JP2001050680A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2001050680A
JP2001050680A JP11223111A JP22311199A JP2001050680A JP 2001050680 A JP2001050680 A JP 2001050680A JP 11223111 A JP11223111 A JP 11223111A JP 22311199 A JP22311199 A JP 22311199A JP 2001050680 A JP2001050680 A JP 2001050680A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
inlet
outlet
flat plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11223111A
Other languages
Japanese (ja)
Inventor
Koji Nakato
宏治 仲戸
Masashi Inoue
正志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11223111A priority Critical patent/JP2001050680A/en
Priority to US09/611,339 priority patent/US6318455B1/en
Priority to DE10033965A priority patent/DE10033965C2/en
Publication of JP2001050680A publication Critical patent/JP2001050680A/en
Priority to US09/948,648 priority patent/US6491092B2/en
Priority to US09/948,773 priority patent/US6530423B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Abstract

PROBLEM TO BE SOLVED: To enhance heat exchange performance, by reducing the loss of pressure working on a refrigerant passage, according to the change in the degree of dryness of a refrigerant. SOLUTION: In a heat exchanger which is constituted by stacking plate- shaped refrigerant circulation parts 11 made by laying two sheets of drawn plates on top of the other thereby providing a refrigerant passage R inside, and cooling fins alternately, and in which a refrigerant inlet 15 to lead a refrigerant into the refrigerant passage R and also a refrigerant outlet 15, to allow the refrigerant having passed the refrigerant passage R to flow out are made in each plate, and the refrigerant flows in the refrigerant inlet 15 and is distributed to each refrigerant passage 11 and discharged from the refrigerant outlet 16, after having passed the refrigerant passage R, and the refrigerant outlet 16 is made larger than the refrigerant inlet 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両用空気調和装
置を構成する熱交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger constituting a vehicle air conditioner.

【0002】[0002]

【従来の技術】車両用空気調和装置にエバポレータ(蒸
発器)として使用される熱交換器の構造の一例を図8に
示す。図に示す熱交換器は近年主流となりつつあるドロ
ンカップタイプと呼ばれるもので、絞り加工を施された
略矩形の平板1,2を重ね合わせ冷媒流通部3の内部に
は、平板1,2の外周部および中央部がろう付けされる
ことで、上部に設けられた冷媒入口5から下部を往復し
冷媒入口5と並んで上部に設けられた冷媒出口6に抜け
るU字型の冷媒流路Rが形成されている。
2. Description of the Related Art FIG. 8 shows an example of the structure of a heat exchanger used as an evaporator in a vehicle air conditioner. The heat exchanger shown in the figure is a so-called Dron cup type, which has become mainstream in recent years. The outer peripheral portion and the central portion are brazed, so that the U-shaped refrigerant flow path R reciprocates from the refrigerant inlet 5 provided at the upper portion to the lower portion and passes through the refrigerant outlet 6 provided at the upper portion along with the refrigerant inlet 5. Are formed.

【0003】この熱交換器では、冷媒は冷媒入口5にお
いて各冷媒流通部3に分配され、冷媒流路Rを流通する
過程で蒸発気化され、冷媒出口6において再び合流して
熱交換器から流出するようになっている。
In this heat exchanger, the refrigerant is distributed to the respective refrigerant distribution sections 3 at the refrigerant inlet 5 and is vaporized and vaporized in the course of flowing through the refrigerant flow path R, merges again at the refrigerant outlet 6 and flows out of the heat exchanger. It is supposed to.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のよう
な構造の熱交換器には次のような問題点が指摘されてい
る。蒸発器として使用される熱交換器では、流通する冷
媒の乾き度は一定ではなく、蒸発気化される過程で徐々
に高まり比体積が増えるので、冷媒の流れ方向に沿って
流路断面積が一定であると冷媒の流路抵抗は下流側に向
かうほど高くなる。したがって、必ずしも熱交換器全体
で高い熱伝達率が得られるとはいえず、同様に圧力損失
が小さく抑えられるとはいえないのが現状である。
However, the following problems have been pointed out in the heat exchanger having the above structure. In a heat exchanger used as an evaporator, the degree of dryness of the flowing refrigerant is not constant, but gradually increases in the process of evaporating and the specific volume increases, so that the cross-sectional area of the flow path is constant along the flow direction of the refrigerant. , The flow path resistance of the refrigerant increases toward the downstream side. Therefore, it cannot be said that a high heat transfer coefficient can always be obtained in the entire heat exchanger, and similarly, it cannot be said that the pressure loss can be similarly suppressed to be small.

【0005】本発明は上記の事情に鑑みてなされたもの
であり、冷媒の乾き度の変化に応じて冷媒流路に作用す
る圧力損失の低減を図り、熱交換性能を向上させること
を目的としている。
The present invention has been made in view of the above circumstances, and has as its object to reduce the pressure loss acting on the refrigerant flow path in accordance with the change in the dryness of the refrigerant, and to improve the heat exchange performance. I have.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めの手段として、次のような構造の熱交換器を採用す
る。すなわち、請求項1記載の熱交換器は、絞り加工を
施された2枚の平板が重ね合わされて内部に冷媒流路が
設けられたプレート状の冷媒流通部と冷却フィンとが交
互に積層されて構成され、前記2枚の平板には前記冷媒
流路に冷媒を導入する冷媒入口が形成されるとともに前
記冷媒流路を通過した冷媒を導出する冷媒出口が形成さ
れ、前記冷媒は前記冷媒入口から前記冷媒流通部に流入
し、前記冷媒流路を流通したのち前記冷媒出口から排出
される熱交換器であって、前記冷媒出口が前記冷媒入口
よりも大きく形成されていることを特徴としている。
As means for solving the above-mentioned problems, a heat exchanger having the following structure is employed. That is, in the heat exchanger according to claim 1, two drawn flat plates are superimposed, and a plate-shaped refrigerant flow portion having a refrigerant flow path provided therein and cooling fins are alternately laminated. The two flat plates are formed with a refrigerant inlet for introducing a refrigerant into the refrigerant flow passage, and a refrigerant outlet for leading a refrigerant having passed through the refrigerant flow passage is formed. From the refrigerant outlet after flowing into the refrigerant flow section and flowing through the refrigerant flow path, wherein the refrigerant outlet is formed larger than the refrigerant inlet. .

【0007】請求項2記載の熱交換器は、請求項1記載
の熱交換器において、前記冷媒出口が複数設けられ、さ
らに各冷媒出口の総開口面積が前記冷媒入口の開口面積
よりも大きくなるように形成されていることを特徴とし
ている。
According to a second aspect of the present invention, in the heat exchanger according to the first aspect, a plurality of the refrigerant outlets are provided, and a total opening area of each refrigerant outlet is larger than an opening area of the refrigerant inlet. It is characterized by being formed as follows.

【0008】この熱交換器においては、乾き度を高めた
冷媒が流出する冷媒出口を冷媒入口よりも大きく形成す
ることにより、冷媒出口に近い冷媒流路抵抗を低減させ
ることが可能となる。これにより、冷媒流路の全域にお
いて熱伝達率が高い値に保たれ、圧力損失は低い値に保
たれる。
In this heat exchanger, by forming the refrigerant outlet from which the refrigerant having a higher degree of dryness flows out to be larger than the refrigerant inlet, it is possible to reduce the resistance of the refrigerant flow path near the refrigerant outlet. Thus, the heat transfer coefficient is maintained at a high value and the pressure loss is maintained at a low value in the entire region of the refrigerant flow path.

【0009】請求項3記載の熱交換器は、請求項1また
は2記載の熱交換器において、前記冷媒流通部には、前
記2枚の平板の少なくともいずれか一方を外側から陥没
させて前記冷媒流路側に突出する膨出部を形成するとと
もに該膨出部の頂部を他方に当接させることで前記冷媒
の流通方向に長径を向けた楕円形または長円形の柱状部
が、前記2枚の平板間に複数設けられていることを特徴
としている。
According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, the refrigerant circulating portion is configured such that at least one of the two flat plates is depressed from the outside to form the refrigerant. An elliptical or elliptical columnar portion whose major axis is oriented in the direction of flow of the refrigerant by forming a bulge protruding toward the flow path and bringing the top of the bulge into contact with the other is the two bulges. It is characterized in that a plurality are provided between the flat plates.

【0010】この熱交換器においては、冷媒が冷媒流路
を流通する過程で柱状部に衝突して冷媒の流れに乱れが
生じ、乱流効果によって熱伝達率が向上する。また、膨
出部どうしを接合して柱状部を形成することで冷媒流路
をなす2枚の平板の接合強度が高められる。
[0010] In this heat exchanger, the refrigerant collides with the columnar part in the course of flowing through the refrigerant flow path, and the flow of the refrigerant is disturbed. The turbulence effect improves the heat transfer coefficient. In addition, by joining the bulging portions to form a columnar portion, the joining strength of the two flat plates forming the coolant channel is increased.

【0011】請求項4記載の熱交換器は、請求項3記載
の熱交換器において、前記柱状部が、前記冷媒の流通方
向に対して斜めに隣接するものどうしが前記流通方向に
一部を重複させて配置されていることを特徴としてい
る。
According to a fourth aspect of the present invention, there is provided the heat exchanger according to the third aspect, wherein the columnar portions are partially adjacent to each other obliquely with respect to the flow direction of the refrigerant in the flow direction. It is characterized by being arranged so as to overlap.

【0012】この熱交換器においては、冷媒の流通方向
に対し斜めに隣接する柱状部どうしでは、流れの上流側
に位置する柱状部の後端部よりも下流側に位置する柱状
部の前端部が上流側になるので、上流側に位置する柱状
部の後端部では低下傾向にある局所熱伝達率が下流側に
位置する柱状部の前端部によって補われる。
In this heat exchanger, the front end of the column located downstream from the rear end of the column located upstream of the flow between the columns located obliquely to the flowing direction of the refrigerant. Is located upstream, the local heat transfer coefficient, which tends to decrease at the rear end of the column located on the upstream side, is compensated for by the front end of the column located on the downstream side.

【0013】[0013]

【発明の実施の形態】本発明に係る熱交換器の第1実施
形態を図1ないし図7に示して説明する。図1に示す熱
交換器は、プレート状の冷媒流通部11と波形の冷却フ
ィン12とが交互に積層されて構成されたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a heat exchanger according to the present invention will be described with reference to FIGS. The heat exchanger shown in FIG. 1 is configured by alternately stacking plate-shaped refrigerant circulation portions 11 and corrugated cooling fins 12.

【0014】冷媒流通部11は、図2にも示すように絞
り加工を施された略矩形の平板13,14を重ね合わせ
て外周部と中央部をろう付けしたもので、上部には冷媒
入口15と冷媒出口16とが並んで設けられている。冷
媒流通部11の内部には、平板13,14の外周部およ
び中央部がろう付けされることで、上部に設けられる冷
媒入口15から下方に向けて進み下部で折り返して冷媒
出口16に抜けるU字型の冷媒流路Rが形成されてい
る。
As shown in FIG. 2, the refrigerant flow section 11 is formed by laminating substantially rectangular flat plates 13 and 14 which have been drawn and brazing the outer peripheral portion and the central portion. 15 and a refrigerant outlet 16 are provided side by side. Inside the refrigerant flow portion 11, the outer peripheral portions and the central portions of the flat plates 13 and 14 are brazed to advance downward from the refrigerant inlet 15 provided at the upper portion, turn back at the lower portion, and pass through the refrigerant outlet 16. A refrigerant passage R having a U-shape is formed.

【0015】冷媒流通部11には、冷媒流路Rをなす平
板13,14を外側から陥没させて複数のディンプル1
7が形成されており、これらディンプル17によって冷
媒流路Rには複数の膨出部18が形成されている。これ
ら膨出部18は、図3に示すように平面視すると冷媒の
流れ方向を長径とする楕円形をなし、さらに相対する膨
出部18どうしで頂部18aをろう付けされることで、
平板13,14間に設けられて楕円形の断面形状をなす
柱状部19の体をなしている。なお、柱状体19の形状
は楕円に限らず長円であってもよい。
A plurality of dimples 1 are formed in the refrigerant flow section 11 by flattening the flat plates 13 and 14 forming the refrigerant flow path R from the outside.
7 are formed, and a plurality of bulging portions 18 are formed in the refrigerant flow path R by these dimples 17. As shown in FIG. 3, these bulging portions 18 have an elliptical shape whose major axis is the flow direction of the refrigerant when viewed in a plan view, and the top portions 18 a are further brazed by opposing bulging portions 18.
It is provided between the flat plates 13 and 14 to form a columnar portion 19 having an elliptical cross-sectional shape. The shape of the columnar body 19 is not limited to an ellipse, but may be an ellipse.

【0016】また、各膨出部18は、図4に示すように
冷媒の流れ方向に対して斜めに隣接するものどうしが流
れ方向に一部を重複させて千鳥状に配置されており、各
柱状部19もこれに準じて配置されている。
As shown in FIG. 4, each of the bulging portions 18 is arranged in a staggered manner such that a portion obliquely adjacent to the flow direction of the refrigerant partially overlaps in the flow direction. The columnar portion 19 is also arranged according to this.

【0017】冷媒入口15は平板13,14に形成され
た開口部13a,14aからなり、各冷媒流通部11に
設けられる冷媒入口15は、図5に示すように冷却フィ
ン12を挟まずに突き合わされて連続した入口側空間S
inを形成している。冷媒出口16も同様に平板13,1
4に形成された開口部13b,14bからなり、各冷媒
流通部11に設けられる冷媒出口16は、図6に示すよ
うに冷却フィン12を挟まずに突き合わされて連続した
出口側空間Soutを形成している。
The refrigerant inlet 15 comprises openings 13a and 14a formed in the flat plates 13 and 14, and the refrigerant inlet 15 provided in each of the refrigerant flow portions 11 projects without sandwiching the cooling fins 12 as shown in FIG. Combined and continuous entrance space S
forming in. Similarly, the refrigerant outlet 16 is connected to the flat plates 13, 1
4, the refrigerant outlets 16 provided in each of the refrigerant flow portions 11 are abutted without sandwiching the cooling fins 12 to form a continuous outlet side space Sout as shown in FIG. are doing.

【0018】上記のような構造の熱交換器では、冷媒は
入口側空間Sinを図中の矢印方向に進む過程で各冷媒流
通部11に分配され、冷媒流路Rを流通する過程で蒸発
気化され、出口側空間Soutにおいて再び合流して流出
するようになっている。
In the heat exchanger having the above-described structure, the refrigerant is distributed to the respective refrigerant distribution sections 11 in the process of traveling in the inlet side space Sin in the direction of the arrow in the drawing, and is evaporated and vaporized in the process of flowing through the refrigerant flow path R. In the outlet side space Sout, they merge again and flow out.

【0019】冷媒が冷媒流路Rを流通する過程では、冷
媒流路Rに設けられた柱状部19に冷媒が衝突して冷媒
の流れに乱れが生じ、乱流効果によって熱伝達率が向上
する。しかも、冷媒の流れ方向に対し斜めに隣接する柱
状部19どうしでは、流れの上流側に位置する柱状部1
9の後端部よりも下流側に位置する柱状部19の前端部
が上流側になるので、上流側に位置する柱状部19の後
端部では低下傾向にある局所熱伝達率が下流側に位置す
る柱状部19の前端部によって補われ、冷媒流通部11
全体として熱伝達率が向上する。
In the process in which the refrigerant flows through the refrigerant flow path R, the refrigerant collides with the columnar portions 19 provided in the refrigerant flow path R to cause a disturbance in the flow of the refrigerant, and the heat transfer coefficient is improved by the turbulent flow effect. . Moreover, between the columnar portions 19 obliquely adjacent to the flow direction of the refrigerant, the columnar portions 1 located on the upstream side of the flow are arranged.
Since the front end of the columnar portion 19 located downstream of the rear end of the column 9 is located on the upstream side, the local heat transfer coefficient, which tends to decrease at the rear end of the columnar portion 19 located on the upstream side, is reduced to the downstream side. Supplemented by the front end of the columnar portion 19 located,
The heat transfer coefficient is improved as a whole.

【0020】また、柱状部19は冷媒の流れ方向に沿っ
て規則的に配置され、頂部18aどうしの接合部分も広
く確保されることから、冷媒流通部11は冷媒の流れ方
向のいかなる断面をとっても2枚の平板13,14が膨
出部18どうしで接着された状態となって接合強度が高
められる。これにより、平板13,14の板厚が薄くて
も冷媒流通部11に十分な耐圧強度が得られる。
Further, since the columnar portions 19 are regularly arranged along the flow direction of the refrigerant, and the joints between the top portions 18a are widely secured, the refrigerant flow portion 11 has any cross section in the flow direction of the refrigerant. The two flat plates 13 and 14 are bonded to each other by the bulging portions 18 to increase the bonding strength. Thereby, even if the thickness of the flat plates 13 and 14 is thin, sufficient pressure resistance can be obtained in the refrigerant flow portion 11.

【0021】本実施形態の熱交換器では、冷媒流路Rが
U字型に形成されており、冷媒は冷媒入口15から下方
に進み、冷媒流通部11の下部で折り返して冷媒出口1
6に抜けるというように冷媒流通部11内部を往復する
ようになっている。ところで、冷媒流通部11は、図7
に示すように、乾き度を高めた冷媒が流出する冷媒出口
16が冷媒入口15よりも大きく形成されている。
In the heat exchanger of the present embodiment, the refrigerant flow path R is formed in a U-shape, and the refrigerant flows downward from the refrigerant inlet 15 and turns back at the lower part of the refrigerant flow portion 11 to return to the refrigerant outlet 1.
6 so as to reciprocate inside the refrigerant flow section 11. By the way, the refrigerant distribution unit 11 is configured as shown in FIG.
As shown in the figure, the refrigerant outlet 16 from which the refrigerant having increased dryness flows out is formed larger than the refrigerant inlet 15.

【0022】エバポレータとして使用される熱交換器で
は、冷媒が上流から下流に進むに従って乾き度を高める
ので(液状相に対してガス状相が増加する)、冷媒流路
抵抗も漸次高まる。そこで、比体積の増加に合わせて冷
媒出口16を冷媒入口15よりも大きく形成することに
より、冷媒出口16に近い冷媒流路抵抗が低減されるの
で、冷媒流路Rの全域において熱伝達率が高い値に保た
れ、圧力損失は低い値に保たれる。これにより、熱交換
器のエバポレータとしての熱交換性能を向上させること
ができる。
In a heat exchanger used as an evaporator, the degree of dryness of the refrigerant increases as the refrigerant proceeds from upstream to downstream (the gaseous phase increases relative to the liquid phase), so that the resistance of the refrigerant flow path gradually increases. Therefore, by forming the refrigerant outlet 16 larger than the refrigerant inlet 15 in accordance with the increase in the specific volume, the refrigerant flow path resistance close to the refrigerant outlet 16 is reduced. It is kept at a high value and the pressure loss is kept at a low value. Thus, the heat exchange performance of the heat exchanger as an evaporator can be improved.

【0023】なお、本実施形態においては、入口側空間
Sin、出口側空間Soutをそれぞれひとつずつ設けた熱
交換器について説明したが、例えばこれを、入口側空間
Sinをひとつ、出口側空間Soutをふたつ設けて両冷媒
出口16を合わせた総開口面積が冷媒入口15の開口面
積よりも大きくなるように形成しても構わない。
In this embodiment, a heat exchanger having one inlet space Sin and one outlet space Sout has been described. For example, the heat exchanger may be replaced with one inlet space Sin and one outlet space Sout. Two refrigerant outlets 16 may be provided so that the total opening area of the two refrigerant outlets 16 is larger than the opening area of the refrigerant inlet 15.

【0024】[0024]

【発明の効果】以上説明したように、本発明に係る請求
項1、2記載の熱交換器によれば、乾き度を高めた冷媒
が流出する冷媒出口を冷媒入口よりも大きく形成するこ
とにより、冷媒出口に近い冷媒流路抵抗を低減させるこ
とが可能となる。これにより、冷媒流路の全域において
熱伝達率が高い値に保たれ、圧力損失は低い値に保たれ
るので、当該熱交換器の熱交換性能を向上させることが
できる。
As described above, according to the heat exchangers of the first and second aspects of the present invention, the refrigerant outlet from which the refrigerant having increased dryness flows out is formed larger than the refrigerant inlet. In addition, it is possible to reduce the resistance of the refrigerant flow path near the refrigerant outlet. Thereby, the heat transfer coefficient is maintained at a high value and the pressure loss is maintained at a low value in the entire region of the refrigerant flow passage, so that the heat exchange performance of the heat exchanger can be improved.

【0025】請求項3記載の熱交換器によれば、冷媒が
冷媒流路を流通する過程で柱状部に衝突して冷媒の流れ
に乱れが生じ、乱流効果により熱伝達率が向上するの
で、熱交換器の熱交換能力を向上させることができる。
また、膨出部どうしを接合して柱状部を形成することで
冷媒流路をなす2枚の平板の接合強度が高まるので、冷
媒流通部の耐圧強度を高めることができる。
According to the heat exchanger of the third aspect, the refrigerant collides with the columnar part in the course of flowing through the refrigerant flow path, and the flow of the refrigerant is disturbed, and the turbulence effect improves the heat transfer coefficient. In addition, the heat exchange capacity of the heat exchanger can be improved.
In addition, the joint strength between the two flat plates forming the coolant flow channel is increased by joining the bulging portions to form the columnar portion, so that the pressure resistance of the coolant circulation portion can be increased.

【0026】請求項4記載の熱交換器によれば、冷媒の
流通方向に対し斜めに隣接する柱状部どうしでは、流れ
の上流側に位置する柱状部の後端部よりも下流側に位置
する柱状部の前端部が上流側に配置され、上流側に位置
する柱状部の後端部では低下傾向にある局所熱伝達率が
下流側に位置する柱状部の前端部によって補われるの
で、冷媒流通部全体として熱伝達率を向上させることが
できる。
According to the heat exchanger of the fourth aspect, the columnar portions that are obliquely adjacent to the refrigerant flow direction are located downstream of the rear end of the columnar portion located on the upstream side of the flow. The front end of the columnar portion is arranged on the upstream side, and the local heat transfer coefficient, which tends to decrease at the rear end of the columnar portion located on the upstream side, is supplemented by the front end of the columnar portion located on the downstream side. The heat transfer coefficient can be improved as a whole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る熱交換器の第1実施形態を示す
斜視図である。
FIG. 1 is a perspective view showing a first embodiment of a heat exchanger according to the present invention.

【図2】 図1の熱交換器を構成する冷媒流通部を示す
分解斜視図である。
FIG. 2 is an exploded perspective view showing a refrigerant flow section constituting the heat exchanger of FIG.

【図3】 図1におけるIII-III線矢視断面図である。FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】 冷媒流通部を側方から見た平面図である。FIG. 4 is a plan view of the refrigerant flow section as viewed from the side.

【図5】 入口側空間とこれに繋がる冷媒流路を示す断
面図である。
FIG. 5 is a cross-sectional view showing an inlet side space and a refrigerant flow path connected thereto.

【図6】 出口側空間とこれに繋がる冷媒流路を示す断
面図である。
FIG. 6 is a cross-sectional view showing an outlet side space and a refrigerant flow path connected thereto.

【図7】 冷媒流路の形状を説明するための冷媒流通部
の分解図である。
FIG. 7 is an exploded view of the refrigerant flow section for explaining the shape of the refrigerant flow path.

【図8】 従来のエバポレータの一例を示す斜視図であ
る。
FIG. 8 is a perspective view showing an example of a conventional evaporator.

【符号の説明】[Explanation of symbols]

11 冷媒流通部 12 冷却フィン 13,14 平板 15 冷媒入口 16 冷媒出口 17 ディンプル 18 膨出部 19 柱状部 R 冷媒流路 DESCRIPTION OF SYMBOLS 11 Refrigerant distribution part 12 Cooling fin 13,14 Flat plate 15 Refrigerant inlet 16 Refrigerant outlet 17 Dimple 18 Swelling part 19 Columnar part R Refrigerant flow path

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L103 AA17 AA37 AA39 BB38 DD15 DD54 DD55 DD57 DD58  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3L103 AA17 AA37 AA39 BB38 DD15 DD54 DD55 DD57 DD58

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絞り加工を施された2枚の平板が重ね合
わされて内部に冷媒流路が設けられたプレート状の冷媒
流通部と冷却フィンとが交互に積層されて構成され、 前記2枚の平板には前記冷媒流路に冷媒を導入する冷媒
入口が形成されるとともに前記冷媒流路を通過した冷媒
を導出する冷媒出口が形成され、 前記冷媒は前記冷媒入口から前記冷媒流通部に流入し、
前記冷媒流路を流通したのち前記冷媒出口から排出され
る熱交換器であって、 前記冷媒出口が前記冷媒入口よりも大きく形成されてい
ることを特徴とする熱交換器。
1. A two-plate drawing machine comprising: two drawn flat plates which are superimposed on each other and a cooling fin and a plate-shaped cooling medium circulating portion provided with a cooling medium passage therein are alternately stacked; The flat plate has a refrigerant inlet for introducing a refrigerant into the refrigerant flow passage, and a refrigerant outlet for guiding the refrigerant passing through the refrigerant flow passage. The refrigerant flows from the refrigerant inlet to the refrigerant distribution portion. And
A heat exchanger which is discharged from the refrigerant outlet after flowing through the refrigerant flow path, wherein the refrigerant outlet is formed larger than the refrigerant inlet.
【請求項2】 前記冷媒出口が複数設けられ、さらに各
冷媒出口の総開口面積が前記冷媒入口の開口面積よりも
大きくなるように形成されていることを特徴とする請求
項1記載の熱交換器。
2. The heat exchange according to claim 1, wherein a plurality of the refrigerant outlets are provided, and a total opening area of each of the refrigerant outlets is larger than an opening area of the refrigerant inlet. vessel.
【請求項3】 前記冷媒流通部には、前記2枚の平板の
少なくともいずれか一方を外側から陥没させて前記冷媒
流路側に突出する膨出部を形成するとともに該膨出部の
頂部を他方に当接させることで前記冷媒の流通方向に長
径を向けた楕円形または長円形の柱状部が、前記2枚の
平板間に複数設けられていることを特徴とする請求項1
または2記載の熱交換器。
3. A swelling portion which protrudes toward the coolant flow path by depressing at least one of the two flat plates from the outside in the coolant circulating portion, and a top portion of the swelling portion is connected to the other side. 2. A plurality of elliptical or elliptical columnar portions having a major axis directed in the direction of flow of the refrigerant by being brought into contact with a plurality of flat plates are provided between the two flat plates.
Or the heat exchanger according to 2.
【請求項4】 前記柱状部は、前記冷媒の流通方向に対
して斜めに隣接するものどうしが、前記流通方向に一部
を重複させて配置されていることを特徴とする請求項3
記載の熱交換器。
4. The columnar portion, wherein ones obliquely adjacent to the flow direction of the refrigerant are arranged so as to partially overlap each other in the flow direction.
The heat exchanger as described.
JP11223111A 1999-07-14 1999-08-05 Heat exchanger Withdrawn JP2001050680A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11223111A JP2001050680A (en) 1999-08-05 1999-08-05 Heat exchanger
US09/611,339 US6318455B1 (en) 1999-07-14 2000-07-06 Heat exchanger
DE10033965A DE10033965C2 (en) 1999-07-14 2000-07-13 heat exchangers
US09/948,648 US6491092B2 (en) 1999-07-14 2001-09-10 Heat exchanger
US09/948,773 US6530423B2 (en) 1999-07-14 2001-09-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223111A JP2001050680A (en) 1999-08-05 1999-08-05 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2001050680A true JP2001050680A (en) 2001-02-23

Family

ID=16793007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223111A Withdrawn JP2001050680A (en) 1999-07-14 1999-08-05 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2001050680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078258A (en) * 2005-09-14 2007-03-29 Tokyo Roki Co Ltd Stacked heat exchanger
KR100917171B1 (en) 2003-01-15 2009-09-21 한라공조주식회사 Heat-exchanger
JP2018522197A (en) * 2015-07-23 2018-08-09 キュンドン ナビエン シーオー.,エルティーディー. Heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917171B1 (en) 2003-01-15 2009-09-21 한라공조주식회사 Heat-exchanger
JP2007078258A (en) * 2005-09-14 2007-03-29 Tokyo Roki Co Ltd Stacked heat exchanger
JP2018522197A (en) * 2015-07-23 2018-08-09 キュンドン ナビエン シーオー.,エルティーディー. Heat exchanger
EP3327371A4 (en) * 2015-07-23 2019-04-03 Kyungdong Navien Co., Ltd. Heat exchanger
US10746436B2 (en) 2015-07-23 2020-08-18 Kyungdong Navien Co., Ltd. Heat exchanger

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
US6491092B2 (en) Heat exchanger
US8272430B2 (en) Plate laminate type heat exchanger
JP5096134B2 (en) Heat exchanger cross rib plate pair
US6401804B1 (en) Heat exchanger only using plural plates
US20140060789A1 (en) Heat exchanger and method of operating the same
JP2006322698A (en) Heat exchanger
US6431264B2 (en) Heat exchanger with fluid-phase change
US6742577B2 (en) Laminate type evaporator
JPH07167578A (en) Lamination type heat exchanger
JP2002130977A (en) Heat exchanger
JP6554182B2 (en) Heat exchanger having a plurality of stacked plates
JP2932846B2 (en) Stacked heat exchanger and method of manufacturing the same
JP2020079693A (en) Heat exchanger
JP2001050680A (en) Heat exchanger
JPH0739895B2 (en) Refrigerant evaporator
JP2001041677A (en) Heat exchanger
JP2001041674A (en) Heat exchanger
CN112146484B (en) Plate heat exchanger
JP2602788Y2 (en) Stacked evaporator elements
JPH09138084A (en) Heat exchanger
JPH0894274A (en) Accumulated type heat exchanger
CN113574332A (en) Heat exchanger
JP3000188B2 (en) Stacked heat exchanger
JP2001027491A (en) Heat-exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107