JP2001049396A - Oxide dispersion strengthened steel - Google Patents

Oxide dispersion strengthened steel

Info

Publication number
JP2001049396A
JP2001049396A JP11221029A JP22102999A JP2001049396A JP 2001049396 A JP2001049396 A JP 2001049396A JP 11221029 A JP11221029 A JP 11221029A JP 22102999 A JP22102999 A JP 22102999A JP 2001049396 A JP2001049396 A JP 2001049396A
Authority
JP
Japan
Prior art keywords
steel
weight
powder
oxide dispersion
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11221029A
Other languages
Japanese (ja)
Other versions
JP3359007B2 (en
Inventor
Masayuki Kondo
雅之 近藤
Nozomi Kawasetsu
川節  望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22102999A priority Critical patent/JP3359007B2/en
Publication of JP2001049396A publication Critical patent/JP2001049396A/en
Application granted granted Critical
Publication of JP3359007B2 publication Critical patent/JP3359007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oxide dispersion strengthened steel capable of recrystallizing at <=1300 deg.C even in the case where steel powder of >0.15 wt.% oxygen content, such as low-cost SUS410L steel powder prepared by water atomization, is used and having excellent creep characteristics even under multi-axial stress. SOLUTION: The steel is an alloy steel having a composition consisting of, by weight, 8 to 18% Cr, 0.1 to 1.5% of (1/2.W+Mo) (where Mo and W are 0.1 to 1.5% and 0-2.8% W respectively), 1.5 to 2.5% Ti, 0.12 to 0.32% Y, 0.18 to 0.40% O, and the balance Fe with inevitable impurities and also having a structure in which 0.43 to 1.0 wt.% oxides are dispersed in a parent phase and recrystallized structure is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多軸応力下でも優
れたクリープ強度を有する酸化物分散強化鋼に関する。
TECHNICAL FIELD The present invention relates to an oxide dispersion strengthened steel having excellent creep strength even under multiaxial stress.

【0002】[0002]

【従来の技術】従来より、高温強度が優れた酸化物分散
強化鋼を製造する方法として、メカニカルアロイングを
使用した方法が知られている。この方法においてはF
e、Cr等を含んだ鋼の原料粉末とThO2 、Y2 3
等の酸化物粉末もしくは酸化してThO2 、Y2 3
の酸化物を形成する金属の粉末と、場合によってはTi
粉末を混合したものをアトライタや振動ミルなどの高エ
ネルギーボールミルにかけて大きな塑性変形、粉砕、混
合、再結合といった加工を加える。この工程をメカニカ
ルアロイングと称している。メカニカルアロイングを施
した粉(以下、メカニカルアロイング粉と称する)は、
軟鋼のカプセルに真空封入し、熱間静水圧成形(以下、
HIPと称する)や熱間押出しといった公知の熱間成形
技術によりバルク体とする。酸化物はこの一連の工程に
おいて、鋼内に微細かつ均一に分散する。
2. Description of the Related Art Conventionally, a method using mechanical alloying has been known as a method for producing an oxide dispersion strengthened steel having excellent high-temperature strength. In this method, F
Raw material powder of steel containing e, Cr, etc. and ThO 2 , Y 2 O 3
Powder or a metal powder that oxidizes to form an oxide such as ThO 2 , Y 2 O 3, and in some cases, Ti
The mixture of the powders is passed through a high-energy ball mill such as an attritor or a vibration mill to apply processing such as large plastic deformation, pulverization, mixing and recombination. This process is called mechanical alloying. The powder subjected to mechanical alloying (hereinafter referred to as mechanical alloying powder)
Vacuum sealed in mild steel capsules and hot isostatic pressing
It is formed into a bulk body by a known hot forming technique such as HIP) or hot extrusion. The oxides are finely and uniformly dispersed in the steel in this series of steps.

【0003】メカニカルアロイングを経て作製される酸
化物分散強化鋼は、優れた単軸のクリープ強度を示す。
しかし、高温のプラント内で使用する場合は多軸応力環
境で使用することを考慮せねばならいことが多いが、従
来の酸化物分散強化鋼の多軸応力環境下でのクリープ強
度は単軸のクリープ強度と比較して弱く、短時間で破断
してしまうという問題がある。具体的には、通常のクリ
ープ破断試験に対して、平行部の丸棒の箇所にV形やU
形の切欠き円周溝を加え、切欠き底の円形の断面に一定
の荷重を加え破断時間を調べる切欠きクリープ破断試験
では、多軸応力環境が実現でき、この切欠きクリープ破
断試験では従来の酸化物分散強化鋼は短時間で破断す
る。このような多軸応力下での破断を防止するため、酸
化物分散強化鋼の再結晶化が検討されている。再結晶化
の温度は母相合金鋼の成分組成等によって変化するが、
高温で再結晶化すると微細に分散した酸化物の粗大化が
生じてクリープ特性が劣化するので、できるだけ低温で
再結晶化するのが望ましい。
[0003] Oxide dispersion strengthened steel produced through mechanical alloying exhibits excellent uniaxial creep strength.
However, when used in a high-temperature plant, it is often necessary to consider use in a multiaxial stress environment.However, the creep strength of a conventional oxide dispersion strengthened steel in a multiaxial stress environment is uniaxial. There is a problem that it is weaker than the creep strength and breaks in a short time. Specifically, in the normal creep rupture test, V-shaped or U-shaped
The notch creep rupture test, in which a constant load is applied to the circular cross section at the bottom of the notch to check the rupture time, can realize a multiaxial stress environment. Oxide-strengthened steel breaks in a short time. In order to prevent the fracture under such multiaxial stress, recrystallization of the oxide dispersion strengthened steel has been studied. The recrystallization temperature changes depending on the composition of the matrix alloy steel, etc.
Since recrystallization at a high temperature causes coarsening of finely dispersed oxides and deteriorates creep characteristics, it is desirable to recrystallize at a temperature as low as possible.

【0004】特開平8−225891号公報には、酸化
物分散強化鋼を1300℃以下で再結晶化させることに
より、多軸応力下に相当する内圧クリープを改善せしめ
た酸化物分散強化鋼及びその製造方法が提案されてい
る。前記公開公報によると、重量%で、Cr:7〜18
%、(1/2W+Mo):0.1〜3%、Ti:0.1
0〜1.0%、残部Fe及び不可避不純物からなるFe
−Crを主体とするフェライト系金属母相内にイットリ
ア(Y2 3 )を分散させた酸化物分散強化型フェライ
ト鋼において、イットリアと過剰酸素量( Excess O)
が、0.10重量%<Y2 3 ≦0.30重量%、0.
03重量%≦Excess O≦0.15重量%、 Excess O
≦0.25−0.5×Y2 3 重量%の範囲にあること
が、1300℃以下で再結晶組織を付与せしめるのに必
要であることが示されている。ここで、過剰酸素量とは
酸化物分散強化鋼中の全酸素量(Total O)からY2
3 としてイットリウム(Y)と結合している酸素(O i
n Y2 3 )を計算上除いた酸素量(〔 Excess O〕=
〔Total O〕−〔O inY2 3 〕)である。過剰酸素
量は、酸化物以外の原料中に含まれる酸素やプロセス過
程で混入した酸素を反映したものと判断される。実際
に、例えばCrを12重量%含むSUS410L鋼の粉
の中には酸素が含まれる。特に、大量生産に適し低コス
トの水アトマイズ法によるSUS410L鋼の粉には、
酸素が約0.2重量%含まれており、酸素を0.15重
量%以下にすることは非常に困難である。一方、高コス
トのガスアトマイズ法によるSUS410L鋼の粉は、
酸素含有量が少なく容易に0.1重量%以下にすること
ができる。
Japanese Patent Application Laid-Open No. Hei 8-225891 discloses an oxide dispersion-strengthened steel in which the internal pressure creep corresponding to a multiaxial stress is improved by recrystallizing the oxide dispersion-strengthened steel at a temperature of 1300 ° C. or less, and a method thereof. Manufacturing methods have been proposed. According to the publication, Cr: 7 to 18 by weight%.
%, (1 / 2W + Mo): 0.1-3%, Ti: 0.1
0 to 1.0%, the balance being Fe and inevitable impurities
Yttria ferritic metal matrix in which mainly the -Cr in (Y 2 O 3) oxide dispersion strengthened ferritic steel obtained by dispersing, yttria and excess oxygen content (Excess O)
But 0.10% by weight <Y 2 O 3 ≦ 0.30% by weight;
03% by weight ≦ Excess O ≦ 0.15% by weight, Excess O
It is shown that the range of ≦ 0.25-0.5 × 3 % by weight of Y 2 O is necessary to impart a recrystallized structure at 1300 ° C. or less. Here, the excess oxygen amount means the total oxygen amount (Total O) in the oxide dispersion strengthened steel from Y 2 O
Oxygen (O i) bonded to yttrium (Y) as 3
n Y 2 O 3 ) ([Excess O] =
[Total O]-[O in Y 2 O 3 ]). The excess oxygen amount is determined to reflect oxygen contained in raw materials other than oxides and oxygen mixed in during the process. In practice, for example, SUS410L steel powder containing 12% by weight of Cr contains oxygen. In particular, powder of SUS410L steel, which is suitable for mass production and produced by the low-cost water atomization method,
Oxygen is contained in about 0.2% by weight, and it is very difficult to reduce oxygen to 0.15% by weight or less. On the other hand, powder of SUS410L steel by the high-cost gas atomizing method
The oxygen content is low and can be easily reduced to 0.1% by weight or less.

【0005】[0005]

【発明が解決しようとする課題】前記特開平8−225
891号公報の方法によれば、酸化物分散強化鋼を再結
晶せしめるには過剰酸素量は0.15重量%以下にせね
ばならないが、そのためには原料の鋼粉末はガスアトマ
イズ粉を使用せざるを得ない。その結果、酸化物分散強
化鋼の材料コストは高コストとなる。本発明は、低コス
トの水アトマイズ法によるSUS410L鋼のように酸
素を0.15重量%より多く含む鋼粉末を使用しても、
1300℃以下で再結晶でき、多軸応力下でも優れたク
リープ特性を有する酸化物分散強化鋼を提供することを
目的とする。
The above-mentioned Japanese Patent Application Laid-Open No. Hei 8-225
According to the method of JP-A-891, the amount of excess oxygen must be 0.15% by weight or less in order to recrystallize the oxide dispersion strengthened steel. For this purpose, gas atomized powder must be used as the raw steel powder. I can't get it. As a result, the material cost of the oxide dispersion strengthened steel becomes high. The present invention relates to the use of steel powders containing more than 0.15% by weight of oxygen, such as low cost water atomized SUS410L steel,
An object of the present invention is to provide an oxide dispersion-strengthened steel that can be recrystallized at 1300 ° C. or less and has excellent creep characteristics even under multiaxial stress.

【0006】[0006]

【課題を解決するための手段】本発明は重量%でCr:
8〜18%、(1/2・W+Mo):0.1〜1.5%
(ただし、Mo:0.1〜1.5%、W:0〜2.8
%)、Ti:1.5〜2.5%、Y:0.12〜0.3
2%、O:0.18〜0.40%、残部がFe及び不可
避不純物から構成される合金鋼であって、母相中に0.
43〜1.0重量%の酸化物が分散しており、かつ再結
晶化組織を有することを特徴とする酸化物分散強化鋼で
ある。
SUMMARY OF THE INVENTION The present invention provides a Cr:
8 to 18%, (1/2 · W + Mo): 0.1 to 1.5%
(However, Mo: 0.1 to 1.5%, W: 0 to 2.8
%), Ti: 1.5 to 2.5%, Y: 0.12 to 0.3
2%, O: 0.18 to 0.40%, with the balance being Fe and unavoidable impurities.
An oxide dispersion-strengthened steel comprising 43 to 1.0% by weight of an oxide dispersed therein and having a recrystallized structure.

【0007】[0007]

【発明の実施の形態】本発明の特徴は、前記の特開平8
−225891号公報のような従来技術では、帰属母相
中の過剰酸素量を低下させることで1300℃以下で再
結晶化を実現しているが、本発明ではメカニカルアロイ
ングの際にTi粉として添加するTiの量が従来技術で
は1重量%以下であったところを、1.5〜2.5重量
%に増やすことにより、酸素が0.15〜0.32重量
%の鋼粉末原料を用いても、1300℃以下での再結晶
を可能とし、多軸応力下での優れたクリープ特性を示す
酸化物分散強化鋼としたことにある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A feature of the present invention is that
In the prior art such as Japanese Patent No. 225891, recrystallization is realized at 1300 ° C. or lower by reducing the amount of excess oxygen in the assigned parent phase. In the present invention, Ti powder is used as a Ti powder during mechanical alloying. By increasing the amount of added Ti from 1% by weight or less in the prior art to 1.5 to 2.5% by weight, a steel powder raw material containing 0.15 to 0.32% by weight of oxygen is used. However, an object of the present invention is to provide an oxide dispersion-strengthened steel which can be recrystallized at 1300 ° C. or lower and exhibits excellent creep characteristics under multiaxial stress.

【0008】本発明に係る酸化物分散強化鋼(以下、O
DS鋼:Oxide Dispersion Strengthened Steel と称す
る場合もある)における成分組成の限定理由は次のとお
りである。Crは、鋼材の使用時間にもよるが、本発明
に係るODS鋼の優れたクリープ特性を利用する600
℃以上の高温での使用に際し、十分な耐酸化性を付与す
る上で8重量%以上必要である。しかしながら、使用温
度履歴に依存する部分もあるが、Crを過剰に添加する
と長時間使用により脆化するため、Cr添加は18重量
%以下とした。
The oxide dispersion strengthened steel according to the present invention (hereinafter referred to as O
DS steel: sometimes referred to as Oxide Dispersion Strengthened Steel) is as follows. Cr depends on the use time of the steel material, but is based on the excellent creep property of the ODS steel according to the present invention.
When used at a high temperature of not less than ° C., it is necessary to be at least 8% by weight in order to impart sufficient oxidation resistance. However, there is a part depending on the use temperature history. However, if Cr is added excessively, it becomes brittle due to long-time use. Therefore, the addition of Cr is set to 18% by weight or less.

【0009】Moは固溶強化元素として作用させるため
には0.1重量%以上添加する必要があるが、過剰の添
加により脆化するため最大でも1.5重量%とする。W
は、Moと同様の固溶強化元素であり、Moと複合添加
することで優れた固溶強化効果を示す。ただし、過剰に
添加すると脆化するのでWの添加量は最大で2.8重量
%とし、(1/2・W+Mo)の含有量は0.1〜1.
5重量%とする。特にWが1.5〜2.8重量%でかつ
(1/2・W+Mo)が1〜1.5重量%の領域におい
て、WとMoの複合添加がMo単独添加と比べて有為な
効果を生み出す。
Mo must be added in an amount of 0.1% by weight or more in order to act as a solid solution strengthening element. However, Mo is embrittled by excessive addition, so that the maximum amount is 1.5% by weight. W
Is a solid solution strengthening element similar to Mo, and exhibits an excellent solid solution strengthening effect when added in combination with Mo. However, if added excessively, it becomes brittle, so the maximum amount of W added is 2.8% by weight, and the content of (1 / 2.W + Mo) is 0.1 to 1.
5% by weight. Particularly in the region where W is 1.5 to 2.8% by weight and (1 / 2W + Mo) is 1 to 1.5% by weight, the composite addition of W and Mo has a significant effect as compared with the addition of Mo alone. Produces.

【0010】なお、本発明に係るOSD鋼中には不可避
不純物として、Mn、Si、Ni、Cが含まれる。これ
らの元素は、鋼粉末作製過程やメカニカルアロイングの
際に混入する。Mn、Siは鋼粉末作製過程で脱酸剤と
して添加され、過剰の存在は室温での靭性や高温での強
度に悪影響を及ぼすため、Mnは0.3重量%以下、S
iは1.0重量%以下とするのが好ましい。Niは、鋼
粉末作製過程やメカニカルアロイングの際に混入し、ク
リープ強度に悪影響を及ぼすため0.2重量%以下とす
るのが好ましい。Cは原料の合金鋼粉末を作製する過程
やメカニカルアロイングなどの製造過程で不可避不純物
的に含まれ、過剰の存在は酸化物の微細分散に悪影響を
及ぼすため0.04重量%以下とする。
The OSD steel according to the present invention contains Mn, Si, Ni, and C as unavoidable impurities. These elements are mixed in the process of producing the steel powder and during the mechanical alloying. Mn and Si are added as deoxidizers in the process of producing the steel powder, and the excessive presence adversely affects the toughness at room temperature and the strength at high temperature.
i is preferably 1.0% by weight or less. Ni is mixed in the steel powder production process or during mechanical alloying and adversely affects the creep strength. Therefore, it is preferable that Ni be 0.2% by weight or less. C is included as an unavoidable impurity in the process of producing the alloy steel powder as a raw material and in the production process of mechanical alloying and the like, and its excessive presence has an adverse effect on the fine dispersion of oxides, so C is set to 0.04% by weight or less.

【0011】Tiは、主にメカニカルアロイングの際に
添加されるもので、メカニカルアロイングの過程で、鋼
粉末原料に固溶していくと考えられる。そして、メカニ
カルアロイング過程で作製されたメカニカルアロイング
粉末を熱間押出しやHIPで熱間成形してバルク体とし
て酸化物分散鋼を作製する際に、メカニカルアロイング
粉中の酸素と結びつき酸化物TiO2 を形成したり、同
様にメカニカルアロイング粉中の酸素及びYと結びつき
2 Ti2 7 を形成する。Y2 Ti2 7 は鋼中に微
細に分散し、酸化物分散強化鋼の優れたクリープ強度を
発現せしめる。鋼粉末原料中のO(酸素)量が0.15
〜0.32重量%で、かつメカニカルアロイングの際に
添加するY2 3 粉の量が0.15〜0.40重量%の
場合、1300℃以下で再結晶化組織を得るには、Ti
は1.5重量%以上必要である。しかしながら、過剰に
存在すると脆化するため最大で2.5重量%とする。
[0011] Ti is mainly added at the time of mechanical alloying, and is considered to be dissolved in a steel powder raw material in the process of mechanical alloying. Then, when the mechanically alloyed powder produced in the mechanical alloying process is hot-extruded or hot-formed by HIP to produce an oxide-dispersed steel as a bulk body, the oxide in the mechanically alloyed powder is combined with oxygen. It forms TiO 2 , and similarly combines with oxygen and Y in the mechanical alloying powder to form Y 2 Ti 2 O 7 . Y 2 Ti 2 O 7 is finely dispersed in the steel, and exhibits excellent creep strength of the oxide dispersion strengthened steel. O (oxygen) content in steel powder raw material is 0.15
When the amount of the Y 2 O 3 powder to be added at the time of mechanical alloying is 0.15 to 0.40% by weight and the recrystallized structure is obtained at 1300 ° C. or less, Ti
Is required to be 1.5% by weight or more. However, if it exists in excess, it becomes brittle, so that the maximum content is 2.5% by weight.

【0012】Yは、メカニカルアロイングの際にY2
3 として添加され、メカニカルアロイングの過程で、鋼
粉末原料に固溶していく。メカニカルアロイング過程で
作製されたメカニカルアロイング粉末を熱間押出しやH
IPで熱間成形して酸化物分散鋼を作製する際に、メカ
ニカルアロイング粉中の酸素やTiと結びつき酸化物Y
2 Ti2 7 を形成する。この酸化物は鋼中に微細に分
散し、酸化物分散強化鋼の優れたクリープ強度を発現せ
しめる。その効果を発揮するには、Yの添加量は0.1
2重量%以上である必要がある。しかし、過剰に添加し
た場合、1300℃以下で再結晶化できなくなるため、
0.32重量%以下にする必要がある。
Y is Y 2 O during mechanical alloying.
It is added as 3 and becomes a solid solution in the raw material of steel powder in the process of mechanical alloying. The mechanical alloying powder produced in the mechanical alloying process is hot-extruded or H
When producing oxide-dispersed steel by hot forming with IP, the oxide Y is combined with oxygen and Ti in the mechanical alloying powder.
2 Ti 2 O 7 is formed. This oxide is finely dispersed in the steel, and exhibits excellent creep strength of the oxide dispersion strengthened steel. In order to exhibit the effect, the addition amount of Y is 0.1
It must be at least 2% by weight. However, if it is added in excess, it cannot be recrystallized below 1300 ° C.
It needs to be 0.32% by weight or less.

【0013】酸化物分散強化鋼中のOは、水アトマイズ
法による低コスト鋼粉末原料中のOと、メカニカルアロ
イングの際に添加されるY2 3 粉末のOと、作製過程
中に混入するOとに由来する。酸化物分散鋼中のOは、
熱力学的平衡状態を考慮すると、大半は酸化物として析
出し、母相中に固溶するOは極微量ではあると考えられ
る。作製過程での酸素の混入を最小限に小さくしても、
酸化物分散鋼中の酸素は、鋼粉末原料中の酸素とY2
3 粉末中の酸素量との和より下回ることはなく、0.1
8重量%以上となる。Oが過剰に存在する場合、すなわ
ち酸化物が過剰に存在する場合、再結晶化できなくなる
ため、Oは0.40重量%以下とする。
O in the oxide dispersion strengthened steel is mixed with O in the low-cost steel powder raw material by the water atomization method, O in the Y 2 O 3 powder added at the time of mechanical alloying, and mixed during the production process. O. O in the oxide dispersion steel is
Considering the thermodynamic equilibrium state, it is considered that most of the oxides precipitate as oxides, and the amount of O dissolved in the mother phase is extremely small. Even if the mixing of oxygen during the manufacturing process is minimized,
Oxygen in the oxide-dispersed steel is obtained by combining oxygen in the steel powder raw material with Y 2 O
3 It is not less than the sum of the amount of oxygen in the powder and 0.1
8% by weight or more. If O is excessive, that is, if the oxide is excessive, recrystallization cannot be performed. Therefore, O is set to 0.40% by weight or less.

【0014】上記のような成分組成の酸化物分散強化鋼
は、まず通常メカニカルアロイング及びそれに続く熱間
加工によって作製される。この過程で形成される酸化物
分散強化鋼の結晶粒は微細で、その平均結晶粒径は1〜
数μm又はそれ以下となる。また、酸化物Y2 Ti2
7 粒子の平均粒径は数〜数十nm程度である。この酸化
物分散強化鋼は、単軸応力下で優れたクリープ特性を示
すが、切欠きクリープといった多軸応力下におけるクリ
ープ特性は極めて劣悪である。一方、この酸化物分散強
化鋼に対して、圧延などにより冷間加工を加え、さらに
1300℃以下の熱処理を施すことにより再結晶組織を
形成することで、切欠きクリープといった多軸応力環境
でも優れたクリープ特性を示すようになる。再結晶化の
条件は、酸化物分散鋼に付与するクリープ特性、強度特
性、延性などによって、種々の条件が考えられる。高い
温度で再結晶化すると、微細分散した酸化物の粗大化が
生じて、クリープ特性が劣悪となる。このため、再結晶
化温度としては、1300℃以下の熱処理が必要であ
り、1200℃以下が好ましい。
The oxide dispersion-strengthened steel having the above-mentioned component composition is usually produced by mechanical alloying followed by hot working. The crystal grains of the oxide dispersion strengthened steel formed in this process are fine, and the average crystal grain size is 1 to
It is several μm or less. In addition, oxide Y 2 Ti 2 O
The average particle size of the seven particles is about several to several tens of nm. This oxide dispersion strengthened steel exhibits excellent creep properties under uniaxial stress, but has extremely poor creep properties under multiaxial stress such as notch creep. On the other hand, the oxide dispersion-strengthened steel is cold-worked by rolling or the like, and further subjected to a heat treatment at 1300 ° C. or less to form a recrystallized structure, which is excellent even in a multiaxial stress environment such as notch creep. It shows creep characteristics. Various recrystallization conditions can be considered depending on the creep characteristics, strength characteristics, ductility, etc. imparted to the oxide-dispersed steel. When recrystallized at a high temperature, the finely dispersed oxide becomes coarse, resulting in poor creep characteristics. For this reason, a heat treatment of 1300 ° C. or less is required as the recrystallization temperature, and 1200 ° C. or less is preferable.

【0015】[0015]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 (実施例)表1に示す組成の鋼粉末に、表1に示す所定
量のY2 3 粉末とTi粉末を添加して混合したもの
を、鋼球とともに振動ミル用ステンレス製ポットに入
れ、ポット内をロータリーポンプで真空にし、純度9
9.9995%のArガスを導入した。さらにもう一度
ポット内をロータリーポンプで真空にして前記と同じA
rガスを導入した。このポットを60時間振動ミルにか
け、メカニカルアロイングを施した。このメカニカルア
ロイングにより作製した粉(以下、メカニカルアロイン
グ粉)を軟鋼カプセルに真空封入して、1100℃に加
熱して熱間押出し成形を行って、ODS鋼を作製した。
作製したODS鋼の組成を表2に示す。なお、電子プロ
ーブマイクロアナライザにより、作製したODS鋼には
表2に示した元素以外に不可避不純物としてC(0.0
4重量%以下)、Si(1.0重量%以下)、Mn
(0.3重量%以下)、Ni(0.2重量%以下)が存
在していることを確認した。
The present invention will be described more specifically with reference to the following examples. (Example) A steel powder having a composition shown in Table 1 and a predetermined amount of Y 2 O 3 powder and Ti powder shown in Table 1 were added and mixed together with steel balls into a stainless steel pot for a vibration mill. Vacuum the inside of the pot with a rotary pump, and purify 9
9.9995% of Ar gas was introduced. Further, the inside of the pot is again evacuated with a rotary pump, and the same A
r gas was introduced. This pot was placed on a vibration mill for 60 hours and subjected to mechanical alloying. The powder produced by the mechanical alloying (hereinafter referred to as mechanical alloying powder) was vacuum-sealed in a mild steel capsule, heated to 1100 ° C., and subjected to hot extrusion to produce an ODS steel.
Table 2 shows the composition of the produced ODS steel. In addition, in addition to the elements shown in Table 2, C (0.0
4% by weight or less), Si (1.0% by weight or less), Mn
(0.3% by weight or less) and Ni (0.2% by weight or less) were confirmed to be present.

【0016】(比較例)表3に示す組成の鋼粉末に、表
3に示す所定量のY2 3 粉末、Ti粉末及びFe2
3 粉末を添加して、実施例と同様の手順により比較用O
DS鋼を作製した。Fe2 3 粉末は通常、ODS鋼作
製時には添加しないが、ODS鋼中のO量の影響を調査
するために添加した。その比較用ODS鋼の組成を表4
に示す。なお、電子プローブマイクロアナライザによ
り、作製した比較用ODS鋼にも不可避不純物としてC
(0.04重量%以下)、Si(1.0重量%以下)、
Mn(0.3重量%以下)、Ni(0.2重量%以下)
の存在していることを確認した。
Comparative Example A steel powder having a composition shown in Table 3 was prepared by adding a predetermined amount of Y 2 O 3 powder, Ti powder and Fe 2 O shown in Table 3.
3 Powder was added, and the O powder for comparison was prepared in the same procedure as in the example.
DS steel was produced. Fe 2 O 3 powder is not usually added during the production of ODS steel, but was added to investigate the effect of the amount of O in ODS steel. Table 4 shows the composition of the comparative ODS steel.
Shown in Note that the comparative ODS steel produced by the electron probe microanalyzer also contained C as an unavoidable impurity.
(0.04% by weight or less), Si (1.0% by weight or less),
Mn (0.3% by weight or less), Ni (0.2% by weight or less)
Confirmed that there is.

【0017】上記実施例及び比較例で作製した全てのO
DS鋼は、押出し方向に対して結晶が伸びており、押出
し方向に直行する方向の結晶の大きさの平均値は2μm
以下であった。これらODS鋼に加工率50〜60%の
冷間加工を加え、1300℃以下の範囲で熱処理を加え
て再結晶化を調査したところ、本発明鋼(表2の鋼種1
〜16)は全て、押出し方向に直行する方向の結晶の大
きさの平均値が5μm以上となり、再結晶化していた。
一方、比較用のODS鋼は、Yを0.39重量%含むR
1鋼、Oを0.45重量%含むR2鋼及びTiが1.0
重量%のR3鋼のいずれも再結晶しなかった。
All the Os produced in the above Examples and Comparative Examples
In the DS steel, the crystal extends in the extrusion direction, and the average value of the crystal size in the direction perpendicular to the extrusion direction is 2 μm.
It was below. When cold working at a working ratio of 50 to 60% was performed on these ODS steels and heat treatment was performed at a temperature of 1300 ° C. or lower to examine recrystallization, the steel of the present invention (steel type 1 in Table 2)
In all of (16) to (16), the average value of the crystal size in the direction perpendicular to the extrusion direction became 5 μm or more, and the crystals were recrystallized.
On the other hand, the ODS steel for comparison has an R content of 0.39% by weight of Y.
1 steel, R2 steel containing 0.45% by weight of O and Ti
None of the weight percent R3 steel recrystallized.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】鋼種7を加工率40%の冷間加工を加え1
150℃の熱処理で再結晶化させたものと、鋼種7を熱
間押出しままの未再結晶のものを、650℃で切欠きク
リープ破断試験を行った。切欠きクリープ破断試験は、
切欠きがV形で開き角60度、平滑部の直径と切欠き底
の直径の比は1.2、切欠き底の曲率は0.12mm
で、負荷荷重は切欠き底を含む円の面積に25kg/m
2 を乗じた荷重とした。その結果、切欠きクリープ破
断時間は、本発明鋼は5000時間経過中であり、一方
未再結晶の鋼種7はは約100時間で破断した。したが
って、再結晶化したODS鋼は多軸応力環境である切欠
きクリープ強度が優れていることがわかる。
Steel type 7 was subjected to cold working at a working rate of 40% to
Notched creep rupture tests were performed at 650 ° C. on the steel recrystallized by a heat treatment at 150 ° C. and the non-recrystallized steel 7 while hot extruded. Notch creep rupture test
The notch has a V-shaped opening angle of 60 degrees, the ratio of the diameter of the smooth portion to the diameter of the notch bottom is 1.2, and the curvature of the notch bottom is 0.12 mm.
The applied load is 25 kg / m2 on the area of the circle including the notch bottom.
The load was multiplied by m 2 . As a result, the notched creep rupture time of the steel of the present invention was 5,000 hours, while that of the unrecrystallized steel type 7 ruptured in about 100 hours. Therefore, it can be seen that the recrystallized ODS steel has excellent notch creep strength, which is a multiaxial stress environment.

【0023】[0023]

【発明の効果】本発明の酸化物分散強化鋼(ODS鋼)
は、多軸応力下でも優れたクリープ特性を有するODS
鋼であり、ディーゼルエンジン用排気ガス過給機翼をは
じめ高温プラントのボルトやナットなどの用途に好適な
ものである。また、本発明のODS鋼は、低コストで得
られる酸素を0.15重量%以上含む鋼粉末を使用して
も、1300℃以下の温度での再結晶化処理で製造する
ことができるので、その工業的価値は極めて大きいもの
である。
The oxide dispersion strengthened steel of the present invention (ODS steel)
Is an ODS with excellent creep properties even under multiaxial stress
This steel is suitable for applications such as exhaust gas turbocharger blades for diesel engines and bolts and nuts for high-temperature plants. Further, the ODS steel of the present invention can be produced by recrystallization treatment at a temperature of 1300 ° C. or less even if a steel powder containing 0.15% by weight or more of oxygen obtained at low cost can be used. Its industrial value is extremely large.

【手続補正書】[Procedure amendment]

【提出日】平成11年8月26日(1999.8.2
6)
[Submission date] August 26, 1999 (1999.8.2
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】[0020]

【表3】 [Table 3]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】[0021]

【表4】 [Table 4]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%でCr:8〜18%、(1/2・
W+Mo):0.1〜1.5%(ただし、Mo:0.1
〜1.5%、W:0〜2.8%)、Ti:1.5〜2.
5%、Y:0.12〜0.32%、O:0.18〜0.
40%、残部がFe及び不可避不純物から構成される合
金鋼であって、母相中に0.43〜1.0重量%の酸化
物が分散しており、かつ再結晶化組織を有することを特
徴とする酸化物分散強化鋼。
(1) Cr: 8 to 18% by weight%;
W + Mo): 0.1 to 1.5% (Mo: 0.1%)
-1.5%, W: 0-2.8%), Ti: 1.5-2.
5%, Y: 0.12-0.32%, O: 0.18-0.
40%, the balance being an alloy steel composed of Fe and unavoidable impurities, in which 0.43 to 1.0% by weight of an oxide is dispersed in the matrix and which has a recrystallized structure. Characterized by oxide dispersion strengthened steel.
JP22102999A 1999-08-04 1999-08-04 Oxide dispersion strengthened steel Expired - Fee Related JP3359007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22102999A JP3359007B2 (en) 1999-08-04 1999-08-04 Oxide dispersion strengthened steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22102999A JP3359007B2 (en) 1999-08-04 1999-08-04 Oxide dispersion strengthened steel

Publications (2)

Publication Number Publication Date
JP2001049396A true JP2001049396A (en) 2001-02-20
JP3359007B2 JP3359007B2 (en) 2002-12-24

Family

ID=16760380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22102999A Expired - Fee Related JP3359007B2 (en) 1999-08-04 1999-08-04 Oxide dispersion strengthened steel

Country Status (1)

Country Link
JP (1) JP3359007B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528443A (en) * 2006-02-27 2009-08-06 プランゼー エスエー Porous material
CN105274440A (en) * 2015-11-20 2016-01-27 北京科技大学 Oxide dispersion strengthened (ODS) steel preparing method and martensitic steel
RU2707686C1 (en) * 2018-06-13 2019-11-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский университет транспорта (МИИТ)" РУТ (МИИТ) Method of producing metal-reinforced composite material based on iron reinforced with oxides of nanopowders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528443A (en) * 2006-02-27 2009-08-06 プランゼー エスエー Porous material
CN105274440A (en) * 2015-11-20 2016-01-27 北京科技大学 Oxide dispersion strengthened (ODS) steel preparing method and martensitic steel
RU2707686C1 (en) * 2018-06-13 2019-11-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский университет транспорта (МИИТ)" РУТ (МИИТ) Method of producing metal-reinforced composite material based on iron reinforced with oxides of nanopowders

Also Published As

Publication number Publication date
JP3359007B2 (en) 2002-12-24

Similar Documents

Publication Publication Date Title
US4075010A (en) Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors (LMFBRS)
JP3027200B2 (en) Oxidation resistant low expansion alloy
JP3395443B2 (en) High creep strength titanium alloy and its manufacturing method
JPS63157831A (en) Heat-resisting aluminum alloy
JPH0457737B2 (en)
US20170260609A1 (en) Precipitate strengthened nanostructured ferritic alloy and method of forming
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JP3359007B2 (en) Oxide dispersion strengthened steel
JPS6299433A (en) Gamma&#39;-phase precipitation strengthening heat resistant nickel alloy containing dispersed yttria particle
JPS581051A (en) Molybdenum alloy
JPH01287252A (en) Sintered dispersion strengthened ferritic heat-resistant steel
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JP2001234292A (en) LOW THERMAL EXPANSION Fe-BASE HEAT RESISTANT ALLOY, EXCELLENT IN HIGH TEMPERATURE STRENGTH
JPH04358036A (en) Alpha plus beta ti alloy
RU2119846C1 (en) Process of production of material based on alloyed intermetallic compound
JP2692340B2 (en) Oxide dispersion strengthened ferritic steel
JPH11335771A (en) Oxide-dispersion-strengthened steel and its production
JPS599610B2 (en) Alloys suitable for furnace components
JPH03243741A (en) Ti-al series sintered body and its manufacture
JPS6311643A (en) High strength aluminum alloy having superior heat resistance
EP4353855A1 (en) Tial alloy, tial alloy powder, tial alloy component, and method for producing same
JP3409077B2 (en) High-temperature lightweight high-strength titanium alloy
KR100256362B1 (en) Heat resisting alloy for low density and high temperature structure
JPH01275724A (en) Manufacture of dispersion strengthened heat-resistant alloy
JP3582797B2 (en) Method for producing oxide dispersion strengthened alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020910

LAPS Cancellation because of no payment of annual fees