JP2001044401A - Solid-state image pickup element and manufacture thereof - Google Patents

Solid-state image pickup element and manufacture thereof

Info

Publication number
JP2001044401A
JP2001044401A JP11213062A JP21306299A JP2001044401A JP 2001044401 A JP2001044401 A JP 2001044401A JP 11213062 A JP11213062 A JP 11213062A JP 21306299 A JP21306299 A JP 21306299A JP 2001044401 A JP2001044401 A JP 2001044401A
Authority
JP
Japan
Prior art keywords
film
photoelectric conversion
solid
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11213062A
Other languages
Japanese (ja)
Other versions
JP3467434B2 (en
Inventor
Toshihiro Ogawa
智弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21306299A priority Critical patent/JP3467434B2/en
Publication of JP2001044401A publication Critical patent/JP2001044401A/en
Application granted granted Critical
Publication of JP3467434B2 publication Critical patent/JP3467434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve sensitivity by improving the rate that incident light reaches a photoelectric conversion part, and particularly, to decrease the number of smears in a CCD slid-state image pickup element. SOLUTION: A tapered reflection film 5 having a light reflecting characteristic is formed on a light receiving part of a photoelectric conversion part 2. Transparent films 18, 19 and 20, whose refractive indexes are higher in the center than in the vicinity of the light receiving part, are formed on the light receiving part of the photoelectric conversion part 2 which is surrounded by the reflection film 5. An light b which was incident to a solid-state image pickup device can be effectively guided in the direction to the light receiving part of the photoelectric conversion part 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像素子およ
びその製造方法に関し、特に、感度が高められた固体撮
像素子とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device and a method for manufacturing the same, and more particularly, to a solid-state imaging device with improved sensitivity and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の固体撮像素子の平面図を図18
(a)に、また、図18(a)中の直線A−A'におけ
る断面図を図18(b)に示す。図18(a)に示すよ
うに、従来の固体撮像素子は光電変換部23上に入射光
を集光するオンチップレンズ27を有している。また、
図18(b)に示すように、基板22の表面領域内に光
電変換部23が形成され、基板22および光電変換部2
3上を絶縁膜24が覆っている。そして、絶縁膜24上
に光電変換部23受光部上に開口を有する遮光膜25が
形成され、光電変換部の受光部上の絶縁膜24と遮光膜
25上の全面に透明平坦膜26が形成され、その上にさ
らにオンチップレンズ27が形成されている。尚、実際
の固体撮像素子では、基板22上に電極、配線等を有す
るが、本発明の固体撮像素子には直接的には関係がない
のでここでは説明を省略する。
2. Description of the Related Art A plan view of a conventional solid-state imaging device is shown in FIG.
FIG. 18A is a cross-sectional view taken along a line AA ′ in FIG. 18A. As shown in FIG. 18A, the conventional solid-state imaging device has an on-chip lens 27 for collecting incident light on a photoelectric conversion unit 23. Also,
As shown in FIG. 18B, the photoelectric conversion unit 23 is formed in the surface region of the substrate 22, and the substrate 22 and the photoelectric conversion unit 2 are formed.
3 is covered with an insulating film 24. Then, a light-shielding film 25 having an opening on the light-receiving part of the photoelectric conversion part 23 is formed on the insulating film 24, and a transparent flat film 26 is formed on the entire surface of the insulating film 24 on the light-receiving part of the photoelectric conversion part and the light-shielding film 25. Then, an on-chip lens 27 is further formed thereon. Although an actual solid-state imaging device has electrodes, wirings, and the like on the substrate 22, it is not directly related to the solid-state imaging device of the present invention, and a description thereof is omitted here.

【0003】一般に、固体撮像素子の感度は、入射光量
に対する光電変換部の出力電流の大きさにより定義され
る。したがって、この種の固体撮像素子では、入射した
光を確実に光電変換部23に導入することが感度向上の
ため重要な要素の一つとなっている。この目的のため
に、通常光電変換部23の上にオンチップレンズ27を
形成し、これにより光電変換部23に光を集めている。
Generally, the sensitivity of a solid-state imaging device is defined by the magnitude of the output current of the photoelectric conversion unit with respect to the amount of incident light. Therefore, in this type of solid-state imaging device, it is one of the important factors for improving the sensitivity to reliably introduce the incident light into the photoelectric conversion unit 23. For this purpose, an on-chip lens 27 is usually formed on the photoelectric conversion unit 23, thereby collecting light at the photoelectric conversion unit 23.

【0004】[0004]

【発明が解決しようとする課題】上述したオンチップレ
ンズ27はフォトレジストを変形後ベークして溶媒を除
去して形成したものなので柔らかくキズがつきやすい。
また、オンチップレンズは吸湿性が高いため、固体撮像
素子チップを収納するパッケージには高い耐湿能力が要
求され、高価なものが必要になる。
Since the above-mentioned on-chip lens 27 is formed by removing the solvent by deforming the photoresist and baking it, the on-chip lens 27 is soft and easily scratched.
Further, since the on-chip lens has a high moisture absorption property, a high humidity resistance is required for a package for housing the solid-state imaging device chip, and an expensive lens is required.

【0005】また、オンチップレンズはフォトレジスト
に熱を加え変形させることにより形成していたため、隣
接するオンチップレンズと近づきすぎると接触し集光性
能が低下するため、製造上の寸法の揺らぎによっても接
触することのないように間隔を開ける必要があった。こ
のためオンチップレンズ間に集光できない部分が発生
し、その分感度の低下を招いていた。また、画素の縦横
長さが違う固体撮像素子の場合、オンチップレンズの曲
率が縦方向と横方向とで異なるため焦点が1カ所に定ま
らず感度の低下を起こした。
In addition, since the on-chip lens is formed by applying heat to the photoresist and deforming the photoresist, if it comes too close to the adjacent on-chip lens, the on-chip lens comes in contact with the lens and the light-collecting performance is reduced. Also had to be spaced so that they did not come into contact. For this reason, a portion that cannot be condensed occurs between the on-chip lenses, and the sensitivity is reduced accordingly. Further, in the case of a solid-state imaging device in which the vertical and horizontal lengths of the pixels are different, since the curvature of the on-chip lens is different between the vertical direction and the horizontal direction, the focus is not fixed at one place and the sensitivity is lowered.

【0006】また、従来のCCD型固体撮像素子では、
明るい被写体を撮像する際、画像の上下方向に白く尾を
引くスミアという現象が発生することがある。図19は
スミアの発生を説明する図である。スミアの発生を分か
り易く説明するため図19では、図18(b)では省略
していた電荷転送部28を書き加えてある。図19にお
いて、垂直に入射する光cは光電変換に寄与する。しか
し、斜めに入射する光dは、基板22と遮光膜25との
間で多重反射して電荷転送部28へ漏れ込み、また、遮
光膜25上に斜めに入射する光eは遮光膜25の遮光性
が劣化した場合電荷転送部28に漏れ込み、それらがス
ミアを発生させる。
In a conventional CCD solid-state imaging device,
When a bright subject is imaged, a phenomenon called smear may occur in which a white tail is formed in the vertical direction of the image. FIG. 19 is a diagram for explaining the occurrence of smear. In FIG. 19, the charge transfer unit 28 which is omitted in FIG. 18B is added in order to easily explain the occurrence of smear. In FIG. 19, the vertically incident light c contributes to the photoelectric conversion. However, the obliquely incident light d is reflected multiple times between the substrate 22 and the light-shielding film 25 and leaks into the charge transfer unit 28, and the light e obliquely incident on the light-shielding film 25 is When the light-shielding property is deteriorated, it leaks into the charge transfer section 28, and they generate smear.

【0007】よって、本願発明の課題は、上述した従来
技術の問題点を解決することであって、その目的は、第
1に、オンチップレンズを使用することなく固体撮像素
子に入射した光が光電変換部に入る率を向上させること
ができるようにすることであり、第2に、スミアの発生
を抑制し得るようにすることである。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art. The object of the present invention is to firstly make it possible for light incident on a solid-state image pickup device without using an on-chip lens. The second object is to improve the rate of entering the photoelectric conversion unit, and secondly, to suppress the occurrence of smear.

【0008】[0008]

【課題を解決するための手段】本発明による固体撮像素
子は、半導体基板の表面領域内に規則的に形成された多
数の光電変換部と、各光電変換部毎に前記光電変換部上
を囲む隔壁と、前記隔壁によって区画された領域内に形
成された透明膜と、を有する固体撮像素子であって、前
記透明膜は少なくとも一部の横断面おいて前記隔壁から
離れるにつれて、段階的に若しくは連続的に屈折率が高
くなることを特徴としている。また、本発明による固体
撮像素子の製造方法は、(1)基板上に多数の光電変換
部を形成する工程と、(2)前記基板と前記光電変換部
上に絶縁膜を形成する工程と、(3)前記絶縁膜上に第
1の隔壁形成膜を形成する工程と、(4)前記光電変換
部上の前記第1の隔壁形成膜を部分的に除去して前記光
電変換部上にテーパー形状の開口を形成する工程と、
(5)前記絶縁膜上と前記第1の隔壁形成膜上に反射膜
を形成する工程と、(6)少なくとも前記光電変換部上
の前記反射膜を除去する工程と、(7)前記反射膜によ
って囲まれた前記光電変換部上に、少なくとも一部の横
断面において中心部に向かって、連続的に若しくは段階
的に、屈折率が高くなっている透明膜を形成する工程
と、を有することを特徴としている。
According to the present invention, there is provided a solid-state imaging device comprising: a plurality of photoelectric conversion portions regularly formed in a surface region of a semiconductor substrate; and each of the photoelectric conversion portions surrounds the photoelectric conversion portion. Partition, and a solid-state imaging device having a transparent film formed in a region defined by the partition, wherein the transparent film is stepwise or at least partially cross-sectional as it separates from the partition. It is characterized in that the refractive index increases continuously. Further, the method for manufacturing a solid-state imaging device according to the present invention includes: (1) a step of forming a large number of photoelectric conversion units on a substrate; (3) a step of forming a first partition wall forming film on the insulating film; and (4) a step of partially removing the first partition wall forming film on the photoelectric conversion unit and forming a taper on the photoelectric conversion unit. Forming a shaped opening;
(5) a step of forming a reflective film on the insulating film and the first partition wall forming film; (6) a step of removing at least the reflective film on the photoelectric conversion unit; (7) the reflective film Forming a transparent film having a higher refractive index continuously or stepwise toward the center in at least a part of the cross-section on the photoelectric conversion portion surrounded by It is characterized by.

【0009】[0009]

【発明の実施の形態】次に、本発明の固体撮像素子の実
施の形態について図を参照して説明する。第1の実施の
形態の固体撮像素子の平面図を図1(a)に、また、図
1(a)中の直線A−A′における断面を図1(b)に
示す。図1(a)、図1(b)に示すように、本発明の
第1の実施の形態の固体撮像素子においては、シリコン
基板1の表面領域内に光電変換部2が形成されており、
シリコン基板1および光電変換部2上全面に絶縁膜3が
形成されている。なお、図示は省略されているが、必要
な電極や配線はこの絶縁膜3上に形成されておりかつ絶
縁膜によって被覆されているものと理解されたい。ま
た、光電変換部2の受光部を除く絶縁膜3上には傾斜構
造を有する隔壁形成膜4が形成されており、隔壁形成膜
4上には、光電変換部2の受光部上に開口を有し、その
開口の周囲に傾斜部7を有する反射膜5が形成されてい
る。そして、光電変換部2の受光部上の絶縁膜3と反射
膜5の上にカバー膜6が形成されている。このカバー膜
6は、反射膜5から離れるにつれて、その屈折率が徐々
に高くなるように形成されている。
Next, an embodiment of a solid-state imaging device according to the present invention will be described with reference to the drawings. FIG. 1A is a plan view of the solid-state imaging device according to the first embodiment, and FIG. 1B is a cross-sectional view taken along a line AA ′ in FIG. As shown in FIGS. 1A and 1B, in the solid-state imaging device according to the first embodiment of the present invention, a photoelectric conversion unit 2 is formed in a surface region of a silicon substrate 1,
An insulating film 3 is formed on the entire surface of the silicon substrate 1 and the photoelectric conversion unit 2. Although not shown, it should be understood that necessary electrodes and wires are formed on the insulating film 3 and are covered with the insulating film. A partition forming film 4 having an inclined structure is formed on the insulating film 3 excluding the light receiving portion of the photoelectric conversion portion 2. An opening is formed on the light receiving portion of the photoelectric conversion portion 2 on the partition forming film 4. And a reflective film 5 having an inclined portion 7 around the opening. Then, a cover film 6 is formed on the insulating film 3 and the reflective film 5 on the light receiving unit of the photoelectric conversion unit 2. The cover film 6 is formed such that its refractive index gradually increases as the cover film 6 moves away from the reflection film 5.

【0010】次に、第1の実施の形態の固体撮像素子の
製造方法を図2(a)〜図4(b)を参照して説明す
る。まず、図2(a)に示すように、第1導電型のシリ
コン基板1の表面に第2導電型不純物を導入して第2導
電型の光電変換部2を形成する。次に、絶縁膜3を全面
に形成する。実際の固体撮像素子では、シリコン基板1
の表面領域内に各種の拡散層を形成し絶縁膜3上に各種
の電極や配線を形成する。例えば、現在最も広く用いら
れているCCD型固体撮像素子ではシリコン基板1の表
面領域内に電荷転送部や素子分離領域、また、絶縁膜3
の上には電荷転送電極などが形成されているが、本発明
においては、これらに格別の特徴はないので、その図示
と説明は省略する。
Next, a method of manufacturing the solid-state imaging device according to the first embodiment will be described with reference to FIGS. 2 (a) to 4 (b). First, as shown in FIG. 2A, the second conductivity type impurity is introduced into the surface of the first conductivity type silicon substrate 1 to form the second conductivity type photoelectric conversion unit 2. Next, an insulating film 3 is formed on the entire surface. In an actual solid-state imaging device, the silicon substrate 1
Various kinds of diffusion layers are formed in the surface region, and various kinds of electrodes and wirings are formed on the insulating film 3. For example, in a CCD type solid-state imaging device which is currently most widely used, a charge transfer portion, an element isolation region, an insulating film 3
Although a charge transfer electrode and the like are formed thereon, they have no special features in the present invention, so that illustration and description thereof are omitted.

【0011】次に、図2(b)に示すように、膜厚が5
〜10μmの隔壁形成膜4を堆積する。この隔壁形成膜
4は半導体装置の膜としてはかなり厚く形成されるた
め、ストレスが大きい場合は膜にクラックがはいった
り、下地のシリコン基板1表面にストレスを与え電気特
性を悪化させるおそれがあるので、そのような材料は避
けた方がよい。また、後工程で行うエッチング工程にお
いて、フォトレジストや下層の絶縁膜3との選択比が大
きく加工が容易なものが望ましい。本実施の形態におい
ては、アモルファスシリコンを用いたが、上記の条件を
満たす材料であれば、アモルファスシリコンに代えて、
適宜採用が可能である。次に、フォトリソグラフィ技術
により、光電変換部2上の開口形成予定部分上に、開口
9を有するフォトレジスト膜8を形成する。
Next, as shown in FIG.
A partition forming film 4 of 10 to 10 μm is deposited. Since the partition wall forming film 4 is formed to be considerably thick as a film of a semiconductor device, when the stress is large, there is a possibility that the film may crack or a stress may be applied to the surface of the underlying silicon substrate 1 to deteriorate the electrical characteristics. It is better to avoid such materials. Further, in an etching step performed in a later step, it is preferable that the etching step be large in selectivity with respect to a photoresist or an underlying insulating film 3 and be easy to process. In this embodiment, amorphous silicon is used. However, if the material satisfies the above conditions, instead of amorphous silicon,
It can be adopted as appropriate. Next, a photoresist film 8 having an opening 9 is formed on the portion where the opening is to be formed on the photoelectric conversion unit 2 by a photolithography technique.

【0012】次に、図3(a)に示すように、フォトレ
ジスト膜8をマスクに開口9の下の部分の隔壁形成膜4
をエッチングする。このときにエッチャーのガス流量や
エネルギー等を制御することによりサイドエッチをか
け、側壁部にテーパー形状を有する開口10を形成す
る。このときのテーパー形状の側面のシリコン基板表面
に対してなす傾斜角は、45゜〜80゜程度が好まし
い。
Next, as shown in FIG. 3A, using the photoresist film 8 as a mask, the partition wall forming film 4 in a portion below the opening 9 is formed.
Is etched. At this time, side etching is performed by controlling the gas flow rate, energy, and the like of the etcher, and the opening 10 having a tapered shape is formed in the side wall portion. At this time, the inclination angle of the tapered side surface with respect to the silicon substrate surface is preferably about 45 ° to 80 °.

【0013】次に、フォトレジスト膜8を除去後に、図
3(b)に示すように、全面に反射膜5を形成する。反
射膜5の遮光性が落ちると、シリコン基板1中に形成さ
れているさまざまな素子、CCD型固体撮像素子の場合
は電荷転送部に光が直接漏れこみスミアなどを発生させ
特性劣化につながる。また、反射率が低下すると光電変
換部2に入射する光が減って感度が低下する。このため
反射膜5の材料には、例えば、アルミニウムやタングス
テンなど遮光性が大きく、また、反射率の高いものが好
ましい。また、側壁部のカバレッジがよいものがよく、
減圧CVD(化学的気相成長)法などを適宜使用すれば
よい。また、遮光性が十分得られる膜厚とする。例えば
アルミニウムならば最低100nm程度が必要となる。
Next, after removing the photoresist film 8, as shown in FIG. 3B, a reflection film 5 is formed on the entire surface. When the light-shielding property of the reflection film 5 is reduced, various elements formed in the silicon substrate 1, in the case of a CCD type solid-state image pickup element, light leaks directly to the charge transfer section to cause smear and the like, leading to deterioration of characteristics. When the reflectance decreases, the amount of light incident on the photoelectric conversion unit 2 decreases, and the sensitivity decreases. For this reason, the material of the reflection film 5 is preferably a material having a large light-shielding property, such as aluminum or tungsten, and a high reflectance. In addition, it is better that the side wall portion has good coverage,
A low pressure CVD (chemical vapor deposition) method or the like may be used as appropriate. In addition, the thickness is set so as to obtain a sufficient light-shielding property. For example, in the case of aluminum, at least about 100 nm is required.

【0014】次に、全面に形成した反射膜5のうち、光
電変換部2の受光部上に当たる位置に開口を形成する。
開口の形成方法は、まず、図4(a)に示すように、フ
ォトレジスト膜11を塗布しこれに開口形成部分13よ
りすこし広い開口12を形成する。次に、異方性エッチ
ング法により反射膜5をエッチングする。これにより絶
縁膜3上の反射膜5は除去されテーパー面上の反射膜5
はわずかにエッチングされて残る。反射膜5の膜厚はこ
のエッチング後の膜厚が十分遮光性を有する膜厚になる
ように選べばよい。
Next, an opening is formed in the reflective film 5 formed on the entire surface at a position corresponding to the light receiving section of the photoelectric conversion section 2.
First, as shown in FIG. 4A, a photoresist film 11 is applied and an opening 12 slightly wider than the opening forming portion 13 is formed in the opening. Next, the reflection film 5 is etched by an anisotropic etching method. Thereby, the reflection film 5 on the insulating film 3 is removed, and the reflection film 5 on the tapered surface is removed.
Remains slightly etched. The film thickness of the reflection film 5 may be selected so that the film thickness after the etching has a sufficient light-shielding property.

【0015】次に、フォトレジスト膜11を除去後、屈
折率が徐々に大きくなるカバー膜6を堆積し表面を平坦
化する〔図4(b)〕。平坦化は例えばCMP法(化学
的機械的研磨法)または塗布膜により行えばよい。カバ
ー膜6は、ドーパントを添加しながら徐々に屈折率を大
きくして形成する。図4(b)の点線で区画した大、
中、小の部分は、模式的に示した屈折率のそれぞれ大、
中、小のカバー膜の部分である。カバー膜6は素子表面
の保護はもちろんのこと、カバー膜の光の屈折率の作用
により、図4(b)に示すように、斜めに入射した光a
を下方向に屈折させ、より垂直に近い角度で光電変換部
2に入射させることができ感度を向上させることができ
る。これにより、図1(a)および図1(b)に示した
第1の実施の形態の固体撮像素子を完成する。もちろん
従来用いていたオンチップレンズを併用してさらに集光
性をあげてもよい。また、隔壁形成膜4を反射性を有す
るものにして反射膜5を省略してもよい。
Next, after removing the photoresist film 11, a cover film 6 whose refractive index gradually increases is deposited and the surface is flattened (FIG. 4B). The planarization may be performed by, for example, a CMP method (chemical mechanical polishing method) or a coating film. The cover film 6 is formed by gradually increasing the refractive index while adding a dopant. The large section defined by the dotted line in FIG.
The middle and small parts are large in refractive index schematically shown,
These are the middle and small cover films. As shown in FIG. 4B, the cover film 6 not only protects the surface of the element, but also has a function of the refractive index of the light of the cover film.
Can be refracted downward, and can be incident on the photoelectric conversion unit 2 at an angle closer to the vertical, and the sensitivity can be improved. Thus, the solid-state imaging device according to the first embodiment shown in FIGS. 1A and 1B is completed. Of course, the condensing property may be further improved by using a conventionally used on-chip lens. Further, the partition wall forming film 4 may be made reflective and the reflective film 5 may be omitted.

【0016】本発明の第2の実施の形態の固体撮像素子
の平面図を図5(a)に、また、図5(a)中の直線A
−A′における断面を図5(b)に、また、第2の実施
の形態の固体撮像素子の製造方法の工程順断面図を図6
(a)〜図8に示す。図5(a)に示すように、本発明
の第2の実施の形態の固体撮像素子では、光電変換部2
を囲むように点線で示した第2隔壁形成膜16が形成さ
れている。また、図5(b)に示すように、第2隔壁形
成膜16は、絶縁膜3上に垂直に形成される。第2隔壁
形成膜16上部を反射膜5が覆い、反射膜5は光電変換
部の受光部上部に隔壁形成膜4のテーパー部上を覆って
形成される。
FIG. 5A is a plan view of a solid-state imaging device according to a second embodiment of the present invention, and FIG.
FIG. 5B is a cross-sectional view taken along line -A ′, and FIG.
(A) to FIG. 8 show. As shown in FIG. 5A, in the solid-state imaging device according to the second embodiment of the present invention, the photoelectric conversion unit 2
Is formed so as to surround the second partition wall forming film 16 indicated by the dotted line. Further, as shown in FIG. 5B, the second partition wall forming film 16 is formed vertically on the insulating film 3. The reflective film 5 covers the upper part of the second partition wall forming film 16, and the reflective film 5 is formed on the light receiving part of the photoelectric conversion part so as to cover the tapered part of the partition wall forming film 4.

【0017】本発明の第2の実施の形態の固体撮像素子
の製造方法を、図6(a)〜図8を参照しながら説明す
る。第2の実施の形態の製造方法において、隔壁形成膜
4を堆積するまでの工程は、第1の実施の形態の製造方
法において説明した方法と同様であるので説明は省略す
る。
A method for manufacturing a solid-state imaging device according to a second embodiment of the present invention will be described with reference to FIGS. In the manufacturing method according to the second embodiment, the steps up to depositing the partition wall forming film 4 are the same as those described in the manufacturing method according to the first embodiment, and a description thereof will be omitted.

【0018】隔壁形成膜4を堆積した後、膜4をフォト
レジストなどをマスクにエッチングを行い、溝15を形
成する〔図6(a)〕。次に、全面に第2隔壁形成膜1
6を堆積し溝15を埋設する〔図6(b)〕。第2隔壁
形成膜16は次に行う隔壁形成膜4のエッチングに対し
て耐性を有し、また幅が狭くかつ深い形状の溝15をボ
イドなく埋設できる必要がある。例えば、シリコン酸化
物やシリコン窒化物などを減圧CVD法により堆積すれ
ばよい。
After depositing the partition wall forming film 4, the film 4 is etched using a photoresist or the like as a mask to form a groove 15 (FIG. 6A). Next, the second partition wall forming film 1 is formed on the entire surface.
6 are buried and the groove 15 is buried [FIG. 6 (b)]. The second partition wall forming film 16 is required to have resistance to the etching of the partition wall forming film 4 to be performed next, and to be able to embed the narrow and deep groove 15 without voids. For example, silicon oxide or silicon nitride may be deposited by a low pressure CVD method.

【0019】次に、図7(a)に示すように、上面の第
2隔壁形成膜16を除去する。続いて、隔壁形成膜4の
光電変換部2の受光部上にあたる部分に開口9を有する
フォトレジスト膜8を形成する。次に、フォトレジスト
膜8をマスクに隔壁形成膜4の異方性を調整しながらエ
ッチングを行う。このときに第2隔壁形成膜16はエッ
チングされないため、図7(b)に示すように、第2隔
壁形成膜16下部はテーパー形状の隔壁形成膜4によっ
て覆われ、一方、光電変換部2の受光部上は隔壁形成膜
4がすべてエッチングされて露出している。
Next, as shown in FIG. 7A, the second partition wall forming film 16 on the upper surface is removed. Subsequently, a photoresist film 8 having an opening 9 is formed in a portion of the partition wall forming film 4 above the light receiving portion of the photoelectric conversion portion 2. Next, etching is performed while adjusting the anisotropy of the partition wall forming film 4 using the photoresist film 8 as a mask. At this time, since the second partition wall forming film 16 is not etched, the lower part of the second partition wall forming film 16 is covered by the tapered partition wall forming film 4 as shown in FIG. On the light receiving portion, the partition wall forming film 4 is entirely etched and exposed.

【0020】続いて、フォトレジスト膜8を除去した後
に反射膜5を堆積する。そして、第1の実施の形態と同
様にフォトレジスト膜11に開口12を形成した後、エ
ッチングを行い光電変換部2の受光部上の反射膜を除去
する(図8)。次に、フォトレジスト膜11を除去した
後、屈折率が徐々に高くなるカバー膜6を堆積し図5
(a)、図5(b)に示す第2の実施の形態の固体撮像
素子を完成する。以上の製造方法により製造された第2
の実施の形態の固体撮像素子では、平坦部に形成される
反射膜5の面積を減少させることができ、これにより光
電変換部2の受光部への入射光量を増加させることがで
き、固体撮像素子の感度を向上させることが可能にな
る。
Subsequently, after removing the photoresist film 8, the reflection film 5 is deposited. Then, after forming the opening 12 in the photoresist film 11 as in the first embodiment, etching is performed to remove the reflective film on the light receiving portion of the photoelectric conversion portion 2 (FIG. 8). Next, after removing the photoresist film 11, a cover film 6 whose refractive index is gradually increased is deposited, and FIG.
5A and 5B, the solid-state imaging device according to the second embodiment is completed. The second manufactured by the above manufacturing method
In the solid-state imaging device according to the embodiment, the area of the reflection film 5 formed on the flat portion can be reduced, whereby the amount of light incident on the light receiving unit of the photoelectric conversion unit 2 can be increased. The sensitivity of the device can be improved.

【0021】本発明の第3の実施の形態の固体撮像素子
の平面図を図9(a)に、また、図9(a)中の直線A
−A′における断面図を図9(b)に示す。図9(a)
に示されるように、本実施の形態においては、各光電変
換部2を囲むように、点線で示した第2隔壁形成膜1
6、第3隔壁形成膜17が形成されている。本実施の形
態の第2の実施の形態との構造上の特徴的な違いは、断
面図に現われ、図9(b)に示されるように、隔壁形成
膜16、17で形成される隔壁の頭部は、反射膜5に覆
われない。第2の実施の形態では、図8を参照して説明
したように、反射膜5の光電変換部2の受光部上の開口
形成を、フォトレジスト膜11により反射膜5をマクス
し異方性エッチングすることにより行っていたが、第3
の実施の形態の固体撮像素子は、フォトレジストを用い
ずに異方性エッチングを行っている。
FIG. 9A is a plan view of a solid-state imaging device according to a third embodiment of the present invention, and FIG.
FIG. 9B is a cross-sectional view taken along line -A '. FIG. 9 (a)
As shown in FIG. 2, in the present embodiment, the second partition wall forming film 1 indicated by a dotted line is surrounded by each photoelectric conversion unit 2.
6. A third partition wall forming film 17 is formed. The structural difference of the present embodiment from the second embodiment appears in the cross-sectional view, and as shown in FIG. The head is not covered with the reflective film 5. In the second embodiment, as described with reference to FIG. 8, the opening of the reflection film 5 on the light receiving portion of the photoelectric conversion unit 2 is formed by masking the reflection film 5 with the photoresist film 11. It was done by etching, but the third
In the solid-state imaging device according to the embodiment, anisotropic etching is performed without using a photoresist.

【0022】これにより、自己整合的に光電変換部2の
受光部上に開口を形成することができ、下地段差の大き
な部分にパターニングしているフォトレジストの形成が
必要がなくなり工程数削減ができる。ただし反射膜5は
光電変換部2上だけでなく隔壁の上部もエッチングされ
るため、隔壁に遮光性の低い膜を使用した場合、光がシ
リコン基板1中に漏洩しCCD型固体撮像素子の場合は
スミアなどのノイズを発生させる。このため低ノイズが
要求される場合は隔壁の下部に別途遮光性を有する膜
(図示しない)または隔壁に遮光性をもたせる必要があ
る。隔壁は金属などの遮光性を有する膜を溝に埋設する
ことにより形成してもよいが、溝は大きな縦横比を有す
るので底部が埋まらずにボイドを生じる可能性がある。
このときは隔壁の下部はシリコン酸化膜などを埋設性の
よい減圧CVD法を用いて埋込み、隔壁の上部に遮光性
を有する膜により埋設すればよい。
Thus, an opening can be formed on the light receiving portion of the photoelectric conversion portion 2 in a self-aligned manner, and it is not necessary to form a photoresist patterned on a portion having a large base step, thereby reducing the number of steps. . However, since the reflective film 5 is etched not only on the photoelectric conversion unit 2 but also on the upper part of the partition, when a film having a low light-shielding property is used for the partition, light leaks into the silicon substrate 1 and the CCD solid-state imaging device is used. Generates noise such as smear. For this reason, when low noise is required, it is necessary to separately provide a light-blocking film (not shown) under the partition or to provide the partition with light-blocking. The partition may be formed by burying a film having a light-shielding property such as a metal in the groove. However, since the groove has a large aspect ratio, a void may be generated without filling the bottom.
In this case, a silicon oxide film or the like may be buried in the lower part of the partition wall by using a low-pressure CVD method having good burying property, and may be buried in the upper part of the partition wall by a film having a light shielding property.

【0023】第3の実施の形態の固体撮像素子の製造方
法の一例を図10(a)〜図11(b)を参照しながら
説明する。最初の工程は、第2の実施の形態で説明した
ように、シリコン基板1および光電変換部2上の絶縁膜
3上に形成した隔壁形成膜4に溝15を形成した後、第
2隔壁形成膜16で溝15を埋設する〔図10
(a)〕。次に、第2隔壁形成膜16をエッチングす
る。このとき、隔壁形成膜4上の第2隔壁形成膜16を
除去し、さらに溝内の第2隔壁形成膜16もある程度、
例えば絶縁膜3の表面から1〜3μmくらいのところま
でエッチングする。次に、図10(b)に示すように、
遮光性を有する第3隔壁形成膜17を隔壁形成膜4と第
2隔壁形成膜16上の全面に堆積する。第3隔壁形成膜
は、例えばアルミニウムやタングステンなどが好まし
い。
An example of a method for manufacturing a solid-state imaging device according to the third embodiment will be described with reference to FIGS. 10 (a) to 11 (b). In the first step, as described in the second embodiment, after forming the groove 15 in the partition wall forming film 4 formed on the silicon substrate 1 and the insulating film 3 on the photoelectric conversion unit 2, the second partition wall forming The groove 15 is buried with the film 16 [FIG.
(A)]. Next, the second partition wall forming film 16 is etched. At this time, the second partition wall forming film 16 on the partition wall forming film 4 is removed, and the second partition wall forming film 16 in the groove is also removed to some extent.
For example, etching is performed up to about 1 to 3 μm from the surface of the insulating film 3. Next, as shown in FIG.
A third partition wall forming film 17 having a light shielding property is deposited on the entire surface of the partition wall forming film 4 and the second partition wall forming film 16. The third partition wall forming film is preferably made of, for example, aluminum or tungsten.

【0024】次に、異方性エッチングにより第3隔壁形
成膜を図10(b)に示した隔壁形成膜4で囲われた溝
の部分だけを残し除去する。次に、第2の実施の形態と
同様にフォトレジスト膜8によるマスクパターンを形成
し、隔壁形成膜4をエッチングし、図11(a)に示す
構造を得る。次に、図11(b)に示すように、フォト
レジスト膜8を除去した後、反射膜5を堆積する。次
に、反射膜5の光電変換部2の受光部上の部分が除去さ
れるまでエッチングを行い、次に、カバー膜6を第1の
実施の形態にて示したように形成して、図9(a)およ
び図9(b)に示した第3の実施の形態の固体撮像素子
を得る。
Next, the third partition wall forming film is removed by anisotropic etching except for the groove portion surrounded by the partition wall forming film 4 shown in FIG. Next, as in the second embodiment, a mask pattern using the photoresist film 8 is formed, and the partition wall forming film 4 is etched to obtain the structure shown in FIG. Next, as shown in FIG. 11B, after removing the photoresist film 8, a reflection film 5 is deposited. Next, etching is performed until the portion of the reflection film 5 on the light receiving unit of the photoelectric conversion unit 2 is removed, and then the cover film 6 is formed as shown in the first embodiment. The solid-state imaging device according to the third embodiment shown in FIGS. 9A and 9B is obtained.

【0025】第4の実施の形態の固体撮像素子の平面図
を図12(a)に、また、図12(a)中の直線A−
A′における断面を図12(b)に、また、製造方法の
工程順断面図を図13(a)〜13(b)に示す。第4
の実施の形態の固体撮像素子は、図12(a)に示すよ
うに、光電変換部2の受光部上に屈折率の違う透明膜1
8、19、20を有する。また、図12(b)に示すよ
うに、光電変換部2の受光部は隔壁形成膜16、17で
形成される隔壁で囲まれる。そして、光電変換部上に、
光電変換部の受光部の端から中心に向かって段々に屈折
率が高くなるような透明膜18、19、20を埋設し、
さらにその上部を平坦化したものである。
FIG. 12A is a plan view of a solid-state imaging device according to the fourth embodiment, and FIG.
FIG. 12B shows a cross section at A ′, and FIGS. 13A to 13B show cross-sectional views in the order of steps of the manufacturing method. 4th
As shown in FIG. 12A, the solid-state imaging device according to the embodiment has a transparent film 1 having a different refractive index on a light receiving portion of the photoelectric conversion portion 2.
8, 19, and 20. In addition, as shown in FIG. 12B, the light receiving section of the photoelectric conversion section 2 is surrounded by the partition formed by the partition forming films 16 and 17. And on the photoelectric conversion unit,
The transparent films 18, 19, and 20 are embedded such that the refractive index gradually increases from the end of the light receiving unit of the photoelectric conversion unit toward the center,
Further, the upper part is flattened.

【0026】次に、第4の実施の形態の製造方法を示
す。第4の実施の形態による屈折率の違う透明膜の形成
方法は、先に示した第1〜第3までのどの実施の形態に
も適用できるが、ここでは、第3の実施の形態に適用し
た例を示す。図13(a)に示す反射膜5の形成までの
第4の実施の形態の製造方法は、図11(b)に示した
第3の実施の形態の固体撮像素子の製造方法と同様であ
るので説明を省略する。図13(a)に示す反射膜5を
形成し、第3の実施の形態と同様にエッチングにより光
電変換部2の受光部上と第3隔壁形成膜上の反射膜を除
去した後、透明膜18、19、20までを順次堆積す
る。この透明膜18〜20は後になるに従い屈折率が高
くなるようにする。ここでは境界がはっきりした3枚の
膜で示したが2枚以上ならば何枚でもよく枚数が多い方
が好ましい。このときの断面図を図13(b)に示す。
次に、上部をCMP法などで研磨し上部を平坦化する。
これにより図12(a)、図12(b)に示す第4の実
施の形態の固体撮像素子を完成する。
Next, a manufacturing method according to a fourth embodiment will be described. The method for forming a transparent film having a different refractive index according to the fourth embodiment can be applied to any of the first to third embodiments described above, but is applied to the third embodiment here. An example is shown below. The manufacturing method of the fourth embodiment up to the formation of the reflection film 5 shown in FIG. 13A is the same as the manufacturing method of the solid-state imaging device of the third embodiment shown in FIG. Therefore, the description is omitted. After forming the reflection film 5 shown in FIG. 13A and removing the reflection film on the light receiving portion of the photoelectric conversion unit 2 and the third partition wall forming film by etching in the same manner as in the third embodiment, the transparent film is formed. 18, 19, and 20 are sequentially deposited. The refractive indices of the transparent films 18 to 20 are made higher as later. Here, three films with clearly defined boundaries are shown, but any number of two or more films may be used, and a larger number of films is preferable. FIG. 13B shows a cross-sectional view at this time.
Next, the upper portion is polished by a CMP method or the like to flatten the upper portion.
Thus, the solid-state imaging device according to the fourth embodiment shown in FIGS. 12A and 12B is completed.

【0027】透明膜18〜20はテーパー形状に形成さ
れた逆錐体の中心部に行くに従い屈折率が高くなるよう
に配置されている。屈折率の高い膜から低い膜に斜めに
入射した光bは図12(b)に示すように、光電変換部
2の受光部の方向に屈折する。これにより光電変換部に
垂直近い角度で入射するようになり感度が向上し、ま
た、CCD型固体撮像素子の場合はスミアが低減すると
いう効果がある。
The transparent films 18 to 20 are arranged so that the refractive index becomes higher toward the center of the tapered inverted cone. The light b obliquely incident from the film having a high refractive index to the film having a low refractive index is refracted in the direction of the light receiving unit of the photoelectric conversion unit 2 as shown in FIG. As a result, the light is incident on the photoelectric conversion unit at an angle close to the vertical, and the sensitivity is improved. In the case of a CCD solid-state imaging device, there is an effect that smear is reduced.

【0028】第5の実施の形態の固体撮像素子の平面図
を図14(a)に、また、図14(a)中の直線A−
A′における断面を図14(b)に、また、製造方法の
工程順断面図を図15(a)〜図16に示す。図14
(a)、14(b)に示す第5の実施の形態の固体撮像
素子の構造は、光電変換部2上に屈折率の違う透明膜1
8、19、20を有する。第4の実施の形態との特徴的
な構造の違いは、図14(b)の断面図に示すように、
第3隔壁形成膜17とこの膜17を挟む反射膜5の上部
を尖らせたものであり、この構造により光がこの部分で
上方に反射するのが減り、入射光量が増え感度が向上す
る。
FIG. 14A is a plan view of the solid-state imaging device according to the fifth embodiment, and FIG.
FIG. 14B shows a cross section at A ′, and FIGS. 15A to 16 show cross-sectional views in the order of steps of the manufacturing method. FIG.
In the structure of the solid-state imaging device according to the fifth embodiment shown in (a) and (b), a transparent film 1 having a different refractive index is formed on a photoelectric conversion unit 2.
8, 19, and 20. A characteristic difference from the fourth embodiment is that, as shown in the cross-sectional view of FIG.
The upper part of the third partition wall forming film 17 and the reflective film 5 sandwiching the film 17 is sharpened. With this structure, light is not reflected upward at this portion, the amount of incident light is increased, and the sensitivity is improved.

【0029】隔壁の上部を尖らせたこの実施の形態は前
述した第2〜第4のどの実施の形態にも適用できるが、
ここでは第4の実施の形態に適用したものを示す。ま
ず、第4の実施の形態の図13(a)で示したように、
隔壁形成膜16、17を形成する(この前の工程は、第
4の実施の形態で説明した工程と同じなので説明を省略
する)が、このときに図15(a)に示すように、隔壁
を構成する第3隔壁形成膜の隔壁形成膜4で覆われない
部分を多くしておく(すなわち、図13(a)と比較し
て図15(a)の第3隔壁形成膜17が縦方向に長
い)。次に、第4の実施の形態と同様にエッチングによ
り光電変換部と隔壁上部の反射膜5を除去した後、透明
膜18、19、20を形成する〔図15(b)〕。
This embodiment in which the upper part of the partition is sharpened can be applied to any of the second to fourth embodiments described above.
Here, an example applied to the fourth embodiment is shown. First, as shown in FIG. 13A of the fourth embodiment,
The partition wall forming films 16 and 17 are formed (the previous step is the same as the step described in the fourth embodiment, and thus the description is omitted). At this time, as shown in FIG. The portion of the third partition wall forming film that is not covered by the partition wall forming film 4 is increased (that is, the third partition wall forming film 17 of FIG. 15A is longer in the vertical direction than that of FIG. 13A). Long). Next, the transparent films 18, 19 and 20 are formed after removing the photoelectric conversion portion and the reflective film 5 above the partition walls by etching in the same manner as in the fourth embodiment (FIG. 15B).

【0030】次にCMP法によって研磨する(図1
6)。次に、露出している透明膜18、19、20と第
3隔壁形成膜および反射膜5をエッチングする。このと
きに透明膜18、19、20と第3隔壁形成膜17、反
射膜5のエッチング速度の比を変えることにより、第3
隔壁形成膜17および反射膜5により形成されている隔
壁上部の傾斜を変えることができる。例えば(透明膜1
8、19、20のエッチングレート):(第3隔壁形成
膜および反射膜5のエッチングレート)を5:1にすれ
ば隔壁の水平面に対する傾き(尖った隔壁と水平面のな
す角の正接)を5にすることができる。これにより、図
14(a)、14(b)に示す本発明第5の実施の形態
の固体撮像素子を得ることができる。
Next, polishing is performed by the CMP method (FIG. 1).
6). Next, the exposed transparent films 18, 19, 20, the third partition wall forming film, and the reflective film 5 are etched. At this time, by changing the ratio of the etching rates of the transparent films 18, 19, and 20, the third partition wall forming film 17, and the reflective film 5, the third
The inclination of the upper part of the partition wall formed by the partition wall forming film 17 and the reflection film 5 can be changed. For example, (Transparent film 1
If the etching rate of 8, 19, and 20) (the etching rate of the third partition wall forming film and the reflective film 5) is set to 5: 1, the inclination of the partition wall with respect to the horizontal plane (tangent of the angle between the sharp partition wall and the horizontal plane) is 5 Can be Thus, the solid-state imaging device according to the fifth embodiment of the present invention shown in FIGS. 14A and 14B can be obtained.

【0031】次に、第6の実施の形態の固体撮像素子の
平面図を図17(a)に、また、図17(a)中の直線
A−A′における断面を図17(b)に示す。図17
(a)、図17(b)に示すように、第6の実施の形態
は、反射膜を用いずに、代わりに屈折率の違う透明膜と
オンチップレンズ21とを組み合わせたものである。第
6の実施の形態の製造方法は、遮光性を有する第3隔壁
形成膜を用いて隔壁を形成したのちに屈折率の低いほう
から高いほうへ順に透明膜18、19、20を堆積しC
MP法により研磨する。次に、オンチップレンズ21を
形成して、図17(a)、17(b)に示す第6の実施
の形態の固体撮像素子を完成する。このように形成され
た第6の実施の形態の固体撮像素子によれば、屈折率の
違う透明膜18、19、20とオンチップレンズ21の
集光効果が加わり、さらに感度の高い固体撮像素子が得
られる。
Next, FIG. 17A is a plan view of a solid-state imaging device according to the sixth embodiment, and FIG. 17B is a cross-sectional view taken along a line AA ′ in FIG. Show. FIG.
As shown in FIG. 17A and FIG. 17B, the sixth embodiment uses a transparent film having a different refractive index and an on-chip lens 21 instead of using a reflective film. According to the manufacturing method of the sixth embodiment, after forming a partition wall using a third partition wall forming film having a light shielding property, transparent films 18, 19, and 20 are deposited in order from a lower refractive index to a higher refractive index.
Polishing by MP method. Next, an on-chip lens 21 is formed to complete the solid-state imaging device according to the sixth embodiment shown in FIGS. 17A and 17B. According to the solid-state imaging device of the sixth embodiment formed in this way, the light-collecting effects of the transparent films 18, 19, and 20 and the on-chip lens 21 having different refractive indexes are added, and the solid-state imaging device with higher sensitivity Is obtained.

【0032】以上好ましい実施の形態について説明した
が、本発明はこれら実施の形態に限定されるものではな
く、特許請求の範囲に記載された範囲内において適宜の
変更が可能なものである。例えば、透明膜(a)の堆積
工程では、連続的に膜を堆積するものとして説明した
が、堆積とエッチバックを繰り返しながら膜の屈折率を
上げていくようにしてもよい。これにより、光電変換部
の中心部分に屈折率の高い膜を集中させることができよ
り集光性を高めることが出来る。また、本発明は、CC
D型固体撮像素子、MOS型固体撮像素子等を含む光電
変換部を有する全ての固体撮像素子に適用できるもので
ある。
Although the preferred embodiments have been described above, the present invention is not limited to these embodiments, and can be appropriately modified within the scope described in the claims. For example, in the step of depositing the transparent film (a), it has been described that the film is deposited continuously, but the refractive index of the film may be increased while repeating deposition and etchback. Thereby, a film having a high refractive index can be concentrated on the central portion of the photoelectric conversion portion, and the light collecting property can be further improved. The present invention also relates to the CC
The present invention can be applied to all solid-state imaging devices having a photoelectric conversion unit including a D-type solid-state imaging device, a MOS-type solid-state imaging device, and the like.

【0033】[0033]

【発明の効果】以上述べたように、本発明の固体撮像素
子は、個々の光電変換部の中心部より外側に向かって屈
折率が徐々に若しくは段階的に低くなる透明膜(カバー
膜)を形成したものであるので、本発明によれば、固体
撮像素子に入射した光が光電変換部に入る率を上げて感
度の向上した固体撮像素子を得ることができる。また、
オンチップレンズを用いない実施の形態においては、素
子表面が硬いカバー膜により覆われているため、ケース
を簡略化できコスト低減を図ることができる。また、C
CD型固体撮像装置においては、電荷転送部への入射光
を低減してスミアの発生を抑えることができる。
As described above, in the solid-state imaging device of the present invention, the transparent film (cover film) whose refractive index gradually or stepwise decreases from the center of each photoelectric conversion portion toward the outside. Since it is formed, according to the present invention, it is possible to obtain a solid-state imaging device with improved sensitivity by increasing the rate at which light incident on the solid-state imaging device enters the photoelectric conversion unit. Also,
In the embodiment in which the on-chip lens is not used, since the element surface is covered with the hard cover film, the case can be simplified and the cost can be reduced. Also, C
In the CD-type solid-state imaging device, the occurrence of smear can be suppressed by reducing the light incident on the charge transfer unit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1の実施の形態の平面図および断面図。FIG. 1 is a plan view and a cross-sectional view of a first embodiment.

【図2】 第1の実施の形態の工程順断面図(その
1)。
FIG. 2 is a cross-sectional view of a first embodiment in the order of steps (part 1).

【図3】 第1の実施の形態の工程順断面図(その
2)。
FIG. 3 is a step-by-step cross-sectional view of the first embodiment (part 2).

【図4】 第1の実施の形態の工程順断面図(その
3)。
FIG. 4 is a step-by-step sectional view of the first embodiment (part 3).

【図5】 第2の実施の形態の平面図および断面図。FIG. 5 is a plan view and a cross-sectional view of a second embodiment.

【図6】 第2の実施の形態の工程順断面図(その
1)。
FIG. 6 is a step-by-step cross-sectional view of the second embodiment (No. 1).

【図7】 第2の実施の形態の工程順断面図(その
2)。
FIG. 7 is a step-by-step cross-sectional view of the second embodiment (No. 2).

【図8】 第2の実施の形態の工程順断面図(その
3)。
FIG. 8 is a step-by-step sectional view of the second embodiment (No. 3).

【図9】 第3の実施の形態の平面図および断面図。FIG. 9 is a plan view and a cross-sectional view of a third embodiment.

【図10】 第3の実施の形態の工程順断面図(その
1)。
FIG. 10 is a step-by-step sectional view of the third embodiment (No. 1).

【図11】 第3の実施の形態の工程順断面図(その
2)。
FIG. 11 is a step-by-step cross-sectional view of the third embodiment (No. 2).

【図12】 第4の実施の形態の平面図および断面図。FIG. 12 is a plan view and a cross-sectional view of a fourth embodiment.

【図13】 第4の実施の形態の工程順断面図。FIG. 13 is a sectional view of a fourth embodiment in the order of steps.

【図14】 第5の実施の形態の平面図および断面図。14A and 14B are a plan view and a cross-sectional view of the fifth embodiment.

【図15】 第5の実施の形態の工程順断面図(その
1)。
FIG. 15 is a step-by-step cross-sectional view of the fifth embodiment (No. 1).

【図16】 第5の実施の形態の工程順断面図(その
2)。
FIG. 16 is a step-by-step cross-sectional view of the fifth embodiment (No. 2).

【図17】 第6の実施の形態の平面図および断面図。17A and 17B are a plan view and a cross-sectional view of the sixth embodiment.

【図18】 従来例の平面図および断面図。FIG. 18 is a plan view and a cross-sectional view of a conventional example.

【図19】 スミアの発生を説明する図。FIG. 19 is a diagram illustrating generation of smear.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 光電変換部 3 絶縁膜 4 隔壁形成膜 5 反射膜 6 カバー膜 7 傾斜部 8 フォトレジスト膜 9 開口 10 開口 11 フォトレジスト膜 12 開口 13 開口形成部分 15 溝 16 第2隔壁形成膜 17 第3隔壁形成膜 18 透明膜 19 透明膜 20 透明膜 21 オンチップレンズ 22 基板 23 光電変換部 24 絶縁膜 25 遮光膜 26 透明平坦膜 27 オンチップレンズ 28 電荷転送部 DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Photoelectric conversion part 3 Insulating film 4 Partition formation film 5 Reflection film 6 Cover film 7 Inclined part 8 Photoresist film 9 Opening 10 Opening 11 Photoresist film 12 Opening 13 Opening formation part 15 Groove 16 Second partition formation film 17 Third partition wall forming film 18 Transparent film 19 Transparent film 20 Transparent film 21 On-chip lens 22 Substrate 23 Photoelectric conversion unit 24 Insulating film 25 Light-shielding film 26 Transparent flat film 27 On-chip lens 28 Charge transfer unit

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面領域内に規則的に形成
された多数の光電変換部と、各光電変換部毎に前記光電
変換部上を囲む隔壁と、前記隔壁によって区画された領
域内に形成された透明膜と、を有する固体撮像素子であ
って、前記透明膜は少なくとも一部の横断面おいて前記
隔壁から離れるにつれて、段階的に若しくは連続的に屈
折率が高くなることを特徴とする固体撮像素子。
1. A large number of photoelectric conversion units regularly formed in a surface region of a semiconductor substrate; a partition wall surrounding the photoelectric conversion unit for each photoelectric conversion unit; and a partition defined by the partition wall. And a formed transparent film, wherein the transparent film has a refractive index that increases stepwise or continuously as the transparent film moves away from the partition wall in at least a part of the cross section. Solid-state imaging device.
【請求項2】 前記隔壁は、反射機能を有するか、若し
くは、その表面に反射膜が形成されていることを特徴と
する請求項1記載の固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein the partition has a reflection function, or a reflection film is formed on a surface of the partition.
【請求項3】 前記隔壁は、その断面形状が前記半導体
基板に近づくに従い厚くなるように形成されており、そ
の側面が傾斜を有していることを特徴とする請求項1ま
たは2記載の固体撮像素子。
3. The solid according to claim 1, wherein the partition wall is formed so that its cross-sectional shape becomes thicker as approaching the semiconductor substrate, and its side surface has an inclination. Imaging device.
【請求項4】 前記隔壁が、光電変換部の受光領域を画
定する第1の隔壁と、該第1の中央部に配置された第2
の隔壁から構成されることを特徴とする請求項1〜3項
の内のいずれか1項に記載の固体撮像素子。
4. The partition according to claim 1, wherein the partition is a first partition defining a light receiving region of a photoelectric conversion unit, and a second partition disposed at the first central portion.
The solid-state imaging device according to any one of claims 1 to 3, wherein the solid-state imaging device comprises:
【請求項5】 前記第2の隔壁が、埋め込み性のよい下
層膜と遮光性に優れた上層膜との二層膜によって形成さ
れていることを特徴とする請求項4記載の固体撮像素
子。
5. The solid-state imaging device according to claim 4, wherein said second partition is formed by a two-layer film of a lower film having a good embedding property and an upper film having an excellent light-shielding property.
【請求項6】 前記第2の隔壁の上部の側面が、前記第
1の隔壁に覆われていないことを特徴とする請求項4記
載の固体撮像素子。
6. The solid-state imaging device according to claim 4, wherein an upper side surface of said second partition is not covered by said first partition.
【請求項7】 前期第2の隔壁の頭部が尖っていること
を特徴とする請求項4記載の固体撮像素子。
7. The solid-state imaging device according to claim 4, wherein the head of the second partition is pointed.
【請求項8】 前記光電変換部上の前記透明膜上にオン
チップレンズを有することを特徴とする請求項1〜7項
の内のいずれか1項に記載の固体撮像素子。
8. The solid-state imaging device according to claim 1, further comprising an on-chip lens on the transparent film on the photoelectric conversion unit.
【請求項9】 (1)基板上に多数の光電変換部を形成
する工程と、 (2)前記基板と前記光電変換部上に絶縁膜を形成する
工程と、 (3)前記絶縁膜上に第1の隔壁形成膜を形成する工程
と、 (4)前記光電変換部上の前記第1の隔壁形成膜を部分
的に除去して前記光電変換部上にテーパー形状の開口を
形成する工程と、 (5)前記絶縁膜上と前記第1の隔壁形成膜上に反射膜
を形成する工程と、 (6)少なくとも前記光電変換部上の前記反射膜を除去
する工程と、 (7)前記反射膜によって囲まれた前記光電変換部上
に、少なくとも一部の横断面において中心部に向かっ
て、連続的に若しくは段階的に、屈折率が高くなってい
る透明膜を形成する工程と、を有する固体撮像素子の製
造方法。
9. A process for forming a large number of photoelectric conversion units on a substrate, a process for forming an insulating film on the substrate and the photoelectric conversion unit, and a process for forming an insulating film on the substrate and the photoelectric conversion unit. Forming a first partition wall forming film; and (4) forming a tapered opening on the photoelectric conversion unit by partially removing the first partition wall forming film on the photoelectric conversion unit. (5) forming a reflective film on the insulating film and the first partition wall forming film; (6) removing the reflective film on at least the photoelectric conversion unit; Forming a transparent film having a higher refractive index continuously or stepwise toward the center in at least a part of the cross section on the photoelectric conversion portion surrounded by the film. A method for manufacturing a solid-state imaging device.
【請求項10】 (1′)基板上に多数の光電変換部を
形成する工程と、 (2′)前記基板と前記光電変換部上に絶縁膜を形成す
る工程と、 (3′)前記絶縁膜上に第1の隔壁形成膜を形成する工
程と、 (4′)前記第1の隔壁形成膜を部分的に除去し各前記
光電変換部を囲む形状の溝を形成する工程と、 (5′)前記溝に第2の隔壁形成膜を埋設して第2の隔
壁を形成する工程と、 (6′)前記光電変換部上の前記第1の隔壁形成膜を除
去して前記光電変換部上にテーパー形状の開口を形成す
る工程と、 (7′)全面に反射膜を形成する工程と、 (8′)前記光電変換部上の前記反射膜を除去する工程
と、 (9′)前記反射膜によって囲まれた前記光電変換部上
に、少なくとも一部の横断面において中心部に向かっ
て、連続的に若しくは段階的に、屈折率が高くなってい
る透明膜を形成する工程と、を有する固体撮像素子の製
造方法。
10. A process for forming a plurality of photoelectric conversion portions on a substrate, a process for forming an insulating film on the substrate and the photoelectric conversion portion, and a process for forming an insulating film on the substrate and the photoelectric conversion portion. Forming a first partition wall forming film on the film; (4 ') forming a groove having a shape surrounding each of the photoelectric conversion units by partially removing the first partition wall forming film; ′) Burying a second partition wall forming film in the groove to form a second partition wall; and (6 ′) removing the first partition wall forming film on the photoelectric conversion section and removing the photoelectric conversion section. (7 ') forming a reflective film on the entire surface; (8') removing the reflective film on the photoelectric conversion unit; (9 ') On the photoelectric conversion portion surrounded by the reflective film, the younger portion is continuously younger toward the center in at least a part of the cross section. Stepwise method for manufacturing a solid-state imaging device having a step of forming a transparent film having a refractive index is high.
【請求項11】 前記第(6)の工程または前記第
(8′)の工程においては、前記光電変換部上に開口を
有するフォトレジスト膜をマスクとして、若しくは、マ
スクを介することなくエッチングを行うことを特徴とす
る請求項9または10記載の固体撮像素子の製造方法。
11. In the step (6) or the step (8 ′), etching is performed using a photoresist film having an opening on the photoelectric conversion portion as a mask or without passing through a mask. The method for manufacturing a solid-state imaging device according to claim 9, wherein:
【請求項12】 前記第(7)の工程または前記第
(9′)の工程においては、透明膜の堆積とエッチバッ
クとの繰り返し工程が含まれていることを特徴とする請
求項9または10記載の固体撮像素子の製造方法。
12. The method according to claim 9, wherein the step (7) or the step (9 ′) includes a step of repeating deposition of a transparent film and etching back. A method for manufacturing the solid-state imaging device according to the above.
JP21306299A 1999-07-28 1999-07-28 Solid-state imaging device and method of manufacturing the same Expired - Fee Related JP3467434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21306299A JP3467434B2 (en) 1999-07-28 1999-07-28 Solid-state imaging device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21306299A JP3467434B2 (en) 1999-07-28 1999-07-28 Solid-state imaging device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001044401A true JP2001044401A (en) 2001-02-16
JP3467434B2 JP3467434B2 (en) 2003-11-17

Family

ID=16632910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21306299A Expired - Fee Related JP3467434B2 (en) 1999-07-28 1999-07-28 Solid-state imaging device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3467434B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124868A1 (en) * 2004-06-10 2005-12-29 Micron Technology, Inc. Method and apparatus for collecting photons in a solid state imaging sensor
WO2007024580A2 (en) * 2005-08-24 2007-03-01 Micron Technology, Inc. Method and apparatus providing an optical guide in image sensor devices
CN100342542C (en) * 2002-03-08 2007-10-10 三洋电机株式会社 Solid camera element and its mfg. method
JP2008147568A (en) * 2006-12-13 2008-06-26 Canon Inc Image sensor and imaging device
JP2008182101A (en) * 2007-01-25 2008-08-07 Fujifilm Corp Solid-state image pickup device
US7420610B2 (en) 2004-12-15 2008-09-02 Matsushita Electric Industrial Co., Ltd. Solid-state imaging element, solid-state imaging device, and method for fabricating the same
JP2009188084A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Semiconductor device
KR101489038B1 (en) 2012-01-31 2015-02-02 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Methods and apparatus for an improved reflectivity optical grid for image sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485960A (en) * 1990-07-30 1992-03-18 Toshiba Corp Solid state pickup device and manufacture thereof
JPH05344279A (en) * 1992-06-10 1993-12-24 Fujitsu Ltd Solid-state image pickup device and its manufacture
JPH0645569A (en) * 1992-05-22 1994-02-18 Matsushita Electron Corp Solid-state image pick-up device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485960A (en) * 1990-07-30 1992-03-18 Toshiba Corp Solid state pickup device and manufacture thereof
JPH0645569A (en) * 1992-05-22 1994-02-18 Matsushita Electron Corp Solid-state image pick-up device and its manufacturing method
JPH05344279A (en) * 1992-06-10 1993-12-24 Fujitsu Ltd Solid-state image pickup device and its manufacture

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342542C (en) * 2002-03-08 2007-10-10 三洋电机株式会社 Solid camera element and its mfg. method
US7358103B2 (en) 2004-06-10 2008-04-15 Micron Technology, Inc. Method of fabricating an imaging device for collecting photons
WO2005124868A1 (en) * 2004-06-10 2005-12-29 Micron Technology, Inc. Method and apparatus for collecting photons in a solid state imaging sensor
USRE44637E1 (en) 2004-06-10 2013-12-10 Round Rock Research, Llc Method of fabricating an imaging device for collecting photons
US7420610B2 (en) 2004-12-15 2008-09-02 Matsushita Electric Industrial Co., Ltd. Solid-state imaging element, solid-state imaging device, and method for fabricating the same
US8304707B2 (en) 2005-08-24 2012-11-06 Aptina Imaging Corporation Method and apparatus providing an optical guide in image sensor devices
WO2007024580A2 (en) * 2005-08-24 2007-03-01 Micron Technology, Inc. Method and apparatus providing an optical guide in image sensor devices
WO2007024580A3 (en) * 2005-08-24 2007-08-16 Micron Technology Inc Method and apparatus providing an optical guide in image sensor devices
US7511257B2 (en) 2005-08-24 2009-03-31 Aptina Imaging Corporation Method and apparatus providing and optical guide in image sensor devices
JP2008147568A (en) * 2006-12-13 2008-06-26 Canon Inc Image sensor and imaging device
JP2008182101A (en) * 2007-01-25 2008-08-07 Fujifilm Corp Solid-state image pickup device
JP2009188084A (en) * 2008-02-05 2009-08-20 Nissan Motor Co Ltd Semiconductor device
KR101489038B1 (en) 2012-01-31 2015-02-02 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Methods and apparatus for an improved reflectivity optical grid for image sensors

Also Published As

Publication number Publication date
JP3467434B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
US7709969B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
US11735618B2 (en) Stacked grid design for improved optical performance and isolation
US7023034B2 (en) Solid-state imaging device with improved image sensitivity
TWI399849B (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
KR0184687B1 (en) Solid state imaging device having high sensitivity and exhibiting high degree of light utilization and method of manufacturing the same
CN101626028B (en) Solid-state imaging device, method for manufacturing the same and imaging apparatus
US8319303B2 (en) Method and system of embedded microlens
US20040012707A1 (en) Solid-state image pickup device
JP2010062567A (en) Light-reflecting cmos image sensor
JPH0964325A (en) Solid-state image sensing device and its manufacture
JPH1168074A (en) Solid state image sensor
JP2008091771A (en) Solid-state image pickup device and its manufacturing method
CN102881700A (en) CMOS image sensor and manufacturing method thereof
JP3467434B2 (en) Solid-state imaging device and method of manufacturing the same
JPH10163462A (en) Solid-state image sensing device of mass type filter structure and its manufacture
JP3677970B2 (en) Solid-state imaging device and manufacturing method thereof
CN103022068B (en) CMOS (complementary metal oxide semiconductor) image sensor and method for manufacturing same
US7411276B2 (en) Photosensitive device
JP3402429B2 (en) Solid-state imaging device and method of manufacturing the same
JP2003249633A (en) Solid imaging device and manufacturing method thereof
KR20020042098A (en) Image sensor and method for fabricating the same
JPH11103036A (en) Solid-state image-pickup element
JP2002246578A (en) Manufacturing method of solid-state image pickup element
JPH07106537A (en) Manufacture of solid-state image sensing device
JPH10326885A (en) Solid-state image-pickup element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees