JP2001050336A - Friction damper - Google Patents

Friction damper

Info

Publication number
JP2001050336A
JP2001050336A JP11222575A JP22257599A JP2001050336A JP 2001050336 A JP2001050336 A JP 2001050336A JP 11222575 A JP11222575 A JP 11222575A JP 22257599 A JP22257599 A JP 22257599A JP 2001050336 A JP2001050336 A JP 2001050336A
Authority
JP
Japan
Prior art keywords
friction
displacement
friction damper
friction body
objects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11222575A
Other languages
Japanese (ja)
Other versions
JP3707307B2 (en
Inventor
Akira Teramura
彰 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP22257599A priority Critical patent/JP3707307B2/en
Publication of JP2001050336A publication Critical patent/JP2001050336A/en
Application granted granted Critical
Publication of JP3707307B2 publication Critical patent/JP3707307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a friction damper to regulate both acceleration response and displacement response to an optimum, prevent the occurrence of a residue of displacement, and provide displacement proportional type damping performance. SOLUTION: A slide plate 16 is situated on the upper surface 12a of a floor 12 and a friction body 18 is situated thereon. The central part of the friction body 18 is rotatably supported at an object 14 to be base-isolated through a pin 22. Helical extension springs 26 and 26 are caused to horizontally span in a tension exerted state between support poles 24 and 24 erected on the floor 12 and the two end parts of the friction body and situated on a line (s) of action situated eccentrically downward from the pin 22 being the rotation center of the friction body 18. Further, the slide material 18b of the friction body 18 is brought into contact in a non-pressure contact state with the slide plate 16 or suspended from a support bracket 20 with slight gap therebetween.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、相対変位する2物
体間の変位エネルギーを摩擦力により吸収する摩擦ダン
パーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a friction damper that absorbs displacement energy between two objects that are relatively displaced by a frictional force.

【0002】[0002]

【従来の技術】地震等に対する免振構造は建物や精密機
器室の床等に多く採用されるが、これ以外にも博物館等
の陳列台に免振構造を採用して、貴重な展示物が振動に
より倒れて破損するのを防止するようになっている。と
ころで、一般の免振構造としては積層ゴム支承や転がり
支承を介して免振対象物を基礎側に支持し、更にこれに
コイルばね等の弾性支承や摩擦ダンパーを併用するもの
等がある。
2. Description of the Related Art Vibration isolation structures against earthquakes and the like are often used in buildings and floors of precision instrument rooms, etc. In addition, valuable display materials are also installed on display stands such as museums. It is designed to prevent it from falling and being damaged by vibration. By the way, as a general vibration isolating structure, there is a structure in which a vibration isolating object is supported on a foundation side via a laminated rubber bearing or a rolling bearing, and further, an elastic bearing such as a coil spring or a friction damper is used in combination.

【0003】従来の摩擦ダンパー1は図10に示すよう
に免振対象物2と基礎側3との間に滑り材4および滑り
板5を介装し、更には加圧ばね6(または免振対象物2
の荷重)によって滑り材4を滑り板5に圧接することに
より構成される。そして、免振対象物2と基礎側3とが
相対変位する際には、滑り材4と滑り板5との間に作用
する加圧力Pと摩擦係数μとの積で表される降伏せん断
抵抗力(摩擦抵抗力)Qyが発生し、この降伏せん断抵
抗力Qyによって免振対象物2と基礎側3との間の相対
変位時のエネルギーを吸収できるようになっている。
A conventional friction damper 1 has a sliding member 4 and a sliding plate 5 interposed between a vibration-isolated object 2 and a foundation 3 as shown in FIG. Object 2
The load is applied to press the sliding member 4 against the sliding plate 5. When the object 2 and the foundation 3 are relatively displaced, the yield shear resistance represented by the product of the pressure P acting between the sliding member 4 and the sliding plate 5 and the friction coefficient μ. A force (frictional resistance) Qy is generated, and the yield shear resistance Qy can absorb energy at the time of relative displacement between the vibration-isolation target 2 and the foundation side 3.

【0004】このときの降伏せん断抵抗力Qyと変位δ
との関係は図11に示すヒステリシスループとなるQ−
δ特性として示され、このQ−δ特性において強震入力
に対する初期応答(図11中A部)は、図12に示すよ
うにQyを大きくすると加速度が大きく、かつ変位が小
さくなり、Qyを小さくすると加速度が小さく、かつ変
位が大きくなる。従って、Qyの設定の仕方により図1
3に示す応答加速度と応答変位の関係が得られる。とこ
ろで、免振構造としては強震時に上記応答加速度および
応答変位を共に小さくすることが望ましい。
At this time, the yield shear resistance Qy and the displacement δ
Is related to Q- which is a hysteresis loop shown in FIG.
The initial response (part A in FIG. 11) to the strong motion input in this Q-δ characteristic is as shown in FIG. 12, when Qy is increased, the acceleration increases and the displacement decreases, and when Qy decreases, the acceleration decreases. The acceleration is small and the displacement is large. Therefore, depending on how to set Qy, FIG.
The relationship between the response acceleration and the response displacement shown in FIG. 3 is obtained. By the way, it is desirable that both the response acceleration and the response displacement during a strong earthquake be reduced as a vibration isolation structure.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、応答加
速度と応答変位の両者を最適にするためには、変位初期
でQyを小さく、かつ変位が大きくなるに伴ってQyを
大きくすることが必要であるが、従来の摩擦ダンパーで
は加圧力Pおよび摩擦係数μとが一定であるため、理想
とする減衰性能を得ることができない。このため、理想
的な減衰性能を得るためには降伏せん断抵抗力Qyが明
瞭でない粘性系ダンパー等が用いられることになる。
However, in order to optimize both the response acceleration and the response displacement, it is necessary to reduce Qy at the initial stage of displacement and to increase Qy as the displacement increases. However, in the conventional friction damper, since the pressing force P and the friction coefficient μ are constant, the ideal damping performance cannot be obtained. Therefore, in order to obtain ideal damping performance, a viscous damper or the like whose yield shear resistance Qy is not clear is used.

【0006】ところが、博物館等の陳列台を免振構造化
して免振台として構成する場合、大地震により免振構造
自体が破壊された場合にも展示物を汚損せず、かつメン
テナンスフリーとするためには、上記粘性系ダンパー等
の湿式ダンパーの使用を避ける必要がある。このため、
免振台としての要求を満たすためには乾式の摩擦ダンパ
ーを用いることになる。
However, when a display stand of a museum or the like is constructed as a vibration-isolating table by using a vibration-isolating structure, even if the vibration-isolating structure itself is destroyed by a large earthquake, the exhibits are not stained and are maintenance-free. Therefore, it is necessary to avoid using a wet damper such as the above-mentioned viscous damper. For this reason,
In order to satisfy the requirements as a vibration isolator, a dry friction damper will be used.

【0007】このため、応答加速度と応答変位を共に満
足できない従来の摩擦ダンパーは、図13に示したよう
に両者を折衷した点Rを該摩擦ダンパーの最適値として
加圧力Pおよび摩擦係数μを決定するようになってい
る。このため、どうしても応答加速度と応答変位の下限
値に限界があり、また、乾式の摩擦ダンパーでは変位外
力が消失した後でどうしても変位が残留して中立位置に
は戻らない。更に、乾式ダンパーの他の例として、鋼材
の塑性歪領域をエネルギー吸収に利用する弾塑性ダンパ
ーがあるが、この場合にあっても図11とほぼ類似した
図14に示すQ−δ特性となり、上記摩擦ダンパーと同
様の不具合があるという課題があった。
For this reason, in the conventional friction damper which cannot satisfy both the response acceleration and the response displacement, as shown in FIG. 13, the point R where the two are compromised is set as the optimum value of the friction damper, and the pressure P and the friction coefficient μ are determined. The decision is made. For this reason, the lower limits of the response acceleration and the response displacement are inevitably limited, and in the case of the dry friction damper, the displacement is inevitably left after the external displacement force is lost, and does not return to the neutral position. Further, as another example of the dry damper, there is an elasto-plastic damper that utilizes a plastic strain region of a steel material for energy absorption. In this case, the Q-δ characteristic shown in FIG. There is a problem that there is a problem similar to that of the friction damper.

【0008】そこで、本発明はかかる従来の課題に鑑み
て成されたもので、加速度応答と変位応答との両者をよ
り最適に調整できるとともに変位の残留がない、変位比
例型の減衰性能を備えた摩擦ダンパーを提供することを
目的とする。
Accordingly, the present invention has been made in view of such a conventional problem, and has a displacement proportional type damping performance which can adjust both the acceleration response and the displacement response more optimally and has no residual displacement. It is an object of the present invention to provide a friction damper.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに本発明の請求項1に示す摩擦ダンパーは、相対変位
される第1,第2物体の一方に設けられる滑動面と、上
記第1,第2物体の他方に、上記滑動面に対向して回動
自在に設けられ、中立位置で該滑動面に非圧接状態にな
り、回動状態で該滑動面に圧接する摩擦体と、該摩擦体
と上記第1,第2物体の一方との間に設けられ、該摩擦
体の中立位置を維持するとともに、該第1,第2物体の
相対変位に伴って該摩擦体を回動させて、上記滑動面に
対する加圧力を該第1,第2物体の相対変位量に比例し
て増加させる弾性部材とを備えたことを特徴とする。
In order to achieve the above object, a friction damper according to a first aspect of the present invention comprises a sliding surface provided on one of first and second objects which are relatively displaced; A friction member that is rotatably provided on the other of the second object and opposed to the sliding surface, is in a non-pressure contact state with the sliding surface in a neutral position, and is in pressure contact with the sliding surface in a rotating state; A friction member is provided between the friction member and one of the first and second objects to maintain a neutral position of the friction member and rotate the friction member in accordance with the relative displacement of the first and second objects. And an elastic member for increasing a pressing force on the sliding surface in proportion to a relative displacement amount of the first and second objects.

【0010】この構成によれば、相対変位がない状態で
は摩擦体は中立位置となり、この中立位置は弾性部材に
よって維持される。一方、第1,第2物体が互いに相対
変位すると、弾性部材によって摩擦体は回動されて滑動
面に圧接する。このときの加圧力は第1,第2物体の相
対変位量に比例して増加されるため、入力外力が大きく
て相対変位が大きい程、摩擦体と滑動面との間に発生す
る摩擦抵抗力が大きくなり、その減衰力が大きくなる。
このため、応答加速度と応答変位とを共に満足して変位
に比例した減衰力を得ることができる。また、相対変位
を生じさせる入力外力が消失した時には摩擦体は弾性部
材によって中立位置に復帰されるが、この復帰過程から
中立位置に達する間では摩擦抵抗力は順次小さくなって
変位が残留することはなく、第1,第2物体を元の位置
に復元することができる。従って、このように乾式であ
る摩擦ダンパーによって変位比例型の減衰力を得ること
ができる。この摩擦ダンパーを、展示物を載置する免振
台に用いると、メンテナンスフリーで展示物を汚損する
おそれのない免振性能に優れた陳列台を得ることができ
る。
According to this configuration, the friction body is in the neutral position when there is no relative displacement, and this neutral position is maintained by the elastic member. On the other hand, when the first and second objects are relatively displaced from each other, the friction member is rotated by the elastic member and pressed against the sliding surface. Since the pressing force at this time is increased in proportion to the relative displacement of the first and second objects, the frictional force generated between the friction body and the sliding surface increases as the input external force increases and the relative displacement increases. And its damping force increases.
Therefore, the damping force proportional to the displacement can be obtained by satisfying both the response acceleration and the response displacement. When the input external force causing the relative displacement disappears, the friction member is returned to the neutral position by the elastic member, but during the period from the return process to the neutral position, the frictional resistance force gradually decreases and the displacement remains. And the first and second objects can be restored to their original positions. Therefore, a displacement proportional damping force can be obtained by such a dry friction damper. When this friction damper is used for a vibration isolation table on which an exhibit is placed, a display table which is maintenance-free and has excellent vibration isolation performance without the possibility of soiling the exhibit can be obtained.

【0011】また、本発明の請求項2に示す摩擦ダンパ
ーは、上記弾性部材が、上記第1,第2物体の相対変位
方向であって上記摩擦体の回動中心から偏心した作用線
上に、該回動中心を挟んで両側に一対設けられているこ
とを特徴とする。
According to a second aspect of the present invention, there is provided a friction damper, wherein the elastic member is disposed on a line of action eccentric from a rotation center of the friction body in a direction of relative displacement of the first and second objects. A pair is provided on both sides of the rotation center.

【0012】この構成によれば、第1,第2物体が相対
変位すると、弾性部材による引張力が摩擦体の回動中心
から偏心した作用線上に作用するため、該摩擦体が回動
されて傾斜され、滑動面に対して加圧力を発生させる。
このとき、第1,第2物体の相対変位量に比例して弾性
部材の引張力が増大するため、これに伴って摩擦体に作
用する回転モーメントが増大して上記加圧力を増加し、
延いては滑動面との間に発生する摩擦抵抗力を増大す
る。
According to this structure, when the first and second objects are displaced relative to each other, the tensile force of the elastic member acts on the line of action eccentric from the center of rotation of the friction body, so that the friction body is rotated. It is inclined and generates a pressing force against the sliding surface.
At this time, since the tensile force of the elastic member increases in proportion to the relative displacement amount of the first and second objects, the rotational moment acting on the friction body increases with this, and the pressing force increases,
As a result, the frictional resistance generated between the sliding surface and the sliding surface increases.

【0013】更に、本発明の請求項3に示す摩擦ダンパ
ーは、上記弾性部材が、上記第1,第2物体の相対変位
方向に対し角度をなして互いに交差させて配置されて、
上記摩擦体に対しその回動中心を挟んで両側に一対設け
られていることを特徴とする。
Further, in the friction damper according to a third aspect of the present invention, the elastic member is disposed so as to intersect with each other at an angle to a relative displacement direction of the first and second objects.
A pair of the friction members is provided on both sides of the rotation center thereof.

【0014】この構成によれば、第1,第2物体の相対
変位によって弾性部材に引張力変化が生ずると、摩擦体
の両側に設けた弾性部材の引張力差により該摩擦体が回
動され、滑動面に対して加圧力を発生する。このとき、
上記弾性部材は第1,第2物体の相対変位方向に対し角
度をなして互いに交差させて配置してあるため、弾性部
材の引張力差は、摩擦体の変位していく側とは反対側を
滑動面に圧接し、この加圧力は相対変位量に比例して増
大される。また、上記弾性部材を、第1,第2物体の相
対変位方向に対し角度をなして配置してあるため、相対
移動量を増幅して弾性部材に伝達することができる。
According to this configuration, when the tensile force changes in the elastic member due to the relative displacement of the first and second objects, the friction member is rotated by the difference in the tensile force of the elastic members provided on both sides of the friction member. , Generates a pressing force on the sliding surface. At this time,
Since the elastic members are arranged so as to intersect with each other at an angle to the relative displacement direction of the first and second objects, the difference in tensile force between the elastic members is opposite to the side on which the friction body is displaced. Is pressed against the sliding surface, and the pressing force is increased in proportion to the relative displacement. Further, since the elastic member is arranged at an angle with respect to the relative displacement direction of the first and second objects, the relative movement amount can be amplified and transmitted to the elastic member.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を添付図
面を参照して詳細に説明する。図1〜図5は本発明の摩
擦ダンパーの一実施形態を示し、図1は摩擦ダンパーの
正面図、図2は摩擦ダンパーの作動状態を示す正面図、
図3は摩擦ダンパーの加圧力の作用方向を示す説明図、
図4はヒステリシスを示すグラフ、図5は弾性部材の配
置状態を示す平面図である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 to 5 show an embodiment of the friction damper of the present invention, FIG. 1 is a front view of the friction damper, FIG. 2 is a front view showing an operation state of the friction damper,
FIG. 3 is an explanatory view showing the direction of action of the pressing force of the friction damper,
FIG. 4 is a graph showing hysteresis, and FIG. 5 is a plan view showing an arrangement state of the elastic members.

【0016】本発明の摩擦ダンパー10の基本的な構造
は、相対変位される第1,第2構造体12,14の一方
に設けられる滑動面16と、上記第1,第2構造体1
2,14の他方に、上記滑動面16に対向して回動自在
に設けられ、中立位置で上記滑動面16に非圧接状態に
なり、回動状態で該滑動面16に圧接する摩擦体18
と、該摩擦体18と上記第1,第2構造体12,14の
一方との間に、摩擦体18の中立位置を維持するように
取り付けられるとともに、第1,第2構造体12,14
の相対変位に伴って該摩擦体18を回動させ、その時の
滑動面16に対する加圧力を第1,第2構造体12,1
4の相対変位量に比例して増加させる弾性部材26,2
6とを備えて構成する。
The basic structure of the friction damper 10 of the present invention includes a sliding surface 16 provided on one of the first and second structures 12 and 14 which are relatively displaced, and the first and second structures 1 and 2.
A friction member 18 is provided on the other of the sliding surfaces 16 and 14 so as to be rotatable facing the sliding surface 16 so as to be in a non-pressure contact state with the sliding surface 16 in a neutral position and to be in pressure contact with the sliding surface 16 in a rotating state.
And the first and second structures 12, 14 are attached between the friction body 18 and one of the first and second structures 12, 14 so as to maintain the neutral position of the friction body 18.
The frictional body 18 is rotated in accordance with the relative displacement of the first and second structures 12 and 1 at that time.
Elastic members 26, 2 which increase in proportion to the relative displacement of
6 is provided.

【0017】即ち、本実施形態の摩擦ダンパー10は、
図1に示すように第1構造体としての床12と、第2構
造体としての免振対象物14との間に配置される。該免
振対象物14は図外の積層ゴムやばね等の弾性支承を介
して一定間隔Hを保つように床12に支持され、かつ、
該弾性支承のせん断変形を伴って床12と免振対象物1
4とは水平方向の相対変位が許容される。ここで、便宜
上図中左右方向を相対変位方向Vとする。上記床12の
免振対象物14に対向する上面12aには、滑動面とな
る滑り板16が取り付けられ、この滑り板16上に摩擦
体18が配置される。該摩擦体18はブロック体18a
と、該ブロック体18a下面の上記相対移動方向V両端
部に一体に設けられる滑り材18bとによって構成され
る。
That is, the friction damper 10 of this embodiment is
As shown in FIG. 1, it is arranged between a floor 12 as a first structure and a vibration-isolation target 14 as a second structure. The vibration isolating object 14 is supported on the floor 12 so as to maintain a constant interval H via an elastic bearing such as a laminated rubber or a spring (not shown), and
The floor 12 and the vibration-isolated object 1 with the shear deformation of the elastic bearing
4, a relative displacement in the horizontal direction is allowed. Here, for the sake of convenience, the left-right direction in the figure is a relative displacement direction V. A sliding plate 16 serving as a sliding surface is attached to an upper surface 12a of the floor 12 facing the vibration-isolation target 14, and a friction body 18 is arranged on the sliding plate 16. The friction body 18 is a block body 18a.
And a sliding member 18b integrally provided at both ends of the lower surface of the block body 18a in the relative movement direction V.

【0018】上記免振対象物14の下面には支持ブラケ
ット20が垂設され、該支持ブラケット20に上記ブロ
ック体18a上端部の上記相対変位方向Vの中央部がピ
ン22を介して回動自在に支持される。また、上記床1
2の上面12aには、上記摩擦体18を中心として上記
相対変位方向Vに所定距離を隔てて対称に支持ポール2
4,24が立設される。これら支持ポール24,24と
上記ブロック体18a下端部の上記相対移動方向Vの両
端部との間に、弾性部材としての引張りコイルばね2
6,26が水平に張架される。従って、これらコイルば
ね26,26の取り付け位置は、摩擦体18の回動中心
となる上記ピン22より下方に偏心した作用線s上とな
る。また、上記双方のコイルばね26,26は等しいば
ね定数および長さのものが用いられ、図示する中立位置
で摩擦体18に作用する引張力はそれぞれ等しくなる。
A support bracket 20 is vertically provided on the lower surface of the vibration-isolation target 14, and the center of the upper end of the block body 18a in the relative displacement direction V is rotatable via a pin 22 on the support bracket 20. Supported by In addition, the floor 1
The support pole 2 is symmetrically placed on the upper surface 12a of the support pole 2 at a predetermined distance from the friction body 18 in the relative displacement direction V.
4, 24 are erected. A tension coil spring 2 as an elastic member is provided between the support poles 24, 24 and both ends of the lower end of the block body 18a in the relative movement direction V.
6, 26 are stretched horizontally. Accordingly, the mounting positions of the coil springs 26, 26 are on the action line s which is eccentric below the pin 22, which is the center of rotation of the friction body 18. Further, the two coil springs 26 have the same spring constant and length, and the tensile force acting on the friction body 18 at the illustrated neutral position becomes equal.

【0019】このように構成された摩擦ダンパー10
は、図示する中立位置では摩擦体18の滑り材18bは
滑り板16に非圧接状態で接触し、若しくは僅かの隙間
を設けてブロック体18aが支持ブラケット20に吊り
下げられた状態にある。そして、地震等の加振力が入力
されて床12と免振対象物14とが相対変位すると、摩
擦体18は免振対象物14とともに移動し、変位方向の
コイルばね26を短縮しつつ反対側のコイルばね26を
引っ張る。すると、これら両コイルばね26,26の引
張力差により摩擦体18はピン22を中心として図中時
計回り方向に回動して傾斜し、変位方向の滑り材18b
が滑り板16に圧接され、このときの加圧力によるせん
断摩擦抵抗により減衰力が発生する。この減衰力は、上
記相対変位量の増大に伴って前後のコイルばね26,2
6の引張力差が大きくなることによって増大し、変位に
比例した減衰力が発生されることになる。
The friction damper 10 constructed as described above
In the illustrated neutral position, the sliding member 18b of the friction member 18 is in contact with the sliding plate 16 in a non-pressing state, or the block member 18a is suspended from the support bracket 20 with a slight gap. Then, when an excitation force such as an earthquake is input and the floor 12 and the vibration-isolation target 14 are relatively displaced, the friction body 18 moves together with the vibration-isolation target 14 and shortens the coil spring 26 in the direction of displacement while opposing. Side coil spring 26 is pulled. Then, due to the difference in the tensile force between the two coil springs 26, 26, the friction body 18 is rotated clockwise in FIG.
Is pressed against the slide plate 16, and a damping force is generated by shear frictional resistance due to the pressing force at this time. This damping force is generated by the front and rear coil springs 26 and 2 as the relative displacement increases.
6 is increased by increasing the tensile force difference, and a damping force proportional to the displacement is generated.

【0020】図2は上記摩擦ダンパー10の作動原理を
示す説明図で、床12と免振対象物14との間に相対変
位量δが発生したときの加圧(圧接)力ΣPの発生状況
を示す。このときの加圧力はΣP=P+ΔPとして得ら
れ、かつ、せん断摩擦抵抗力はQ=μ・ΣPとなる。
FIG. 2 is an explanatory view showing the operation principle of the friction damper 10. The state of generation of the pressing (pressure) force ΔP when the relative displacement δ occurs between the floor 12 and the vibration-isolated object 14 is shown. Is shown. The pressing force at this time is obtained as ΔP = P + ΔP, and the shear frictional resistance is Q = μ · ΔP.

【0021】(イ)Pについて コイルばね26,26は中立状態で長さL0であり、免
振対象物14側に相対変位δが生じた時、変位方向とは
反対方向のコイルばね26は伸び、変位方向のコイルば
ね26は縮んでそれぞれの引張力T1,T2に引張力差T
が生ずる。 つまり、T1=(L0+δ)・K T2=(L0−δ)・K T=T1−T2
(A) P The coil springs 26, 26 have a length L0 in a neutral state, and when a relative displacement δ occurs on the side of the vibration-isolation target 14, the coil spring 26 in the direction opposite to the direction of displacement expands. The coil spring 26 in the direction of displacement contracts, and the tensile force difference T
Occurs. That is, T1 = (L0 + δ) · KT2 = (L0−δ) · KT = T1−T2

【0022】この引張力差Tは、ピン支持された摩擦体
18を回動させる力となり、このときのモーメントの釣
合いは、モーメントM=e1・T=e3・Pであるため、
P=(e1/e3)・T=2K(e1/e3)・δとなる。
尚、e1、e2、e3は、回動中心となるピン22とコイ
ルばね26,26の作用線sとの間の垂直方向の偏心距
離、ピン22と滑り板16との間の垂直方向の偏心距
離、ピン22と加圧点までの水平方向の偏心距離であ
る。ここで、Kはコイルばね26,26のばね定数であ
る。
This tensile force difference T is a force for rotating the friction member 18 supported by the pin, and the moment balance at this time is the moment M = e 1 · T = e 3 · P.
P = (e1 / e3) · T = 2K (e1 / e3) · δ.
Here, e1, e2, and e3 are vertical eccentric distances between the pin 22, which is the center of rotation, and the action line s of the coil springs 26, 26, and vertical eccentricity between the pin 22 and the slide plate 16. The distance is the horizontal eccentric distance between the pin 22 and the pressure point. Here, K is a spring constant of the coil springs 26, 26.

【0023】(ロ)ΔPについて ΔPは図3(a),(b)に示すように、変位量δ位置
で変位Δδが更に増加する方向の場合と、減少する場合
とに発生する加圧力で、増加する場合には正の摩擦抵抗
力が発生し、減少する場合には負の摩擦抵抗力が発生す
る。
(B) About ΔP ΔP is a pressing force generated when the displacement Δδ further increases and decreases at the displacement amount δ position, as shown in FIGS. 3 (a) and 3 (b). When it increases, a positive frictional resistance is generated, and when it decreases, a negative frictional resistance is generated.

【0024】(a)に示す変位が増加する場合は、摩擦
抵抗力μPがピン22周りに時計回り方向のモーメント
Mとして作用している。勿論、ΔPは上記の加圧力に因
る摩擦抵抗力μPを越える力で変位が進行している過程
で発生され、このときの釣り合いにより加圧力ΔPが発
生する。つまり、M=e2・μP=e3・ΔPが導かれ、
故に、ΔP=(e2/e3)・μPとなる。
When the displacement shown in (a) increases, the frictional resistance μP acts as a clockwise moment M around the pin 22. Of course, ΔP is generated in the process of the displacement progressing with a force exceeding the frictional resistance μP caused by the above-mentioned pressing force, and the pressing force ΔP is generated by the balance at this time. That is, M = e2μP = e3ΔP is derived,
Therefore, ΔP = (e2 / e3) · μP.

【0025】(b)に示す変位が減少する場合は、摩擦
抵抗力μPが逆向きとなり、この摩擦抵抗力がピン22
周りに反時計回り方向のモーメントMが発生して、負の
加圧力ΔPが発生することになる。つまり、M=e2・
(−μP)=e3・ΔPが導かれ、故に、ΔP=−(e2
/e3)・μPとなる。
When the displacement shown in (b) decreases, the frictional resistance μP is reversed, and this frictional resistance is
A counterclockwise moment M is generated around the circumference, and a negative pressure ΔP is generated. That is, M = e2
(−μP) = e3 · ΔP, and therefore ΔP = − (e2
/ E3) · μP.

【0026】次に、変位量δとせん断摩擦抵抗力Qとの
関係を示すと、摩擦体18が滑り板16に及ぼす全体の
加圧力はΣP=P±ΔPとなり、また、摩擦抵抗力Qは
摩擦係数μと加圧力ΣPとの積として得られる。 つまり、Q=μ・(P±ΔP) =μ・{1±(e2/e3)・μ}・(e1/e3)・K・2δとなる 。
Next, the relationship between the displacement δ and the shear frictional resistance Q will be described. The total pressure applied by the friction body 18 to the sliding plate 16 is ΔP = P ± ΔP, and the frictional resistance Q is It is obtained as the product of the friction coefficient μ and the pressure ΔP. That is, Q = μ · (P ± ΔP) = μ · {1 ± (e2 / e3) · μ} · (e1 / e3) · K · 2δ.

【0027】上式で導かれたQ−δのヒステリシスを図
4に示す。図中、点線の履歴がばねの引張力差(T1−
T2)に因る抵抗力で、実線が変動加圧±ΔPを考慮し
た履歴特性である。即ち、この復元力特性は、変位増加
時の第1象限で摩擦抵抗が大きく、変位減少時の第4象
限で摩擦抵抗が小さくなり、また、第3象限の逆方向へ
の変位増加時に摩擦抵抗が大きく、変位減少時の第2象
限で摩擦抵抗が小さくなる。
FIG. 4 shows the hysteresis of Q-δ derived from the above equation. In the figure, the dotted line indicates the difference in spring tension (T1−
T2) is the resistance force, and the solid line is the hysteresis characteristic in consideration of the fluctuation pressurization ± ΔP. That is, the restoring force characteristic shows that the frictional resistance is large in the first quadrant when the displacement increases, the frictional resistance decreases in the fourth quadrant when the displacement decreases, and the frictional resistance increases when the displacement increases in the opposite direction of the third quadrant. And the frictional resistance decreases in the second quadrant when the displacement decreases.

【0028】従って、本実施形態の摩擦ダンパー10で
は、床12と免振対象物14とが相対変位された際に、
この相対変位量が増大されるに従って摩擦抵抗力が増大
して大きな減衰力を得ることができ、応答加速度と応答
変位の両方を効果的に低減できる。また、相対変位を生
じさせる入力外力が消失したときには摩擦体18はコイ
ルばね26,26のばね力によって中立位置に復帰され
るが、この復帰過程から中立位置に達する間では摩擦抵
抗力は順次小さくなって変位が残留することはなく、免
振対象物14を元の中立状態に自動的にかつ確実に復帰
させることができる。
Therefore, in the friction damper 10 of the present embodiment, when the floor 12 and the vibration isolating object 14 are relatively displaced,
As the relative displacement increases, the frictional resistance increases and a large damping force can be obtained, and both the response acceleration and the response displacement can be effectively reduced. Further, when the input external force causing the relative displacement disappears, the friction body 18 is returned to the neutral position by the spring force of the coil springs 26, 26, and the frictional resistance gradually decreases during the period from the return process to the neutral position. As a result, the displacement does not remain, and the vibration-isolation target object 14 can be automatically and reliably returned to the original neutral state.

【0029】従って、このように乾式である摩擦ダンパ
ー10によって変位比例型の減衰ダンパーを構成するこ
とができる。この摩擦ダンパー10を、例えば展示物を
載置する免振台に用いた場合には、メンテナンスフリー
で展示物を汚損するおそれのない免振性能に優れた陳列
台を得ることができる。
Therefore, a displacement proportional damping damper can be constituted by the friction damper 10 of the dry type. When this friction damper 10 is used, for example, as a vibration isolation table on which an exhibit is placed, it is possible to obtain a display table that is maintenance-free and has excellent vibration isolation performance without the possibility of soiling the exhibit.

【0030】また、本実施形態では上記滑り板16を床
12の上面に設けたので、摩擦体18は該滑り板16に
沿ってあらゆる方向の相対変位が許容されるため、図5
に示すようにコイルばね26を放射状に配置しておくこ
とにより、床12と免振対象物14とのあらゆる方向の
水平変位に対応させることができる。
In the present embodiment, since the sliding plate 16 is provided on the upper surface of the floor 12, the relative displacement of the friction body 18 in all directions along the sliding plate 16 is allowed.
By radially arranging the coil springs 26 as shown in (1), horizontal displacement between the floor 12 and the vibration-isolation target 14 in all directions can be accommodated.

【0031】図6,図7は他の実施形態を示し、上記実
施形態と同一構成部分に同一符号を付して重複する説明
を省略して述べる。図6は摩擦ダンパーの正面図、図7
はヒステリシスを示すグラフである。
FIGS. 6 and 7 show another embodiment, in which the same components as those in the above-described embodiment are denoted by the same reference numerals, and a duplicate description will be omitted. FIG. 6 is a front view of the friction damper, and FIG.
Is a graph showing hysteresis.

【0032】即ち、この実施形態の摩擦ダンパー10a
は、摩擦体18の下端部をピン22を介して回動自在に
支持するとともに、コイルばね26を該ピン22位置よ
り上方位置に取り付けてある。この場合、該コイルばね
26は支持ポール24を高くすることにより水平配置さ
れるとともに、摩擦体18の回動中心から上方に偏心し
た作用線s上に配置される。
That is, the friction damper 10a of this embodiment
Has a lower end portion of the friction body 18 rotatably supported via a pin 22 and a coil spring 26 mounted at a position above the pin 22 position. In this case, the coil spring 26 is horizontally arranged by raising the support pole 24, and is arranged on the action line s which is eccentric upward from the rotation center of the friction body 18.

【0033】従って、この実施形態の摩擦ダンパー10
aは床12と免振対象物14とが相対移動した際に、コ
イルばね26,26の引張力差の作用方向が上記実施形
態とは逆となり、摩擦体18の進行方向に対して後方側
の滑り材18bが滑り板16に圧接されることになる。
従って、変位が増加する場合に加圧力ΔPは負の値とな
り、変位が減少する場合に加圧力ΔPは正の値をとるこ
とになる。
Therefore, the friction damper 10 of this embodiment
In a, when the floor 12 and the vibration isolating object 14 move relative to each other, the acting direction of the difference in the tensile force between the coil springs 26, 26 is opposite to that in the above-described embodiment, and is a rear side with respect to the traveling direction of the friction body 18. Is pressed against the sliding plate 16.
Therefore, when the displacement increases, the pressure ΔP takes a negative value, and when the displacement decreases, the pressure ΔP takes a positive value.

【0034】このため、上記実施形態の摩擦ダンパー1
0と同様の機能を発揮することができるのであるが、こ
のときのヒステリシスは図7に示すようになり、変位増
加時に摩擦抵抗が小さく、変位減少時に摩擦抵抗が大き
くなる。
For this reason, the friction damper 1 of the above embodiment is
The same function as 0 can be exerted, but the hysteresis at this time is as shown in FIG. 7, and the frictional resistance is small when the displacement increases and the frictional resistance increases when the displacement decreases.

【0035】このことは特に、当該構成の変位比例型の
摩擦ダンパー10aにあっては、変位が増加する時の減
衰剛性が小さいので、別途免振作用を得るべく設けられ
る免振ばねの剛性に寄与せず、その長周期を保つことが
できる。そして、当該摩擦ダンパー10aの減衰力は変
位が減少する時に大きく作用する。従って、長周期性を
保ちながら十分な減衰性能を得ることができる。
In particular, in the displacement proportional type friction damper 10a of this configuration, since the damping rigidity when the displacement increases is small, the rigidity of the vibration isolating spring separately provided to obtain the vibration isolating effect is reduced. It does not contribute and can keep its long period. The damping force of the friction damper 10a acts greatly when the displacement decreases. Therefore, sufficient damping performance can be obtained while maintaining a long period.

【0036】ところで、上記図1および図6の実施形態
に示した摩擦ダンパー10,10aは、滑り板16を床
12側に設けた場合を開示したが、これに限ることなく
免振対象物14側に設けることもできる。勿論、この場
合は摩擦体18は床12側に支持され、コイルばね26
は免振対象物14側に支持されることになる。
The friction dampers 10 and 10a shown in the embodiments of FIGS. 1 and 6 disclose the case where the sliding plate 16 is provided on the floor 12 side. However, the present invention is not limited to this. It can also be provided on the side. Of course, in this case, the friction body 18 is supported on the floor 12 side, and the coil spring 26
Is supported by the vibration-isolation target object 14 side.

【0037】図8,図9は他の実施形態を示し、上記実
施形態と同一構成部分に同一符号を付して重複する説明
を省略して述べる。図8は摩擦ダンパーの要部を示す底
面図、図9は正面図である。
FIGS. 8 and 9 show another embodiment, in which the same components as those in the above embodiment are denoted by the same reference numerals and will not be described repeatedly. FIG. 8 is a bottom view showing a main part of the friction damper, and FIG. 9 is a front view.

【0038】即ち、この実施形態の摩擦ダンパー10b
はリニアベアリング支承の免振構造に適用されたもの
で、図8,図9に示すように免振対象物14の下面にレ
ール30が取り付けられ、該レール30の両側面が1対
の滑動面32,32となっている。そして、これら1対
の滑動面32,32に対向してそれぞれ摩擦体34,3
4が配置される。
That is, the friction damper 10b of this embodiment
Is applied to a vibration isolating structure of a linear bearing, and as shown in FIGS. 8 and 9, a rail 30 is attached to the lower surface of the vibration isolating object 14, and both side surfaces of the rail 30 are a pair of sliding surfaces. 32, 32. The friction bodies 34, 3 are opposed to the pair of sliding surfaces 32, 32, respectively.
4 are arranged.

【0039】各摩擦体34,34は矩形板状に形成され
て水平配置され、それぞれの中央部が床12上面に固定
された支持台36にピン38を介して回動自在に支持さ
れる。そして、レール30の相対変位方向Vに沿う各摩
擦体34,34の両端部と、免振対象物14の下面との
間に弾性部材としての1対のコイルばね40,40がそ
れぞれ取り付けられるが、これら1対のコイルばね4
0,40は互いに交差されて、レール30の相対変位方
向Vに対し角度をなして配置される。
Each of the friction members 34, 34 is formed in a rectangular plate shape and arranged horizontally, and the center of each friction member 34 is rotatably supported via a pin 38 on a support base 36 fixed to the upper surface of the floor 12. Then, a pair of coil springs 40, 40 as elastic members are respectively mounted between both ends of the friction bodies 34, 34 along the relative displacement direction V of the rail 30 and the lower surface of the vibration-isolation target 14. , The pair of coil springs 4
0 and 40 cross each other and are arranged at an angle to the relative displacement direction V of the rail 30.

【0040】従って、この実施形態の摩擦ダンパー10
bの作動原理を上記図8,図9を用いて説明すると、床
12と免振対象物14とが相対変位される時には、各コ
イルばね40,40は回転角θ1,θ2なる変化を伴いつ
つ、それぞれの引張力T1,T2が変化される。
Therefore, the friction damper 10 of this embodiment
The operating principle of b will be described with reference to FIGS. 8 and 9 described above. When the floor 12 and the vibration-isolation target 14 are relatively displaced, each of the coil springs 40, 40 is changed with the rotation angles θ1, θ2. , The respective tensile forces T1, T2 are changed.

【0041】このとき、T1,T2のX,Y方向の分力は T1x=T1・cosθ1, T1y=T1・sinθ1 T2x=T2・cosθ2, T2y=T2・sinθ2と
なる。 これらの分力T1x,T1yおよびT2x,T2yの差は、
ピン38周りに回転モーメントMを与えて、摩擦体34
の端部に加圧力Pを発生する。このとき、P=M/e3
={e1(T1x+T2x)+e4(T1y+T2y)}/e
3となる。
At this time, the component forces of T1 and T2 in the X and Y directions are T1x = T1 · cos θ1, T1y = T1 · sin θ1 T2x = T2 · cos θ2, and T2y = T2 · sin θ2. The difference between these component forces T1x, T1y and T2x, T2y is
By giving a rotational moment M around the pin 38, the friction body 34
A pressure P is generated at the end of. At this time, P = M / e3
= {E1 (T1x + T2x) + e4 (T1y + T2y)} / e
It becomes 3.

【0042】この加圧力Pによりせん断摩擦抵抗力Q=
μPが発生し、このせん断摩擦抵抗力Qについては、変
位増加中と変位減少中とで、ピン38周りに発生するモ
ーメントΔM=e3・μ・Pの向きが異なることにな
る。従って、このときの加圧力の増減分ΔPは、ΔP=
±ΔM/e3=±e2・μ・P/e3となる。よって、実
際に発生されるせん断摩擦抵抗力Qは、Q=μ・(P±
ΔP)となる。
By this pressure P, the shear frictional resistance Q =
μP is generated, and regarding the shear frictional resistance Q, the direction of the moment ΔM = e3 · μ · P generated around the pin 38 differs between when the displacement is increasing and when the displacement is decreasing. Therefore, the increase / decrease ΔP of the pressing force at this time is ΔP =
± ΔM / e3 = ± e2μP / e3. Therefore, the shear frictional resistance Q actually generated is Q = μ · (P ±
ΔP).

【0043】ここで、ΔPの+値は変位が増加される場
合で、−値は変位が減少される場合である。また、μは
摩擦係数、e1,e2,e3,e4は図8中に示した各偏心
距離である。e1は、摩擦体34の非回動時は0であ
る。
Here, a positive value of ΔP is when the displacement is increased, and a negative value is when the displacement is decreased. Further, μ is a coefficient of friction, and e1, e2, e3, and e4 are eccentric distances shown in FIG. e1 is 0 when the friction body 34 is not rotating.

【0044】従って、この実施形態にあっても変位比例
型の摩擦ダンパー10bを構成することができ、上記実
施形態と同様の機能を備えるのは勿論のこと、上記滑動
面32,32はレール30の両側面に設け、かつ、これ
ら1対の滑動面32,32にそれぞれ摩擦体34を配置
したので、各摩擦体34はレール30を挟んで両側から
滑動面32,32に加圧力Pを作用させるため、これら
両側の加圧力Pは相殺されてレール30が偏るのを防止
することができる。また、摩擦体34の回動方向が床1
2と免振対象物14の対向方向に対して直角、つまり本
実施形態では水平方向となるため、これら床12と免振
対象物14との間のスペースを狭くすることができる。
Therefore, in this embodiment, the displacement proportional type friction damper 10b can be constructed, and the sliding surfaces 32, 32 have the same functions as those of the above-described embodiment. And the friction members 34 are disposed on the pair of sliding surfaces 32, 32, respectively, so that each friction member 34 applies a pressing force P to the sliding surfaces 32, 32 from both sides with the rail 30 interposed therebetween. For this reason, the pressing forces P on both sides are offset, and the rail 30 can be prevented from being biased. Also, the rotation direction of the friction body 34 is the floor 1
Since it is at right angles to the direction in which the object 2 and the vibration-isolation target 14 are opposed to each other, that is, in the present embodiment, the space is between the floor 12 and the vibration-isolation target 14.

【0045】ところで、この実施形態では各摩擦体34
に設けられる1対のコイルばね40,40を交差させた
場合を開示したが、これらコイルばね40,40を交差
させない場合にあっても、変位に対する摩擦体34の回
動方向が逆になるけれども、同様に変位に比例した摩擦
抵抗力を発生させることができる。また、レール30は
免振対象物14側に設けることなく床12側に設けるこ
ともでき、この場合は摩擦体34を免振対象物14側に
支持し、コイルばね40を床12側に支持することにな
る。
By the way, in this embodiment, each friction body 34
Although the case in which the pair of coil springs 40, 40 provided in the above are crossed is disclosed, even when the coil springs 40, 40 are not crossed, the rotation direction of the friction body 34 with respect to the displacement is reversed. Similarly, a frictional resistance force proportional to the displacement can be generated. Further, the rail 30 may be provided on the floor 12 side without being provided on the vibration isolation target 14 side. In this case, the friction body 34 is supported on the vibration isolation target 14 side, and the coil spring 40 is supported on the floor 12 side. Will do.

【0046】[0046]

【発明の効果】以上説明したように本発明の請求項1に
示す摩擦ダンパーにあっては、第1,第2物体が相対変
位すると、弾性部材によって摩擦体は回動されて滑動面
に圧接し、このときの加圧力は第1,第2物体の相対変
位量に比例して増加されるため、加速度応答と変位応答
との両方を満足する変位比例型の摩擦ダンパーを構成す
ることができる。また、相対変位を生じさせる入力外力
が消失したときには摩擦体は弾性部材によって中立位置
に復帰されるが、この復帰過程から中立位置に達する間
では摩擦抵抗力が順次小さくなって変位が残留すること
を防止でき、確実に元の位置に復元させることができ
る。従って、このように乾式である摩擦ダンパーによっ
て変位比例型の減衰力を得ることができる。
As described above, in the friction damper according to the first aspect of the present invention, when the first and second objects are relatively displaced, the friction member is rotated by the elastic member and pressed against the sliding surface. However, since the pressing force at this time is increased in proportion to the relative displacement of the first and second objects, a displacement proportional friction damper that satisfies both the acceleration response and the displacement response can be configured. . When the input external force causing the relative displacement disappears, the friction body is returned to the neutral position by the elastic member, but during the time from the return process to the neutral position, the frictional resistance gradually decreases and the displacement remains. Can be prevented, and the original position can be reliably restored. Accordingly, a displacement proportional damping force can be obtained by the dry friction damper.

【0047】また、本発明の請求項2に示す摩擦ダンパ
ーは、第1,第2物体が相対変位すると、弾性部材によ
る引張力が摩擦体の回動中心から偏心した作用線上に作
用するため、該摩擦体が回動されて傾斜され、滑動面に
対して加圧力を発生させることができるとともに、第
1,第2物体の相対変位量に比例して弾性部材の引張力
が増大するため、これに伴って摩擦体に作用する回転モ
ーメントが増大して上記加圧力を増加し、延いては滑動
面との間に発生する摩擦抵抗力を増大させることができ
る。
Further, in the friction damper according to the second aspect of the present invention, when the first and second objects are relatively displaced, the tensile force of the elastic member acts on the action line eccentric from the rotation center of the friction body. The friction body is rotated and inclined to generate a pressing force on the sliding surface, and the tensile force of the elastic member increases in proportion to the relative displacement of the first and second objects. Along with this, the rotational moment acting on the frictional body increases, so that the above-mentioned pressing force increases, so that the frictional resistance generated between the frictional body and the sliding surface can be increased.

【0048】更に、本発明の請求項3に示す摩擦ダンパ
ーは、第1,第2物体の相対変位によって弾性部材に引
張力変化が生ずると、摩擦体の両側に設けた弾性部材の
引張力差により該摩擦体が回動され、滑動面に対して加
圧力を発生することとなり、この際、上記弾性部材を、
第1,第2物体の相対変位方向に対し角度をなして互い
に交差させて配置してあるため、弾性部材の引張力差
は、摩擦体の変位していく側とは反対側を滑動面に圧接
し、この加圧力を相対変位量に比例して増大させること
ができる。また、上記弾性部材を、第1,第2物体の相
対変位方向に対し角度をなして配置してあるため、相対
移動量を増幅して弾性部材に伝達することができる。
Further, in the friction damper according to the third aspect of the present invention, when the tensile force changes in the elastic member due to the relative displacement of the first and second objects, the difference in the tensile force between the elastic members provided on both sides of the friction body. As a result, the friction member is rotated to generate a pressing force on the sliding surface. At this time, the elastic member is
Since the first and second objects are arranged so as to intersect with each other at an angle with respect to the relative displacement direction, the difference in the tensile force of the elastic member is set on the sliding surface on the side opposite to the side on which the friction body is displaced. By pressing, the pressure can be increased in proportion to the relative displacement. Further, since the elastic member is arranged at an angle with respect to the relative displacement direction of the first and second objects, the relative movement amount can be amplified and transmitted to the elastic member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す摩擦ダンパーの正面
図である。
FIG. 1 is a front view of a friction damper showing one embodiment of the present invention.

【図2】本発明の一実施形態を示す摩擦ダンパーの作動
状態の正面図である。
FIG. 2 is a front view of an operation state of the friction damper according to the embodiment of the present invention.

【図3】本発明の一実施形態を示す摩擦ダンパーの加圧
力の作用方向の説明図である。
FIG. 3 is an explanatory diagram of an action direction of a pressing force of a friction damper according to the embodiment of the present invention.

【図4】本発明の一実施形態を示す摩擦ダンパーのヒス
テリシスのグラフである。
FIG. 4 is a graph of a hysteresis of a friction damper showing one embodiment of the present invention.

【図5】本発明の一実施形態を示す摩擦ダンパーの弾性
部材の配置状態の平面図である。
FIG. 5 is a plan view of an arrangement of an elastic member of the friction damper according to the embodiment of the present invention.

【図6】本発明の他の実施形態を示す摩擦ダンパーの正
面図である。
FIG. 6 is a front view of a friction damper showing another embodiment of the present invention.

【図7】本発明の他の実施形態を示す摩擦ダンパーのヒ
ステリシスのグラフである。
FIG. 7 is a graph of a hysteresis of a friction damper according to another embodiment of the present invention.

【図8】本発明の他の実施形態を示す摩擦ダンパーの要
部の底面図である。
FIG. 8 is a bottom view of a main part of a friction damper showing another embodiment of the present invention.

【図9】本発明の他の実施形態を示す摩擦ダンパーの正
面図である。
FIG. 9 is a front view of a friction damper showing another embodiment of the present invention.

【図10】従来の摩擦ダンパーの正面図である。FIG. 10 is a front view of a conventional friction damper.

【図11】従来の摩擦ダンパーの復元力特性図である。FIG. 11 is a restoring force characteristic diagram of a conventional friction damper.

【図12】図11中のA部を取り出して示す復元力特性
図である。
12 is a restoring force characteristic diagram showing a portion A in FIG. 11 taken out.

【図13】従来の摩擦ダンパーの弾性ばねと摩擦ダンパ
ー免振構造の応答性状を示す特性図である。
FIG. 13 is a characteristic diagram showing response characteristics of an elastic spring and a friction damper vibration isolating structure of a conventional friction damper.

【図14】従来の鋼材ダンパーの復元力特性図である。FIG. 14 is a restoring force characteristic diagram of a conventional steel damper.

【符号の説明】[Explanation of symbols]

10,10a,10b 摩擦ダンパー 12 床(第1構造体) 14 免振対象物(第2構造体) 16 滑り板(滑動面) 18,34 摩擦体 22,38 ピン(回動中心) 26,40 コイルばね(弾性部材) 30 レール 32 滑動面 10, 10a, 10b Friction damper 12 Floor (first structure) 14 Object to be isolated (second structure) 16 Sliding plate (sliding surface) 18, 34 Friction body 22, 38 Pin (rotation center) 26, 40 Coil spring (elastic member) 30 Rail 32 Sliding surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 相対変位される第1,第2物体の一方に
設けられる滑動面と、 上記第1,第2物体の他方に、上記滑動面に対向して回
動自在に設けられ、中立位置で該滑動面に非圧接状態に
なり、回動状態で該滑動面に圧接する摩擦体と、 該摩擦体と上記第1,第2物体の一方との間に設けら
れ、該摩擦体の中立位置を維持するとともに、該第1,
第2物体の相対変位に伴って該摩擦体を回動させて、上
記滑動面に対する加圧力を該第1,第2物体の相対変位
量に比例して増加させる弾性部材とを備えたことを特徴
とする摩擦ダンパー。
A sliding surface provided on one of the first and second objects which are relatively displaced; and a neutral surface provided on the other of the first and second objects so as to be rotatable in opposition to the sliding surface. A friction member that is not pressed against the sliding surface at the position and is pressed against the sliding surface in a rotating state; and a friction member provided between the friction member and one of the first and second objects. While maintaining the neutral position,
An elastic member for rotating the friction body in accordance with the relative displacement of the second object to increase a pressing force on the sliding surface in proportion to the relative displacement amount of the first and second objects. Characteristic friction damper.
【請求項2】 上記弾性部材が、上記第1,第2物体の
相対変位方向であって上記摩擦体の回動中心から偏心し
た作用線上に、該回動中心を挟んで両側に一対設けられ
ていることを特徴とする請求項1に記載の摩擦ダンパ
ー。
2. A pair of elastic members are provided on both sides of the center of rotation on an action line in the direction of relative displacement of the first and second objects and eccentric from the center of rotation of the friction body. The friction damper according to claim 1, wherein
【請求項3】 上記弾性部材が、上記第1,第2物体の
相対変位方向に対し角度をなして互いに交差させて配置
されて、上記摩擦体に対しその回動中心を挟んで両側に
一対設けられていることを特徴とする請求項1に記載の
摩擦ダンパー。
3. The elastic member is disposed so as to intersect with each other at an angle to the relative displacement direction of the first and second objects, and a pair of elastic members are provided on both sides of the rotational body with respect to the friction body. The friction damper according to claim 1, wherein the friction damper is provided.
JP22257599A 1999-08-05 1999-08-05 Friction damper Expired - Fee Related JP3707307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22257599A JP3707307B2 (en) 1999-08-05 1999-08-05 Friction damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22257599A JP3707307B2 (en) 1999-08-05 1999-08-05 Friction damper

Publications (2)

Publication Number Publication Date
JP2001050336A true JP2001050336A (en) 2001-02-23
JP3707307B2 JP3707307B2 (en) 2005-10-19

Family

ID=16784626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22257599A Expired - Fee Related JP3707307B2 (en) 1999-08-05 1999-08-05 Friction damper

Country Status (1)

Country Link
JP (1) JP3707307B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047514A (en) * 2009-07-30 2011-03-10 Meiji Univ Damping device and damping method
JP2016008375A (en) * 2014-06-20 2016-01-18 清水建設株式会社 Slide base isolation mechanism
CN114135629A (en) * 2021-12-06 2022-03-04 西南科技大学 Damping-adjustable semi-active control three-way vibration isolation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047514A (en) * 2009-07-30 2011-03-10 Meiji Univ Damping device and damping method
JP2016008375A (en) * 2014-06-20 2016-01-18 清水建設株式会社 Slide base isolation mechanism
CN114135629A (en) * 2021-12-06 2022-03-04 西南科技大学 Damping-adjustable semi-active control three-way vibration isolation device
CN114135629B (en) * 2021-12-06 2023-04-11 西南科技大学 Damping-adjustable semi-active control three-way vibration isolation device

Also Published As

Publication number Publication date
JP3707307B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
US5487534A (en) Laminated rubber vibration control device for structures
JP4852552B2 (en) Negative rigid device and seismic isolation structure provided with the negative rigid device
US8132773B1 (en) Passive thermal control of negative-stiffness vibration isolators
US10125843B2 (en) Horizontal-motion vibration isolator
JP2000055117A (en) Base isolation device
JP2005061211A (en) Seismic isolator
JPH0658009A (en) Vibration damping device
JP3696708B2 (en) Damping mechanism and damping device using the same
JP5413681B2 (en) 3D seismic isolation system
JP3707307B2 (en) Friction damper
JP5053998B2 (en) Negative rigid device and seismic isolation structure provided with the negative rigid device
JP4822132B2 (en) Vertical seismic isolation mechanism
JPH02107843A (en) Three dimentional oscillation isolating device
US20080029681A1 (en) Base Isolation Structure
JP4989488B2 (en) Negative rigid device and seismic isolation structure provided with the negative rigid device
JP2015105554A (en) Base-isolation structure
JP2001288928A (en) Complex base-isolating mechanism
JP6178111B2 (en) Friction damper
JP2005249210A (en) Damping apparatus
JPH11190148A (en) Vibration control structure for building frame
JP2004060404A (en) Base-isolation device and base-isolation structure
JPH10176436A (en) Damping mechanism, construction of vibration isolation making use thereof and damper
JP2000161432A (en) Restoring mechanism in base isolation device
JPH0720284Y2 (en) Seismic isolation device
JP2022069921A (en) Damper structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees