JP2001043877A - Fuel-cell power generating system - Google Patents

Fuel-cell power generating system

Info

Publication number
JP2001043877A
JP2001043877A JP11279135A JP27913599A JP2001043877A JP 2001043877 A JP2001043877 A JP 2001043877A JP 11279135 A JP11279135 A JP 11279135A JP 27913599 A JP27913599 A JP 27913599A JP 2001043877 A JP2001043877 A JP 2001043877A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
power generation
generation system
cell power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11279135A
Other languages
Japanese (ja)
Inventor
Takashi Moriya
隆史 守谷
Akemasa Daimaru
明正 大丸
Naoya Watabe
直也 渡部
Takashi Koumura
隆 鴻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP11279135A priority Critical patent/JP2001043877A/en
Publication of JP2001043877A publication Critical patent/JP2001043877A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel-cell power generating system suitable for use on vehicle. SOLUTION: This fuel-cell power generating system 1 has a fuel cell 7 equipped with a heat-resistant polymer film including phosphoric acid serving as medium for proton conduction and a temperature raising means H capable of raising the temperature of the fuel cell 7 prior to the start of operation, CO-containing reformed hydrogen produced from fuel, such as alcohol and gasoline, is supplied to the fuel cell 7 without being humidified, and the fuel cell 7 is operated with the upper limit of working temperature set at 200 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池発電システ
ム,特に車載用として好適な前記システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system, and more particularly to the above-mentioned system suitable for use in a vehicle.

【0002】[0002]

【従来の技術】従来,この種の燃料電池発電システムと
しては,アルコール,ガソリン等の燃料から,COを含
む改質水素を生成し,次いで改質水素にCO除去処理を
施し,その後改質水素を,湿潤状態でプロトン伝導性を
示す固体高分子電解質膜を備えた燃料電池に供給し,前
記燃料電池を,その動作温度の上限を100℃に設定し
て運転するものが知られている。
2. Description of the Related Art Conventionally, as a fuel cell power generation system of this kind, a reformed hydrogen containing CO is generated from a fuel such as alcohol or gasoline, and then the reformed hydrogen is subjected to a CO removal treatment. Is supplied to a fuel cell provided with a solid polymer electrolyte membrane exhibiting proton conductivity in a wet state, and the fuel cell is operated with its operating temperature set at an upper limit of 100 ° C.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来のシ
ステムにおいては,電極反応による温度上昇に伴う固体
高分子電解質膜の熱的損傷を防止すべく,燃料電池の内
部に,冷媒を用いた冷却手段を設けて,その電池の動作
温度を100℃以下に厳格に管理し,また固体高分子電
解質膜を湿潤状態に保持すべく,改質器を備えて,改質
水素の加湿による厳密な水分管理を行わなければなら
ず,その上,COの被毒作用による電極の機能低下を防
止すべく,CO除去処理のために,その処理装置を複数
段に配置する必要がある等,動作温度および水分に関す
る管理が厳しい上に,構造が複雑であると共に重量も大
となって車載用システムとするには解決すべき多くの課
題があった。
However, in the conventional system, a cooling means using a refrigerant is provided inside the fuel cell in order to prevent thermal damage of the solid polymer electrolyte membrane due to a temperature rise due to an electrode reaction. Strictly controlling the operating temperature of the battery to 100 ° C or less, and equipping a reformer to keep the solid polymer electrolyte membrane in a wet state, strict water management by humidifying reformed hydrogen In addition, in order to prevent the function of the electrode from being deteriorated due to the poisoning effect of CO, it is necessary to arrange the processing apparatus in a plurality of stages for CO removal processing. In addition to strict management, the structure is complicated and the weight is large, so that there are many problems to be solved in order to make it a vehicle-mounted system.

【0004】[0004]

【課題を解決するための手段】本発明は,燃料電池の動
作温度および水分に関する管理を緩和し,また構造を簡
素化すると共に重量も小にする等,車載用として好適な
前記燃料電池発電システムを提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention is directed to a fuel cell power generation system suitable for use in a vehicle, for example, by relaxing the management of the operating temperature and moisture of the fuel cell, simplifying the structure and reducing the weight. The purpose is to provide.

【0005】前記目的を達成するため本発明によれば,
プロトン伝導の媒体となるリン酸を含む耐熱性高分子膜
を備えた燃料電池と,その燃料電池を,それの運転開始
前に昇温することが可能な昇温手段を有し,アルコー
ル,ガソリン等の燃料から生成された,COを含む改質
水素を前記燃料電池に供給し,前記燃料電池を,その動
作温度の上限を200℃に設定して運転する燃料電池発
電システムが提供される。
[0005] To achieve the above object, according to the present invention,
A fuel cell having a heat-resistant polymer membrane containing phosphoric acid as a medium for proton conduction, and a heating means capable of raising the temperature of the fuel cell before the operation thereof is started. A fuel cell power generation system is provided that supplies reformed hydrogen containing CO, generated from such fuels, to the fuel cell, and operates the fuel cell with its operating temperature set at an upper limit of 200 ° C.

【0006】燃料電池の動作温度はリン酸を含む高分子
膜の耐熱性および水分保持能から制限を受ける。前記の
ように燃料電池の動作温度の上限は200℃,といった
ように高く設定されており,これは,リン酸を含む高分
子膜が電極反応による温度上昇に十分に耐え得る高い耐
熱性を有することおよび水分保持能を有することに起因
する。これにより,動作温度に関する管理を緩和して,
冷却手段の簡素化を図ることができる。
[0006] The operating temperature of a fuel cell is limited by the heat resistance and moisture retention of a polymer membrane containing phosphoric acid. As described above, the upper limit of the operating temperature of the fuel cell is set as high as 200 ° C., which has a high heat resistance enough for the polymer membrane containing phosphoric acid to sufficiently withstand the temperature rise due to the electrode reaction. And water retention ability. This eases the management of operating temperature,
The cooling means can be simplified.

【0007】またリン酸としては,沸点の高い濃厚なも
の(85%以上)が用いられ,そのリン酸は水分と共に
前記温度上昇下においても高分子膜に保持されてプロト
ン伝導の媒体をなす。したがって,前記のような,加湿
器の設置,改質水素の加湿およびその加湿による厳密な
水分管理は不要である。
As the phosphoric acid, a concentrated substance having a high boiling point (85% or more) is used, and the phosphoric acid is retained by the polymer membrane together with the moisture even under the above-mentioned temperature rise, and forms a proton conducting medium. Therefore, it is not necessary to install a humidifier, humidify the reformed hydrogen and strictly control the moisture by the humidification as described above.

【0008】さらに前記のように動作温度を高く設定す
ると,COを含む改質水素を用いても電極に対するCO
の被毒作用が殆ど発生せず,したがって,従来必須の複
数段のCO処理装置が不要となる。
Further, when the operating temperature is set high as described above, even if reformed hydrogen containing CO is used, CO
Almost no poisoning action occurs, so that a conventionally required multi-stage CO treatment device is not required.

【0009】このような燃料電池発電システムは,燃料
電池の動作温度および水分に関する管理を緩和され,ま
た構造の簡素化と重量の軽減を図られており,その上,
昇温手段によって燃料電池を予め昇温しておくことによ
り,気温の低いときでも燃料電池の運転開始を迅速に行
い,早期に動作温度まで到達させることが可能であり,
したがって車載用として好適である。
In such a fuel cell power generation system, the management of the operating temperature and moisture of the fuel cell is eased, the structure is simplified and the weight is reduced.
By preliminarily raising the temperature of the fuel cell by the temperature raising means, even when the temperature is low, it is possible to quickly start the operation of the fuel cell and quickly reach the operating temperature,
Therefore, it is suitable for use in vehicles.

【0010】[0010]

【発明の実施の形態】図1に示す燃料電池発電システム
1において,改質器としての水蒸気改質器2の反応部3
に,燃料供給装置4と蒸気発生装置5が接続される。そ
の反応部3および空気供給装置6が燃料電池7に接続さ
れ,その出力側の(+)空気極および(−)燃料極はそ
れぞれ直流電動装置8に結線される。燃料電池7の排気
側は,水蒸気改質器2の燃焼部9に接続される。空気供
給装置6と燃料電池7との間の空気供給路に,昇温手段
としてのPTCヒータHが設けられている。なお,反応
部3および燃料電池7間に加湿器は存在しない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the fuel cell power generation system 1 shown in FIG. 1, a reaction section 3 of a steam reformer 2 as a reformer
, A fuel supply device 4 and a steam generation device 5 are connected. The reaction section 3 and the air supply device 6 are connected to the fuel cell 7, and the (+) air electrode and the (−) fuel electrode on the output side are connected to the DC motor 8, respectively. The exhaust side of the fuel cell 7 is connected to the combustion section 9 of the steam reformer 2. A PTC heater H is provided in the air supply path between the air supply device 6 and the fuel cell 7 as a temperature raising means. There is no humidifier between the reaction section 3 and the fuel cell 7.

【0011】図2において,燃料電池7は複数のセル1
1を有し,各セル11は,プロトン伝導の媒体となるリ
ン酸を含む耐熱性高分子膜12と,それを挟む(+)空
気極13および(−)燃料極14と,両電極13,14
を挟む一対のセパレータ15とよりなり,相隣る両セル
11において1つのセパレータ15が共用されている。
各セル11において,(+)空気極13側のセパレータ
15に存する複数の溝16に空気が供給され,また
(−)燃料極14側のセパレータ15に在って前記溝1
6と交差する関係の複数の溝17に改質水素(燃料)が
加湿されることなく供給される。
In FIG. 2, a fuel cell 7 has a plurality of cells 1.
Each cell 11 includes a heat-resistant polymer membrane 12 containing phosphoric acid serving as a medium for proton conduction, a (+) air electrode 13 and a (-) fuel electrode 14 sandwiching the membrane, and both electrodes 13, 14
And a pair of separators 15 sandwiching the same, and one separator 15 is shared by both adjacent cells 11.
In each cell 11, air is supplied to a plurality of grooves 16 in the separator 15 on the (+) cathode 13 side, and the grooves 1 in the separator 15 on the (−) anode 14 side.
The reformed hydrogen (fuel) is supplied to the plurality of grooves 17 that intersect with 6 without being humidified.

【0012】各(+)空気極13および各(−)燃料極
14は,それぞれ黒鉛化炭素および触媒金属(例えばP
t)よりなり,また各セパレータ15は黒鉛化炭素,ス
テンレス鋼(耐腐食性処理を施されたものを含む)等よ
りなる。
Each (+) cathode 13 and each (-) anode 14 are respectively graphitized carbon and a catalyst metal (for example, P
t), and each separator 15 is made of graphitized carbon, stainless steel (including those subjected to corrosion resistance treatment), and the like.

【0013】耐熱性高分子膜12は,少なくとも窒素を
含むヘテロ環構造を持つポリマ,例えばポリベンズイミ
ダゾールより構成される。このような耐熱性高分子膜1
2は米国特許第5,525,436 号明細書に開示されており,
そこに開示された各種の耐熱性高分子膜が本発明におい
て用いられる。
The heat-resistant polymer film 12 is made of a polymer having a heterocyclic structure containing at least nitrogen, for example, polybenzimidazole. Such a heat-resistant polymer film 1
No. 2 is disclosed in U.S. Pat. No. 5,525,436,
Various heat-resistant polymer films disclosed therein are used in the present invention.

【0014】前記耐熱性高分子膜12は電極反応による
温度上昇に十分に耐え得る。またリン酸としては,沸点
の高い濃厚なもの(85%以上)が用いられ,そのリン
酸は前記温度上昇下においても高分子膜12に保持され
てプロトン伝導の媒体をなす。このような燃料電池7
は,冷却手段の簡素化に伴い小型・軽量化を図られてお
り,またその動作温度の上限を200℃に高めてその発
生熱を有効に利用することが可能であるから,車載用と
して好適である。ただし,動作温度が210℃になる
と,リン酸は分解して酸化リンが生じる。動作温度の好
ましい範囲は100℃以上,200℃以下である。
The heat-resistant polymer film 12 can sufficiently withstand a temperature rise caused by an electrode reaction. As the phosphoric acid, a concentrated substance having a high boiling point (85% or more) is used, and the phosphoric acid is retained by the polymer membrane 12 even under the above-mentioned temperature rise and forms a proton conducting medium. Such a fuel cell 7
Is suitable for in-vehicle use, because its size and weight have been reduced with the simplification of the cooling means, and its operating temperature can be increased to an upper limit of 200 ° C to effectively use the generated heat. It is. However, when the operating temperature reaches 210 ° C., the phosphoric acid is decomposed to generate phosphorus oxide. A preferable range of the operating temperature is 100 ° C. or more and 200 ° C. or less.

【0015】前記のように動作温度を高く設定すると,
COを含む改質水素を用いても電極に対するCOの被毒
作用が殆ど発生せず,したがって,従来必須の複数段の
CO処理装置は不要となる。
When the operating temperature is set high as described above,
Even if the reformed hydrogen containing CO is used, the poisoning effect of CO on the electrode hardly occurs, so that the conventionally required multi-stage CO processing apparatus is not required.

【0016】図1において,燃料電池発電システム1に
よる発電は次のようにして行われる。即ち,空気供給装
置6を作動させて,そこからの空気をPTCヒータHに
より加熱した後燃料電池7に送り込み,その電池7を内
部から予め昇温する。また水蒸気改質器2の反応部3
を,その燃焼部9からの燃焼熱hにより加熱して作動可
能状態にする。さらに燃料供給装置4からのアルコー
ル,ガソリン等の燃料に蒸気発生装置5からの水蒸気を
混じて,それら燃料等を水蒸気改質器2の反応部3に送
る。この反応部3では燃料の水蒸気改質が行われ,生成
されたCOを含む改質水素が加湿されることなく燃料電
池7に導入される。また,この燃料電池7には空気供給
装置6から加熱空気も供給されており,これにより燃料
電池7が迅速に運転を開始して発電が行われ,その燃料
電池7は早期に動作温度に到達する。この発電により発
生した直流電気は直流電動装置8に送られる。燃料電池
7からのCOを含む排ガスは,水蒸気改質器2の燃焼部
9に導入され,そこでCOはCO2 に変換される。
In FIG. 1, power generation by the fuel cell power generation system 1 is performed as follows. That is, the air supply device 6 is operated, the air from the air supply device 6 is heated by the PTC heater H, and then sent to the fuel cell 7, and the temperature of the cell 7 is increased from the inside in advance. The reaction section 3 of the steam reformer 2
Is heated by the combustion heat h from the combustion section 9 to make it operable. Further, the fuel such as alcohol and gasoline from the fuel supply device 4 is mixed with steam from the steam generator 5, and the fuel and the like are sent to the reaction section 3 of the steam reformer 2. In the reaction section 3, steam reforming of the fuel is performed, and the generated reformed hydrogen containing CO is introduced into the fuel cell 7 without being humidified. Heated air is also supplied from the air supply device 6 to the fuel cell 7, whereby the fuel cell 7 starts operating quickly to generate electric power, and the fuel cell 7 reaches the operating temperature early. I do. The DC electricity generated by this power generation is sent to the DC motor 8. Exhaust gas containing CO from the fuel cell 7 is introduced into the combustion section 9 of the steam reformer 2, where CO is converted to CO 2.

【0017】前記昇温手段は,複数,つまり全部または
選択された複数のセパレータ15を金属より構成して,
それらセパレータ15を発熱体とする電気ヒータであっ
てもよい。この場合,金属は,好ましくはステンレス鋼
であり,例えばオーステナイト系ステンレス鋼であるJ
IS SUS304等が好適である。
The heating means comprises a plurality of, that is, all or a plurality of selected separators 15 made of metal,
Electric heaters using the separators 15 as heating elements may be used. In this case, the metal is preferably stainless steel, for example, J austenitic stainless steel.
IS SUS304 or the like is suitable.

【0018】また前記昇温手段は,複数,つまり全部ま
たは選択された複数の炭素系セパレータ,例えば黒鉛化
炭素よりなるセパレータ15に埋設された複数のNTC
サーミスタであってもよい。
The heating means may include a plurality of NTCs embedded in a plurality of carbon separators, for example, a separator 15 made of graphitized carbon.
It may be a thermistor.

【0019】[0019]

【発明の効果】本発明によれば,前記のように構成する
ことにより,車載用として好適な燃料電池発電システム
を提供することができる。
According to the present invention, a fuel cell power generation system suitable for use in a vehicle can be provided by employing the above-described configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燃料電池発電システムのブロック図である。FIG. 1 is a block diagram of a fuel cell power generation system.

【図2】燃料電池の要部正面図である。FIG. 2 is a front view of a main part of the fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料電池発電システム 2 水蒸気改質器 7 燃料電池 12 耐熱性高分子膜 15 セパレータ H PTCヒータ(昇温手段) DESCRIPTION OF SYMBOLS 1 Fuel cell power generation system 2 Steam reformer 7 Fuel cell 12 Heat resistant polymer membrane 15 Separator H PTC heater (heating means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 H01M 8/10 (72)発明者 渡部 直也 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 鴻村 隆 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 5H026 AA06 CC03 CX04 EE02 EE08 EE18 HH08 5H027 AA06 BA01 BA09 CC03 CC11──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/10 H01M 8/10 (72) Inventor Naoya Watanabe 1-4-1, Chuo, Wako-shi, Saitama Stock Inside Honda R & D Co., Ltd. (72) Inventor Takashi Komura 1-4-1 Chuo, Wako-shi, Saitama F-term inside Honda R & D Co., Ltd. 5H026 AA06 CC03 CX04 EE02 EE08 EE18 HH08 5H027 AA06 BA01 BA09 CC03 CC11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プロトン伝導の媒体となるリン酸を含む
耐熱性高分子膜(12)を備えた燃料電池(7)と,そ
の燃料電池(7)を,それの運転開始前に昇温すること
が可能な昇温手段(H)を有し,アルコール,ガソリン
等の燃料から生成された,COを含む改質水素を前記燃
料電池(7)に供給し,前記燃料電池(7)を,その動
作温度の上限を200℃に設定して運転することを特徴
とする燃料電池発電システム。
1. A fuel cell (7) comprising a heat-resistant polymer membrane (12) containing phosphoric acid as a proton-conducting medium, and the fuel cell (7) is heated before its operation is started. And supplying reformed hydrogen containing CO generated from a fuel such as alcohol or gasoline to the fuel cell (7). The fuel cell (7) A fuel cell power generation system wherein the operation is performed with the upper limit of the operating temperature set to 200 ° C.
【請求項2】 前記昇温手段(H)は,前記燃料電池
(7)への空気を加熱することが可能なPTCヒータで
ある,請求項1記載の燃料電池発電システム。
2. The fuel cell power generation system according to claim 1, wherein said temperature raising means (H) is a PTC heater capable of heating air to said fuel cell (7).
【請求項3】 前記昇温手段(H)は,前記燃料電池
(7)の複数のセパレータ(15)を金属より構成し
て,それらセパレータ(15)を発熱体とする電気ヒー
タである,請求項1記載の燃料電池発電システム。
3. The heating means (H) is an electric heater comprising a plurality of separators (15) of the fuel cell (7) made of metal and using the separators (15) as heating elements. Item 2. The fuel cell power generation system according to Item 1.
【請求項4】 前記金属はステンレス鋼である,請求項
3記載の燃料電池発電システム。
4. The fuel cell power generation system according to claim 3, wherein said metal is stainless steel.
【請求項5】 前記昇温手段(H)は,前記燃料電池
(7)の複数の炭素系セパレータ(15)に埋設された
複数のNTCサーミスタである,請求項1記載の燃料電
池発電システム。
5. The fuel cell power generation system according to claim 1, wherein said temperature raising means (H) is a plurality of NTC thermistors embedded in a plurality of carbon-based separators (15) of said fuel cell (7).
【請求項6】 前記耐熱性高分子膜(12)は,少なく
とも窒素を含むヘテロ環構造を持つポリマよりなる,請
求項1,2,3,4または5記載の燃料電池発電システ
ム。
6. The fuel cell power generation system according to claim 1, wherein said heat-resistant polymer film is made of a polymer having a heterocyclic structure containing at least nitrogen.
JP11279135A 1999-05-27 1999-09-30 Fuel-cell power generating system Pending JP2001043877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11279135A JP2001043877A (en) 1999-05-27 1999-09-30 Fuel-cell power generating system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14836499 1999-05-27
JP11-148364 1999-05-27
JP11279135A JP2001043877A (en) 1999-05-27 1999-09-30 Fuel-cell power generating system

Publications (1)

Publication Number Publication Date
JP2001043877A true JP2001043877A (en) 2001-02-16

Family

ID=26478587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11279135A Pending JP2001043877A (en) 1999-05-27 1999-09-30 Fuel-cell power generating system

Country Status (1)

Country Link
JP (1) JP2001043877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086744A1 (en) * 2000-05-08 2001-11-15 Honda Giken Kogyo Kabushiki Kaisha Fuel cell
JP2007234573A (en) * 2006-02-27 2007-09-13 Samsung Sdi Co Ltd Starting method of fuel cell stack and fuel cell system
JP2013032249A (en) * 2011-08-03 2013-02-14 Toshiba Fuel Cell Power Systems Corp Fuel processor, fuel cell power generation system, and fuel processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086744A1 (en) * 2000-05-08 2001-11-15 Honda Giken Kogyo Kabushiki Kaisha Fuel cell
US6818338B2 (en) 2000-05-08 2004-11-16 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly
JP4748914B2 (en) * 2000-05-08 2011-08-17 本田技研工業株式会社 Fuel cell
JP2007234573A (en) * 2006-02-27 2007-09-13 Samsung Sdi Co Ltd Starting method of fuel cell stack and fuel cell system
JP4644641B2 (en) * 2006-02-27 2011-03-02 三星エスディアイ株式会社 Method for starting fuel cell stack and fuel cell system
KR101324413B1 (en) * 2006-02-27 2013-11-01 삼성에스디아이 주식회사 Method for starting high temperature polymer electrolyte membrane fuel cell stack and fuel cell system using the method
JP2013032249A (en) * 2011-08-03 2013-02-14 Toshiba Fuel Cell Power Systems Corp Fuel processor, fuel cell power generation system, and fuel processing method

Similar Documents

Publication Publication Date Title
JP3554092B2 (en) Fuel cell fuel gas supply method
JP3920024B2 (en) Low temperature start of PEM fuel cell
US8288045B2 (en) Apparatus and method for heating fuel cells
US20080102327A1 (en) Fuel cell and method for cold-starting such a fuel cell
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
JP2003510766A (en) Method and system for starting fuel cell stack of fuel cell device
JP2001006698A (en) Solid polymer electrolyte fuel cell and manufacture of its diffusion layer
US20020068207A1 (en) High-temperature membrane fuel cell, method for operating an HTM fuel cell battery, and HTM fuel cell battery
JPH11214022A (en) Fuel cell power generating device
JP2001043877A (en) Fuel-cell power generating system
US7078116B2 (en) Method of warming up fuel cell system
JPH09147897A (en) Solid high polymer fuel cell
JPH0864218A (en) Operating method for solid high polymer electrolyte fuel cell
JP2003331892A (en) Fuel cell system, and starting method of fuel cell system
JP3661643B2 (en) Fuel cell system
JPH11317238A (en) Fuel cell system for vehicle
JP4578238B2 (en) Fuel cell starting method, fuel cell system, and vehicle equipped with fuel cell system
JP3337258B2 (en) Solid polymer electrolyte fuel cell system
JP2001043876A (en) Fuel-cell power generating system
JPH08222252A (en) Solid high polymer fuel cell system
JP2001043879A (en) Fuel-cell power generating system
JP2002083607A (en) Polyeletrolyte type fuel cell cogeneration system
JP3146703B2 (en) Fuel cell system
JPH05275101A (en) Solid polyelectrolytic type fuel cell system
JP2001043878A (en) Fuel-cell power generating system