JP2001050917A - X-ray fluorecsence analyzer - Google Patents

X-ray fluorecsence analyzer

Info

Publication number
JP2001050917A
JP2001050917A JP11223603A JP22360399A JP2001050917A JP 2001050917 A JP2001050917 A JP 2001050917A JP 11223603 A JP11223603 A JP 11223603A JP 22360399 A JP22360399 A JP 22360399A JP 2001050917 A JP2001050917 A JP 2001050917A
Authority
JP
Japan
Prior art keywords
rays
ray
characteristic
series
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11223603A
Other languages
Japanese (ja)
Other versions
JP3949850B2 (en
Inventor
Kiyotaka Kasai
清隆 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP22360399A priority Critical patent/JP3949850B2/en
Publication of JP2001050917A publication Critical patent/JP2001050917A/en
Application granted granted Critical
Publication of JP3949850B2 publication Critical patent/JP3949850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an X-ray fluorescence analyzer by which the series of characteristic X-rays to be used regarding an element to be quantitatively analyzed can be selected automatically and properly, by taking the S/N ratio into consideration on the basis of the result of a qualitative analysis. SOLUTION: A decision means 13 by which the series of characteristic X-rays to be used regarding an element to be analyzed quantitatively is decided on the basis of the comparison of the measuring intensity of the scattered radiation of primary X-rays 3 scattered by a sample with a prescribed reference line is provided. By the decision means 13, the series of the characteristic X-rays to be used regarding the element to be analyzed quantitatively is selected properly by taking S/N ratio into consideration, a detection limit becomes low, and the element can be analyzed simply and precisely. In addition, even regarding a heavy element in a sample composed mainly of a light element, characteristic X-rays in a series which easily reaches a saturation thickness in terms of X-rays are selected by the decision means 13, an error due to the thickness of the sample is hard to generated, and the element can be analyzed simply and precisely in this respect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光X線分析装置
において、定性分析の結果から定量分析値を求める装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for obtaining a quantitative analysis value from a qualitative analysis result in an X-ray fluorescence analyzer.

【0002】[0002]

【従来の技術】従来より、いわゆる波長分散型の蛍光X
線分析においては、試料にX線管等のX線源から1次X
線を照射し、試料から発生した蛍光X線を分光素子で回
折(分光)し、分光素子で回折された蛍光X線を検出器
で検出する。ここで、定性分析においては、検出器に入
射する蛍光X線の波長が変わるように、ゴニオメータと
呼ばれる連動手段で分光素子と検出器を連続的に連動さ
せることにより、試料に含まれる各元素から発生した蛍
光X線をそれぞれの波長に分光し、検出している。
2. Description of the Related Art Conventionally, so-called wavelength-dispersive fluorescent X
In X-ray analysis, primary X-rays are applied to a sample from an X-ray source such as an X-ray tube.
The sample is irradiated with X-rays, and the fluorescent X-rays generated from the sample are diffracted (spectralized) by a spectroscopic element, and the fluorescent X-rays diffracted by the spectroscopic element are detected by a detector. Here, in the qualitative analysis, the spectroscopic element and the detector are continuously linked by a linking means called a goniometer so that the wavelength of the fluorescent X-rays incident on the detector is changed, so that each element contained in the sample is removed. The generated fluorescent X-rays are separated into respective wavelengths and detected.

【0003】これにより得られる各分光角における蛍光
X線の強度を示すスペクトルに対しピーク検索、同定解
析を行い、この定性分析の結果から、定量分析値を求め
ることがよく行われるようになった。この際、代表的な
試料を用いた実験における感度(検出される強度)や近
接する蛍光X線の重なり等を考慮して、定量分析する元
素について、一律に、原子番号が4〜55のBe〜Cs
の元素ではK系列の特性X線を用い、原子番号が56〜
92のBa〜Uの元素ではL系列の特性X線を用いて計
算していた。
[0003] It has become common practice to perform peak search and identification analysis on the spectrum indicating the intensity of fluorescent X-rays obtained at each spectral angle, and to obtain quantitative analysis values from the results of the qualitative analysis. . At this time, in consideration of the sensitivity (detected intensity) in an experiment using a representative sample, the overlap of adjacent fluorescent X-rays, and the like, the elements to be quantitatively analyzed are uniformly Be atoms having atomic numbers of 4 to 55. ~ Cs
Element, K-series characteristic X-rays are used, and the atomic numbers are 56 to
For the elements Ba to U of 92, calculations were performed using characteristic X-rays of the L series.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような系
列の選択は、必ずしも適切でなく、例えば、軽元素を主
成分とする試料においてセシウム(Cs,原子番号5
5)の定量分析を行う場合に、Cs−Kα線を用いる
と、そのバックグラウンドの強度が大きいため、SN比
が低く(悪く)、検出限界も高くなり、正確な分析がで
きない。このような場合には、強度はやや小さくても、
バックグラウンドの強度が小さい、すなわち、SN比の
高いCs−Lα線を用いるべきである。
However, the selection of such a series is not always appropriate. For example, cesium (Cs, atomic number 5
When the Cs-Kα ray is used in the quantitative analysis of 5), the background intensity is large, so that the SN ratio is low (bad), the detection limit is high, and accurate analysis cannot be performed. In such a case, the strength may be slightly lower,
Cs-Lα rays having a low background intensity, that is, a high SN ratio should be used.

【0005】このような問題は、軽元素を主成分とする
試料においては、特に短波長側でコンプトン散乱線およ
び連続X線の散乱線が強く発生してバックグラウンドの
強度が大きくなることに起因しているが、そのような事
情を考慮して、定量分析する元素について用いるべき特
性X線の系列を適切に判断するのは、オペレータにとっ
て容易でない場合が多い。
[0005] Such a problem is caused by the fact that, in a sample containing a light element as a main component, Compton scattered rays and continuous X-ray scattered rays are generated strongly on the short wavelength side, and the background intensity is increased. However, it is often not easy for an operator to appropriately judge a characteristic X-ray sequence to be used for an element to be quantitatively analyzed in consideration of such circumstances.

【0006】本発明は、前記従来の問題に鑑みてなされ
たもので、定性分析の結果から、定量分析する元素につ
いて用いるべき特性X線の系列を、SN比を考慮して自
動的に適切に選択できる蛍光X線分析装置を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional problems. Based on the results of qualitative analysis, a series of characteristic X-rays to be used for an element to be quantitatively analyzed is automatically and appropriately considered in consideration of an SN ratio. It is an object to provide a fluorescent X-ray analyzer that can be selected.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本願第1の発明は、試料に1次X線を照射して発生
する2次X線の強度を測定する装置であって、試料によ
って散乱される1次X線の散乱線の測定強度と所定の基
準値との比較に基づいて、定量分析する元素について用
いるべき特性X線の系列を判断する判断手段を備えてい
る。
In order to achieve the above object, a first invention of the present application is an apparatus for measuring the intensity of secondary X-rays generated by irradiating a sample with primary X-rays, A determination means is provided for determining a series of characteristic X-rays to be used for an element to be quantitatively analyzed based on a comparison between a measured intensity of scattered primary X-rays scattered by the sample and a predetermined reference value.

【0008】本願第1の発明によれば、判断手段によ
り、定量分析する元素について用いるべき特性X線の系
列がSN比を考慮して適切に選択されて、検出限界が低
くなるので、簡単に正確な分析ができる。また、軽元素
を主成分とする試料中の重元素についても、判断手段に
より、X線的に飽和厚さに達しやすい系列の特性X線が
選択されて、試料の厚さによる誤差が発生しにくいの
で、この点においても簡単に正確な分析ができる。ここ
で、前記散乱線としてコンプトン散乱線を用いることが
できる。
According to the first aspect of the present invention, a series of characteristic X-rays to be used for an element to be quantitatively analyzed is appropriately selected in consideration of the SN ratio by the determining means, and the detection limit is lowered. Accurate analysis can be performed. In addition, for the heavy element in the sample containing a light element as a main component, a series of characteristic X-rays that easily reach a saturated thickness on the X-ray is selected by the determination means, and an error due to the thickness of the sample occurs. Since it is difficult, accurate analysis can be easily performed in this respect as well. Here, Compton scattered radiation can be used as the scattered radiation.

【0009】本願第2の発明は、試料に1次X線を照射
して発生する2次X線の強度を測定する蛍光X線分析装
置であって、定量分析する元素についての系列の異なる
特性X線とそれぞれのバックグラウンドとの測定強度の
比に基づいて、定量分析する元素について用いるべき特
性X線の系列を判断する判断手段を備えている。本願第
2の発明によっても、前記第1の発明と同様の作用効果
がある。
The second invention of the present application relates to an X-ray fluorescence analyzer for measuring the intensity of secondary X-rays generated by irradiating a sample with primary X-rays, wherein the characteristics of the elements to be quantitatively analyzed are different from each other. There is provided a judging means for judging a series of characteristic X-rays to be used for the element to be quantitatively analyzed, based on a ratio of measured intensities of the X-ray and respective backgrounds. According to the second invention of the present application, the same operation and effect as those of the first invention are obtained.

【0010】本願発明においては、前記判断手段の判断
の対象となる元素の原子番号が48以上58以下の範囲
内であることが好ましい。その範囲外の元素について
は、通常、判断が不要だからである。また、前記判断手
段の判断の対象となる特性X線の系列がK系列およびL
系列であることが好ましい。M系列やN系列の特性X線
は、通常、強度がきわめて小さく、定量分析に用いるの
は不適切だからである。
In the present invention, it is preferable that the atomic number of the element to be judged by the judgment means is in the range of 48 to 58. This is because it is usually unnecessary to judge elements outside the range. Further, the characteristic X-ray sequence to be determined by the determining means is a K sequence and an L sequence.
It is preferably a series. This is because M-series and N-series characteristic X-rays usually have extremely low intensity and are unsuitable for quantitative analysis.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施形態の装置
について説明する。まず、この装置の構成について、図
1にしたがって説明する。この装置は、試料1が載置さ
れる試料台2と、試料1に1次X線3を照射するX線管
等のX線源4と、試料1から発生した2次X線5を分光
する分光素子6と、分光素子6で分光された2次X線7
の強度を測定する検出器8とを備えている。なお、2次
X線5,7には、試料1から発生する蛍光X線のほか、
1次X線3の連続X線の散乱線および1次X線3の特性
X線の散乱線が含まれる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus according to an embodiment of the present invention will be described below. First, the configuration of this device will be described with reference to FIG. The apparatus includes a sample table 2 on which a sample 1 is placed, an X-ray source 4 such as an X-ray tube for irradiating the sample 1 with primary X-rays 3, and a secondary X-ray 5 generated from the sample 1. Element 6 and secondary X-rays 7 separated by the element 6
And a detector 8 for measuring the intensity of the light. The secondary X-rays 5 and 7 include fluorescent X-rays generated from the sample 1 and
The scattered radiation of the continuous X-ray of the primary X-ray 3 and the scattered radiation of the characteristic X-ray of the primary X-ray 3 are included.

【0012】また、検出器8に入射する2次X線7の波
長が変わるように、分光素子6と検出器8を連動させる
連動手段10、すなわちいわゆるゴニオメータを備えて
いる。2次X線5がある入射角θで分光素子6へ入射す
ると、その2次X線5の延長線9と分光素子6で分光
(回折)された2次X線7は入射角θの2倍の分光角2
θをなすが、連動手段10は、分光角2θを変化させて
分光される2次X線7の波長を変化させつつ、その分光
された2次X線7が検出器8に入射するように、分光素
子6を、その表面の中心を通る紙面に垂直な軸Oを中心
に回転させ、その回転角の2倍だけ、検出器8を、軸O
を中心に円11に沿って回転させる。連動手段10にお
いて、例えば、前記軸Oに取り付けたポテンショメータ
等により、分光素子6および検出器8が回転した結果形
成される入射角θ、分光角2θが確認される。
Further, there is provided a linking means 10 for linking the spectroscopic element 6 and the detector 8 so as to change the wavelength of the secondary X-ray 7 incident on the detector 8, that is, a so-called goniometer. When the secondary X-rays 5 enter the spectroscopic element 6 at a certain incident angle θ, an extension line 9 of the secondary X-rays 5 and the secondary X-rays 7 spectrally (diffracted) by the spectroscopic element 6 have an incident angle θ of 2 Double spectral angle 2
θ, but the interlocking means 10 changes the spectral angle 2θ to change the wavelength of the secondary X-rays 7 to be split, so that the split secondary X-rays 7 enter the detector 8. , The spectroscopic element 6 is rotated about an axis O perpendicular to the plane of the drawing passing through the center of the surface, and the detector 8 is rotated by an angle O twice the rotation angle.
Is rotated along the circle 11 around. In the interlocking means 10, the incident angle θ and the spectral angle 2θ formed as a result of rotation of the spectroscopic element 6 and the detector 8 are confirmed by, for example, a potentiometer attached to the axis O.

【0013】さらに、この装置は、以下の定性分析手段
12、判断手段13および定量分析手段14を含む制御
処理手段15を備えている。定性分析手段12は、前記
連動手段10を用いて得られる各分光角2θにおける2
次X線7の強度を示すスペクトルに対しピーク検索、同
定解析を行い、この定性分析の結果を記憶する。
The apparatus further comprises a control processing means 15 including the following qualitative analysis means 12, judgment means 13 and quantitative analysis means 14. The qualitative analysis means 12 performs the measurement at each spectral angle 2θ obtained using the interlocking means 10.
The spectrum showing the intensity of the next X-ray 7 is subjected to peak search and identification analysis, and the result of the qualitative analysis is stored.

【0014】前記判断手段13は、試料1によって散乱
される1次X線3の散乱線、具体的には、1次X線3の
特性X線の散乱線の測定強度と所定の基準値との比較に
基づいて、定量分析する元素(定性分析において含有が
認められた元素)について用いるべき特性X線の系列を
判断する。この所定の基準値は、後述するように実験に
よりあらかじめ求めておくことができる。ここで、1次
X線3の特性X線とは、例えばX線源4がロジウムをタ
ーゲットとするX線管の場合、ロジウムから発生する蛍
光X線のうち強度の大きいRh−Kα線を指す。また、
1次X線3の特性X線の散乱線としては、試料1の密度
の影響を受けて強度が大きく変わるRh−Kα線のコン
プトン散乱線を用いるが、前記判断が可能ならRh−K
α線のトムソン散乱線を用いてもよく、また、1次X線
3の連続X線の散乱線を用いてもよい。
The determining means 13 determines the measured intensity of the scattered radiation of the primary X-ray 3 scattered by the sample 1, specifically, the characteristic X-ray of the primary X-ray 3, and a predetermined reference value. Based on the comparison, the sequence of characteristic X-rays to be used for the element to be quantitatively analyzed (the element whose content has been recognized in the qualitative analysis) is determined. The predetermined reference value can be obtained in advance by an experiment as described later. Here, the characteristic X-ray of the primary X-ray 3 refers to a Rh-Kα ray having a high intensity among fluorescent X-rays generated from rhodium when the X-ray source 4 is an X-ray tube targeting rhodium. . Also,
As the scattered X-rays of the characteristic X-rays of the primary X-rays 3, Compton scattered rays of Rh-Kα rays whose intensities change greatly under the influence of the density of the sample 1 are used.
Thomson scattering rays of α-rays may be used, or continuous X-rays of primary X-rays 3 may be used.

【0015】前記判断の対象となる特性X線の系列とし
ては、K系列およびL系列を採用する。M系列やN系列
の特性X線は、通常、強度がきわめて小さく、定量分析
に用いるのは不適切だからである。なお、K系列および
L系列の特性X線として、Kβ線やLβ線に比べて強度
の大きいKα線やLα線を用いるが、Kβ線やLβ線を
用いてもよい。また、前記判断は、定量分析する元素の
原子番号が48以上58以下の範囲(Cd〜Ce)にあ
る場合に限って行われる。それ以外の原子番号の元素に
ついては、通常、判断が不要なので、従来と同じように
一律に系列が決定される。すなわち、原子番号が4〜4
7のBe〜Agの元素についてはK系列のKα線を用
い、原子番号が59〜92のPr〜Uの元素については
L系列のLα線を用いる。ただし、判断の対象となる元
素の原子番号の範囲は、48以上58以下の範囲内で、
より限定して、例えば49以上55以下の範囲とするこ
ともできる。この場合は、原子番号が48,56〜58
の元素についても従来と同じように一律に系列が決定さ
れる。
As a sequence of characteristic X-rays to be judged, a K sequence and an L sequence are employed. This is because M-series and N-series characteristic X-rays usually have extremely low intensity and are unsuitable for quantitative analysis. As the characteristic X-rays of the K series and the L series, Kα rays and Lα rays having higher intensities than Kβ rays and Lβ rays are used, but Kβ rays and Lβ rays may be used. The above determination is made only when the atomic number of the element to be quantitatively analyzed is in the range of 48 to 58 (Cd to Ce). The determination of elements having other atomic numbers is usually unnecessary, so that the sequence is determined uniformly as in the conventional case. That is, the atomic number is 4 to 4
For the elements Be to Ag of No. 7, K-series Kα rays are used, and for the elements Pr to U of atomic numbers 59 to 92, the L-series Lα rays are used. However, the range of the atomic number of the element to be determined is within the range of 48 to 58,
More specifically, for example, the range can be set to 49 or more and 55 or less. In this case, the atomic number is 48, 56 to 58
The elements are uniformly determined in the same manner as in the prior art.

【0016】前記定量分析手段14は、定量分析する元
素について、前記判断手段13によって選択された系列
の特性X線の測定強度、または一律に決定される系列の
特性X線の測定強度を、前記定性分析手段12から呼び
出して用い、ファンダメンタルパラメータ法により、各
元素の定量分析値(含有率)を算出する。なお、各蛍光
X線の測定強度は、それぞれに対応するバックグラウン
ドの強度を差し引いたネット強度を用いる。
The quantitative analysis means 14 calculates, for the element to be quantitatively analyzed, the measured intensity of the characteristic X-rays of the series selected by the determination means 13 or the measured intensity of the characteristic X-rays of the series determined uniformly. The quantitative analysis value (content rate) of each element is calculated by the fundamental parameter method by using it by calling it from the qualitative analysis means 12. The measured intensity of each fluorescent X-ray is a net intensity obtained by subtracting the corresponding background intensity.

【0017】次に、この装置の動作について説明する。
試料台2に試料1が載置され、試料1にX線源4から1
次X線3が照射されると、試料1から発生した2次X線
5が分光素子6で分光され、分光された2次X線7の強
度が検出器8で測定される。ここで、定性分析手段12
が、分光素子6と検出器8を連動手段10で連続的に連
動させることにより、試料1から発生した2次X線5を
それぞれの波長に分光し、検出して、各分光角2θにお
ける2次X線7の強度を示すスペクトルが得られる。定
性分析手段12は、これに対しピーク検索、同定解析を
行い、その定性分析の結果を記憶する。今、試料1がセ
メントやポリマー等のように軽元素を主成分とするもの
であれば、定性分析の結果は、例えば図2に実線で示す
ようになる。ここで、横軸には波長を用いている。な
お、図2においては、簡単のため、定性分析において含
有が認められる元素、すなわち、定量分析する元素のう
ち、セシウムのスペクトルのみを記載しており、他の含
有元素のスペクトルは記載を省略している。
Next, the operation of this device will be described.
The sample 1 is placed on the sample stage 2, and the sample 1 is
When the secondary X-ray 3 is irradiated, the secondary X-ray 5 generated from the sample 1 is separated by the spectroscopic element 6, and the intensity of the split secondary X-ray 7 is measured by the detector 8. Here, the qualitative analysis means 12
However, by continuously interlocking the spectroscopic element 6 and the detector 8 with the interlocking means 10, the secondary X-rays 5 generated from the sample 1 are separated into respective wavelengths, detected, and detected at each spectral angle 2θ. A spectrum indicating the intensity of the next X-ray 7 is obtained. The qualitative analysis means 12 performs peak search and identification analysis on this, and stores the result of the qualitative analysis. Now, if the sample 1 is mainly composed of a light element such as cement or a polymer, the result of the qualitative analysis will be as shown by a solid line in FIG. 2, for example. Here, wavelength is used on the horizontal axis. In FIG. 2, for simplicity, only the spectrum of cesium among the elements whose content is recognized in the qualitative analysis, that is, the elements to be quantitatively analyzed, and the spectra of other contained elements are omitted. ing.

【0018】さて、試料1の定量分析にあたり、従来で
あれば前述したように、感度(強度)等の観点から、セ
シウム(原子番号55)について一律にCs−Kα線を
用いていたが、軽元素を主成分とする試料1において
は、Cs−Kα線のバックグラウンド(1次X線の連続
X線の散乱線)の強度が大きいため、SN比が低く(悪
く)、検出限界も高くなり、正確な分析ができない。
In the quantitative analysis of the sample 1, as described above, Cs-Kα radiation was used uniformly for cesium (atomic number 55) from the viewpoint of sensitivity (intensity) and the like as described above. In sample 1 containing an element as a main component, the intensity of the background of Cs-Kα rays (scattered X-rays of primary X-rays) is large, so that the SN ratio is low (poor) and the detection limit is high. , Accurate analysis is not possible.

【0019】これに対し、この装置では、判断手段13
が、図2に実線で示すようにRh−Kα線のコンプトン
散乱線の測定強度(ピークのグロス強度)が所定の基準
値Rを超えることから、定量分析に用いるセシウムの特
性X線としてCs−Lα線を選択する。基準値Rは、R
h−Kα線のコンプトン散乱線の測定強度がこれを超え
る場合に、原子番号が48以上58以下の各元素におい
て、K系列のKα線よりもL系列のLα線の方がSN比
が高くなるように、あらかじめ実験により求め、設定し
ておけばよい。判断手段13は、原子番号が48以上5
8以下の範囲において、他の定量分析する元素において
も、用いるべき特性X線としてLα線を選択する。
On the other hand, in this apparatus, the judgment means 13
However, as shown by the solid line in FIG. 2, since the measured intensity (gloss intensity of the peak) of the Compton scattered radiation of the Rh-Kα ray exceeds a predetermined reference value R, Cs- is used as the characteristic X-ray of cesium used in the quantitative analysis. Select the Lα line. The reference value R is R
When the measured intensity of the h-Kα ray Compton scattered ray exceeds this, in each element having an atomic number of 48 to 58, the SN ratio of the L-series Lα ray becomes higher than that of the K-series Kα ray. As described above, the values may be obtained in advance through experiments and set. The determination means 13 determines that the atomic number is
In the range of 8 or less, Lα rays are selected as characteristic X-rays to be used for other elements to be quantitatively analyzed.

【0020】そして、定量分析手段14が、定量分析す
る元素について、原子番号が48〜58の範囲において
は判断手段13によって選択されたL系列のLα線の測
定強度を、原子番号が4〜47の範囲においては従来と
同様に一律に決定されるK系列のKα線の測定強度を、
原子番号が59〜92の範囲においても従来と同様に一
律に決定されるL系列のLα線の測定強度を、定性分析
手段12から呼び出して用い、ファンダメンタルパラメ
ータ法により、各元素の定量分析値(含有率)を算出す
る。
When the atomic number of the element to be quantitatively analyzed is in the range of 48 to 58, the quantitative analysis means 14 determines the measured intensity of the L-series Lα line selected by the determination means 13 and the atomic number of 4 to 47. In the range of, the measured intensity of Kα ray of K series, which is determined uniformly as in the past,
Even when the atomic number is in the range of 59 to 92, the measured intensity of the L-series Lα line, which is determined uniformly as in the past, is called from the qualitative analysis means 12 and used, and the quantitative analysis value ( Content).

【0021】一方、試料1が重元素を主成分とするもの
であれば、定性分析の結果は、例えば図2に破線で示す
ようになる。この場合、判断手段13は、Rh−Kα線
のコンプトン散乱線の測定強度が所定の基準値R以下で
あることから、定量分析に用いるセシウムの特性X線と
してCs−Kα線を選択する。原子番号が48以上58
以下の範囲において、他の定量分析する元素において
も、用いるべき特性X線としてKα線を選択する。
On the other hand, if the sample 1 contains a heavy element as a main component, the result of the qualitative analysis is, for example, as shown by a broken line in FIG. In this case, since the measured intensity of the Compton scattered radiation of the Rh-Kα ray is equal to or less than the predetermined reference value R, the determination means 13 selects the Cs-Kα ray as the characteristic X-ray of cesium used for the quantitative analysis. Atomic number 48 or more 58
In the following range, Kα rays are selected as characteristic X-rays to be used for other elements to be quantitatively analyzed.

【0022】そして、定量分析手段14が、定量分析す
る元素について、原子番号が48〜58の範囲において
は判断手段13によって選択されたK系列のKα線の測
定強度を、原子番号が4〜47の範囲においては従来と
同様に一律に決定されるK系列のKα線の測定強度を、
原子番号が59〜92の範囲においても従来と同様に一
律に決定されるL系列のLα線の測定強度を、定性分析
手段12から呼び出して用い、ファンダメンタルパラメ
ータ法により、各元素の定量分析値(含有率)を算出す
る。
When the atomic number of the element to be quantitatively analyzed is in the range of 48 to 58, the quantitative analysis means 14 determines the measured intensity of the K series Kα ray selected by the judgment means 13 and the atomic number of 4 to 47. In the range of, the measured intensity of Kα ray of K series, which is determined uniformly as in the past,
Even when the atomic number is in the range of 59 to 92, the measured intensity of the L-series Lα line, which is determined uniformly as in the past, is called from the qualitative analysis means 12 and used, and the quantitative analysis value ( Content).

【0023】このように、本実施形態の装置によれば、
判断手段13により、定量分析する元素について用いる
べき特性X線の系列がSN比を考慮して適切に選択され
て、検出限界が低くなるので、簡単に正確な分析ができ
る。また、軽元素を主成分とする試料1において、従来
のように、定量分析にあたり、セシウムの特性X線とし
て一律にCs−Kα線を用いると、試料1が例えば厚さ
1cmで外観上バルク試料として十分な厚さを有するよ
うに見えても、X線的には飽和厚さに達していない場合
があり、そのような場合には、厚さが測定強度に影響す
るので、薄膜試料として扱わないと正しく分析ができな
い。これに対し、本実施形態の装置によれば、判断手段
13により、Cs−Lα線のようにX線的に飽和厚さに
達しやすい系列の特性X線が選択されて、試料1の厚さ
による誤差が発生しにくいので、この点においても簡単
に正確な分析ができる。
As described above, according to the device of the present embodiment,
By the judging means 13, the characteristic X-ray sequence to be used for the element to be quantitatively analyzed is appropriately selected in consideration of the SN ratio, and the detection limit is lowered, so that accurate analysis can be easily performed. Further, in the sample 1 containing a light element as a main component, when Cs-Kα rays are uniformly used as characteristic X-rays of cesium in the quantitative analysis as in the related art, the sample 1 has a thickness of, for example, 1 cm and a bulk sample in appearance. Even though it seems to have a sufficient thickness, it may not reach the saturation thickness in X-ray, and in such a case, the thickness affects the measurement intensity, so it is treated as a thin film sample. If not, analysis cannot be performed correctly. On the other hand, according to the apparatus of the present embodiment, the determining means 13 selects a characteristic X-ray of a series that easily reaches a saturated thickness in the X-ray, such as a Cs-Lα ray, and In this respect, an accurate analysis can be easily performed.

【0024】なお、本実施形態では、判断手段13が、
1次X線の特性X線の散乱線(Rh−Kα線のコンプト
ン散乱線)の測定強度を所定の基準値Rと比較して選択
すべき特性X線の系列を判断したが、これとは別に以下
のようにして系列を判断してもよい。すなわち、判断手
段は、定量分析対象の元素のK系列の特性X線の測定強
度(ピークのグロス強度)と、対応するバックグラウン
ドの測定強度との比を求めるとともに、同じ元素のL系
列の特性X線の測定強度(ピークのグロス強度)と、対
応するバックグラウンドの測定強度との比を求め、SN
比が高い方の系列の特性X線を選択してもよい。この場
合には、元素ごとに判断するので、判断手段における手
順は増すが、より正確な分析ができる。
In the present embodiment, the judgment means 13
The sequence of characteristic X-rays to be selected was determined by comparing the measured intensity of scattered X-ray scattered radiation of primary X-rays (Compton scattered radiation of Rh-Kα ray) with a predetermined reference value R. Alternatively, the sequence may be determined as follows. That is, the determination means obtains the ratio between the measured intensity of the characteristic X-ray of the K-series characteristic X-ray (the peak gross intensity) of the element to be quantitatively analyzed and the measured intensity of the corresponding background, and determines the characteristic of the L-series characteristic of the same element The ratio between the measured intensity of the X-ray (the gross intensity of the peak) and the corresponding measured intensity of the background is determined, and the SN
The characteristic X-ray of the series having the higher ratio may be selected. In this case, since the determination is made for each element, the procedure in the determination means is increased, but more accurate analysis can be performed.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明によ
れば、判断手段により、定量分析する元素について用い
るべき特性X線の系列がSN比を考慮して適切に選択さ
れて、検出限界が低くなるので、簡単に正確な分析がで
きる。また、軽元素を主成分とする試料中の重元素につ
いても、判断手段により、X線的に飽和厚さに達しやす
い系列の特性X線が選択されて、試料の厚さによる誤差
が発生しにくいので、この点においても簡単に正確な分
析ができる。
As described above in detail, according to the present invention, the characteristic X-ray sequence to be used for the element to be quantitatively analyzed is appropriately selected by the judgment means in consideration of the SN ratio, and the detection limit is obtained. , So that accurate analysis can be easily performed. In addition, for the heavy element in the sample containing a light element as a main component, a series of characteristic X-rays that easily reach a saturated thickness on the X-ray is selected by the determination means, and an error due to the thickness of the sample occurs. Since it is difficult, accurate analysis can be easily performed in this respect as well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の蛍光X線分析装置を示す
概略図である。
FIG. 1 is a schematic diagram showing an X-ray fluorescence analyzer according to one embodiment of the present invention.

【図2】同装置による定性分析の結果の例を示す図であ
る。
FIG. 2 is a diagram showing an example of a result of qualitative analysis by the same device.

【符号の説明】[Explanation of symbols]

1…試料、3…1次X線、4…X線源、5,7…2次X
線、13…判断手段、R…基準値。
1: Sample, 3: Primary X-ray, 4: X-ray source, 5, 7: Secondary X-ray
Line, 13: determination means, R: reference value.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 試料に1次X線を照射して発生する2次
X線の強度を測定する蛍光X線分析装置において、 試料によって散乱される1次X線の散乱線の測定強度と
所定の基準値との比較に基づいて、定量分析する元素に
ついて用いるべき特性X線の系列を判断する判断手段を
備えたことを特徴とする蛍光X線分析装置。
An X-ray fluorescence spectrometer for measuring the intensity of secondary X-rays generated by irradiating a sample with primary X-rays, wherein the measured intensity of primary X-rays scattered by the sample and a predetermined intensity are measured. An X-ray fluorescence spectrometer, comprising: a determination unit configured to determine a series of characteristic X-rays to be used for an element to be quantitatively analyzed based on a comparison with a reference value.
【請求項2】 請求項1において、 前記散乱線がコンプトン散乱線である蛍光X線分析装
置。
2. The X-ray fluorescence analyzer according to claim 1, wherein the scattered radiation is Compton scattered radiation.
【請求項3】 試料に1次X線を照射して発生する2次
X線の強度を測定する蛍光X線分析装置において、 定量分析する元素についての系列の異なる特性X線とそ
れぞれのバックグラウンドとの測定強度の比に基づい
て、定量分析する元素について用いるべき特性X線の系
列を判断する判断手段を備えたことを特徴とする蛍光X
線分析装置。
3. An X-ray fluorescence spectrometer for measuring the intensity of secondary X-rays generated by irradiating a sample with primary X-rays, wherein characteristic X-rays having different series of elements to be quantitatively analyzed and their respective backgrounds are provided. A determination unit for determining a series of characteristic X-rays to be used for an element to be quantitatively analyzed based on a ratio of measured intensities to the fluorescent X-ray.
Line analyzer.
【請求項4】 請求項1ないし3のいずれかにおいて、 前記判断手段の判断の対象となる元素の原子番号が48
以上58以下の範囲内であり、 前記判断手段の判断の対象となる特性X線の系列がK系
列およびL系列である蛍光X線分析装置。
4. The element according to claim 1, wherein the atomic number of the element to be judged by the judgment means is 48.
An X-ray fluorescence analyzer in which the characteristic X-rays to be judged by the judging means are K series and L series.
JP22360399A 1999-08-06 1999-08-06 X-ray fluorescence analyzer Expired - Fee Related JP3949850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22360399A JP3949850B2 (en) 1999-08-06 1999-08-06 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22360399A JP3949850B2 (en) 1999-08-06 1999-08-06 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2001050917A true JP2001050917A (en) 2001-02-23
JP3949850B2 JP3949850B2 (en) 2007-07-25

Family

ID=16800783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22360399A Expired - Fee Related JP3949850B2 (en) 1999-08-06 1999-08-06 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3949850B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074954A (en) * 2007-09-21 2009-04-09 Rigaku Corp Fluorescent x-ray analyzer and program used therein
WO2017026200A1 (en) * 2015-08-10 2017-02-16 株式会社リガク X-ray fluorescence spectrometer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930213B2 (en) * 1977-08-03 1984-07-25 川崎製鉄株式会社 Instrumental analysis method
JPS6046042A (en) * 1983-08-24 1985-03-12 Oki Electric Ind Co Ltd Measuring method of impurity density
JPH05240808A (en) * 1992-02-29 1993-09-21 Horiba Ltd Method for determining fluorescent x rays
JPH08101204A (en) * 1994-09-30 1996-04-16 Shimadzu Corp Analyzer
JP2589638B2 (en) * 1991-12-04 1997-03-12 理学電機工業株式会社 X-ray fluorescence analysis method and apparatus
JP2592723B2 (en) * 1991-04-01 1997-03-19 理学電機工業株式会社 Apparatus and method for identifying and analyzing X-ray fluorescence spectrum
JP2821656B2 (en) * 1992-10-11 1998-11-05 株式会社堀場製作所 Multiple conditions X-ray fluorescence qualitative analysis method
JP2848751B2 (en) * 1992-12-04 1999-01-20 株式会社東芝 Elemental analysis method
JP2000146873A (en) * 1998-11-06 2000-05-26 Asahi Chem Ind Co Ltd Fluorescent x-ray analysis of surface composition of particulate
JP3399861B2 (en) * 1998-12-01 2003-04-21 理学電機工業株式会社 X-ray analyzer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930213B2 (en) * 1977-08-03 1984-07-25 川崎製鉄株式会社 Instrumental analysis method
JPS6046042A (en) * 1983-08-24 1985-03-12 Oki Electric Ind Co Ltd Measuring method of impurity density
JP2592723B2 (en) * 1991-04-01 1997-03-19 理学電機工業株式会社 Apparatus and method for identifying and analyzing X-ray fluorescence spectrum
JP2589638B2 (en) * 1991-12-04 1997-03-12 理学電機工業株式会社 X-ray fluorescence analysis method and apparatus
JPH05240808A (en) * 1992-02-29 1993-09-21 Horiba Ltd Method for determining fluorescent x rays
JP2821656B2 (en) * 1992-10-11 1998-11-05 株式会社堀場製作所 Multiple conditions X-ray fluorescence qualitative analysis method
JP2848751B2 (en) * 1992-12-04 1999-01-20 株式会社東芝 Elemental analysis method
JPH08101204A (en) * 1994-09-30 1996-04-16 Shimadzu Corp Analyzer
JP2000146873A (en) * 1998-11-06 2000-05-26 Asahi Chem Ind Co Ltd Fluorescent x-ray analysis of surface composition of particulate
JP3399861B2 (en) * 1998-12-01 2003-04-21 理学電機工業株式会社 X-ray analyzer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074954A (en) * 2007-09-21 2009-04-09 Rigaku Corp Fluorescent x-ray analyzer and program used therein
JP4523958B2 (en) * 2007-09-21 2010-08-11 株式会社リガク X-ray fluorescence analyzer and program used therefor
WO2017026200A1 (en) * 2015-08-10 2017-02-16 株式会社リガク X-ray fluorescence spectrometer
JP6175662B2 (en) * 2015-08-10 2017-08-09 株式会社リガク X-ray fluorescence analyzer
JPWO2017026200A1 (en) * 2015-08-10 2017-08-31 株式会社リガク X-ray fluorescence analyzer
US10012605B2 (en) 2015-08-10 2018-07-03 Rigaku Corporation X-ray fluorescence spectrometer

Also Published As

Publication number Publication date
JP3949850B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
Brouwer Theory of XRF
JP6861469B2 (en) Quantitative X-ray analysis and matrix thickness correction method
US10082475B2 (en) X-ray fluorescence spectrometer
JP2008309807A (en) Method of determining background corrected count of radiation quantum in x-ray energy spectrum
US6310935B1 (en) Fluorescent x-ray analyzer
WO2005005969A1 (en) Energy dispersion type x-ray diffraction/spectral device
JPH11201918A (en) Qualitative and quantitative analysis of chemical element, compound, and mixture
JP3160135B2 (en) X-ray analyzer
JP2005513478A5 (en)
JP2928688B2 (en) Pollution element analysis method and device
JP3949850B2 (en) X-ray fluorescence analyzer
JP2006313132A (en) Sample analyzing method and x-ray analyzing system
JP2000283933A (en) Fluorescent x-ray analyzer
EP1521947B1 (en) Scatter spectra method for x-ray fluorescent analysis with optical components
JP4279983B2 (en) X-ray fluorescence analyzer
JP3312002B2 (en) X-ray fluorescence analyzer
JP3312001B2 (en) X-ray fluorescence analyzer
CN115038959B (en) Fluorescent X-ray analysis device, determination method, and determination program
JP5043387B2 (en) Film analysis method and apparatus by fluorescent X-ray analysis
JP2002365245A (en) Wavelength dispersive x-ray fluorescence analyzer
JP3399861B2 (en) X-ray analyzer
JP2000310602A (en) Fluorescent x-ray analyzer and recording medium used therein
USH922H (en) Method for analyzing materials using x-ray fluorescence
JP2947404B2 (en) X-ray fluorescence analysis method
JPH04355313A (en) Method for measuring thickness of paint film on metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees