JP2001043898A - Manufacture of nonaqueous electrolyte secondary battery - Google Patents

Manufacture of nonaqueous electrolyte secondary battery

Info

Publication number
JP2001043898A
JP2001043898A JP11214504A JP21450499A JP2001043898A JP 2001043898 A JP2001043898 A JP 2001043898A JP 11214504 A JP11214504 A JP 11214504A JP 21450499 A JP21450499 A JP 21450499A JP 2001043898 A JP2001043898 A JP 2001043898A
Authority
JP
Japan
Prior art keywords
battery
temperature
secondary battery
aqueous electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11214504A
Other languages
Japanese (ja)
Inventor
Takao Nirasawa
貴夫 韮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11214504A priority Critical patent/JP2001043898A/en
Publication of JP2001043898A publication Critical patent/JP2001043898A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of maintaining its battery performance by controlling an increase in internal resistance during the use of the battery. SOLUTION: A battery body is made by hermetically sealing a positive electrode and a negative electrode, layered with a separator interposed between them, together with a nonaqueous electrolyte, then initial charging is performed, and next, low-temperature preservation treatment is performed for preserving the battery body at low temperatures. The negative electrode is made up of a carbon material capable of doping and dedoping lithium ions or lithium or a lithium alloy. During the low-temperature preservation treatment of the battery body, the battery body is kept at a temperature lower than 15 deg.C, preferably at a temperature of 10 deg.C or less. The lower limit of the keeping temperature is set within a range not causing the nonaqueous electrolyte to freeze. This densifies films formed on the positive electrode and negative electrode after the initial charging, and suppresses the further growth of the films to inhibit internal resistance from increasing with time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の製造方法に関し、特にはリチウムイオンをドープ・
脱ドープすることが可能な炭素材料、リチウムまたはリ
チウム合金を用いて構成された負極を有する非水電解液
二次電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery, and more particularly to a method for doping lithium ion.
The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery having a negative electrode formed using a carbon material capable of being undoped, lithium or a lithium alloy.

【0002】[0002]

【従来の技術】近年、ビデオカメラ等の携帯用電子機器
の普及に伴い、これらの電源用として電池電圧が高く高
エネルギー密度を有し、自己放電が少なく、かつサイク
ル特性に優れた非水電解液二次電池の需要が期待されて
いる。このような非水電解液二次電池は、正極と負極と
をセパレータを介して積層した状態で非水電解液と共に
密封してなる。このような非水電解液二次電池の中で
も、特に、リチウムイオンのドープ・脱ドープが可能な
炭素材料で構成された負極と、リチウム複合酸化物で構
成された正極とを用いた非水電解液二次電池は、サイク
ル特性に優れ、さらに低温特性、負荷特性、急速充電特
性にも優れたものであり、携帯用電子機器の電源として
実用化されている。
2. Description of the Related Art In recent years, with the spread of portable electronic devices such as video cameras and the like, non-aqueous electrolytic cells having a high battery voltage, a high energy density, a small self-discharge, and excellent cycle characteristics have been used for these power supplies. Demand for liquid secondary batteries is expected. Such a non-aqueous electrolyte secondary battery is formed by sealing a positive electrode and a negative electrode together with a non-aqueous electrolyte in a state of being stacked with a separator interposed therebetween. Among such non-aqueous electrolyte secondary batteries, in particular, non-aqueous electrolytes using a negative electrode composed of a carbon material capable of doping and undoping lithium ions and a positive electrode composed of a lithium composite oxide Liquid secondary batteries have excellent cycle characteristics, and also have excellent low-temperature characteristics, load characteristics, and rapid charging characteristics, and have been put to practical use as power sources for portable electronic devices.

【0003】一方、地球環境汚染の深刻さが増し、電気
自動車ならびにハイブリッド車等のEV(electric veh
icle)への関心が高まっており、これらの電源用として
も非水電解液二次電池が期待されている。このようなE
V用の非水電解液二次電池には、従来の民生用と比較し
てさらなる高エネルギー密度、高負荷特性が要求されて
おり、電極を薄型、大面積化して内部抵抗を抑えること
で、高負荷充放電を可能としている。
On the other hand, the seriousness of global environmental pollution has increased, and electric vehicles (EVs) such as electric vehicles and hybrid vehicles have been developed.
The interest in non-aqueous electrolyte secondary batteries is also expected for these power sources. Such an E
Non-aqueous electrolyte secondary batteries for V are required to have higher energy density and higher load characteristics than conventional consumer batteries. By reducing the internal resistance by making the electrodes thinner and larger in area, High load charge / discharge is possible.

【0004】[0004]

【発明が解決しようとする課題】ところが、非水電解液
二次電池では、充放電を繰り返したり、長時間の保存に
よってその内部抵抗が上昇するため、電池使用に伴って
放電効率が低下して電池容量が小さくなる。特に、上述
の高負荷充放電が可能な非水電解液二次電池において
は、電極面積が大きいため、充放電サイクル及び経時変
化による僅かな内部抵抗の上昇であっても、電池として
の抵抗の上昇率が大きくなり、電池性能が著しく低下す
ることになる。
However, in a non-aqueous electrolyte secondary battery, the charge / discharge cycle is repeated, or the internal resistance increases due to long-term storage, so that the discharge efficiency decreases with the use of the battery. Battery capacity decreases. In particular, in the non-aqueous electrolyte secondary battery capable of high-load charge / discharge described above, since the electrode area is large, even if the internal resistance is slightly increased due to charge / discharge cycles and aging, the resistance of the battery as a battery is reduced. The rate of increase is large, and the battery performance is significantly reduced.

【0005】そこで本発明は、電池使用による内部抵抗
の上昇が抑制され、電池性能を維持できる非水電解液二
次電池の製造方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method for manufacturing a non-aqueous electrolyte secondary battery in which an increase in internal resistance due to use of a battery can be suppressed and battery performance can be maintained.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るための本発明の非水電解液二次電池の製造方法は、正
極と負極とをセパレータを介して積層した状態で非水電
解液と共に密封してなる電池本体を作製し、初充電を行
った後、電池本体を低温で保持する低温保存処理工程を
行う。負極は、リチウムイオンをドープ・脱ドープする
ことが可能な炭素材料、リチウムまたはリチウム合金を
用いて構成されることとする。また、低温保存処理工程
では、電池本体を15℃未満の温度に保持することと
し、好ましくは10℃以下に温度に保持することとす
る。尚、保持温度の下限は、非水電解液が凝固しない範
囲に設定されることとする。
In order to achieve the above object, a method of manufacturing a non-aqueous electrolyte secondary battery according to the present invention comprises a non-aqueous electrolyte with a positive electrode and a negative electrode laminated with a separator interposed therebetween. After the first charging is performed, a low-temperature preservation processing step of maintaining the battery main body at a low temperature is performed. The negative electrode is formed using a carbon material capable of doping / dedoping lithium ions, lithium, or a lithium alloy. In the low-temperature preservation treatment step, the battery body is kept at a temperature of less than 15 ° C, preferably at a temperature of 10 ° C or less. The lower limit of the holding temperature is set in a range where the non-aqueous electrolyte does not solidify.

【0007】このような製造方法においては、初充電後
の電池本体を低温で保持することによって、電池の内部
抵抗の上昇率が抑えられる。図1には、初充電後の保存
処理温度と内部抵抗の上昇率との関係を示した。内部抵
抗の上昇率は、保存処理の直後における非水電解液二次
電池の内部抵抗に対して、この非水電解液二次電池に対
して高温保存試験を行った後の内部抵抗の上昇率として
算出した値である。内部抵抗は、非水電解液二次電池に
異なる電流Iを流したときに測定された各電圧Eに基づ
いて、ΔE/ΔIとして算出した値である。この図から
明らかなように、保存処理温度が15℃以上の場合の内
部抵抗上昇率と比較して、保存処理温度が15℃未満、
特に10℃以下の低温の場合において内部抵抗の上昇率
が低く抑えられていることがわかる。
In such a manufacturing method, the rate of increase in the internal resistance of the battery is suppressed by keeping the battery body after the initial charge at a low temperature. FIG. 1 shows the relationship between the storage temperature after the initial charge and the rate of increase in the internal resistance. The rate of increase in internal resistance is the rate of increase in internal resistance after performing a high-temperature storage test on the nonaqueous electrolyte secondary battery with respect to the internal resistance of the nonaqueous electrolyte secondary battery immediately after storage processing. Is a value calculated as The internal resistance is a value calculated as ΔE / ΔI based on each voltage E measured when a different current I flows through the nonaqueous electrolyte secondary battery. As is apparent from this figure, the storage processing temperature is lower than 15 ° C. as compared with the internal resistance increase rate when the storage processing temperature is 15 ° C. or higher.
In particular, it can be seen that the rate of increase of the internal resistance is kept low at a low temperature of 10 ° C. or less.

【0008】一般に、非水電解液二次電池は、充放電サ
イクルや高温での保存によって内部抵抗が上昇するが、
その原因としては、電極を構成する誘電体、活物質、導
電補助剤の接触抵抗上昇、非水電解液の劣化、電極表面
での皮膜成長による内部抵抗の上昇が考えられる。本発
明の製造方法では、初充電後に電極本体を低温保存処理
することにより、初充電後に電極表面に形成される皮膜
が緻密になり、その結果、皮膜自身の絶縁性が高くなっ
たことに起因して、その後の高温での保存中において、
皮膜の成長が抑制されたためと考えられる。特に、炭素
材料やリチウムまたはリチウム合金を用いて構成された
負極を有する非水電解液二次電池(いわゆるリチウム二
次電池、リチウムイオン二次電池)は、酸化還元電位が
低く、非水電解液の溶媒と非水電解液中のリチウムイオ
ンとの反応生成物が電極表面に皮膜として形成され易い
ため、この皮膜の成長が抑制されることによって、内部
抵抗の経時的な上昇が抑えられるのである。
In general, the internal resistance of a non-aqueous electrolyte secondary battery increases due to charge / discharge cycles and storage at high temperatures.
Possible causes include an increase in the contact resistance of the dielectric, active material, and conductive auxiliary constituting the electrode, deterioration of the non-aqueous electrolyte, and an increase in the internal resistance due to film growth on the electrode surface. In the manufacturing method of the present invention, the film formed on the electrode surface after the initial charge is made dense by performing the low-temperature preservation treatment on the electrode body after the initial charge, and as a result, the insulating property of the film itself is increased. Then, during the subsequent storage at high temperature,
It is considered that the growth of the film was suppressed. In particular, a non-aqueous electrolyte secondary battery having a negative electrode composed of a carbon material or lithium or a lithium alloy (a so-called lithium secondary battery or lithium ion secondary battery) has a low oxidation-reduction potential and a non-aqueous electrolyte. The reaction product of the solvent and the lithium ions in the non-aqueous electrolyte is likely to be formed as a film on the electrode surface. Therefore, by suppressing the growth of the film, the rise of the internal resistance over time can be suppressed. .

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。図2は、本発明の製造方法
によって得られる非水電解液二次電池の一例を示す概略
断面図である。この図に示す非水電解液二次電池は、正
極1、負極2及び、非水溶媒に電解質を溶解してなる非
水電解液を備え、帯状の正極1及び負極2をセパレータ
3を介して渦巻き状に巻き込んで電池素子が構成されて
いる。負極は、リチウムイオンをドープ・脱ドープする
ことが可能な炭素材料、リチウムまたはリチウム合金を
用いて構成されている。この電池素子は、上下に絶縁板
4を配設した状態で円筒形の電池缶5に収納され、負極
2から導出された負極リード6が缶底に溶着されてお
り、正極1から導出された正極リード7は、電池の内圧
に応じて電流を遮断する安全弁8に溶着されている。ま
た、電池缶5は、ガスケット9を介して溶着された電池
蓋10によって密閉されており、正極リード7は、安全
弁8を介して電池蓋10に接続されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 is a schematic cross-sectional view showing an example of the non-aqueous electrolyte secondary battery obtained by the production method of the present invention. The non-aqueous electrolyte secondary battery shown in this figure includes a positive electrode 1, a negative electrode 2, and a non-aqueous electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent. The battery element is formed by being spirally wound. The negative electrode is configured using a carbon material capable of doping / dedoping lithium ions, lithium or a lithium alloy. This battery element was housed in a cylindrical battery can 5 with insulating plates 4 arranged on the upper and lower sides, and a negative electrode lead 6 derived from the negative electrode 2 was welded to the bottom of the can, and was derived from the positive electrode 1. The positive electrode lead 7 is welded to a safety valve 8 that shuts off current according to the internal pressure of the battery. The battery can 5 is sealed by a battery lid 10 welded via a gasket 9, and the positive electrode lead 7 is connected to the battery lid 10 via a safety valve 8.

【0010】このような構成の非水電解液二次電池の正
極1には、十分な量のリチウム(Li)を含んだ正極活
物質が好適に用いられる。このような正極活物質として
は、例えば一般式LixMO2 (ただし、MはCo,N
i,Mn,Fe,Al,V,Tiの少なくとも一種類を
表し、xは正の数であることとする)で表されるリチウ
ムと他の金属からなる複合金属酸化物を用いることがで
きる。
A positive electrode active material containing a sufficient amount of lithium (Li) is suitably used for the positive electrode 1 of the nonaqueous electrolyte secondary battery having such a configuration. As such a positive electrode active material, for example, a general formula LixMO 2 (where M is Co, N
i represents at least one of i, Mn, Fe, Al, V, and Ti, and x is a positive number), and a composite metal oxide composed of lithium and another metal can be used.

【0011】一方、負極2には、リチウムイオンをドー
プ・脱ドープすることが可能な炭素材料や、リチウムま
たはリチウム合金が用いられる。炭素材料としては、易
黒鉛化性炭素材料、難黒鉛化性炭素材料(ハードカーボ
ン)、黒鉛材料等を用いることができる。
On the other hand, the anode 2 is made of a carbon material capable of doping and undoping lithium ions, lithium or a lithium alloy. As the carbon material, a graphitizable carbon material, a non-graphitizable carbon material (hard carbon), a graphite material, or the like can be used.

【0012】また、非水電解液は、例えばリチウム塩を
電解質としてこれを非水溶媒に溶解させた電解液が用い
られる。ここで、非水溶媒は特に限定されるものではな
いが、プロピレンカーボネート、エチレンカーボネー
ト、1−2ジメトキシエタン、γ−ブチロラクトン、テ
トラヒドロフラン、2−メチルテトラヒドロフラン、
1、3−ジオキソラン、スルホラン、アセトニトリル、
ジエチルカーボネート、ジプロピルカーボネート等の有
機溶媒を単独、または二種類以上混合して用いられる。
電解質としては、LiPF6 、LiClO4 、LiAs
6 、LiBF4 、LiB(C6 5 4 、LiCl、
LiBr、CH3 SO3 Li等が用いられる。
As the non-aqueous electrolyte, for example, an electrolyte obtained by using a lithium salt as an electrolyte and dissolving it in a non-aqueous solvent is used. Here, the non-aqueous solvent is not particularly limited, but propylene carbonate, ethylene carbonate, 1-2 dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran,
1,3-dioxolan, sulfolane, acetonitrile,
Organic solvents such as diethyl carbonate and dipropyl carbonate are used alone or in combination of two or more.
As the electrolyte, LiPF 6 , LiClO 4 , LiAs
F 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl,
LiBr, CH 3 SO 3 Li or the like is used.

【0013】次に、本発明の具体的な実施例を説明す
る。なお、本発明は以下に示した実施例に限定されるも
のではない。
Next, a specific embodiment of the present invention will be described. The present invention is not limited to the embodiments described below.

【0014】(実施例)先ず、正極1を次のようにして
作製した。リチウムマンガンスピネル酸化物(LiMn
2 4 )粉末86重量部、導電補助剤として黒鉛粉末1
0重量部、結着剤としてポリフッ化ビニリデン4重量部
を混合し、この混合物をN−メチル−2−ピロリドンに
分散させて正極活物質スラリーを作製した。
(Example) First, a positive electrode 1 was produced as follows. Lithium manganese spinel oxide (LiMn
2 O 4 ) 86 parts by weight of powder, graphite powder 1 as a conductive additive
0 parts by weight and 4 parts by weight of polyvinylidene fluoride as a binder were mixed, and this mixture was dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode active material slurry.

【0015】次に、圧延によって製造された厚さ約20
μmのアルミニウム箔からなる正極集電体の両面に、こ
の正極活物質スラリーを均一に塗布し、乾燥させた後プ
レスし、帯状の正極1を形成した。成形後における正極
1の合材厚さは、約80μmとした。
[0015] Next, the thickness of about 20 manufactured by rolling.
This positive electrode active material slurry was uniformly applied to both surfaces of a positive electrode current collector made of a μm aluminum foil, dried, and pressed to form a belt-shaped positive electrode 1. The thickness of the mixture of the positive electrode 1 after the molding was about 80 μm.

【0016】また、負極2を次のようにして作製した。
ハードカーボン粉末90重量部、結着剤としてポリフッ
化ビニリデン10重量部を混合し、この混合物をN−メ
チル−2−ピロリドンに分散させて負極活物質スラリー
を作製した。
Further, the negative electrode 2 was manufactured as follows.
90 parts by weight of hard carbon powder and 10 parts by weight of polyvinylidene fluoride as a binder were mixed, and this mixture was dispersed in N-methyl-2-pyrrolidone to prepare a negative electrode active material slurry.

【0017】次に、圧延によって製造された厚さ約15
μmの銅箔からなる負極集電体の両面に、この負極活物
質スラリーを均一に塗布し、乾燥させた後プレスし、帯
状の負極2を形成した。成形後における負極2の合材厚
さは、約60μmとした。
Next, a thickness of about 15 mm manufactured by rolling.
This negative electrode active material slurry was uniformly applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of μm, dried, and pressed to form a strip-shaped negative electrode 2. The thickness of the mixture of the negative electrode 2 after the molding was about 60 μm.

【0018】さらに、非水電解液を次のようにして作製
した。プロピレンカーボネートと、ジエチルカーボネー
トとを体積比1:1で混合した混合溶媒に、LiPF6
を0.9モル/リットルの割合で溶解させて非水電解液
を作製した。
Further, a non-aqueous electrolyte was prepared as follows. LiPF 6 was added to a mixed solvent obtained by mixing propylene carbonate and diethyl carbonate at a volume ratio of 1: 1.
Was dissolved at a rate of 0.9 mol / liter to prepare a non-aqueous electrolyte.

【0019】上述のようにして形成した正極1及び負極
2と、ポリエチレン製のセパレータ3とを、負極2、セ
パレータ3、正極1、セパレータ3の順に積層して円筒
状に巻き込み、渦巻き状の電池素子を形成した。
The positive electrode 1 and the negative electrode 2 formed as described above, and the separator 3 made of polyethylene are laminated in the order of the negative electrode 2, the separator 3, the positive electrode 1, and the separator 3, and wound in a cylindrical shape. An element was formed.

【0020】その後、この電極素子の上下に絶縁板4を
配設した状態でこれを外径40mmの円筒形の電池缶5
に収納し、負極2から導出させた負極リード6を電池缶
5の底部に溶着すると共に、正極1から導出させた正極
リード7を安全弁8に溶着した。次に、電池缶5内に上
述のようにして作製した非水電解液を注入した後、電池
缶5の開口部にガスケット9をかしめることによって電
池蓋10を取り付けて密封し、これによって、外径40
mm、高さ100mmの円筒型の電池本体11を形成し
た。
Thereafter, with the insulating plate 4 disposed above and below the electrode element, the insulating plate 4 is mounted on a cylindrical battery can 5 having an outer diameter of 40 mm.
The negative electrode lead 6 led out of the negative electrode 2 was welded to the bottom of the battery can 5, and the positive electrode lead 7 led out of the positive electrode 1 was welded to the safety valve 8. Next, after injecting the non-aqueous electrolyte prepared as described above into the battery can 5, the battery lid 10 is attached and sealed by caulking the gasket 9 into the opening of the battery can 5, whereby Outer diameter 40
A cylindrical battery body 11 having a height of 100 mm and a height of 100 mm was formed.

【0021】次に、この電池本体11に対して初充電を
行った。初充電の条件は、4.2V、1.5Aで6時間
とした。
Next, the battery body 11 was initially charged. The condition of the initial charge was 4.2 V, 1.5 A for 6 hours.

【0022】その後、電池本体11を低温で保持する低
温保存処理を行った。この際の処理条件は、保存処理温
度を−20℃、−10℃、0℃、10℃の各温度とし、
それぞれの温度で2週間の保存処理を行い、これによっ
てそれぞれの温度での低温保存処理を行った4種類の非
水電解液二次電池を作製した。
Thereafter, a low-temperature preservation process for maintaining the battery body 11 at a low temperature was performed. The processing conditions at this time are preservation processing temperatures of −20 ° C., −10 ° C., 0 ° C., and 10 ° C.,
Preservation treatment was performed for two weeks at each temperature, thereby producing four types of nonaqueous electrolyte secondary batteries that were subjected to low-temperature preservation treatment at each temperature.

【0023】(比較例)実施例での低温保存処理に換え
て、15℃、25℃の各温度での保存処理を行ったこと
以外は、実施例と同様にして2種類の非水電解液二次電
池を作製した。
(Comparative Example) Two kinds of non-aqueous electrolytes were prepared in the same manner as in the example except that the storage processing at each of 15 ° C. and 25 ° C. was performed instead of the low-temperature storage processing in the example. A secondary battery was manufactured.

【0024】(電池特性測定)上述のようにして作製し
た実施例の非水電解液二次電池と比較例の非水電解液二
次電池に関し、60℃の恒温槽内に10日間保存する高
温保存試験を行い、その前後における内部抵抗を測定し
てその上昇率を算出した。内部抵抗は、非水電解液二次
電池に10A、30Aの各電流Iを流したときに測定さ
れた各電圧Eから算出したΔE/ΔIの値とした。図1
には、保存処理の際の保存処理温度と、算出された内部
抵抗の上昇率との関係を示した。この図から明らかなよ
うに、保存処理温度が10℃〜15℃の領域に、内部抵
抗の上昇率が急激に変化するクリティカルポイントがあ
り、15℃以上の比較例の非水電解液二次電池における
内部抵抗の上昇率と比較して、保存処理温度が15℃未
満(10℃以下)の実施例の非水電解液二次電池におけ
る内部抵抗の上昇率が低く抑えられていることが確認さ
れた。
(Measurement of Battery Characteristics) Regarding the non-aqueous electrolyte secondary battery of the embodiment and the non-aqueous electrolyte secondary battery of the comparative example manufactured as described above, a high temperature stored in a thermostat at 60 ° C. for 10 days A storage test was performed, and the internal resistance before and after the storage test was measured to calculate the rate of increase. The internal resistance was a value of ΔE / ΔI calculated from each voltage E measured when each current I of 10 A and 30 A was passed through the nonaqueous electrolyte secondary battery. FIG.
2 shows the relationship between the storage temperature at the time of the storage processing and the calculated increase rate of the internal resistance. As is clear from this figure, there is a critical point where the rate of increase of the internal resistance sharply changes in the region where the storage temperature is 10 ° C. to 15 ° C., and the non-aqueous electrolyte secondary battery of the comparative example having a temperature of 15 ° C. or more. It was confirmed that the increase rate of the internal resistance in the nonaqueous electrolyte secondary battery of the example in which the storage temperature was less than 15 ° C. (10 ° C. or less) was suppressed lower than the increase rate of the internal resistance in Example 1. Was.

【0025】これは、初充電後に電極表面に形成される
皮膜(非水電解液の溶媒と非水電解液中のリチウムイオ
ンとの反応生成物からなる)が、初充電後に電極本体1
1を低温保存処理することにより緻密になり、その結
果、皮膜自身の絶縁性が高くなったことに起因して、そ
の後の高温での保存中において皮膜成長が抑制されたた
めと考えられる。したがって、高温保存による内部抵抗
の経時的な上昇が抑えられると共に、充放電サイクルに
よる内部抵抗の上昇も抑えられると考えられる。
This is because the film formed on the electrode surface after the first charge (consisting of the reaction product of the solvent of the non-aqueous electrolyte and the lithium ions in the non-aqueous electrolyte) forms the electrode body 1 after the first charge.
It is presumed that the film No. 1 was densified by the low-temperature preservation treatment, and as a result, the film itself was increased in insulating property, so that the film growth was suppressed during the subsequent storage at a high temperature. Therefore, it is considered that the increase in internal resistance over time due to high-temperature storage is suppressed, and the increase in internal resistance due to charge / discharge cycles is also suppressed.

【0026】[0026]

【発明の効果】以上説明したように、本発明の非水電解
液二次電池の製造方法によれば、電池本体を初充電した
後に低温保存処理することで、高温保存や充放電サイク
ルによるによる内部抵抗の上昇を低く抑えることが可能
になる。このため、放電効率の経時的な低下を抑えて電
池容量を維持することができ、電池使用中における電池
性能を維持することが可能な非水電解液二次電池を得る
ことができる。
As described above, according to the method of manufacturing a non-aqueous electrolyte secondary battery of the present invention, the battery body is first charged and then subjected to a low-temperature preservation treatment, thereby achieving a high-temperature preservation and a charge / discharge cycle. It is possible to suppress the rise in internal resistance to a low level. For this reason, a non-aqueous electrolyte secondary battery can be obtained in which the battery capacity can be maintained while the discharge efficiency is kept from decreasing over time, and the battery performance can be maintained during use of the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】保存処理の際の保存処理温度と内部抵抗の上昇
率との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a storage temperature and a rate of increase in internal resistance during a storage process.

【図2】本発明の製造方法によって得られる非水電解液
二次電池の概略断面図である。
FIG. 2 is a schematic sectional view of a non-aqueous electrolyte secondary battery obtained by the production method of the present invention.

【符号の説明】[Explanation of symbols]

1…正極、2…負極、3…セパレータ、11…電池本体 DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Separator, 11 ... Battery body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウムイオンをドープ・脱ド
ープすることが可能な炭素材料、リチウムまたはリチウ
ム合金を用いて構成された負極とを、セパレータを介し
て積層した状態で非水電解液と共に密封してなる電池本
体を作製する工程と、 前記電池本体に対して初充電を行う工程と、 前記電池本体を低温で保持する低温保存処理工程とを行
うことを特徴とする非水電解液二次電池の製造方法。
1. A non-aqueous electrolyte together with a non-aqueous electrolyte in which a positive electrode and a negative electrode made of a carbon material capable of doping / dedoping lithium ions, lithium or a lithium alloy are laminated via a separator. A step of producing a sealed battery body; a step of initially charging the battery body; and a low-temperature preservation step of maintaining the battery body at a low temperature. Manufacturing method of secondary battery.
【請求項2】 請求項1記載の非水電解液二次電池の製
造方法において、 前記低温保存処理工程では、前記電池本体を15℃未満
の温度で保持することを特徴とする非水電解液二次電池
の製造方法。
2. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein in the low-temperature preservation treatment step, the battery body is held at a temperature of less than 15 ° C. A method for manufacturing a secondary battery.
JP11214504A 1999-07-29 1999-07-29 Manufacture of nonaqueous electrolyte secondary battery Pending JP2001043898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11214504A JP2001043898A (en) 1999-07-29 1999-07-29 Manufacture of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11214504A JP2001043898A (en) 1999-07-29 1999-07-29 Manufacture of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001043898A true JP2001043898A (en) 2001-02-16

Family

ID=16656818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11214504A Pending JP2001043898A (en) 1999-07-29 1999-07-29 Manufacture of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001043898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210612A (en) * 2010-03-30 2011-10-20 Furukawa Battery Co Ltd:The Storage method of lithium ion battery
US11881554B2 (en) 2018-07-25 2024-01-23 Lg Energy Solution, Ltd. Polymer electrolyte and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210612A (en) * 2010-03-30 2011-10-20 Furukawa Battery Co Ltd:The Storage method of lithium ion battery
US11881554B2 (en) 2018-07-25 2024-01-23 Lg Energy Solution, Ltd. Polymer electrolyte and method for producing same

Similar Documents

Publication Publication Date Title
US8597837B2 (en) Method for producing nonaqueous electrolyte lithium-ion secondary battery
KR100782868B1 (en) Charging method for charging nonaqueous electrolyte secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP6054517B2 (en) Nonaqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
KR20130110004A (en) Nonaqueous electrolyte battery and battery pack
JP6275694B2 (en) Nonaqueous electrolyte secondary battery
EP3979368B1 (en) Non-aqueous electrolyte secondary battery
US20230327180A1 (en) Method of producing lithium ion secondary battery and negative electrode material
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
US20190131623A1 (en) Method for charging lithium-ion secondary battery, lithium-ion secondary battery system, and power storage device
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP2009134970A (en) Nonaqueous electrolytic battery
JP2008140683A (en) Battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP4512776B2 (en) Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same
JP2003168427A (en) Nonaqueous electrolyte battery
JP2012221681A (en) Lithium secondary battery and manufacturing method thereof
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2002110155A (en) Nonaqueous electrolyte secondary battery
JP2001043898A (en) Manufacture of nonaqueous electrolyte secondary battery
JP6125719B1 (en) Charging system and method for charging non-aqueous electrolyte battery