical
Publication of JP3729241B2 publication Critical patent/JP3729241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the overshoot and hunting, enlarge a range of a measurement time and prevent the damage of a driving circuit and the collision of an objective lens to a sample. SOLUTION: This confocal microscope capable of obtaining a three- dimensional image by scanning the optical beam on a sample surface by a confocal scanner and axially scanning the optical beam by a moving mechanism, comprises a driving means for driving the moving mechanism, and the driving means outputs the driving waveform corrected on the basis of the reverse characteristic of the frequency characteristic on the displacement of the moving mechanism.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、共焦点顕微鏡を用
いて被試験対象物の3次元表示を行なう共焦点顕微鏡装
置に関し、特にリアルタイム3次元駆動の性能向上に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a confocal microscope apparatus for three-dimensionally displaying an object under test using a confocal microscope, and more particularly to an improvement in the performance of real-time three-dimensional driving.

【0002】[0002]

【従来の技術】この種の共焦点顕微鏡装置としては本願
出願人が出願した「共焦点顕微鏡装置」(特開平11−
174334号)がある。図5はその構成図である。こ
の共焦点顕微鏡は、集光ディスク22、ピンホールディ
スク23、ビームスプリッタ25およびレンズ26より
構成された共焦点スキャナ20部分と、顕微鏡10部分
と、カメラ30を組み合わせたものであり、移動機構1
5を駆動して対物レンズ14をZ軸方向に自在に移動さ
せることができるように形成されている。
2. Description of the Related Art As a confocal microscope apparatus of this type, a "confocal microscope apparatus" filed by the present applicant (Japanese Patent Laid-Open No.
No. 174334). FIG. 5 is a configuration diagram thereof. This confocal microscope is a combination of a confocal scanner 20, a microscope 10, and a camera 30, each of which includes a condenser disk 22, a pinhole disk 23, a beam splitter 25, and a lens 26.
5, the objective lens 14 can be moved freely in the Z-axis direction.

【0003】このような構成において、レーザ光21は
集光ディスク22のマイクロレンズによってピンホール
ディスク23のピンホール24に集光され、ピンホール
24を通過した後対物レンズ14によりピンホールディ
スク23と共役な位置にある試料11内の走査面16上
の集光点17に集束する。
In such a configuration, the laser light 21 is condensed on the pinhole 24 of the pinhole disk 23 by the microlens of the condensing disk 22, passes through the pinhole 24, and is conjugated with the pinhole disk 23 by the objective lens 14. At the focal point 17 on the scanning surface 16 in the sample 11 at a different position.

【0004】集光ディスク22およびピンホールディス
ク23が回転することにより試料11面の走査面16上
が光走査され、試料面からの反射光は再度対物レンズ1
4とピンホールディスク23を通過した後、ビームスプ
リッタ25で反射し、レンズ26によりカメラ30の受
像面に結像する。
[0004] When the condensing disk 22 and the pinhole disk 23 rotate, the scanning surface 16 of the sample 11 is optically scanned, and the reflected light from the sample surface is again reflected by the objective lens 1
After passing through 4 and the pinhole disk 23, the light is reflected by the beam splitter 25, and forms an image on the image receiving surface of the camera 30 by the lens 26.

【0005】このとき、対物レンズ14が移動機構15
によって駆動されると、図6に示すように、対物レンズ
14の深さ方向の位置Z1,Z2,Z3,...Znでのス
ライス像がカメラ30で撮影される。同図(a)はZ軸
方向の各スライス画像、同図(b)は試料とスライス面
との関係を示す図である。なお、対物レンズ14は図7
に示すような三角波で駆動される。
At this time, the objective lens 14 is moved by the moving mechanism 15
6, as shown in FIG. 6, the positions Z 1 , Z 2 , Z 3 ,. . . Slice images in Z n is photographed by the camera 30. FIG. 3A is a diagram showing each slice image in the Z-axis direction, and FIG. 3B is a diagram showing a relationship between a sample and a slice plane. The objective lens 14 is shown in FIG.
It is driven by a triangular wave as shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】ところで、対物レンズ
を高速で動かせようとしても、移動機構が追従できず、
図7の三角波駆動の折り返し点Aでは図8の拡大図に示
すように、オーバーシュートやハンチングが生じ、次の
ような課題があった。 (1)ハンチングが長いと、図7に示すように正味の測
定時間幅(換言すれば、リニア駆動範囲)Bが減少す
る。 (2)オーバーシュートにより対物レンズ14が試料1
1に衝突する恐れがあり、更にその衝突がもとで移動機
構が破損する恐れもある。 (3)任意の補正では移動機構の特性を十分に活かせな
い。
However, even if the objective lens can be moved at a high speed, the moving mechanism cannot follow the objective lens.
At the turning point A of the triangular wave drive in FIG. 7, overshoot and hunting occur as shown in the enlarged view of FIG. (1) If the hunting is long, the net measurement time width (in other words, the linear driving range) B decreases as shown in FIG. (2) The objective lens 14 moves the sample 1 due to overshoot.
1 may collide, and the collision may damage the moving mechanism. (3) The characteristics of the moving mechanism cannot be fully utilized in the arbitrary correction.

【0007】本発明の目的は、上記の課題を解決するも
ので、オーバーシュートやハンチングが抑制され、測定
時間範囲が拡大され、駆動回路の破損や対物レンズの試
料への衝突が防止される共焦点顕微鏡装置を提供するこ
とにある。
[0007] An object of the present invention is to solve the above-mentioned problems, and it is possible to suppress overshoot and hunting, expand a measurement time range, and prevent a drive circuit from being damaged and an objective lens from colliding with a sample. A focus microscope apparatus is provided.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るために、請求項1の発明では、共焦点スキャナにより
光ビームで試料面を走査すると共に移動機構により光ビ
ームを光軸方向に走査して試料の3次元画像が得られる
ように構成してなる共焦点顕微鏡装置において、前記移
動機構を駆動する駆動手段を備え、この駆動手段からは
前記移動機構の変位の周波数特性の逆特性に基づいて補
正された駆動波形が出力されるようにしたことを特徴と
する。
In order to achieve the above object, according to the first aspect of the present invention, a sample surface is scanned with a light beam by a confocal scanner, and the light beam is scanned in the optical axis direction by a moving mechanism. A confocal microscope apparatus configured to obtain a three-dimensional image of the sample by using a driving means for driving the moving mechanism. A driving waveform corrected on the basis of the driving waveform is output.

【0009】このように、移動機構の変位の周波数特性
の逆特性に基づいて補正された波形で移動機構を駆動す
ると、特に三角波駆動時の折り返し点近傍でのオーバー
シュートやハンチングが抑制される。これにより、対物
レンズの試料への衝突が未然に防止でき、また測定時間
幅が広くなるという効果が生じる。
As described above, when the moving mechanism is driven with the waveform corrected based on the inverse characteristic of the frequency characteristic of the displacement of the moving mechanism, overshoot and hunting in the vicinity of the turning point particularly during triangular wave driving are suppressed. As a result, it is possible to prevent the collision of the objective lens with the sample beforehand, and to obtain an effect that the measurement time width is widened.

【0010】なお、この場合、請求項2のように、逆特
性について、前記移動機構が追従できる周波数以上の領
域はローパスフィルタ特性で補うようにしても実用上差
し支えない。
[0010] In this case, it is practically acceptable to supplement the region above the frequency that can be followed by the moving mechanism with the low-pass filter characteristic.

【0011】また、請求項3のように、駆動手段におけ
る補正を、フーリエ変換またはフィルタ処理による補正
としてもよい。更に、フィルタ処理の場合は、請求項4
のように、CRパッシブ回路またはアクティブフィルタ
またはデジタルフィルタを使用して補正するようにして
もよい。
Further, the correction in the driving means may be a correction by Fourier transform or filter processing. Further, in the case of the filter processing, claim 4
The correction may be made by using a CR passive circuit or an active filter or a digital filter.

【0012】なお、この場合、移動機構は、請求項5の
ように対物レンズを移動するか、または請求項6のよう
に対物レンズと共焦点スキャナの間に設けたリレーレン
ズを移動する。
In this case, the moving mechanism moves the objective lens as described in claim 5, or moves a relay lens provided between the objective lens and the confocal scanner as described in claim 6.

【0013】[0013]

【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明に係る共焦点顕微鏡装置の要部
構成図である。図は対物レンズ駆動部分の構成を示すも
ので、ピエゾ素子等を用いた移動機構15、移動機構1
5を駆動するドライバ41、ドライバ41に与える信号
を発生する補正波形発生器42から構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a main part configuration diagram of a confocal microscope apparatus according to the present invention. The figure shows a configuration of an objective lens driving portion, and includes a moving mechanism 15 and a moving mechanism 1 using a piezo element or the like.
5 includes a driver 41 for driving the driver 5 and a correction waveform generator 42 for generating a signal to be supplied to the driver 41.

【0014】補正波形発生器42は、波形データを記憶
するメモリ、補正波形を求める波形データ処理手段(例
えば、マイクロプロセッサ)、補正波形データをアナロ
グ信号に変換するデジタル・アナログ変換器を備えてい
る。なお、これらの構成要素はここではいずれも図示し
ない。
The correction waveform generator 42 includes a memory for storing waveform data, waveform data processing means (for example, a microprocessor) for obtaining a correction waveform, and a digital / analog converter for converting the correction waveform data into an analog signal. . These components are not shown here.

【0015】このような構成において、移動機構15は
ドライバ41の出力信号により駆動され、対物レンズ1
4を上下方向に移動させる。ドライバ41は、補正波形
発生器42の出力波形を適宜増幅して出力する。ドライ
バ41に与える信号の波形は従来のような単純な三角波
ではなく補正波形である。なお、ここでは、ドライバ4
1と補正波形発生器42からなる部分を駆動手段と呼
ぶ。
In such a configuration, the moving mechanism 15 is driven by the output signal of the driver 41, and
4 is moved up and down. The driver 41 amplifies and outputs the output waveform of the correction waveform generator 42 as appropriate. The waveform of the signal supplied to the driver 41 is not a simple triangular wave as in the related art, but a correction waveform. Here, the driver 4
The portion consisting of 1 and the correction waveform generator 42 is referred to as driving means.

【0016】その補正波形は、事前に測定した移動機構
15の変位の周波数特性の逆特性により作成されたもの
である。以下更に詳しく説明する。あらかじめ測定した
図2の(a)に示すような移動機構15の変位周波数特
性Gの逆特性Hを補正波形発生器42において求める。
逆特性Hは図2の(b)に示すような特性となる。
The correction waveform is created based on the inverse characteristic of the frequency characteristic of the displacement of the moving mechanism 15 measured in advance. This will be described in more detail below. The inverse characteristic H of the displacement frequency characteristic G of the moving mechanism 15 as shown in FIG.
The inverse characteristic H is a characteristic as shown in FIG.

【0017】この補正波形E’は次の式に基づいて作成
する。 E’=F-1(H) , H=1/G ただし、Fはフーリエ変換、F-1は逆フーリエ変換、G
は移動機構15の変位周波数特性、Hは変位周波数特性
Gの逆特性である。なお、上式によればゲインのみなら
ず位相も補正される。
The correction waveform E 'is created based on the following equation. E ′ = F −1 (H), H = 1 / G where F is a Fourier transform, F −1 is an inverse Fourier transform, and G
H is a displacement frequency characteristic of the moving mechanism 15, and H is an inverse characteristic of the displacement frequency characteristic G. According to the above equation, not only the gain but also the phase is corrected.

【0018】なお、完全な補正は移動機構が無限帯域で
ある必要があるが、それは不可能なため、ここでは移動
機構が追従できる周波数fxで打ち切り、それ以上の周
波数帯域は強制的にローパスフィルタの特性に置き換え
たもので代用する。
Note that the complete correction requires the moving mechanism to have an infinite band, but this is impossible, so here, the frequency is stopped at the frequency fx that the moving mechanism can follow, and the frequency band beyond that is forcibly forced by a low-pass filter. Substitute with the characteristics of

【0019】このようにして求めた補正波形E’のアナ
ログ信号をドライバ41に与え、移動機構15を駆動す
ると、対物レンズ14の動きはオーバーシュートやハン
チングが抑制され、結果として図Bに示す測定時間範囲
Bがより広くなる。
When the analog signal of the correction waveform E 'obtained in this way is supplied to the driver 41 and the moving mechanism 15 is driven, overshoot and hunting of the movement of the objective lens 14 are suppressed, and as a result, the measurement shown in FIG. The time range B becomes wider.

【0020】なお、本発明は上記実施例に限定されるも
のではない。例えば、変換はフーリエ変換だけでなくフ
ィルタによるものでもよい。また、補正波形発生器42
は、補正波形を求める波形データ処理手段(例えば、マ
イクロプロセッサ)、補正波形データをアナログ信号に
変換するデジタル・アナログ変換器等で構成したものに
限らず、図3に示すように、三角波を発生する基準波形
発生器51と、この基準波計の高周波成分を除去するC
R積分回路等の補正回路52とで構成したものであって
もよい。
The present invention is not limited to the above embodiment. For example, the transform may be not only a Fourier transform but also a filter. The correction waveform generator 42
Is not limited to a configuration including a waveform data processing means (for example, a microprocessor) for obtaining a correction waveform, a digital / analog converter for converting the correction waveform data into an analog signal, and the like, as shown in FIG. And a reference waveform generator 51 for removing high frequency components of the reference wave meter.
It may be configured with a correction circuit 52 such as an R integration circuit.

【0021】また、上記CRの積分回路に代えて、アク
ティブフィルタやデジタルフィルタを用いてもよい。ま
た、対物レンズ14の駆動だけではなく、試料11を載
置したステージ(図示せず)の駆動、あるいは図4に示
すように対物レンズ14とピンホールディスク23との
間にリレーレンズ61を設置し、これを上下に移動させ
るようにしてもよい。
An active filter or a digital filter may be used instead of the CR integrating circuit. In addition to driving the objective lens 14, a stage (not shown) on which the sample 11 is mounted is driven, or a relay lens 61 is provided between the objective lens 14 and the pinhole disk 23 as shown in FIG. Then, it may be moved up and down.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば次の
ような効果がある。移動機構を補正波形で駆動すること
により、対物レンズの上限移動においてオーバーシュー
トやハンチング等が抑制され、それにより、測定時間範
囲が従来のものより拡大され、また駆動回路の破損や対
物レンズの試料への衝突が未然に防止される。
As described above, according to the present invention, the following effects can be obtained. Driving the moving mechanism with the corrected waveform suppresses overshoot and hunting in the upper limit movement of the objective lens, thereby expanding the measurement time range as compared with the conventional one, and also causing damage to the drive circuit and the sample of the objective lens. Collision is prevented beforehand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る共焦点顕微鏡装置の一実施例を示
す要部構成図である。
FIG. 1 is a main part configuration diagram showing one embodiment of a confocal microscope apparatus according to the present invention.

【図2】移動機構の変位の周波数特性およびその逆特性
を示す図である。
FIG. 2 is a diagram showing a frequency characteristic of displacement of a moving mechanism and its inverse characteristic.

【図3】補正波形発生器の他の実施例図である。FIG. 3 is a diagram showing another embodiment of the correction waveform generator.

【図4】本発明の他の実施例を示す要部構成図である。FIG. 4 is a main part configuration diagram showing another embodiment of the present invention.

【図5】従来の共焦点顕微鏡装置の一例を示す構成図で
ある。
FIG. 5 is a configuration diagram illustrating an example of a conventional confocal microscope device.

【図6】スライス画像とスライス面との関係を示す図で
ある。
FIG. 6 is a diagram showing a relationship between a slice image and a slice plane.

【図7】対物レンズの駆動波形に係る説明図である。FIG. 7 is an explanatory diagram relating to a driving waveform of an objective lens.

【図8】駆動波形と移動機構の変位との関係を示す図で
ある。
FIG. 8 is a diagram showing a relationship between a driving waveform and a displacement of a moving mechanism.

【符号の説明】[Explanation of symbols]

10 顕微鏡 11 試料 14 対物レンズ 15 移動機構 16 走査面 17 集光点 20 共焦点スキャナ 21 レーザ光 22 集光ディスク 23 ピンホールディスク 24 ピンホール 25 ビームスプリッタ 30 カメラ DESCRIPTION OF SYMBOLS 10 Microscope 11 Sample 14 Objective lens 15 Moving mechanism 16 Scanning surface 17 Focusing point 20 Confocal scanner 21 Laser beam 22 Focusing disk 23 Pinhole disk 24 Pinhole 25 Beam splitter 30 Camera

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】共焦点スキャナにより光ビームで試料面を
走査すると共に移動機構により光ビームを光軸方向に走
査して試料の3次元画像が得られるように構成してなる
共焦点顕微鏡装置において、 前記移動機構を駆動する駆動手段を備え、この駆動手段
からは前記移動機構の変位の周波数特性の逆特性に基づ
いて補正された駆動波形が出力されるようにしたことを
特徴とする共焦点顕微鏡。
1. A confocal microscope apparatus configured to scan a sample surface with a light beam by a confocal scanner and scan a light beam in an optical axis direction by a moving mechanism to obtain a three-dimensional image of the sample. A driving means for driving the moving mechanism, wherein the driving means outputs a driving waveform corrected based on an inverse characteristic of a frequency characteristic of a displacement of the moving mechanism. microscope.
【請求項2】前記逆特性は前記移動機構が追従できる周
波数以上の領域がローパスフィルタ特性で補われたこと
を特徴とする請求項1記載の共焦点顕微鏡。
2. The confocal microscope according to claim 1, wherein a region of a frequency equal to or higher than a frequency which can be followed by said moving mechanism is supplemented by a low-pass filter characteristic.
【請求項3】前記駆動手段における補正は、フーリエ変
換またはフィルタ処理による補正であることを特徴とす
る請求項1記載の共焦点顕微鏡。
3. The confocal microscope according to claim 1, wherein the correction in said driving means is correction by Fourier transform or filter processing.
【請求項4】前記駆動手段は、補正がフィルタ処理によ
るときはCRパッシブ回路またはアクティブフィルタま
たはデジタルフィルタを使用して補正するようにしたこ
とを特徴とする請求項3記載の共焦点顕微鏡。
4. The confocal microscope according to claim 3, wherein said drive means performs correction using a CR passive circuit, an active filter, or a digital filter when the correction is based on filter processing.
【請求項5】前記移動機構は、対物レンズを移動させて
光ビームを光軸方向に走査するようにしたことを特徴と
する請求項1記載の共焦点顕微鏡。
5. The confocal microscope according to claim 1, wherein the moving mechanism moves the objective lens to scan the light beam in the optical axis direction.
【請求項6】前記対物レンズと前記共焦点スキャナの間
にリレーレンズを備え、前記移動機構はこのリレーレン
ズを移動させて光ビームを光軸方向に走査するようにし
たことを特徴とする請求項5記載の共焦点顕微鏡。
6. The apparatus according to claim 1, further comprising a relay lens provided between said objective lens and said confocal scanner, wherein said moving mechanism moves said relay lens to scan a light beam in an optical axis direction. Item 6. A confocal microscope according to Item 5.
JP22432399A 1999-08-06 1999-08-06 Confocal microscope Expired - Fee Related JP3729241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22432399A JP3729241B2 (en) 1999-08-06 1999-08-06 Confocal microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22432399A JP3729241B2 (en) 1999-08-06 1999-08-06 Confocal microscope

Publications (2)

Publication Number Publication Date
JP2001051200A true JP2001051200A (en) 2001-02-23
JP3729241B2 JP3729241B2 (en) 2005-12-21

Family

ID=16811962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22432399A Expired - Fee Related JP3729241B2 (en) 1999-08-06 1999-08-06 Confocal microscope

Country Status (1)

Country Link
JP (1) JP3729241B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106558A1 (en) * 2004-04-28 2005-11-10 Olympus Corporation Laser focusing optical system
JP2005316070A (en) * 2004-04-28 2005-11-10 Olympus Corp Laser beam condensing optical system
JP2006113462A (en) * 2004-10-18 2006-04-27 Tohoku Univ Three-dimensional position tracking method for single particles
US8275226B2 (en) 2008-12-09 2012-09-25 Spectral Applied Research Ltd. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
US8670178B2 (en) 2009-12-08 2014-03-11 Spectral Applied Research Inc. Imaging distal end of multimode fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106558A1 (en) * 2004-04-28 2005-11-10 Olympus Corporation Laser focusing optical system
JP2005316070A (en) * 2004-04-28 2005-11-10 Olympus Corp Laser beam condensing optical system
US7439477B2 (en) 2004-04-28 2008-10-21 Olympus Corporation Laser condensing optical system
JP4528023B2 (en) * 2004-04-28 2010-08-18 オリンパス株式会社 Laser focusing optical system
JP2006113462A (en) * 2004-10-18 2006-04-27 Tohoku Univ Three-dimensional position tracking method for single particles
US8275226B2 (en) 2008-12-09 2012-09-25 Spectral Applied Research Ltd. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
US9134519B2 (en) 2008-12-09 2015-09-15 Spectral Applied Reseach Inc. Multi-mode fiber optically coupling a radiation source module to a multi-focal confocal microscope
US8670178B2 (en) 2009-12-08 2014-03-11 Spectral Applied Research Inc. Imaging distal end of multimode fiber
US8922887B2 (en) 2009-12-08 2014-12-30 Spectral Applied Research Inc. Imaging distal end of multimode fiber

Also Published As

Publication number Publication date
JP3729241B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP3343276B2 (en) Laser scanning optical microscope
KR910000617B1 (en) Image pick-up apparatus
JP5317074B2 (en) Laser illumination device
JPH06202023A (en) Scanning microscope using improved scanning mechanism
JP2000507003A (en) Short wavelength pulse laser scanner
JP4125648B2 (en) Line-shaped light beam generator and laser microscope
US6248995B1 (en) Confocal microscopic equipment
US4963724A (en) Apparatus for producing an optical image contrast
JP4054893B2 (en) High resolution confocal microscope
US9606343B2 (en) Enhancing spatial resolution utilizing multibeam confocal scanning systems
JP4149309B2 (en) Scanning optical microscope
JPH10210246A (en) Scanning type image pickup device and scanning type laser light receiving device
JP3729241B2 (en) Confocal microscope
FR2464558A1 (en) ELECTRONIC MICROSCOPE WITH AUTOMATIC BEAM CORRECTION
JPH1068616A (en) Shape measuring equipment
JP3327432B2 (en) Confocal light scanner
JP2004177225A (en) Device and method for measuring dynamic shape and dynamic position simultaneously
JP3290606B2 (en) Autofocus device for microscope
JPH095046A (en) Three-dimensional shape measuring apparatus
JP2989330B2 (en) Microscope observation device
JP3113364B2 (en) Scanning optical inspection equipment
JPH10260359A (en) Image rotating device
JP2005043459A (en) Light deflector and scanning optical microscope using the same
CN117170083B (en) Automatic focusing method, system and storage medium for superposition dynamic image quality compensation
JPH03209415A (en) Microscopic image outputting method and scanning type microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees