JP2001043870A - Separator for fuel cell - Google Patents

Separator for fuel cell

Info

Publication number
JP2001043870A
JP2001043870A JP11215989A JP21598999A JP2001043870A JP 2001043870 A JP2001043870 A JP 2001043870A JP 11215989 A JP11215989 A JP 11215989A JP 21598999 A JP21598999 A JP 21598999A JP 2001043870 A JP2001043870 A JP 2001043870A
Authority
JP
Japan
Prior art keywords
groove
fluid passage
width
fuel cell
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11215989A
Other languages
Japanese (ja)
Inventor
Fumiaki Kosugi
文明 小杉
Teruo Shimizu
輝夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11215989A priority Critical patent/JP2001043870A/en
Publication of JP2001043870A publication Critical patent/JP2001043870A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the performance of a fuel cell by causing a reaction between a fuel gas and an oxidant gas to be efficiently performed over the whole reaction zone of a separator. SOLUTION: A fluid passage for passing a fuel gas or an oxidant gas therethrough is provided in one surface 1a of a substrate 1 over the whole reaction zone thereof. The fluid passage is made up of a plurality of parallel and bottomed grooves 4. The cross section of the grooves 4, in the upstream of the fluid passage, is shaped into a trapezoid with the width S1 of an opening part 4a made smaller than the width S2 of a bottom part 4b and, in the downstream of the fluid passages, shaped into an inverted trapezoid with the width of the opening part 4a made larger than the width of the bottom part 4b. The grooves gradually change in cross-section shape from the upstream cross-section shape to the downstream cross-section shape. Gas, flowing in both side groove portions 4c of the bottom parts 4b of the grooves 4 in the upstream and not contributing to reaction, gradually comes to contribute to the reaction toward the downstream, and therefore the reaction is produced with efficiency substantially uniformly over the whole reaction zone of the substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯用電源あるい
は電気自動車等に搭載して使用され、小形軽量を要求さ
れる燃料電池のセパレータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell separator which is used by being mounted on a portable power supply or an electric vehicle, and requires small size and light weight.

【0002】[0002]

【従来の技術】従来、この種の燃料電池として、リン酸
水溶液や固体高分子等からなる電解質膜の両側に、水素
などの燃料ガスを供給する流体通路を形成した電極プレ
ートからなるセパレータと、酸素などの酸化剤ガスを供
給する流体通路を形成した電極プレートからなるセパレ
ータとをそれぞれ設けたものが知られている。そして、
上記セパレータの流体通路を構成する複数の溝は、横断
面が矩形で流体通路の入口から出口までほぼ同一寸法の
単純な形状になっており、かつ一直線状に並列して形成
されている(特開昭59−127377号公報)。
2. Description of the Related Art Conventionally, as a fuel cell of this type, a separator composed of an electrode plate having fluid passages for supplying a fuel gas such as hydrogen on both sides of an electrolyte membrane composed of a phosphoric acid aqueous solution, a solid polymer, or the like; 2. Description of the Related Art There are known separators each including an electrode plate formed with a fluid passage for supplying an oxidizing gas such as oxygen. And
The plurality of grooves constituting the fluid passage of the separator have a rectangular cross section, have a simple shape with substantially the same dimensions from the inlet to the outlet of the fluid passage, and are formed in a straight line in parallel (particularly). JP-A-59-127377).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来のセ
パレータの流体通路においては、溝が単純な形状である
ことから、その加工が容易である反面、流体通路を流れ
る燃料ガスや酸化剤ガスは該流体通路の上流側において
溝の開口部を介して反応が十分に行われるのに対し、下
流側には反応に寄与するガスが十分に行き渡らないの
で、セパレータの反応帯域の全体で均等に反応が行われ
ず、燃料電池の出力性能を十分に高めることができない
問題があった。このため、小形軽量で出力性能の高い燃
料電池を実現できるセパレータが望まれていた。
However, in the conventional fluid passage of the separator, since the groove has a simple shape, the processing is easy, but the fuel gas and the oxidizing gas flowing through the fluid passage are not easily formed. While the reaction is sufficiently performed on the upstream side of the fluid passage through the opening of the groove, the gas contributing to the reaction is not sufficiently distributed on the downstream side, so that the reaction is uniformly performed in the entire reaction zone of the separator. Therefore, there is a problem that the output performance of the fuel cell cannot be sufficiently increased. For this reason, there has been a demand for a separator capable of realizing a small and lightweight fuel cell having high output performance.

【0004】本発明は、燃料ガスと酸化剤ガスとの反応
がセパレータの反応帯域全体で効率よく行われるように
した燃料電池用セパレータを提供することを目的とす
る。また、本発明の他の目的は、小形軽量で出力効率の
高い燃料電池を実現できる燃料電池用セパレータを提供
することを目的とする。
An object of the present invention is to provide a fuel cell separator in which a reaction between a fuel gas and an oxidizing gas is efficiently performed in the entire reaction zone of the separator. Another object of the present invention is to provide a fuel cell separator capable of realizing a small and lightweight fuel cell with high output efficiency.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、基板の表面に沿って形成されて
流体を入口から出口に向けて流す有底の溝からなる流体
通路を設けた燃料電池用セパレータであって、上記流体
通路の溝は、流体通路の上流側において溝の開口部側の
幅を小さくすると共に底部側の幅を大きくした横断面形
状に形成されている構成としている。
According to one aspect of the present invention, there is provided a fluid passage comprising a bottomed groove formed along a surface of a substrate and for flowing a fluid from an inlet to an outlet. Wherein the groove of the fluid passage is formed in a cross-sectional shape in which the width on the opening side of the groove is reduced and the width on the bottom side is increased on the upstream side of the fluid passage. It has a configuration.

【0006】上記構成の装置においては、流体通路の上
流側において溝の開口部を通して燃料ガスと酸化剤ガス
が接触して反応が行われ、上記開口部に面していない溝
の両側深部を流れるガスは上流側では反応せず、下流側
に流れてそこで反応に寄与することになり、流体通路を
流れるガスは上流側から下流側に亘る反応帯域の全体で
反応が効率的に行われる。
In the device having the above-mentioned structure, the fuel gas and the oxidizing gas come into contact with each other through the opening of the groove on the upstream side of the fluid passage to cause a reaction, and flow through deep portions on both sides of the groove which do not face the opening. The gas does not react on the upstream side but flows downstream and contributes to the reaction there, and the gas flowing in the fluid passage is efficiently reacted in the entire reaction zone from the upstream side to the downstream side.

【0007】請求項1に記載の装置において、流体通路
の下流側において溝の開口部側の幅を大きくすると共に
底部側の幅を小さくした横断面形状に形成されている構
成とすることができ(請求項2)、また、請求項1また
は請求項2に記載の装置において、流体通路の溝は、上
流側の横断面形状から下流側の横断面形状へと徐々変化
して形成されている構成とすることができる(請求項
3)。これらの構成では、上流側で反応に寄与しなかっ
たガスが徐々に下流側において反応に寄与するようにな
り、反応帯域の全体でほぼ均等に反応が行われる。
In the apparatus according to the first aspect, the width of the groove on the downstream side of the fluid passage may be increased on the opening side and the width on the bottom side may be formed in a cross-sectional shape. (Claim 2) In the device according to claim 1 or 2, the groove of the fluid passage is formed so as to gradually change from an upstream cross-sectional shape to a downstream cross-sectional shape. It can be configured (claim 3). In these configurations, the gas that did not contribute to the reaction on the upstream side gradually contributes to the reaction on the downstream side, and the reaction is performed almost uniformly in the entire reaction zone.

【0008】請求項2または請求項3に記載の装置にお
いて、流体通路の溝は、上流側の横断面形状が台形状
に、下流側の横断面形状が逆台形状に形成された構成と
することができる(請求項4)。また、請求項1ないし
請求項4のいずれか1つに記載の装置において、流体通
路の溝は、貫通穴によって溝の壁面を構成する基板構成
部材に、溝の底部を構成する基板構成部材を接合するこ
とにより形成された構成とすることができる(請求項
5)。これらの構成では、基板へ流体通路の溝を形成す
る加工が容易である。請求項1ないし請求項5のいずれ
か1つに記載の装置において、基板はカーボンからなる
構成とすることができる(請求項6)。この構成では、
基板製品の軽量化が実現される。
In the apparatus according to the second or third aspect, the groove of the fluid passage has a trapezoidal cross section on the upstream side and an inverted trapezoidal cross section on the downstream side. (Claim 4). Further, in the apparatus according to any one of claims 1 to 4, the groove of the fluid passage includes a substrate forming member that forms a bottom of the groove and a substrate forming member that forms a wall surface of the groove by the through hole. A structure formed by joining can be adopted (claim 5). In these configurations, the processing for forming the groove of the fluid passage in the substrate is easy. In the device according to any one of claims 1 to 5, the substrate may be made of carbon (claim 6). In this configuration,
The weight of the substrate product can be reduced.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面を参照して説明する。図1ないし図4において、1
は略四角形をした平板状のカーボン板(基板)からなる
燃料ガス用電極プレートであり、電解質膜の一側に面す
る一方の表面1aには、燃料ガスを流す流体通路2が反
応帯域3の全体に亘って設けられている。該流体通路2
は、電極プレート1の一側辺部(図1で右側辺部)に沿
う方向(上下方向)に平行な多数本の有底の溝4で形成
され、各溝4の入口端4xは流入溝5を介して燃料ガス
の流入孔6に接続され、また、各溝4の出口端4yは流
出溝5aを介して燃料ガスの流出孔6aに接続されてい
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to FIG.
Is a fuel gas electrode plate made of a substantially rectangular plate-like carbon plate (substrate). On one surface 1a facing one side of the electrolyte membrane, a fluid passage 2 through which fuel gas flows is formed in the reaction zone 3. It is provided throughout. The fluid passage 2
Is formed by a number of bottomed grooves 4 parallel to a direction (vertical direction) along one side (the right side in FIG. 1) of the electrode plate 1, and an inlet end 4 x of each groove 4 is an inflow groove. The outlet end 4y of each groove 4 is connected to the fuel gas outflow hole 6a through the outflow groove 5a.

【0010】前記各溝4の断面形状は、図2,図3に示
すように、前記流体通路2の上流側2aにおいては、開
口部4aの幅S1を小さく、底部4bの幅S2を大きく
した台形状(アリ溝状)をしており、前記流体通路2の
下流側2bにおいては、開口部4aの幅S3を大きく、
底部4bの幅S4を小さくした逆台形状をしており、該
溝4は、その全長に亘って深さが一定で断面積もほぼ一
定であるが、上流側(図1で上方側)2aの断面形状か
ら下流側(図1で下方側)2bの断面形状へと形状が徐
々に変化されている。なお、前記溝4の断面形状は、上
流側2aから下流側2bに向けて連続的に変化させ、ま
たは、流体通路2の途中で一定の長さ毎に段階的に変化
させることができる。
As shown in FIGS. 2 and 3, the cross-sectional shape of each groove 4 is such that the width S1 of the opening 4a is small and the width S2 of the bottom 4b is large on the upstream side 2a of the fluid passage 2. It has a trapezoidal shape (dovetail shape), and in the downstream side 2b of the fluid passage 2, the width S3 of the opening 4a is large
The groove 4 has an inverted trapezoidal shape in which the width S4 of the bottom 4b is reduced, and the groove 4 has a constant depth and a substantially constant cross-sectional area over its entire length, but the upstream side (upper side in FIG. 1) 2a Is gradually changed from the cross-sectional shape of FIG. 1 to the cross-sectional shape of the downstream side (the lower side in FIG. 1) 2b. The cross-sectional shape of the groove 4 can be changed continuously from the upstream side 2a to the downstream side 2b, or can be changed stepwise at regular intervals in the fluid passage 2.

【0011】前記電極プレート1の一側辺部(図1で右
側辺部)には、電極プレート1の一方の表面1aから他
方の表面1bに貫通する前記流入孔(ガス流入孔)6、
冷却水の流入孔(水流入孔)7、および酸化剤ガスの流
入孔(ガス流入孔)8が上方位置、中間位置、および下
方位置にそれぞれ設けられている。また、前記電極プレ
ート1の他側辺部(図1で左側辺部)には、同様に電極
プレート1を貫通する前記流出孔(ガス流出孔)6a、
冷却水の流出孔(水流出孔)7a、および酸化剤ガスの
流出孔(ガス流出孔)8aが下方位置、中間位置、およ
び上方位置にそれぞれ設けられている。したがって、流
入孔6,8と流出孔6a,8aとは電極プレート1の対
角位置に配置されている。
On one side (the right side in FIG. 1) of the electrode plate 1, the inflow hole (gas inflow hole) 6, which penetrates from one surface 1a of the electrode plate 1 to the other surface 1b,
A cooling water inflow hole (water inflow hole) 7 and an oxidant gas inflow hole (gas inflow hole) 8 are provided at an upper position, an intermediate position, and a lower position, respectively. In the other side (the left side in FIG. 1) of the electrode plate 1, the outflow holes (gas outflow holes) 6a similarly penetrating the electrode plate 1 are provided.
A cooling water outflow hole (water outflow hole) 7a and an oxidizing gas outflow hole (gas outflow hole) 8a are provided at a lower position, an intermediate position, and an upper position, respectively. Therefore, the inflow holes 6, 8 and the outflow holes 6a, 8a are arranged at diagonal positions of the electrode plate 1.

【0012】前記電極プレート1の一方の表面1aと反
対側にある他方の表面1b(図4)には、冷却水を流す
冷却水通路9が前記反応帯域3に対応する領域の全体に
亘って設けられている。該冷却水通路9は、電極プレー
ト1の一側辺部に直交する辺部(図1で上下辺部)に沿
う方向(左右方向)に平行な多数本の有底の溝10で形
成され、各溝10の入口端は流入溝(水流入溝)11を
介して前記水流入孔7に接続され、また、各溝10の出
口端は流出溝(水流出溝)11aを介して前記水流出孔
7aに接続されている。なお、電解質膜の他側に配置す
る酸化剤ガス用電極プレート12は、前記電極プレート
1と同一の構造をしている。ただし、各電極プレート
1,12は燃料電池セルの組立状態では電解質膜を挟ん
で互いに対向する関係になっているので、電極プレート
12は、図5,図6に示すように、前記各流入孔6,
7,8と各流出孔6a,7a,8aの位置や流体通路2
におけるガスの流れ方向が電極プレート1のものと逆に
なっている。
On the other surface 1b (FIG. 4) of the electrode plate 1 opposite to the one surface 1a, a cooling water passage 9 through which cooling water flows is formed over the entire area corresponding to the reaction zone 3. Is provided. The cooling water passage 9 is formed by a number of bottomed grooves 10 parallel to a direction (left-right direction) along a side (upper and lower sides in FIG. 1) orthogonal to one side of the electrode plate 1. The inlet end of each groove 10 is connected to the water inflow hole 7 through an inflow groove (water inflow groove) 11, and the outlet end of each groove 10 is connected to the water outflow groove (water outflow groove) 11a. It is connected to the hole 7a. The oxidant gas electrode plate 12 arranged on the other side of the electrolyte membrane has the same structure as the electrode plate 1. However, since the electrode plates 1 and 12 are opposed to each other with the electrolyte membrane interposed therebetween when the fuel cell unit is assembled, the electrode plate 12 is provided with the respective inlet holes as shown in FIGS. 6,
7, 8 and the positions of the outflow holes 6a, 7a, 8a and the fluid passage 2
Is opposite to that of the electrode plate 1.

【0013】上記構成の電極プレート1,12が燃料電
池のセパレータとして使用される場合には、燃料ガスが
流入孔6に、冷却水が水流入孔7に、酸化剤ガスが流入
孔8にそれぞれ供給されると、燃料ガスは、電極プレー
ト1の流入孔6から流入溝5を経て流体通路2における
上流側2aの溝4の入口端4xに入り、反応帯域3を下
流側2bに流れて溝4の出口端4yに至り、さらに、流
出溝5aを経て流出孔6aへ流出される。
When the electrode plates 1 and 12 having the above structure are used as fuel cell separators, fuel gas is supplied to the inlet 6, cooling water is supplied to the water inlet 7, and oxidant gas is supplied to the inlet 8. When supplied, the fuel gas enters the inlet end 4x of the groove 4 on the upstream side 2a of the fluid passage 2 from the inflow hole 6 of the electrode plate 1 through the inflow groove 5, flows through the reaction zone 3 to the downstream side 2b, and flows into the groove. 4 to the outlet end 4y, and further flows out through the outflow groove 5a to the outflow hole 6a.

【0014】一方、酸化剤ガスは、電極プレート12の
流入孔8から流入溝5を経て流体通路2における上流側
(図5の下方側)2aの溝4の入口端4xに入り、反応
帯域3を下流側(図5の上方側)2bに流れて溝4の出
口端4yに至り、さらに、流出溝5aを経て流出孔8a
へ流出される。その際、燃料ガスと酸化剤ガスは反応帯
域3,3において向流的に流れることにより電解質膜の
存在のもとに互いに反応し、電極プレート1,12から
電力が出力される。このようにして燃料電池が作動して
いる間は、冷却水が電極プレート1,12の水流入孔
7,7から水流入溝11,11を経て冷却水通路9,9
の各溝10に入り,さらに、該冷却水通路9,9を下流
側へ流れて水流出溝11a,11aを経て水流出孔7
a,7aに流出されるので、上記反応に伴って発生する
熱は冷却水によって冷却され、作動温度が適切に維持さ
れる。
On the other hand, the oxidizing gas enters the inlet end 4x of the groove 4 on the upstream side (the lower side in FIG. 5) 2a of the fluid passage 2 from the inflow hole 8 of the electrode plate 12 via the inflow groove 5, and the reaction zone 3 Flows to the downstream side (upper side in FIG. 5) 2b, reaches the outlet end 4y of the groove 4, and further flows out through the outflow groove 5a.
Leaked to At this time, the fuel gas and the oxidizing gas flow countercurrently in the reaction zones 3 and 3 to react with each other in the presence of the electrolyte membrane, and electric power is output from the electrode plates 1 and 12. During operation of the fuel cell in this manner, cooling water flows from the water inlet holes 7, 7 of the electrode plates 1, 12 through the water inlet grooves 11, 11, and the cooling water passages 9, 9, respectively.
, And further flows downstream through the cooling water passages 9, 9, through the water outflow grooves 11 a, 11 a, and into the water outflow holes 7.
a, 7a, the heat generated by the reaction is cooled by the cooling water, and the operating temperature is appropriately maintained.

【0015】上記の構成によれば、各電極プレート1,
12の流体通路2の各溝4の横断面は、該流体通路2の
上流側において反応に寄与する開口部4aの幅S1が小
さく、反応に寄与しない底部側4bの幅S2が大きくな
っているので、上流側における燃料ガスと酸化剤ガスと
の反応を適度に抑えられ、反応に寄与しない底部4bの
両側溝部分4cを通して下流側に未反応のガスが多く流
れるようになり、また、下流側において反応に寄与する
開口部4aの幅S3が大きく、反応に寄与しない底部8
b側の幅S4が小さくなっているので、上流側から下流
側に流れた未反応のガスが幅が大きい開口部4aで能率
よく反応する。したがって、各電極プレート1,12の
反応帯域3,3の全体で均等に反応が行われることとな
り、燃料電池の性能の向上を図ることができる。
According to the above configuration, each of the electrode plates 1
In the cross section of each groove 4 of the twelve fluid passages 2, the width S1 of the opening 4a contributing to the reaction on the upstream side of the fluid passage 2 is small, and the width S2 of the bottom side 4b not contributing to the reaction is large. Therefore, the reaction between the fuel gas and the oxidizing gas on the upstream side is appropriately suppressed, and a large amount of unreacted gas flows to the downstream side through the both side groove portions 4c of the bottom portion 4b which does not contribute to the reaction. , The width S3 of the opening 4a contributing to the reaction is large, and the bottom 8 not contributing to the reaction.
Since the width S4 on the b side is small, unreacted gas flowing from the upstream side to the downstream side reacts efficiently at the opening 4a having a large width. Therefore, the reaction is uniformly performed in the entire reaction zones 3 and 3 of the electrode plates 1 and 12, and the performance of the fuel cell can be improved.

【0016】なお、上記実施の形態では、流体通路2の
各溝4は、その壁面が開口部4aから底部4bに向けて
平らな斜面に形成して断面を台形状、逆台形状とした
が、上記壁面を凹面や凸面にして断面が変形した台形
状、逆台形状としてもよく、溝4の開口部4aの両縁や
底部4bの両縁部は、直線が交差した角部とせずに適度
に円弧状にした角部として形成してもよい。各溝4の壁
面の底部4bの面に対する角度Eは特に制限はないが、
台形状溝の開口部4aの幅の大きさにもよるが、加工の
容易さから45度以上が好ましい。各溝4の加工手段と
しては、切削加工、放電加工、ショットピーニングやサ
ンドブラストが適用できる。また、溝4の断面形状は上
記の形状に限らず、円形状、その他の形状であってもよ
い。要するに、流体通路2の上流側で溝4の開口部4a
の幅が底部の幅より小さく形成され、流体通路7の下流
側で溝4の開口部4aの幅が底部の幅より大きく形成さ
れていればよく、溝4の内部の形状は特に限定されな
い。
In the above-described embodiment, each groove 4 of the fluid passage 2 has a flat inclined surface from the opening 4a to the bottom 4b, and the cross section is trapezoidal or inverted trapezoidal. Alternatively, a trapezoidal shape in which the wall surface is concave or convex and the cross section is deformed, or an inverted trapezoidal shape may be used. Both edges of the opening 4a of the groove 4 and both edges of the bottom 4b are not formed as corners where straight lines intersect. It may be formed as a suitably arcuate corner. The angle E of the wall surface of each groove 4 with respect to the surface of the bottom 4b is not particularly limited,
Although it depends on the size of the width of the opening 4a of the trapezoidal groove, 45 ° or more is preferable from the viewpoint of ease of processing. As a processing means of each groove 4, cutting, electric discharge machining, shot peening or sand blast can be applied. Further, the cross-sectional shape of the groove 4 is not limited to the above shape, and may be a circular shape or another shape. In short, the opening 4a of the groove 4 on the upstream side of the fluid passage 2
Is smaller than the width of the bottom, and the width of the opening 4a of the groove 4 downstream of the fluid passage 7 may be larger than the width of the bottom, and the internal shape of the groove 4 is not particularly limited.

【0017】さらに、上記実施の形態では、前記電極プ
レート1,12の流体通路2の溝4を基板の単一板に有
底の溝として形成したが、図7に示すように、貫通穴4
dによって溝4の壁面を構成する基板構成部材20a
に、前記溝4の底部を構成する平板状の基板構成部材2
0bを接合することにより形成してもよい。このように
すれば、溝4の加工が確実、容易に行える。この場合、
基板構成部材20bにおける溝4の底部4bとなる側と
反対側の面に前記冷却水通路9を設けることもできる。
また、上記実施の形態では、各電極プレート1,12の
流体通路2は、上流側から下流側に向けて直線状に形成
したが、反応帯域3,3の全体に亘って蛇行して形成し
てもよい。このようにすると、流路が長く形成されるの
で、燃料ガスと酸化剤ガスとの接触時間が十分に確保さ
れ、効率のよい反応が行われ、燃料電池の性能の向上を
図ることができる。
Further, in the above embodiment, the groove 4 of the fluid passage 2 of the electrode plates 1 and 12 is formed as a groove with a bottom in a single plate of the substrate, but as shown in FIG.
a substrate constituting member 20a forming the wall surface of the groove 4 by d
A plate-like substrate component 2 forming the bottom of the groove 4
0b may be formed by bonding. In this way, the processing of the groove 4 can be performed reliably and easily. in this case,
The cooling water passage 9 may be provided on the surface of the substrate component member 20b opposite to the side that becomes the bottom 4b of the groove 4.
In the above-described embodiment, the fluid passages 2 of the electrode plates 1 and 12 are formed linearly from the upstream side to the downstream side, but are formed to meander over the entire reaction zones 3 and 3. You may. In this case, since the flow path is formed long, the contact time between the fuel gas and the oxidizing gas is sufficiently ensured, an efficient reaction is performed, and the performance of the fuel cell can be improved.

【0018】また、上記実施の形態では、前記電極プレ
ート(基板)1,12をカーボンで構成したが、これに
限らず、機械的強度、耐食性、熱伝導度等に優れたチタ
ン等の金属で構成してもよいし、電極プレート1,12
を電解質膜として固体高分子を使用した燃料電池に適用
したが、りん酸溶液を使用したものに適用てもよい。
Further, in the above embodiment, the electrode plates (substrates) 1 and 12 are made of carbon. However, the present invention is not limited to this. Or the electrode plates 1 and 12
Is applied to a fuel cell using a solid polymer as an electrolyte membrane, but may be applied to a fuel cell using a phosphoric acid solution.

【0019】[0019]

【発明の効果】以上説明のように、請求項1に記載の発
明は、基板に設けた流体通路の溝が、流体通路の上流側
において溝の開口部側の幅を小さくすると共に底部側の
幅を大きくした横断面形状に形成されている構成とした
ので、流体通路の上流側において溝の開口部に面してい
ない溝の両側溝部分を流れるガスが、下流側に流れて反
応に十分に寄与することができ、したがって、基板の流
体通路を上流側から下流側に向かって流れるガスは反応
帯域の全体で効率よく反応が行われることになり、燃料
電池の出力性能の向上を図れるセパレータを提供するこ
とができる。
As described above, according to the first aspect of the present invention, the groove of the fluid passage provided in the substrate has a reduced width on the opening side of the groove on the upstream side of the fluid passage and a groove on the bottom side. Since the cross-sectional shape is increased in width, the gas flowing in the groove on both sides of the groove that does not face the opening of the groove on the upstream side of the fluid passage flows downstream and is sufficient for the reaction. Therefore, the gas flowing from the upstream side to the downstream side in the fluid passage of the substrate is efficiently reacted in the entire reaction zone, and the separator capable of improving the output performance of the fuel cell is achieved. Can be provided.

【0020】請求項2と請求項3に記載の発明によれ
ば、流体通路の下流側において溝の開口部側の幅を大き
くすると共に底部側の幅を小さくした横断面形状に形成
されている構成とし、また、流体通路の溝が、上流側の
横断面形状から下流側の横断面形状へと徐々変化して形
成されている構成としたので、上流側で反応に寄与しな
かったガスが徐々に下流側において反応に寄与するよう
になり、反応帯域の全体でほぼ均等に反応が行われる。
このため、燃料電池の出力性能の一層の向上を図れるセ
パレータを提供することができる。
According to the second and third aspects of the present invention, the width of the opening on the side of the groove on the downstream side of the fluid passage is increased and the width of the groove on the bottom side is reduced. In addition, since the groove of the fluid passage is formed so as to gradually change from the upstream cross-sectional shape to the downstream cross-sectional shape, the gas that did not contribute to the reaction on the upstream side is formed. It gradually contributes to the reaction on the downstream side, and the reaction is performed almost uniformly in the entire reaction zone.
Therefore, it is possible to provide a separator capable of further improving the output performance of the fuel cell.

【0021】請求項4と請求項5に記載の発明によれ
ば、流体通路の溝は、上流側の横断面形状が台形状に、
下流側の横断面形状が逆台形状に形成された構成とし、
また、貫通穴によって溝の壁面を構成する基板構成部材
に、溝の底部を構成する基板構成部材を接合することに
より形成された構成としたので、基板へ流体通路の溝を
形成するための加工が簡単に行え、実施が容易である。
請求項6に記載の発明によれば、基板をカーボンで構成
したので、基板製品の軽量化ができ、小形軽量の燃料電
池の実現に寄与できる。
According to the fourth and fifth aspects of the present invention, the groove of the fluid passage has a trapezoidal cross section on the upstream side.
The cross-sectional shape on the downstream side is formed in an inverted trapezoidal shape,
Further, since the structure is formed by joining the substrate constituent member forming the bottom of the groove to the substrate constituent member forming the wall surface of the groove by the through hole, the processing for forming the groove of the fluid passage in the substrate is performed. Can be easily performed and the implementation is easy.
According to the sixth aspect of the present invention, since the substrate is made of carbon, the weight of the substrate product can be reduced, which can contribute to the realization of a small and lightweight fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の燃料電池用セパレータ(燃料ガス用
電極プレート)の実施の形態を示す正面図である。
FIG. 1 is a front view showing an embodiment of a fuel cell separator (electrode plate for fuel gas) of the present invention.

【図2】 図1のイーイ断面拡大図である。FIG. 2 is an enlarged cross-sectional view taken along the line II in FIG.

【図3】 図1のローロ断面拡大図である。FIG. 3 is an enlarged cross-sectional view of a roll of FIG. 1;

【図4】 本発明の燃料電池用セパレータ(燃料ガス用
電極プレート)の実施の形態を示す背面図である。
FIG. 4 is a rear view showing an embodiment of the fuel cell separator (fuel gas electrode plate) of the present invention.

【図5】 本発明の燃料電池用セパレータ(酸化剤ガス
用電極プレート)の実施の形態を示す正面図である。
FIG. 5 is a front view showing an embodiment of a fuel cell separator (an oxidant gas electrode plate) of the present invention.

【図6】 同じく背面図である。FIG. 6 is a rear view of the same.

【図7】 流体通路の溝の他の構成を示す断面拡大図で
ある。
FIG. 7 is an enlarged sectional view showing another configuration of the groove of the fluid passage.

【符号の説明】[Explanation of symbols]

1 電極プレート(基板) 2 流体通路 4 溝 4a 開口部 4b 底部 4c 両側溝
部分 5 流入溝 5a 流出溝 6,8 流入孔 6a,8a
流出孔 7 水流入孔 7a 水流出
孔 9 冷却水通路 12 電極プ
レート(基板)
DESCRIPTION OF SYMBOLS 1 Electrode plate (substrate) 2 Fluid passage 4 Groove 4a Opening 4b Bottom 4c Both sides groove part 5 Inflow groove 5a Outflow groove 6,8 Inflow hole 6a, 8a
Outflow hole 7 Water inflow hole 7a Water outflow hole 9 Cooling water passage 12 Electrode plate (substrate)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板の表面に沿って形成されて流体を入
口から出口に向けて流す有底の溝からなる流体通路を設
けた燃料電池用セパレータであって、 上記流体通路の溝は、流体通路の上流側において溝の開
口部側の幅を小さくすると共に底部側の幅を大きくした
横断面形状に形成されていることを特徴とする燃料電池
用セパレータ。
1. A fuel cell separator provided with a fluid passage formed along a surface of a substrate and having a bottomed groove through which a fluid flows from an inlet to an outlet, wherein the groove of the fluid passage is formed of a fluid. A fuel cell separator characterized in that it has a cross-sectional shape in which the width at the opening side of the groove is reduced and the width at the bottom side is increased at the upstream side of the passage.
【請求項2】 流体通路の下流側において溝の開口部側
の幅を大きくすると共に底部側の幅を小さくした横断面
形状に形成されていることを特徴とする請求項1に記載
の燃料電池用セパレータ。
2. The fuel cell according to claim 1, wherein the width of the groove on the downstream side of the fluid passage is increased on the opening side and the width on the bottom side is reduced. For separator.
【請求項3】 前記流体通路の溝は、上流側の横断面形
状から下流側の横断面形状へと徐々変化して形成されて
いることを特徴とする請求項1または請求項2に記載の
燃料電池用セパレータ。
3. The fluid passage according to claim 1, wherein the groove of the fluid passage is formed so as to gradually change from an upstream cross-sectional shape to a downstream cross-sectional shape. Fuel cell separator.
【請求項4】 前記流体通路の溝は、上流側の横断面形
状が台形状に、下流側の横断面形状が逆台形状に形成さ
れていることを特徴とする請求項2または請求項3に記
載の燃料電池用セパレータ。
4. The groove of the fluid passage has a trapezoidal cross section on the upstream side and an inverted trapezoidal cross section on the downstream side. The separator for a fuel cell according to 1.
【請求項5】 前記流体通路の溝は、貫通穴によって溝
の壁面を構成する基板構成部材に、前記溝の底部を構成
する基板構成部材を接合することにより形成されている
ことを特徴とする請求項1ないし請求項4のいずれか1
つに記載の燃料電池用セパレータ。
5. The groove of the fluid passage is formed by joining a substrate constituent member forming a bottom portion of the groove to a substrate constituent member forming a wall surface of the groove by a through hole. Any one of claims 1 to 4
13. The fuel cell separator according to any one of the above.
【請求項6】 前記基板はカーボンからなることを特徴
とする請求項1ないし請求項5のいずれか1つに記載の
燃料電池用セパレータ。
6. The fuel cell separator according to claim 1, wherein the substrate is made of carbon.
JP11215989A 1999-07-29 1999-07-29 Separator for fuel cell Pending JP2001043870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11215989A JP2001043870A (en) 1999-07-29 1999-07-29 Separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11215989A JP2001043870A (en) 1999-07-29 1999-07-29 Separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2001043870A true JP2001043870A (en) 2001-02-16

Family

ID=16681572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11215989A Pending JP2001043870A (en) 1999-07-29 1999-07-29 Separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2001043870A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854499A1 (en) * 2003-04-30 2004-11-05 Renault Sa Bipolar plate for solid electrolyte type fuel cell, has groove forming anodic and cathodic fluids circulating channels, extending on its entire length in rectilinear manner, and presenting asymmetric profile
JP2006221896A (en) * 2005-02-09 2006-08-24 Toyota Motor Corp Fuel cell and separator for fuel cell
JP2007103373A (en) * 2005-10-04 2007-04-19 Gm Global Technology Operations Inc Fuel cell system and balancing method of water mass
CN1323452C (en) * 2003-02-19 2007-06-27 精工爱普生株式会社 Fuel battery and method of making fuel battery
DE102004007203B4 (en) * 2003-02-13 2008-07-10 Toyota Jidosha Kabushiki Kaisha, Toyota Method for producing a metal separator for a fuel cell and fuel cell
JP2008287943A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Gas passage forming member for fuel cell and fuel cell
WO2010032439A1 (en) * 2008-09-18 2010-03-25 パナソニック株式会社 Fuel cell and fuel cell stack provided with same
JP2012166617A (en) * 2011-02-10 2012-09-06 Mitsubishi Heavy Ind Ltd Pipe seat, and brake device of railroad vehicle using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007203B4 (en) * 2003-02-13 2008-07-10 Toyota Jidosha Kabushiki Kaisha, Toyota Method for producing a metal separator for a fuel cell and fuel cell
US7468217B2 (en) 2003-02-13 2008-12-23 Toyota Jidosha Kabushiki Kaisha Separator passage structure of fuel cell
CN1323452C (en) * 2003-02-19 2007-06-27 精工爱普生株式会社 Fuel battery and method of making fuel battery
EP1508929A1 (en) * 2003-04-30 2005-02-23 Renault s.a.s. Bipolar plate for fuel cell and fuel cell comprising such a biploar plate
FR2854499A1 (en) * 2003-04-30 2004-11-05 Renault Sa Bipolar plate for solid electrolyte type fuel cell, has groove forming anodic and cathodic fluids circulating channels, extending on its entire length in rectilinear manner, and presenting asymmetric profile
JP4578997B2 (en) * 2005-02-09 2010-11-10 トヨタ自動車株式会社 Fuel cell separator and fuel cell
JP2006221896A (en) * 2005-02-09 2006-08-24 Toyota Motor Corp Fuel cell and separator for fuel cell
JP2007103373A (en) * 2005-10-04 2007-04-19 Gm Global Technology Operations Inc Fuel cell system and balancing method of water mass
JP2008287943A (en) * 2007-05-15 2008-11-27 Toyota Motor Corp Gas passage forming member for fuel cell and fuel cell
CN101861670A (en) * 2008-09-18 2010-10-13 松下电器产业株式会社 Fuel cell and fuel cell stack provided with same
WO2010032439A1 (en) * 2008-09-18 2010-03-25 パナソニック株式会社 Fuel cell and fuel cell stack provided with same
CN101861670B (en) * 2008-09-18 2014-06-04 松下电器产业株式会社 Fuel cell and fuel cell stack provided with same
JP5518721B2 (en) * 2008-09-18 2014-06-11 パナソニック株式会社 FUEL CELL AND FUEL CELL STACK HAVING THE SAME
US9786929B2 (en) 2008-09-18 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Fuel cell and fuel cell stack comprising the same
JP2012166617A (en) * 2011-02-10 2012-09-06 Mitsubishi Heavy Ind Ltd Pipe seat, and brake device of railroad vehicle using the same

Similar Documents

Publication Publication Date Title
JP4917755B2 (en) Fuel cell
US20050255364A1 (en) Bipolar plate of fuel cell
JP7346777B2 (en) Bipolar plate for electrochemical systems
JP5811439B2 (en) Fuel cell unit and fuel cell stack
US10381660B2 (en) Separator for fuel cell
JP2013097982A (en) Fuel cell stack
JP2005524937A5 (en)
JP5302263B2 (en) Fuel cell
JP2001043870A (en) Separator for fuel cell
JP2000090947A (en) Fuel cell
JP2006324129A (en) Redox flow battery and its cell
JP2006114387A (en) Fuel cell
JP4993828B2 (en) Fuel cell
JP2023503952A (en) Fuel cell assembly with external manifold for parallel flow
JPS61128469A (en) Fuel cell
JP2007299537A (en) Fuel cell
JP2001043868A (en) Separator for fuel cell
JP5082313B2 (en) Fuel cell separator structure
JP2004047214A (en) Fuel cell
JP4578997B2 (en) Fuel cell separator and fuel cell
JP2003262489A (en) Plate type heat exchanger
JP2007533067A (en) Fuel cell reactant flow area to maximize utilization of planar graphics
JP2007207570A (en) Fuel cell
JPH01105474A (en) Cooling method for fuel cell
JP2008027750A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905