JP2001041910A - METHOD FOR MEASURING QUANTITY OF Cr IN CHROMATE COAT OF Cr-CONTAINING STEEL PLTE - Google Patents

METHOD FOR MEASURING QUANTITY OF Cr IN CHROMATE COAT OF Cr-CONTAINING STEEL PLTE

Info

Publication number
JP2001041910A
JP2001041910A JP11211775A JP21177599A JP2001041910A JP 2001041910 A JP2001041910 A JP 2001041910A JP 11211775 A JP11211775 A JP 11211775A JP 21177599 A JP21177599 A JP 21177599A JP 2001041910 A JP2001041910 A JP 2001041910A
Authority
JP
Japan
Prior art keywords
amount
film
ratio
content
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11211775A
Other languages
Japanese (ja)
Inventor
Kazuko Uchida
内田  和子
Minoru Kiyozuka
清塚  稔
Kazumi Matsubara
和美 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP11211775A priority Critical patent/JP2001041910A/en
Publication of JP2001041910A publication Critical patent/JP2001041910A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To nondestructively, quantitatively and speedily measure the quantity of Cr in a chromate coat, formed on a Cr-containing steel plate by estimating the size of the component ratio change of a processing solution, using a response signal intensity in the coat as a measurement index, and correcting the component ratio change. SOLUTION: A theoretical O quantity in each coat is calculated from a known component ratio of each processing solution, and is multiplied by an O response signal sensitivity coefficient, whereby a calculated value of an O response signal intensity is obtained. The ratio of the calculated value of the O response signal intensity in the coat and the measured value of the O response signal intensity of a standard coat by the X-ray fluorescence analysis is obtained, which is made as index value of the size of change of the O quantity in the coat. The index value of the size of the change of the O quantity is strongly correlated with the change in the size of the quantity ratio of Cr and Si in the coat. A calibration curve for obtaining the charge in the size in the quantity ratio of Cr and Si in the processing solutions is formed from the index value of the change in the size of the O quantity with the use of the relationship, and a component ratio change in the processing solution is corrected. A true quantity of Cr in the coat can be detected in this manner.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Cr含有鋼板上に
形成されたクロメート皮膜の分析方法に関する。より詳
しくは、クロメート皮膜中のCr量を螢光X線分析法等
により該皮膜を破壊することなく定量的且つ迅速に求
め、該皮膜の品質管理の精度と効率を高めるものであ
る。
[0001] The present invention relates to a method for analyzing a chromate film formed on a Cr-containing steel sheet. More specifically, the amount of Cr in the chromate film is quantitatively and quickly determined without destruction of the film by a fluorescent X-ray analysis method or the like, thereby improving the accuracy and efficiency of quality control of the film.

【0002】[0002]

【従来の技術】クロメート処理は、鋼板に耐蝕性、耐指
紋性、美麗な外観等を付与することができる表面処理法
である。この処理法を用いてクロメート被覆亜鉛めっき
鋼板、あるいはクロメート被覆ステンレス鋼板等が開発
され、建材、家電、自動車、電機分野等に多用されてい
る。クロメート処理法には、大別すると反応型、電解型
および塗布型の3種類がある。このうち、近年、クロメ
ート処理膜の耐蝕性および潤滑性の点から塗布型クロメ
ート処理法が主に用いられている。
2. Description of the Related Art Chromate treatment is a surface treatment method capable of imparting corrosion resistance, fingerprint resistance, beautiful appearance and the like to a steel sheet. Chromate-coated galvanized steel sheets, chromate-coated stainless steel sheets, and the like have been developed using this processing method, and are frequently used in the fields of building materials, home appliances, automobiles, and electric machines. Chromate treatment methods are roughly classified into three types: reaction type, electrolytic type and coating type. Among these, in recent years, a coating type chromate treatment method has been mainly used in view of corrosion resistance and lubricity of a chromate treatment film.

【0003】これまで、クロメート皮膜の特性調査が実
用的見地から種々行われ、上記皮膜中のCr量の違いや
上記皮膜の化学性状の違いおよび上記皮膜中に共存する
化学成分が上記皮膜の品質や特性に大きな影響を及ぼ
し、特にCr量の多寡の寄与が大きいことが明らかにさ
れている。つまり、クロメート皮膜中のCr量が所定の
量よりも少ないと塗装後沸騰水に浸漬した後の加工性が
劣ったり、また海岸や工場地帯等の厳しい腐食環境下で
使用された場合に塗膜の膨れが発生し易いという問題が
ある。
[0003] Until now, various investigations of the properties of chromate films have been conducted from a practical point of view. The difference in the amount of Cr in the films, the difference in the chemical properties of the films, and the chemical components coexisting in the films are considered as the quality of the films. It has been clarified that the influence of the amount of Cr has a large effect on the properties of the steel. In other words, if the amount of Cr in the chromate film is less than the predetermined amount, the workability after immersion in boiling water after painting is poor, or the film is used in a severe corrosive environment such as a coast or factory area. There is a problem that blisters are easily generated.

【0004】そのため、クロメート皮膜製造ラインの品
質管理において、特に高精度のCr量の定量分析による
Cr量の検査が必要とされる。現在、鋼板上に形成され
たクロメート皮膜中の元素を測定する分析方法を大別す
ると、上記皮膜を溶解させた溶液を測定する誘導結合高
周波プラズマ発光分析法(ICP発光分光分析法)およ
び原子吸光分析法等の化学成分分析法や、上記皮膜をそ
のまま測定するX線光電子分光分析法および螢光X線分
析法等の化学状態分析法がある。このうち後者は、電磁
波を上記皮膜に照射し、その電磁波照射部の表面層の元
素から放射される応答信号を検出することにより上記皮
膜中の元素量および上記皮膜中の元素の化学状態を非破
壊で測定できるという長所を有する分析法である。この
他に、上記分析法では確認できない上記皮膜の外観品質
については、目視観察で皮膜の色調を測定し標準試料と
対比させて検査する方法が用いられている。以上の分析
法の中で螢光X線分析法は、上記皮膜中の元素の化学量
を非破壊で、定量的且つ迅速に測定することができ、ま
た大量の測定試料を一括分析できるという利点から、現
在、亜鉛めっき鋼板上に形成されたクロメート皮膜中の
Cr量測定法として多用されている。
[0004] Therefore, in quality control of a chromate film production line, it is particularly necessary to inspect the amount of Cr by quantitative analysis of the amount of Cr with high precision. At present, analysis methods for measuring elements in a chromate film formed on a steel sheet are roughly classified into inductively-coupled high-frequency plasma emission spectrometry (ICP emission spectrometry) and atomic absorption spectrometry for measuring a solution in which the above-mentioned film is dissolved. There are a chemical component analysis method such as an analysis method, and a chemical state analysis method such as an X-ray photoelectron spectroscopy method and a fluorescent X-ray analysis method in which the film is measured as it is. Of the latter, the latter irradiates the film with an electromagnetic wave and detects the response signal radiated from the element on the surface layer of the electromagnetic wave irradiating part to determine the amount of the element in the film and the chemical state of the element in the film. This is an analytical method that has the advantage of being measurable by destruction. In addition, for the appearance quality of the film, which cannot be confirmed by the above analysis method, a method of measuring the color tone of the film by visual observation and comparing the color tone with a standard sample is used. Among the above analysis methods, the fluorescent X-ray analysis method has the advantage that the stoichiometry of the elements in the film can be measured nondestructively, quantitatively and quickly, and a large amount of measurement samples can be analyzed at once. Therefore, at present, it is frequently used as a method for measuring the amount of Cr in a chromate film formed on a galvanized steel sheet.

【0005】一方、Cr含有鋼板上に形成されたクロメ
ート皮膜の螢光X線分析を行う場合には、以下の理由に
よりCrの応答信号単独から上記皮膜中のCr量を測定
することは困難となっている。すなわち、上記皮膜の膜
厚は通常0.01〜0.3μm程度であり、この程度の
膜厚では下地のCr含有鋼板のCrの応答信号が上記皮
膜中のCrの応答信号と重なり、これら両者のCrの応
答信号を定量的に分離することが極めて困難なため上記
皮膜中の正確なCr量を測定することが難しいことによ
る。そこで、Cr含有鋼板上に形成された上記皮膜中の
Cr量測定に螢光X線分析法を適用するには、上記皮膜
中のCr以外の元素の応答信号を指標に用いてCr量を
測定する手法が要求される。
On the other hand, when performing X-ray fluorescence analysis of a chromate film formed on a Cr-containing steel sheet, it is difficult to measure the amount of Cr in the film from the Cr response signal alone for the following reasons. Has become. That is, the film thickness of the film is usually about 0.01 to 0.3 μm, and at such a film thickness, the response signal of Cr of the underlying Cr-containing steel sheet overlaps with the response signal of Cr in the film. This is because it is extremely difficult to quantitatively separate the response signal of Cr from the above, and thus it is difficult to accurately measure the amount of Cr in the film. Therefore, in order to apply the fluorescent X-ray analysis method to the measurement of the Cr content in the coating formed on the Cr-containing steel sheet, the Cr content is measured using the response signal of an element other than Cr in the coating as an index. Is required.

【0006】以下、従来行われてきた螢光X線分析法に
よるCr含有鋼板上に形成されたクロメート皮膜中のC
r量の測定手法について述べる。上記皮膜中のCr量の
定量測定の指標に用いられるCr以外の元素の選定条件
として、上記皮膜中のCr以外の元素の応答信号強度が
下地からの該元素の応答信号強度の影響を無視できる程
度に十分に大きく、且つ上記皮膜中のCr量と相関関係
を有することが挙げられる。このような条件を備えたC
r以外の元素の応答信号強度を測定指標とすることによ
り、上記皮膜中のCr量を測定することが可能となる。
例えばCr酸化物を主成分とし、これにSi酸化物とP
化合物、および樹脂等の有機物が配合されている塗布型
クロメート処理において、以下のような手順で近似的に
Cr量を測定することができる。まずCrとSiの含有
量が既知であり、且つその含有比率が適宜異なるクロメ
ート皮膜を適宜水準を設けて基板上に形成し、上記皮膜
の螢光X線分析によるSiの応答信号強度と上記皮膜中
のCr量との相関関係を調べ、Siの応答信号強度から
Cr量を求める検量線を作成する。この検量線の式に螢
光X線分析によるSiの応答信号強度を代入することで
使用したクロメート処理液の成分比率が既知で且つ該成
分比率が一定の場合の上記皮膜中のCr量を概算して求
めることができる。
[0006] Hereinafter, C in a chromate film formed on a Cr-containing steel sheet by a conventional fluorescent X-ray analysis method will be described.
A method for measuring the amount of r will be described. As a condition for selecting an element other than Cr used as an index for quantitative measurement of the amount of Cr in the coating, the response signal intensity of an element other than Cr in the coating can ignore the influence of the response signal intensity of the element from the base. To be sufficiently large and have a correlation with the Cr content in the film. C with such conditions
By using the response signal intensity of elements other than r as a measurement index, it becomes possible to measure the amount of Cr in the film.
For example, a main component is a Cr oxide, and a Si oxide and a P
In a coating-type chromate treatment in which a compound and an organic substance such as a resin are blended, the Cr amount can be approximately measured by the following procedure. First, a chromate film whose Cr and Si contents are known and whose content ratios are different from each other is formed on a substrate at an appropriate level, and the response signal intensity of Si by X-ray fluorescence analysis of the film and the film are measured. The correlation with the amount of Cr in the medium is examined, and a calibration curve for obtaining the amount of Cr from the response signal intensity of Si is created. By substituting the response signal intensity of Si by X-ray fluorescence analysis into the equation of this calibration curve, the amount of Cr in the above-mentioned film when the component ratio of the used chromate treatment solution is known and the component ratio is constant is estimated. You can ask.

【0007】しかしながら、このようにして求められる
Cr量の測定方法は使用したクロメート処理液中の成分
比率が一定であることを必須条件としており、もし何ら
かの原因で上記処理液中の成分比率が変動した場合に
は、このようにして求めたCr量は真の値からずれる。
上記皮膜中のCr量測定において、真のCr量からのず
れを防止するために製品の各ロット毎に先述した上記皮
膜を溶解させた溶液を測定する化学成分分析法により上
記皮膜の定量的検査を行うことも考えられるが、製造現
場への負荷および検査効率の点から実用上好ましくな
い。以上の問題点を背景とし、クロメート処理製品製造
ラインにてCr含有鋼板上に形成されたクロメート皮膜
中のCr量を定量的且つ迅速に測定する方法の確立が切
望されてきた。
However, the method for measuring the amount of Cr obtained in this manner requires that the component ratio in the used chromate processing solution be constant, and if the component ratio in the processing solution fluctuates for some reason. In this case, the Cr amount thus obtained deviates from the true value.
In the measurement of the amount of Cr in the film, a quantitative inspection of the film by a chemical component analysis method for measuring a solution in which the film is dissolved as described above for each lot of a product in order to prevent deviation from a true amount of Cr. However, it is not practically preferable from the viewpoint of load on a manufacturing site and inspection efficiency. Against the background of the above problems, it has been desired to establish a method for quantitatively and quickly measuring the amount of Cr in a chromate film formed on a Cr-containing steel sheet in a chromate treatment product production line.

【0008】[0008]

【発明が解決しようとする課題】従って本発明の目的
は、Cr含有鋼板上に形成されたクロメート皮膜中のC
r量を非破壊で定量的且つ迅速に測定する方法を提供す
ることである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for forming a C film in a chromate film formed on a Cr-containing steel sheet.
An object of the present invention is to provide a method for non-destructively, quantitatively and rapidly measuring the amount of r.

【0009】[0009]

【課題を解決するための手段】そこで、本発明者らは上
述に鑑み、鋭意研究を重ねた結果、Cr含有鋼板上に形
成されたクロメート皮膜の螢光X線分析において、上記
皮膜中のCr以外の酸化物構成元素およびOの応答信号
強度を測定し、これらの応答信号強度とCr量との相関
関係から導出された式を用いて、処理液の成分比率の変
動の影響を補正し、上記皮膜中の真のCr量を算出する
ことにより上記目的を達成できることを見出し本発明を
創作するに至った。本発明者らは、まずクロメート処理
液の成分変動が螢光X線分析によるクロメート皮膜中の
各含有元素の応答信号強度に及ぼす影響について調査し
た。その結果、クロメート処理液の成分比率が変動した
場合、上記皮膜中のOの応答信号強度がその成分比率の
変動の大きさと強い相関関係を示すことが判明した。そ
の理由として、巨視的にはクロメート処理液およびクロ
メート皮膜の含有成分の多くが酸化物であり、上記皮膜
中の成分比率が変動するとこれら各酸化物中のOの原子
量比率の違いに応じて皮膜中のO量が変化することが考
えられる。
In view of the above, the present inventors have conducted intensive studies, and as a result, have found that, in a fluorescent X-ray analysis of a chromate film formed on a Cr-containing steel sheet, the Cr content in the film is reduced. By measuring the response signal intensity of the oxide constituent elements other than O and O, and using the equation derived from the correlation between the response signal intensity and the Cr amount, to correct the effect of the variation in the component ratio of the processing solution, The present inventors have found that the above object can be achieved by calculating the true amount of Cr in the film, and have led to the creation of the present invention. The present inventors first investigated the effect of component fluctuation of the chromate treatment solution on the response signal intensity of each element contained in the chromate film by X-ray fluorescence analysis. As a result, it was found that when the component ratio of the chromate treatment liquid varied, the response signal intensity of O in the film showed a strong correlation with the magnitude of the variation of the component ratio. The reason for this is that macroscopically, most of the components contained in the chromate treatment solution and the chromate film are oxides, and when the component ratio in the film fluctuates, the film is formed according to the difference in the atomic weight ratio of O in each of these oxides. It is conceivable that the amount of O inside changes.

【0010】そこで、本発明者らは上記結果に着目し、
上記皮膜中のOの応答信号強度を測定指標として上記処
理液の成分比率の変動の大きさを見積もることによりそ
の成分比率変動を補正する係数を求め、先述した従来方
式の螢光X線によるCr以外の元素の応答信号感度係数
とCr量の検量線から求めたCr量に上記補正係数を乗
じ、上記皮膜中の真のCr量を測定する方法について検
討した。クロメート処理液として、酸化Crと酸化Si
とを主成分とする処理剤を用いた。まず、Cr量とSi
量との比率が既知の、標準クロメート皮膜およびこの標
準皮膜からCr量とSi量との比率を適宜変えたクロメ
ート皮膜を各々Cr含有鋼板上に形成した。次に、これ
ら各皮膜について螢光X線分析法を用いて含有元素の化
学量測定を行い、OおよびSiの応答信号強度と、Cr
量とSi量との比率の定量的関係について調査した。そ
の結果、Oの応答信号強度がCr量とSi量との比率と
リニアな関係を示すことが判明した。また、上記各処理
液の既知の成分比率から上記各皮膜中の理論的O量を算
出し、これにOの応答信号感度係数を乗じることにより
Oの応答信号強度の計算値を算出した。この上記皮膜中
のOの応答信号強度計算値と螢光X線分析による上記標
準皮膜のOの応答信号強度測定値との比率を求め、この
比率を上記皮膜中のO量の変動の大きさの指標値とし
た。更に、このO量の変動の大きさの指標値と上記皮膜
中のCr量とSi量との比率の変動の大きさとの関係に
ついて調べた。その結果、上記両者の間には強い相関関
係が見られ、この関係を用いてO量の変動の大きさの指
標値から上記処理液中のCr量とSi量との比率の変動
の大きさを求める検量線を作成することにより上記処理
液中の成分比率の変動を補正し、上記皮膜中の真のCr
量を算出することが可能となる。
Therefore, the present inventors focused on the above results,
By using the response signal intensity of O in the film as a measurement index to estimate the magnitude of the change in the component ratio of the processing solution, a coefficient for correcting the change in the component ratio is obtained. A method for measuring the true Cr content in the coating by multiplying the response signal sensitivity coefficients of the other elements and the Cr content obtained from the calibration curve of the Cr content by the above correction coefficient was examined. As chromate treatment liquid, Cr oxide and Si oxide
And a treating agent containing as a main component. First, the amount of Cr and Si
A standard chromate film whose ratio to the amount was known, and a chromate film whose ratio between the Cr amount and the Si amount was appropriately changed from the standard film were formed on the Cr-containing steel sheet. Next, the stoichiometry of the elements contained in each of these films was measured by X-ray fluorescence analysis, and the response signal intensities of O and Si and Cr were measured.
The quantitative relationship between the ratio of the amount of Si and the amount of Si was investigated. As a result, it was found that the O response signal intensity showed a linear relationship with the ratio between the Cr amount and the Si amount. The theoretical value of O in each of the films was calculated from the known component ratio of each processing solution, and the calculated value of O response signal intensity was calculated by multiplying this by the O response signal sensitivity coefficient. The ratio between the calculated value of the O response signal intensity in the film and the measured value of the O response signal intensity of the standard film by X-ray fluorescence analysis is determined, and this ratio is determined by the magnitude of the variation in the amount of O in the film. Index value. Further, the relationship between the index value of the magnitude of the variation of the O content and the magnitude of the variation of the ratio between the Cr content and the Si content in the film was examined. As a result, a strong correlation was found between the two, and using this relationship, the magnitude of the variation in the ratio between the Cr content and the Si content in the treatment liquid was determined from the index value of the variation in the O content. By correcting the variation of the component ratio in the processing solution by creating a calibration curve for
The amount can be calculated.

【0011】これまで、螢光X線分析によりクロメート
処理液中の成分比率変動とクロメート皮膜中のO量との
定量的関係について調査された報告はなく、またOの応
答信号強度を用いて上記処理液の成分比率変動を補正し
真のCr量を算出した例もなかった。その理由として、
O原子は質量数が比較的小さく、X線照射によって放射
される螢光X線の強度が量子力学的理論に基づき弱いた
め、螢光X線分析法にはOの測定が適さなかったことが
挙げられる。この問題に対し、近年、螢光X線装置の分
光結晶の改良が行われ、微弱な螢光X線でも検出が可能
となり、現在、Oから放射される螢光X線強度に対する
検出感度は十分なレベルとなっている。また、他の理由
として、クロメート皮膜はその大部分が酸化物で構成さ
れており、螢光X線分析で測定された上記皮膜中の全O
応答信号強度を各酸化物のO応答信号強度に分解するこ
とが困難なこと、更に酸化物構成元素が例えばCrのよ
うな遷移金属元素の場合、その酸化物構成元素は種々の
価数をとり得るため一つの元素に結合するO原子の数が
異なる酸化物が存在し、よってOの化学量を上記皮膜の
定量分析に用いるには複雑な解析計算を伴うことが挙げ
られる。そのため、一般的に上記皮膜中のCrの定量分
析にはOの化学量は用いられない。しかし、本発明では
上記皮膜の螢光X線分析によるOの応答信号強度と上記
皮膜中の成分比率の変動の大きさとの間に存在する強い
相関関係を利用することにより、上述したようなOに付
随する複雑な因子を取り扱うことなく上記処理液中の成
分比率変動を補正した上記皮膜中の真のCr量を測定す
る方法を初めて可能にした。
To date, there has been no report investigating the quantitative relationship between the variation of the component ratio in the chromate treatment solution and the amount of O in the chromate film by X-ray fluorescence analysis. There was no example in which the true Cr amount was calculated by correcting the variation in the component ratio of the processing solution. As a reason,
Since the O atom has a relatively small mass number and the intensity of fluorescent X-rays emitted by X-ray irradiation is weak based on quantum mechanical theory, the measurement of O was not suitable for X-ray fluorescence analysis. No. In response to this problem, recently, the spectral crystal of the fluorescent X-ray apparatus has been improved, and it has become possible to detect even weak fluorescent X-rays. At present, the detection sensitivity to the fluorescent X-ray intensity emitted from O is sufficient. Level. Another reason is that most of the chromate film is composed of oxides, and the total amount of O in the film measured by X-ray fluorescence analysis.
It is difficult to decompose the response signal intensity into the O response signal intensity of each oxide. Further, when the oxide constituent element is a transition metal element such as Cr, the oxide constituent element has various valences. Oxides having different numbers of O atoms bonded to one element are present in order to obtain them. Therefore, using the stoichiometry of O for quantitative analysis of the film involves complicated analytical calculations. Therefore, in general, the stoichiometry of O is not used for the quantitative analysis of Cr in the film. However, in the present invention, by utilizing the strong correlation existing between the response signal intensity of O by X-ray fluorescence analysis of the film and the magnitude of the fluctuation of the component ratio in the film, the above-described O For the first time, it has become possible to measure the true Cr content in the coating film in which the variation in the component ratio in the processing solution is corrected without dealing with complicated factors accompanying the above.

【0012】すなわち、本発明の第1の態様は、Cr含
有鋼板上に形成されたクロメート皮膜中のOおよびCr
以外の酸化物構成元素および必要に応じて有機物構成元
素の化学量を測定し、それらの化学量を用いてクロメー
ト皮膜中のCr量を測定する方法に関する。本発明の化
学量とは、上記皮膜の分析によって得られた元素の測定
値を意味する。すなわち、上記皮膜の分析を螢光X線分
析法にて行う場合の元素の化学量とは、X線を上記皮膜
に照射しそのX線照射部から放射される螢光X線を検出
して得られる各元素固有の応答信号強度であり、このよ
うにして測定された各元素の応答信号強度を化学量とし
て下記数1から数8を用いてCr量を算出する。
That is, the first aspect of the present invention relates to a method for forming O and Cr in a chromate film formed on a Cr-containing steel sheet.
The present invention relates to a method of measuring the stoichiometry of oxide constituent elements other than the above and, if necessary, organic constituent elements, and measuring the amount of Cr in the chromate film using the stoichiometric amounts. The stoichiometry of the present invention means a measured value of an element obtained by analyzing the above-mentioned film. That is, the stoichiometry of an element when the film is analyzed by X-ray fluorescence analysis means that the X-ray is irradiated on the film and the fluorescent X-ray emitted from the X-ray irradiating part is detected. It is the response signal intensity obtained for each element obtained, and the amount of Cr is calculated by using the response signal intensity of each element measured in this way as a stoichiometric amount and using the following formulas 1 to 8.

【0013】[0013]

【数1】 (Equation 1)

【0014】上記式中、CrC はクロメート皮膜中のC
r量であり、MjIは上記皮膜中のCr以外の酸化物構成
元素Mj の応答信号強度であり、α、K1 は定数を表
す。
In the above formula, Cr C represents C in the chromate film.
r, M jI is the response signal intensity of the oxide constituent element M j other than Cr in the film, and α and K 1 are constants.

【0015】[0015]

【数2】 (Equation 2)

【0016】上記式中、〔O/Cr〕T は上記皮膜中の
Cr量とO量の理論的比率であり、A、B1 〜Bi は定
数であり、x1 〜xi はCr量とCr以外の酸化物構成
元素(M1 〜Mi )量との比率であり、B1 〜Bi 、x
1 〜xi はそれぞれ元素M1〜Mi に対応する。
In the above formula, [O / Cr] T is a theoretical ratio between the Cr content and the O content in the film, A and B 1 -B i are constants, and x 1 -x i are the Cr content. And the amount of oxide constituent elements (M 1 to M i ) other than Cr, and B 1 to B i , x
1 to x i correspond to the elements M 1 to M i , respectively.

【0017】[0017]

【数3】 (Equation 3)

【0018】上記式中、OI は上記皮膜のOの応答信号
強度を表し、β、K2 は定数である。
In the above formula, O I represents the response signal intensity of O of the film, and β and K 2 are constants.

【0019】[0019]

【数4】 (Equation 4)

【0020】上記式中、〔O/Cr〕T0はCr量とMj
量との比率を変動させた上記皮膜中のCr量とO量との
理論的比率を表す。
In the above formula, [O / Cr] T0 is the amount of Cr and M j
The theoretical ratio between the Cr amount and the O amount in the above-mentioned film, in which the ratio between the amounts was varied, is shown.

【0021】[0021]

【数5】 (Equation 5)

【0022】上記式中、aは上記皮膜の成分変動とOの
応答信号強度変化率との関係式の係数であり、xj は上
記皮膜中のCr量とMj 量との比率であり、xj0はCr
量とMj 量との比率を変動させた上記皮膜中のCr量と
j 量との比率を表す。
In the above equation, a is a coefficient of a relational expression between the component fluctuation of the film and the rate of change of the response signal intensity of O, and x j is a ratio of the amount of Cr to the amount of M j in the film. x j0 is Cr
It represents the ratio between the amount and the Cr amount of the coating in which was varied the ratio of M j amount and M j amount.

【0023】[0023]

【数6】 (Equation 6)

【0024】上記式中、OI は化学組成が未知のクロメ
ート皮膜のOの応答信号強度の測定値であり、OEIは上
記皮膜中のMj の応答信号強度を数1に代入して得られ
たCr量(CrEC)を数3に代入して得られたOの応答
信号強度計算値を表す。
In the above formula, O I is a measured value of the response signal intensity of O of the chromate film whose chemical composition is unknown, and O EI is obtained by substituting the response signal intensity of M j in the above film into Expression 1. The calculated value of O response signal intensity obtained by substituting the obtained Cr amount (Cr EC ) into Equation 3 is shown.

【0025】[0025]

【数7】 (Equation 7)

【0026】上記式中、yはCr量計算値から真のCr
量を算出する補正係数を表す。
In the above equation, y is the true Cr value from the calculated Cr amount.
Represents a correction coefficient for calculating the amount.

【0027】[0027]

【数8】 (Equation 8)

【0028】上記式中、CrR は上記皮膜中の真のCr
量であり、CrECは上記皮膜中のM j の応答信号強度を
数1に代入して得られたCr量の計算値を表す。
In the above formula, CrRIs the true Cr in the above film
Quantity, CrECIs M in the above film jResponse signal strength
It represents the calculated value of the amount of Cr obtained by substituting into Equation 1.

【0029】数1は目的元素の化学組成が既知である標
準クロメート皮膜を用いて導出された、同一クロメート
処理液を用いた場合の上記標準皮膜中のCr以外の酸化
物構成元素Mj の応答信号強度からCr量を算出する検
量線であり、数2は上記標準皮膜中のCr量とO量との
理論的比率を算出する式であり、数3は数1から得られ
た上記標準皮膜中のCr量からOの応答信号強度を算出
する式であり、数4は数2から得られた上記標準皮膜中
のCr量とO量との理論的比率と、上記標準皮膜中のC
r量とMj 量との比率を変動させた皮膜中のCr量とO
量との理論的比率とから、O量の変動の大きさを算出す
る式であり、数5は上記標準皮膜の成分変動とOの応答
信号強度変化率との関係を示す式の係数を求める式であ
り、数6は化学組成が未知のクロメート皮膜におけるO
の応答信号強度の測定値と上記化学組成が未知の皮膜中
のMj の応答信号強度を数1に代入して得られたCr量
とを数3に代入して求めたOの応答信号強度の計算値と
の比率であり、数7は数1から得られたCr量から上記
処理液中の成分比率の変動を補正した上記化学組成が未
知の皮膜中の真のCr量を算出するための補正係数であ
り、数8は上記処理液中の成分比率変動を補正した上記
化学組成が未知の皮膜中の真のCr量を算出する式を表
す。
The number 1 is the response of the oxide component element M j other than Cr in the standard coating when using derived using standard chromate film are known chemical composition of the object element, the same chromate treating solution This is a calibration curve for calculating the amount of Cr from the signal intensity, Equation 2 is an equation for calculating the theoretical ratio between the amount of Cr and the amount of O in the standard film, and Equation 3 is the standard film obtained from Equation 1. Equation 4 is a formula for calculating the response signal intensity of O from the amount of Cr in the medium. Equation 4 shows the theoretical ratio between the amount of Cr and the amount of O in the standard film obtained from Equation 2 and the amount of C in the standard film.
r amount and Cr amount of the film in which was varied the ratio of M j amount and O
This is an equation for calculating the magnitude of the variation of the O content from the theoretical ratio to the quantity, and Equation 5 finds the coefficient of the equation indicating the relationship between the component variation of the standard film and the rate of change of the O response signal intensity. Equation (6) indicates that O in a chromate film whose chemical composition is unknown
Response signal strength measurements and O that the chemical composition was determined by substituting the Cr amount obtained by substituting the number 1 response signal strength of M j in an unknown film to the number 3 of the response signal strength Equation 7 is used to calculate the true amount of Cr in the film whose chemical composition is unknown by correcting the variation of the component ratio in the processing solution from the amount of Cr obtained from Equation 1 Equation 8 represents an equation for calculating the true amount of Cr in the coating whose chemical composition is unknown, in which the variation in the component ratio in the processing liquid is corrected.

【0030】また、本発明の第2の態様は、上記のCr
含有鋼板上に形成されたクロメート皮膜中のOおよびC
r以外の酸化物構成元素の化学量を螢光X線分析法によ
って測定する方法に関する。
Further, the second aspect of the present invention is the above Cr
And C in the chromate film formed on the steel sheet containing carbon
The present invention relates to a method for measuring the stoichiometry of oxide constituent elements other than r by X-ray fluorescence analysis.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0032】[Cr含有鋼板]本発明によるクロメート
皮膜中のCr量測定方法に使用されるCr含有鋼板は、
クロメート皮膜形成のための基板となるものであり、上
記皮膜を形成することが可能で且つCrを含有する鋼板
であれば特に制限されるものではない。例えば、装飾建
材向けのクロメート被覆ステンレスの基板材であるSU
S304やSUS430等のステンレス鋼板が挙げられ
る。
[Cr-containing steel sheet] The Cr-containing steel sheet used in the method for measuring the amount of Cr in the chromate film according to the present invention is as follows.
It is a substrate for forming a chromate film, and is not particularly limited as long as it can form the film and contains Cr. For example, SU is a chromate-coated stainless steel substrate material for decorative building materials.
A stainless steel plate such as S304 or SUS430 may be used.

【0033】[クロメート皮膜]本発明のクロメート皮
膜は、酸化Crを主成分とする皮膜であれば特に制限さ
れない。また、その形成方法は特に制限されるものでは
なく、反応型、電解型および塗布型のいずれのクロメー
ト処理方法であってもよい。クロメート皮膜形成に使用
する処理材としては、従来公知の各種組成を有するもの
を製品の用途・要求特性に応じて使用する。塗布型クロ
メート処理によってクロメート皮膜を形成する場合に用
いる処理液組成は、クロム酸−燐酸系(CrP2 4
2 O)を主成分とし、トータルCr量:5〜100(g
/l) 、Cr3+:2〜70(g/l) 、Cr6+:3〜70(g/
l) 、コロイダルシリカ(SiO2 ):0〜100(g/l)
等からなるものに、必要に応じてアクリル系樹脂やウ
レタン系樹脂あるいはビニルアルコール系樹脂等が添加
されたものがあげられるが、添加物としてはこれら以外
に酸化チタンや酸化アルミニウム等、クロメート皮膜の
安定性や密着性等の品質特性を阻害する添加物以外のも
のであれば特に制限されない。
[Chromate film] The chromate film of the present invention is not particularly limited as long as it is a film mainly composed of Cr oxide. The method for forming the same is not particularly limited, and any of a reactive type, an electrolytic type, and a coating type may be used. As the treatment material used for the formation of the chromate film, those having conventionally known various compositions are used according to the use and required characteristics of the product. When a chromate film is formed by a coating type chromate treatment, the composition of the treatment solution used is a chromic acid-phosphoric acid system (CrP 2 O 4.
H 2 O) as a main component, and the total amount of Cr: 5 to 100 (g)
/ l), Cr 3+ : 2 to 70 (g / l), Cr 6+ : 3 to 70 (g / l)
l), colloidal silica (SiO 2 ): 0 to 100 (g / l)
And the like, an acrylic resin, a urethane-based resin, a vinyl alcohol-based resin, or the like may be added as necessary.Examples of additives include titanium oxide and aluminum oxide, and the like. There is no particular limitation as long as it is other than an additive that inhibits quality characteristics such as stability and adhesion.

【0034】[クロメート皮膜中の元素の化学量測定方
法]電磁波を被測定物の表面に照射し、その電磁波照射
部から放射される電磁波の応答信号を検出し更にその応
答信号を分光することにより、その応答信号強度から元
素の化学量が定量でき且つ非破壊で測定できる分析方法
であれば特に制限されるものではない。測定の迅速性や
大量処理の点で、製造ラインの品質管理には螢光X線分
析法が好適である。また、螢光X線分析法以外には、例
えば、X線光電子分光分析法またはオージェ電子分光分
析法等の分光分析法が挙げられる。
[Method for Measuring the Stoichiometry of Elements in Chromate Film] By irradiating the surface of an object with an electromagnetic wave, detecting a response signal of the electromagnetic wave radiated from the electromagnetic wave irradiation part, and further dispersing the response signal. The analysis method is not particularly limited as long as the analysis method can quantify the stoichiometry of the element from the response signal intensity and measure it nondestructively. X-ray fluorescence analysis is suitable for quality control of a production line in terms of quickness of measurement and mass processing. Other than the fluorescent X-ray analysis method, for example, a spectroscopic analysis method such as an X-ray photoelectron spectroscopy method or an Auger electron spectroscopy method may be used.

【0035】以下、Siと樹脂とを含有する化学組成が
既知のクロメート処理液から作製したクロメート皮膜を
例にとって具体的に説明する。クロメート処理液に含有
される成分のうちSi、Cr、アクリル・スチレン樹脂
の各濃度を、標準処理液に対して約10%ずつ増加させ
た処理液を用いてCr含有鋼板上に各クロメート皮膜を
形成した。用いた処理液の明細を表1に示す。
The chromate film prepared from a chromate treatment solution having a known chemical composition containing Si and a resin will be specifically described below. Each chromate film was formed on a Cr-containing steel sheet by using a treatment solution in which the concentrations of Si, Cr, and acrylic / styrene resin among the components contained in the chromate treatment solution were increased by about 10% from the standard treatment solution. Formed. Table 1 shows the details of the processing solutions used.

【0036】[0036]

【表1】 [Table 1]

【0037】次に上記皮膜の螢光X線分析による各元素
の化学量測定を行った。表2に螢光X線分析の測定条件
を示す。
Next, the stoichiometry of each element was measured by fluorescent X-ray analysis of the coating. Table 2 shows the measurement conditions of the fluorescent X-ray analysis.

【0038】[0038]

【表2】 [Table 2]

【0039】このようにして測定された上記各試料の螢
光X線分析の結果について、Cr量(mg/m2 )とSiの
応答信号強度(cps )との関係を示したグラフを図1に
示す。また、上記各試料の螢光X線分析結果について、
Cr量(mg/m2)とOの応答信号強度(cps )との関係
を示したグラフを図2に示す。
FIG. 1 is a graph showing the relationship between the Cr content (mg / m 2 ) and the response signal intensity (cps) of Si with respect to the results of the fluorescent X-ray analysis of each of the samples thus measured. Shown in Also, regarding the results of the fluorescent X-ray analysis of each of the above samples,
FIG. 2 is a graph showing the relationship between the amount of Cr (mg / m 2 ) and the response signal intensity of O (cps).

【0040】[0040]

【図1】 FIG.

【0041】図1より、各試料ともCr量(mg/m2)と
螢光X線分析によるSiの応答信号強度(cps )との間
にはリニアな関係が見られる。同一Cr量において上記
標準組成試料(試料1)と処理液中の成分比率を変えた
上記各試料(試料2〜4)とを比較すると、Si量を1
0%増加させた試料(試料3)は標準組成(試料1)に
比べSiの応答信号強度が高くなっているが、Cr量を
10%増加させた試料(試料4)は標準組成(試料1)
に比べSiの応答信号強度が低くなっている。このSi
の応答信号強度の増加あるいは低下は上記皮膜中のSi
濃度の増加あるいは低下の程度をそのまま反映したもの
となっている。このようなCr量とSi量との相関関係
を用いることにより、上記皮膜中のCr量を算出するこ
とが可能である。一方、樹脂量を増加させた試料(試料
2)ではSiの応答信号強度に変化は見られず標準試料
(試料1)とほぼ同じであり、従ってCとSi、または
CとCrとの間には相関関係が見られない。このことか
ら、C量の変動がSiの応答信号強度に与える影響は無
視できることが分かる。
FIG. 1 shows that there is a linear relationship between the amount of Cr (mg / m 2 ) and the response signal intensity (cps) of Si by X-ray fluorescence analysis in each sample. When the standard composition sample (sample 1) and each of the samples (samples 2 to 4) in which the component ratio in the processing solution was changed at the same Cr amount, the Si amount was 1
The response signal intensity of Si is higher in the sample (Sample 3) in which the amount of Cr is increased by 0%, but the sample (Sample 4) in which the amount of Cr is increased by 10% is higher than that in the standard composition (Sample 1). )
, The response signal intensity of Si is lower. This Si
The increase or decrease of the response signal strength of
It directly reflects the degree of increase or decrease in concentration. By using such a correlation between the amount of Cr and the amount of Si, the amount of Cr in the film can be calculated. On the other hand, in the sample in which the resin amount was increased (sample 2), the response signal intensity of Si was not changed and was almost the same as the standard sample (sample 1). Has no correlation. From this, it is understood that the influence of the variation of the C amount on the response signal intensity of Si can be ignored.

【0042】[0042]

【図2】 FIG. 2

【0043】図2より、上記各皮膜ともCr量(mg/
m2)とOの応答信号強度(cps )との間にはほぼリニア
な関係が見られる。同一Cr量において、上記標準組成
皮膜(試料1)と処理液中の成分比率を変えて作製した
試料(試料2〜4)とを比較すると、Si量を10%増
加させた試料(試料3)は標準組成試料(試料1)に比
べOの応答信号強度が高くなっているが、Cr量を10
%増加させた試料(試料4)は標準組成試料(試料1)
に比べOの応答信号強度が低くなっている。この理由は
以下のように考えられる。上記皮膜中の酸化SiをSi
2 とし、酸化CrをCrO3 (6価)として考察す
る。SiO2 では、SiとOの化学量論的組成比がSi
1 原子に対しOが2原子であり、Si(原子量:28)と
O(原子量:16)の原子量比率は(16*2 )/28=1.14
3 となり、1より大きい。一方、CrO3 ではCr1原
子に対しOが3原子の比率で結合しており、Cr(原子
量:52)とO(原子量:16)との原子量比率は(16*3
)/52=0.923 となり、1 より小さくなっている。従
って、上記酸化Crの比率が増加すると上記皮膜中のO
量は減少し、よってOの応答信号強度も減少する。な
お、Crには価数が3価のものと6価のものが存在し、
それぞれの化学式はCr2 3 (3価)とCrO3 (6
価)でありCr原子とO原子の化学量論的比率が異なる
が、本発明者らが上記皮膜のX線光電子分光分析を行
い、上記皮膜の化学状態について調査したところ上記C
2 3 (3価)は3水和物の状態、すなわちCr2
3 (3価)・3 H 2 Oの化学状態で上記皮膜中に存在し
ていることが判明した。Crに結合するOの比率はCr
が2原子に対しOが6原子となりCrO3 (6価)と同
じとなる。従って、クロメート皮膜のCr量測定に際し
て、酸化Cr中のOの分析で価数の異なるCr量の影響
を考慮する必要はないことが分かる。以上から、上記皮
膜中のCr量とO量、およびO量とSi量との間には相
関関係があり、Oの応答信号強度の変化からCr量とS
i量との比率の変動の大きさを見積もることが可能であ
る。また、樹脂量を増加させた試料(試料2)のOの応
答信号強度は標準組成試料(試料1)とほぼ同じであ
り、Oの応答信号強度にはC量の多寡は寄与しない。よ
って、C量の変動がOの応答信号強度に与える影響は無
視できることが分かる。
FIG. 2 shows that each of the above films had a Cr content (mg / mg).
mTwo) And O response signal strength (cps) are almost linear.
Relationship is seen. At the same Cr content, the above standard composition
Prepared by changing the component ratio between the coating (sample 1) and the processing solution
In comparison with the samples (samples 2 to 4), the amount of Si was increased by 10%.
The added sample (Sample 3) is compared to the standard composition sample (Sample 1).
Although the response signal intensity of all O is high, the amount of Cr is 10
% (Sample 4) is a standard composition sample (sample 1)
The response signal strength of O is lower than that of. The reason for this
It is considered as follows. The silicon oxide in the above film is converted to Si
OTwoAnd the Cr oxide is CrOThree(6 values)
You. SiOTwoThen, the stoichiometric composition ratio of Si and O is Si
O is 2 atoms per atom, and Si (atomic weight: 28)
The atomic weight ratio of O (atomic weight: 16) is (16 * 2) /28=1.14
3 is greater than 1. On the other hand, CrOThreeThen Cr1 field
O is bonded to the atom at a ratio of 3 atoms, and Cr (atomic
Amount: 52) and the atomic weight ratio of O (atomic weight: 16) is (16 * 3
 ) /52=0.923, which is smaller than 1. Obedience
Therefore, when the ratio of the Cr oxide increases, the O in the film increases.
The amount is reduced, and thus the O response signal strength is also reduced. What
In addition, Cr has three valences and six valences,
Each chemical formula is CrTwoOThree(Trivalent) and CrOThree(6
And the stoichiometric ratio of Cr and O atoms is different
However, the present inventors conducted X-ray photoelectron spectroscopy analysis of the above film.
Investigation of the chemical state of the film
rTwoOThree(Trivalent) is a trihydrate state, that is, CrTwoO
Three(Trivalent) 3 H TwoO present in the film in the chemical state of O
Turned out to be. The ratio of O bonded to Cr is Cr
Is 2 atoms and O is 6 atoms and CrOThreeSame as (6)
The same. Therefore, when measuring the amount of Cr in the chromate film,
The effect of different valences of Cr on the analysis of O in Cr oxide
It is understood that there is no need to consider From the above, the skin
There is a phase difference between the Cr content and the O content and between the O content and the Si content in the film.
And the amount of Cr and S
It is possible to estimate the magnitude of the change in the ratio with the i amount.
You. In addition, the response of O of the sample (sample 2) in which the amount of resin was increased was increased.
The response signal intensity is almost the same as the standard composition sample (sample 1).
Therefore, the amount of C does not contribute to the O response signal strength. Yo
Therefore, there is no effect of the change in the amount of C on the response signal strength of O.
You can see it.

【0044】図1および図2に示される各試料の作製に
用いられたクロメート処理液中のCr、Si、O、C、
Hの各含有率をICP分析により求めた。Oの含有率は
前述したように3価のCrと6価のCrの存在比率の影
響を受けないものとして求めた。その結果を表3に示
す。なお、表3において、樹脂、Si、Crの各増加率
は標準組成に対し約10%とした。
Cr, Si, O, C, and chromium in the chromate treatment solution used for preparing each sample shown in FIGS.
Each content of H was determined by ICP analysis. As described above, the O content was determined as being unaffected by the existence ratio of trivalent Cr and hexavalent Cr. Table 3 shows the results. In addition, in Table 3, each increase rate of resin, Si, and Cr was about 10% with respect to the standard composition.

【0045】[0045]

【表3】 [Table 3]

【0046】表3に示される各処理液の成分比率、O/
Cr、O/Si、Si/Cr、C/Crの算出結果を表
4に示す。
The component ratio of each processing solution shown in Table 3, O /
Table 4 shows the calculation results of Cr, O / Si, Si / Cr, and C / Cr.

【0047】[0047]

【表4】 [Table 4]

【0048】表4は、表3に示される各処理液中の成分
比率および標準組成皮膜(試料1)に用いられた処理液
の各成分比率を1として求めた各処理液の成分比率を示
す。このように化学組成が既知の処理液の成分比率と、
該処理液を用いて形成したクロメート皮膜の螢光X線分
析によるOの応答信号強度測定値の比率とを比べた。表
4で、標準組成皮膜(試料1)に対するSi増加皮膜
(試料3)のO/Cr比率の比は1.034となってい
る。このO/Cr比率の変化量は上記標準組成皮膜から
のO量の変動の大きさを表す。螢光X線分析により、表
4の標準組成皮膜のOの応答信号強度に対するSi増加
皮膜のOの応答信号強度の比率、すなわち数6のRを求
めると1.033となった。つまり、O量の変動に関し
螢光X線分析の結果と表4の計算の結果とがほぼ一致し
た。同様にして螢光X線分析により、表4の標準組成皮
膜のOの応答信号強度とCr量増加皮膜のOの応答信号
強度の比率と、表4のO/Cr比率の比とを比べると、
表4に示される計算値が0.960であるのに対し、測
定値の比は0.956であり両者はほぼ一致した。以上
より、理論的計算によるクロメート皮膜中のOとCr量
の比率の変化の大きさと上記皮膜の螢光X線分析による
Oの応答信号強度の変化の大きさはほぼ一致しているこ
とが分かる。
Table 4 shows the component ratio of each processing solution shown in Table 3 and the component ratio of each processing solution obtained by assuming that each component ratio of the processing solution used for the standard composition film (sample 1) is 1. . Thus, the composition ratio of the processing solution whose chemical composition is known,
The ratio of the O response signal intensity measured by X-ray fluorescence analysis of the chromate film formed using the treatment solution was compared. In Table 4, the ratio of the O / Cr ratio of the Si-increased film (Sample 3) to the standard composition film (Sample 1) is 1.034. The amount of change in the O / Cr ratio indicates the amount of change in the amount of O from the standard composition film. The ratio of the response signal intensity of O in the Si-increased film to the response signal intensity of O in the standard composition film shown in Table 4 by fluorescence X-ray analysis, that is, R in Formula 6, was 1.033. In other words, the results of the fluorescent X-ray analysis and the results of the calculations in Table 4 almost coincided with respect to the change in the amount of O. Similarly, by fluorescent X-ray analysis, the ratio between the O response signal intensity of the standard composition film and the O response signal intensity of the Cr content increasing film in Table 4 was compared with the O / Cr ratio in Table 4. ,
While the calculated value shown in Table 4 was 0.960, the ratio of the measured values was 0.956, and both values were almost the same. From the above, it can be seen that the magnitude of the change in the ratio of the amounts of O and Cr in the chromate film by theoretical calculation and the magnitude of the change in the response signal intensity of O by X-ray fluorescence analysis of the film are substantially the same. .

【0049】以上説明したように、上記各皮膜のOの応
答信号強度は、上記各皮膜中のCr量とSi量の比率の
変動によるO量の増減の大きさと強い相関関係を持って
いる。実ラインにおいて、このように処理液の元素比率
が±0.03〜0.04というレベルで変動した場合に
クロメート皮膜中のCr量の目標値からのずれの大きさ
は±数mg/m2という大きさに及ぶことが判明しており、
製品の品質管理上問題となる。本発明による元素比率変
動の大きさを見積もる高感度定量化手法はこのような品
質管理の高精度化という要求に応えるものである。
As described above, the O response signal intensity of each of the above films has a strong correlation with the magnitude of the increase or decrease of the O amount due to the change in the ratio of the amount of Cr to the amount of Si in each of the above films. In the actual line, when the element ratio of the treatment liquid fluctuates at the level of ± 0.03 to 0.04, the magnitude of the deviation of the Cr amount in the chromate film from the target value is ± several mg / m 2. It has been found to reach the size,
This is a problem in product quality control. The high-sensitivity quantification method for estimating the magnitude of the element ratio fluctuation according to the present invention meets such a demand for higher precision of quality control.

【0050】以下に上記処理液から作製された上記皮膜
のCr量測定を例にとり、上記(1)から(8)式を用
いて上記皮膜中のCr量の測定手順について説明する。
(A)まず、クロメート皮膜の化学組成が既知の標準ク
ロメート皮膜の螢光X線分析により、Siの応答信号強
度(SiI )とCr量(CrC )の関係を表す検量線を
作成し下記式を得た。 CrC =α*SiI +K1 =(4.9E−3)*SiI −24.01 (mg/m2) (1)
The procedure for measuring the amount of Cr in the film will be described below using the above formulas (1) to (8) as an example, taking measurement of the amount of Cr in the film prepared from the above-mentioned processing solution.
(A) First, a calibration curve representing the relationship between the response signal intensity of Si (Si I ) and the amount of Cr (Cr C ) was prepared by fluorescent X-ray analysis of a standard chromate film having a known chemical composition. I got the formula. Cr C = α * Si I + K 1 = (4.9E-3) * Si I− 24.01 (mg / m 2 ) (1)

【0051】(B)上記皮膜中のCr量とO量との理論
的比率(〔O/Cr〕T )を以下のようにして求めた。
なお、上記皮膜の既知の組成がSi:23(g/l) 、C
r:43(g/l) であることよりx=23/43となる。
また、有機物中のO含有量と上記皮膜中のCr量との比
率であるm*nは該有機物がアクリル・スチレン共重合
体であり、C:65(g/l) 、CとOの原子量比率が0.
138(実測値)の値を用いて計算した。 〔O/Cr〕T =0.923+1.143*x+m*n (2) =0.923 +1.143 *(23/43)+(65/43)*0.138 =1.744
(B) The theoretical ratio ([O / Cr] T ) between the Cr content and the O content in the coating was determined as follows.
The known composition of the above film is Si: 23 (g / l), C:
Since r: 43 (g / l), x = 23/43.
M * n, which is the ratio of the O content in the organic substance to the Cr content in the film, is such that the organic substance is an acrylic-styrene copolymer, C: 65 (g / l), and the atomic weight of C and O The ratio is 0.
It was calculated using the value of 138 (actual value). [O / Cr] T = 0.923 + 1.143 * x + m * n (2) = 0.923 + 1.143 * (23/43) + (65/43) * 0.138 = 1.744

【0052】(C)また、上記螢光X線分析のOの応答
信号強度(OI )とCr量(CrC )の関係式として下
記式を得た。 OI =β*CrC +K2 =36.188*CrC +308.2(mg/m2) (3)
(C) Further, the following equation was obtained as a relational expression between the response signal intensity (O I ) of O in the above-mentioned fluorescent X-ray analysis and the amount of Cr (Cr C ). O I = β * Cr C + K 2 = 36.188 * Cr C +308.2 (mg / m 2 ) (3)

【0053】(D)上記試料1と試料1からSiを10
%増加させた上記試料3のCr量とO量との理論的比率
の変動の大きさRT を以下のようにして求めた。なお、
〔O/Cr〕T は試料1のCr量とO量との理論的比率
で、上記(2)式より1.744と求められる。〔O/
Cr〕T0は試料3のCr量とO量との理論的比率で、上
記(2)式のxでSi量を10%増加させて算出すると
1.804となる。よって、RT は以下のようになる。 RT =〔O/Cr〕T0/〔O/Cr〕T =1.804/1.744 =1.034 (4)
(D) Sample 1 and 10
The magnitude RT of the change in the theoretical ratio between the Cr amount and the O amount of the sample 3 which was increased by% was determined as follows. In addition,
[O / Cr] T is the theoretical ratio between the Cr content and the O content of Sample 1, and is determined to be 1.744 from the above equation (2). [O /
Cr] T0 is a theoretical ratio between the Cr amount and the O amount of the sample 3, and is 1.804 when the Si amount is increased by 10% with x in the above equation (2). Therefore, RT is as follows. R T = [O / Cr] T0 / [O / Cr] T = 1.804 / 1.744 = 1.034 (4)

【0054】(E)次にクロメート皮膜の成分変動とO
応答信号強度変化率との関係式を求める。前述したよう
にCr量と該O強度とが線形関係を有することに基づき
該関係式の係数をaとすると、aは下記式のように表さ
れる。 x j/xj0=a*(( xj /xj0))*R T)+b 上記式中、bは定数、xj は上記標準皮膜中のMj /C
r比率、xj0は該標準皮膜の組成比率を変動させた皮膜
中のMj /Cr比率である。ただし、Mj は皮膜中のC
r以外の酸化物構成元素を表す。上記式において標準皮
膜の組成が変動しない場合にはxj /xj0=1、RT
1となるから1=a+b、すなわちb=1−aの関係が
あり、これを上記式に代入しaについて解くと下記式の
ようになる。 a=((xj /xj0)−1)/((xj /xj0)*R T−1) (5) 上記式でSi/Cr比率がSiが標準組成比から10%
増加した場合についてaを求めると下記式のようにな
る。 a=((1/1.1)−1)/((1/1.1)*1.034−1) =1.515 なお、上記式中の1.034 は上記(4)式で求められたR
T である。
(E) Next, the change in the composition of the chromate film and the O
A relational expression with the response signal intensity change rate is obtained. As described above, when the coefficient of the relational expression is a based on the fact that the Cr amount and the O intensity have a linear relationship, a is represented by the following expression. x j / x j0 = a * ((x j / x j0)) * R T) + b in the above formula, b is a constant, x j is in the standard film M j / C
The r ratio, x j0, is the M j / Cr ratio in the coating obtained by changing the composition ratio of the standard coating. Where M j is C in the film
represents an oxide constituent element other than r. In the above equation, when the composition of the standard film does not change, x j / x j0 = 1 and R T =
Since it becomes 1, there is a relation of 1 = a + b, that is, b = 1−a. When this is substituted into the above equation and solved for a, the following equation is obtained. a = ((x j / x j0 ) -1) / ((x j / x j0 ) * RT- 1) (5) In the above formula, the Si / Cr ratio is 10% from the standard composition ratio of Si.
When a is obtained in the case where the number increases, the following equation is obtained. a = ((1 / 1.1) -1) / ((1 / 1.1) * 1.034-1) = 1.515 Note that 1.034 in the above equation was obtained by the above equation (4). R
T.

【0055】(F)化学組成が未知のクロメート皮膜の
Oの応答信号強度と、Siの応答信号強度を上記(1)
式に代入して求めたCr量(上記皮膜中の成分比率の変
動がないと仮定して求めた暫定値)を上記(3)式に代
入して得られた上記化学組成が未知の皮膜のOの応答信
号強度の計算値との比率を以下のようにして求めた。S
iの応答信号強度(SiI ):16000(cps )を上
記(1)式に代入し、 Crc =(4.9E-3)*16000-24.01 =54.4(mg/m
2 ) が得られ、このCr量を上記(3)式に代入し、上記化
学組成が未知の皮膜のOの応答信号強度の計算値:OEI
=2277(cps )が得られた。なおこの時、実測値は
2155(cps)であった。よって、Rは以下のようにな
る。 R=(OI −K2 )/(OEI−K2 ) =(2155-308.2)/(2277-308.2)=0.938 (6)
(F) The response signal intensity of O of the chromate film whose chemical composition is unknown and the response signal intensity of Si are determined by the above (1).
The Cr content obtained by substituting into the equation (provisional value obtained assuming that there is no change in the component ratio in the above-mentioned film) into the above-mentioned equation (3) is obtained by substituting into the above-mentioned equation (3) The ratio of the response signal intensity of O to the calculated value was determined as follows. S
The response signal strength (Si I ) of i: 16000 (cps) is substituted into the above equation (1), and Cr c = (4.9E-3) * 16000-24.01 = 54.4 (mg / m)
2 ) is obtained, and the Cr content is substituted into the above equation (3) to calculate the response signal intensity of O of the film whose chemical composition is unknown: O EI
= 2277 (cps). At this time, the measured value was 2155 (cps). Therefore, R is as follows. R = (O I -K 2 ) / (O EI -K 2 ) = (2155-308.2) / (2277-308.2) = 0.938 (6)

【0056】(G)ここで、SiとCrの成分比率変化
の指標値となるyを求める。このyは上記標準皮膜中の
Si/CrをxS 、および上記化学組成が未知の皮膜中
のSi/Crをx1 とすると、 y=x1 /xS で表すことができる。この時、上記(6)式で求められ
たRは上記化学組成が未知の皮膜中の(OI −K2 )/
(OEI−K2 )をRS とすると、 R=(x1 /xS )*RS で表される。よって、上記(5)式から求められたa=
1.515 、上記(6)式から求められたR=0.938を
用いてyを求めると以下のようになる。 y=x1 /xS =a*R−a+1 =1.515 *0.938 −1.515 +1 =0.906 (7)
(G) Here, y which is an index value of the change in the component ratio between Si and Cr is obtained. This y can be expressed as y = x 1 / x S where Si / Cr in the standard film is x S and Si / Cr in the film whose chemical composition is unknown is x 1 . At this time, R obtained by the above equation (6) is (O I -K 2 ) / R in the film whose chemical composition is unknown.
Assuming that (O EI -K 2 ) is R S , it is represented by R = (x 1 / x S ) * R S. Accordingly, a = a calculated from the above equation (5)
1.515, y is obtained using R = 0.938 obtained from the above equation (6), and the result is as follows. y = x 1 / x S = a * R−a + 1 = 1.515 * 0.938−1.515 + 1 = 1.906 (7)

【0057】(H)上記Siの応答信号強度とCr量と
の検量線から求められたCr量(Cr EC)に上記補正係
数(y)を乗じて真のCr量を以下のようにして求め
た。 CrR =CrEC*y =0.906*54.4=49.3(mg/m2 (8) 従来法によるSiの応答信号強度とCr量の検量線から
求めたCr量は、上記補正による真のCr量に比べ、約
10%多くなっていた。また、別途ICP分析による定
量分析から求めた上記皮膜中のCr量は48.8(mg/m
2 )であり、上記補正による真のCr量とほぼ一致して
いることが判明した。
(H) The response signal strength of the Si and the amount of Cr
Amount of Cr (Cr EC)
Multiply by the number (y) to find the true Cr amount as follows
Was. CrR= CrEC* Y = 0.906 * 54.4 = 49.3 (mg / mTwo)  (8) From the calibration curve of the response signal intensity of Cr and the amount of Cr by the conventional method
The calculated amount of Cr is approximately
10% more. Also, it is determined separately by ICP analysis.
The amount of Cr in the above film determined from the amount analysis was 48.8 (mg / m
Two), And almost coincides with the true Cr amount by the above correction.
Turned out to be.

【0058】なお、上記皮膜中に樹脂が含有されている
場合のCr量とO量との理論的比率の算出のしかたを具
体的に説明すると以下のようになる。上記皮膜中のSi
量/Cr量比率をxとし、上記皮膜中のCr量とO量と
の理論的比率(〔O/Cr〕T )を下記(21)式より
算出する。 〔O/Cr〕T =0.923+1.143*x1 +m*n (21) 上記式中、0.923は上記皮膜中の酸化Cr中のCr
に対するOの原子量比率であり、1.143は上記皮膜
中の酸化Si中のSiに対するOの原子量比率であり、
m*nは上記皮膜中のCrに対する有機物中のOの原子
量比率を表す。mは上記皮膜中のCr量に対する有機物
量の比率であり、nは有機物中のO量の比率を表す。樹
脂としてスチレン・アクリル共重合体(化1)を含有し
且つ有機物量とCr量との比率が65/43となるよう
に樹脂が配合されているものでは有機物中のO量が実測
で13.8%であったので、m=65/43、n=0.
138、より、 m*n=0.209 となる。
The method of calculating the theoretical ratio between the Cr content and the O content when the film contains a resin will be specifically described below. Si in the above film
The ratio of the amount of Cr / the amount of Cr is x, and the theoretical ratio ([O / Cr] T ) between the amount of Cr and the amount of O in the film is calculated by the following equation (21). [O / Cr] T = 0.923 + 1.143 * x 1 + m * n (21) In the above formula, 0.923 represents Cr in the Cr oxide in the film.
And 1.143 is the atomic ratio of O to Si in the silicon oxide in the film,
m * n represents the atomic weight ratio of O in the organic substance to Cr in the film. m is the ratio of the amount of organic matter to the amount of Cr in the film, and n is the ratio of the amount of O in the organic matter. When the resin contains a styrene-acryl copolymer (Chemical Formula 1) and is blended with a resin so that the ratio of the amount of the organic substance to the amount of Cr is 65/43, the O amount in the organic substance is actually measured. M = 65/43, n = 0.
138, m * n = 0.209.

【0059】[0059]

【化1】 Embedded image

【0060】本発明で、上記皮膜中に酸化SiおよびP
化合物を含む場合には、螢光X線分析の際にPの応答信
号強度測定も加え、上記(2)式にP化合物中のO量を
算出する項(1.032 *x2 )を算入して計算する。すな
わち下式のように表される。 〔O/Cr〕T =0.923+1.143*x1 +1.032*x2 (23) 上記式中、x1 、x2 はそれぞれCr量とSi量との比
率(Si量/Cr量)、Cr量とP量との比率(P量/
Cr量)を表す。上記式中、1.032は、クロメート
処理液にリン酸(H3 PO4 )が添加された場合のPと
Oとの原子量比率を表す。この場合、クロメート処理液
中にリン酸クロム水和物( CrPO4 ・H2 O) が生成
するため、Crの原子量:52、Pの原子量:31、Oの原
子量:16を用い、 (16*5)/31−(52*0.923)/31=
1.032 より求められる。なお、上記計算式の第2項は上記(2
3)式の第1項に全Cr量が既に含まれているため、リ
ン酸クロム中のCr相当分を引いたものである。
According to the present invention, Si oxide and P
When a compound is contained, the response signal intensity of P is also measured at the time of X-ray fluorescence analysis, and the term (1.032 * x 2 ) for calculating the amount of O in the P compound is included in the above formula (2). calculate. That is, it is represented by the following equation. [O / Cr] T = 0.923 + 1.143 * x 1 + 1.032 * x 2 (23) In the above formula, x 1 and x 2 are the respective ratios of the Cr amount and the Si amount (Si amount / Cr amount). , The ratio of the Cr amount to the P amount (P amount /
Cr amount). In the above formula, 1.032 represents the atomic weight ratio between P and O when phosphoric acid (H 3 PO 4 ) is added to the chromate treatment liquid. In this case, since chromium phosphate hydrate (CrPO 4 .H 2 O) is generated in the chromate treatment liquid, the atomic weight of Cr: 52, the atomic weight of P: 31, and the atomic weight of O: 16 are used. 5) / 31- (52 * 0.923) / 31 =
1.032. Note that the second term of the above formula is the above (2)
Since the total amount of Cr is already included in the first term of the expression (3), the amount corresponding to Cr in the chromium phosphate is subtracted.

【0061】また、上記皮膜中に酸化SiおよびP化合
物を含む場合のクロメート処理液中に配合された成分比
率の変動の大きさを求める方法は、上述した上記処理液
中のCr以外の酸化物構成元素がSi単独である場合に
準ずる。
The method for determining the magnitude of the variation in the component ratio blended in the chromate treatment solution when the film contains Si oxide and P compounds is described above. This corresponds to the case where the constituent element is Si alone.

【0062】また、本発明は、クロメート処理液の配合
成分として、酸化Cr、酸化Si、樹脂、P化合物以外
の酸化物に対しても上述した手順に沿って適用可能であ
る。
Further, the present invention can be applied to oxides other than Cr oxide, Si oxide, resin, and P compound as the components of the chromate treatment liquid in accordance with the above-described procedure.

【0063】[0063]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は下記の実施例に限定されるものではな
い。 (I) 被処理Cr含有鋼板 SUS304、SUS430 (II)クロメート処理 (i) 処理液(A)の組成 トータルCr量:40(g/l ) Si量:40(g/l ) (ii)処理液(B)の組成 トータルCr量:40(g/l ) Si量:40(g/l ) P量:12(g/l ) 樹脂量:15(g/l ) (iii) 塗布量( Cr換算値):20〜100(mg/m2 ) (III) 螢光X線分析条件 表5に本実施例の螢光X線分析の測定条件を示す。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples. (I) Cr-containing steel sheet to be treated SUS304, SUS430 (II) Chromate treatment (i) Composition of treatment liquid (A) Total Cr amount: 40 (g / l) Si amount: 40 (g / l) (ii) Treatment liquid Composition of (B) Total Cr amount: 40 (g / l) Si amount: 40 (g / l) P amount: 12 (g / l) Resin amount: 15 (g / l) (iii) Coating amount (Cr conversion) (Value): 20 to 100 (mg / m 2 ) (III) X-ray fluorescence analysis conditions Table 5 shows the measurement conditions for X-ray fluorescence analysis of this example.

【0064】[0064]

【表5】 [Table 5]

【0065】[実施例1]上記SUS304鋼板上に上
記処理液(A)を用いてクロメート皮膜を形成し、更に
上記処理液(A)からCr量とSi量との比率を適宜変
えた処理液を用いてクロメート皮膜を形成した。各皮膜
の螢光X線分析を行い、O、Siの応答信号強度が得ら
れた。螢光X線分析の結果をCr量の補正有りと無しに
ついて、ICP分析による化学成分分析の結果と対比さ
せて表6に示す。
Example 1 A processing solution in which a chromate film was formed on the SUS304 steel plate using the processing solution (A), and the ratio of the amount of Cr to the amount of Si was appropriately changed from the processing solution (A) Was used to form a chromate film. X-ray fluorescence analysis of each film was performed, and the response signal intensities of O and Si were obtained. Table 6 shows the results of the fluorescent X-ray analysis with and without the correction of the Cr content in comparison with the results of the chemical component analysis by ICP analysis.

【0066】[0066]

【表6】 [Table 6]

【0067】表6より、本発明による螢光X線分析法を
用いたCr量の補正有りの結果はICP分析による化学
成分分析の結果との差が5%以内とほぼ一致しており、
従来法の高精度定量分析法と同レベルであることが分か
る。これに対し、補正無しの結果ではICP分析の結果
との差が最大で約10%と大きく、精度が低いため実用
上問題がある。なお、上記処理液(A)を乾燥固化し、
粉末状にして酸素分析によりO量を測定したところO量
は41重量部であることが確かめられた。従来の螢光X
線分析法ではこのようにO量が多い皮膜の測定には先述
したように不適とされてきたが、近時の上記分析法の改
良に伴いクロメート皮膜中のOからの応答信号の検出が
可能となり、更に従来法では問題があったCr含有鋼板
上に形成されたクロメート皮膜中のCr量の測定に本発
明を適用することによって迅速に上記皮膜中の真のCr
量を得ることが初めて可能となった。
From Table 6, the results with the correction of the Cr content using the fluorescent X-ray analysis method according to the present invention are almost consistent with the results of the chemical component analysis by ICP analysis within 5%.
It turns out that it is the same level as the high-precision quantitative analysis method of the conventional method. On the other hand, in the result without correction, the difference from the result of the ICP analysis is as large as about 10% at the maximum, and there is a practical problem because the accuracy is low. The treatment liquid (A) is dried and solidified,
When the powder was made into a powder and the O content was measured by oxygen analysis, it was confirmed that the O content was 41 parts by weight. Conventional fluorescent X
The line analysis method has been unsuitable for the measurement of such a film with a large amount of O as described above. However, with the recent improvement of the above analysis method, it is possible to detect the response signal from O in the chromate film. Further, by applying the present invention to the measurement of the amount of Cr in a chromate film formed on a Cr-containing steel sheet, which had a problem with the conventional method, the true Cr in the film can be quickly obtained.
For the first time it was possible to get the quantity.

【0068】[実施例2]上記SUS430上に上記処
理液(B)を用いてクロメート皮膜を形成し、更に上記
処理液(B)からCr量とSi量およびCr量とP量と
の比率を適宜変えた処理液を用いてクロメート皮膜を形
成した。試料の明細を表7に示す。各皮膜の螢光X線分
析を行い、O、Siの応答信号強度が得られた。螢光X
線分析の結果をCr量の補正有りと無しについて、また
ICP分析による化学成分分析の結果と対比させて表8
に示す。また、P/Cr、P/Si比率が異なる試料の
Cr量とOの応答信号強度との関係(試料S3-P2,P1-S2-
C3,S1-C2,S1-S2-S3 )を図3に示し、また上記皮膜でP
/Cr、P/Si比率が異なる試料のP量とCr量との
比率(P/Cr ratio)と上記皮膜中のO量の計算値との関
係を図4に示す。
[Example 2] A chromate film was formed on the SUS430 using the treatment liquid (B), and the ratio of the amount of Cr to the amount of Si and the ratio of the amount of Cr to the amount of P were determined from the treatment liquid (B). A chromate film was formed using an appropriately changed treatment liquid. Table 7 shows the specifications of the samples. X-ray fluorescence analysis of each film was performed, and the response signal intensities of O and Si were obtained. Fluorescent X
Table 8 compares the results of the line analysis with and without the correction of the Cr content and the results of the chemical component analysis by ICP analysis.
Shown in Also, the relationship between the Cr content of the samples having different P / Cr and P / Si ratios and the O response signal intensity (samples S3-P2, P1-S2-
C3, S1-C2, S1-S2-S3) is shown in FIG.
FIG. 4 shows the relationship between the ratio of the P content and the Cr content (P / Cr ratio) of the samples having different / Cr and P / Si ratios and the calculated value of the O content in the film.

【0069】[0069]

【表7】 [Table 7]

【0070】[0070]

【表8】 [Table 8]

【0071】表8より、Cr量の補正無しの結果はIC
P分析の結果との差が最大で約13%と大きく精度が低
いため実用上問題がある。これに対し、本発明によるC
r量の補正有りの結果はICP分析による化学成分分析
の結果との差が5%以内とほぼ一致しており、従来の高
精度定量分析法と同レベルであることが分かる。以上の
結果より、上記螢光X線分析に本発明のCr量の補正を
実施したものは補正無しに比べ高精度に上記皮膜中の真
のCr量を測定できることが分かる。
According to Table 8, the result without the correction of the Cr amount is IC
The difference from the result of the P analysis is as large as about 13% at the maximum and the accuracy is low, so that there is a practical problem. On the other hand, C
The result with the correction of the amount of r almost coincides with the result of the chemical component analysis by ICP analysis within 5%, which indicates that the result is at the same level as the conventional high-precision quantitative analysis method. From the above results, it can be seen that the Cr content corrected according to the present invention in the X-ray fluorescence analysis can measure the true Cr content in the coating more accurately than without correction.

【0072】[0072]

【図3】 FIG. 3

【0073】[0073]

【図4】 FIG. 4

【0074】図3にCr量とOの応答信号強度とのリニ
アな関係が示され、該関係はOの応答信号強度から真の
Cr量を導出できる有力な根拠を示すものである。ま
た、図4にCr量とP量との比率とクロメート皮膜中の
O量とのリニアな関係が示され、該関係はOの応答信号
強度から真のCr量とP量を導出できる有力な根拠を示
すものである。なお、ここには図示しないがCr量とS
i量との比率と上記皮膜中のOの応答信号強度との関係
についても同様の結果が得られた。
FIG. 3 shows a linear relationship between the amount of Cr and the O response signal intensity, and this relationship shows a powerful basis for deriving the true amount of Cr from the O response signal intensity. FIG. 4 shows a linear relationship between the ratio of the amount of Cr and the amount of P and the amount of O in the chromate film. This relationship is a powerful one that can derive the true amount of Cr and the amount of P from the O response signal intensity. It shows the basis. Although not shown here, the amount of Cr and S
Similar results were obtained for the relationship between the ratio to the i amount and the response signal intensity of O in the film.

【0075】[0075]

【発明の効果】以上説明した通り、本発明によればクロ
メート皮膜を破壊することなく、上記皮膜中のCr量を
高精度且つ迅速に算出することができ、自動車、家電製
品、建材等の用途に供されるクロメート処理Cr含有鋼
板の品質管理技術を高め、近時の表面品質に対する厳し
い要求に応えることができる。
As described above, according to the present invention, the amount of Cr in the above-mentioned film can be calculated with high accuracy and speed without destroying the chromate film, and it can be used for automobiles, home appliances, building materials, etc. The quality control technology of the chromate-treated Cr-containing steel sheet to be provided in the above is improved, and it is possible to meet recent strict requirements for surface quality.

【0076】また、Cr含有鋼板上に形成されたクロメ
ート皮膜中のCr量管理を、生産性を損なうことなく、
また現場への負荷を伴うことなく随時行うことができ、
実ラインの操業安定技術の向上に寄与することができ
る。
The control of the amount of Cr in the chromate film formed on the Cr-containing steel sheet can be performed without impairing the productivity.
It can be performed at any time without any load on the site,
It can contribute to the improvement of the operation stability technology of the actual line.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松原 和美 千葉県市川市高谷新町7番地の1 日新製 鋼株式会社技術研究所内 Fターム(参考) 2G001 AA01 AA03 AA10 BA04 BA08 BA09 CA01 CA03 CA10 FA01 FA08 GA01 KA01 LA02 MA05 NA03 NA07 NA10 NA17 NA19 NA20 4K026 AA02 AA04 AA22 BA06 CA20 CA23 CA39 CA41 DA16  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazumi Matsubara 1-7-1, Takatani-Shimmachi, Ichikawa-shi, Chiba F-term in the Technical Research Laboratory of Nisshin Steel Corporation (Reference) 2G001 AA01 AA03 AA10 BA04 BA08 BA09 CA01 CA03 CA10 FA01 FA08 GA01 KA01 LA02 MA05 NA03 NA07 NA10 NA17 NA19 NA20 4K026 AA02 AA04 AA22 BA06 CA20 CA23 CA39 CA41 DA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Cr含有鋼板上に形成されたクロメート
皮膜中のCr量を測定する方法であって、上記クロメー
ト皮膜中のOおよびクロメート皮膜中に存在するCr以
外の酸化物構成元素M1 、M2 、・・・、Mi の化学量
を測定し、このようにして測定されたOおよびM1 、M
2 、・・・、Mi の化学量を用い、下記(1)から
(8)の算出式に基づきクロメート皮膜中のCr量を求
めることを特徴とするクロメート皮膜中のCr量測定方
法。 (1)化学組成が既知である標準クロメート皮膜を測定
して得られたCr以外の酸化物構成元素の化学量から求
める上記標準皮膜中のCr量: CrC =α*MjI+K1 (2)上記標準皮膜中のCr量とO量との理論的比率: 〔O/Cr〕T =A+B1 *x1 +B2 *x2 +・・・
+Bi *xi(i=1、2、・・・) (3)上記測定におけるOの化学量とCr量との関係
式: OI =β*CrC +K2 (4)上記標準皮膜中に含有される成分の比率を変動さ
せた時のCr量とO量との理論的比率の変動の大きさ: RT =〔O/Cr〕T0/〔O/Cr〕T (5)上記標準皮膜の成分変動とOの化学量変化率との
関係式の係数a: a=((xj /xj0)−1)/((xj /xj0)*RT
−1) (6)化学組成が未知のクロメート皮膜の測定によって
得られたOの化学量(OI )から上記(3)式のK2
引いた値と、上記(1)式から求めたCr量を上記
(3)式に代入して得られたOの化学量計算値(OEI
から上記K2 を引いた値との比: R=(OI −K2 )/(OEI−K2 ) (7)上記化学組成が未知の皮膜中の真のCr量を算出
する補正係数:y=a*R−a+1 (8)上記化学組成が未知の皮膜中の真のCr量: CrR =CrEC*y (上記式中、CrC は上記標準皮膜または上記化学組成
が未知の皮膜中のCr量であり、OI 、OEIはそれぞれ
上記皮膜中のOの化学量測定値、Oの化学量計算値であ
り、MjI上記皮膜中のCr以外の酸化物構成元素Mj
化学量であり、〔O/Cr〕T は上記皮膜中のCr量と
O量との理論的比率であり、〔O/Cr〕T0は上記標準
皮膜中に含有される成分の比率を変動させた時のCr量
とO量の理論的比率であり、α、β、K1 、K2 、A、
1 〜Bi は定数であり、x1 〜xi はCr量とCr以
外の酸化物構成元素(M1 〜Mi )量との比率であり、
j 、xj0はそれぞれ上記皮膜中のCr量とMj 量との
比率、Cr量とMj 量との比率を変動させた上記皮膜中
のCr量とMj 量との比率であり、CrECは上記(1)
式から求めたCr量計算値を表し、B1 〜Bi 、x1
i はそれぞれ上記元素M1 〜Mi に対応する。)
1. A chromate formed on a Cr-containing steel sheet.
A method for measuring the amount of Cr in a coating, comprising:
Less than O in the oxide film and Cr in the chromate film
Outer oxide constituent element M1, MTwo, ..., MiStoichiometry
And the O and M thus determined1, M
Two, ..., MiFrom the following (1), using the stoichiometry of
The amount of Cr in the chromate film is calculated based on the calculation formula (8).
Method for measuring Cr content in chromate film
Law. (1) Measure standard chromate film with known chemical composition
From the stoichiometry of oxide constituent elements other than Cr obtained by
Cr content in the above standard coating: CrC= Α * MjI+ K1 (2) Theoretical ratio between the Cr content and the O content in the standard coating: [O / Cr]T= A + B1* X1+ BTwo * XTwo+ ・ ・ ・
+ Bi* Xi(I = 1, 2,...) (3) Relationship between O stoichiometry and Cr content in the above measurement
Formula: OI= Β * CrC+ KTwo (4) The ratio of the components contained in the standard film is varied.
Of the change in the theoretical ratio between the amount of Cr and the amount of O when immersed: RT= [O / Cr]T0/ [O / Cr]T (5) The difference between the component fluctuation of the standard coating and the stoichiometric change rate of O
Coefficient a of relational expression: a = ((xj/ Xj0) -1) / ((xj/ Xj0) * RT
-1) (6) By measuring a chromate film whose chemical composition is unknown
The obtained stoichiometry of O (OI) To K in the above equation (3)TwoTo
Subtract the subtracted value and the Cr amount obtained from the above equation (1)
The calculated stoichiometric value of O obtained by substituting into equation (3) (OEI)
From above KTwoR = (OI-KTwo) / (OEI-KTwo(7) Calculate the true amount of Cr in the film whose chemical composition is unknown
Correction coefficient: y = a * R-a + 1 (8) True amount of Cr in the film whose chemical composition is unknown: CrR= CrEC* Y (in the above formula, CrCIs the above standard film or the above chemical composition
Is the amount of Cr in the unknown coating,I, OEIAre each
The measured value of the stoichiometry of O in the film and the calculated value of the stoichiometry of O
MjIOxide constituent element M other than Cr in the above coatingjof
Stoichiometric, [O / Cr]TIs the amount of Cr in the above film
It is a theoretical ratio with the amount of O, [O / Cr]T0Is the above standard
Cr amount when the ratio of the components contained in the coating is changed
And the theoretical ratio of O amount, α, β, K1, KTwo, A,
B1~ BiIs a constant and x1~ XiIs Cr content and Cr
Oxide constituent elements (M1~ Mi) The ratio to the quantity,
x j, Xj0Is the amount of Cr in the above coating and MjWith quantity
Ratio, Cr content and MjIn the above film, the ratio of
Cr content and MjIs the ratio to the amountECIs the above (1)
Represents the calculated value of Cr obtained from the equation,1~ Bi, X1~
xiIs the above element M1~ MiCorresponding to )
【請求項2】 クロメート皮膜中に有機物が含有されて
いる場合には、上記(2)式を下記(21)式に換えて
クロメート皮膜中のCr量を求めることを特徴とする請
求項1に記載のクロメート皮膜中のCr量測定方法。
(21)上記皮膜中のCrに対する有機物中のOの原子
量比率を、上記皮膜中のCr量と有機物量との比率を
m、および該有機物中のO量の比率をnとして、このm
とnの積から求め、このmとnの積の項を上記(2)式
に算入して求める。すなわち、上記皮膜中のCr量とO
量との理論的比率: 〔O/Cr〕T =A+B1 *x1 +B2 *x2 +・・・
+Bi *xi+m*n (i=1、2、・・・) (上記式中、A、B1 〜Bi は定数であり、xは上記標
準皮膜中のCr量とCr以外の酸化物構成元素(M1
i )量との比率を表し、m、nは上記皮膜中のCr量
をCrC 、有機物量をCC 、有機物中のO量をOC とす
るとそれぞれm=CC /CrC 、n=OC /CC で表さ
れるものであり、B1 〜Bi 、x1 〜x i はそれぞれ上
記元素M1 〜Mi に対応する。)
2. An organic substance is contained in a chromate film.
If there is, replace the above equation (2) with the following equation (21)
A method for determining the amount of Cr in a chromate film.
3. The method for measuring the amount of Cr in a chromate film according to claim 1.
(21) O atoms in organic matter with respect to Cr in the coating
The ratio of the amount of Cr and the amount of organic matter in the film
m and the ratio of the amount of O in the organic matter to n, this m
From the product of n and n, and the term of the product of m and n is given by the above equation (2).
To be calculated. That is, the amount of Cr in the coating and the amount of O
Theoretical ratio to the amount: [O / Cr]T= A + B1* X1+ BTwo * XTwo+ ・ ・ ・
+ Bi* Xi+ M * n (i = 1, 2,...) (Where A, B1~ BiIs a constant, and x is
Cr content in the sub-coat and oxide constituent elements other than Cr (M1~
Mi) Represents the ratio to the amount, where m and n are the amounts of Cr in the above film
To CrC, Organic matter amount CC, The amount of O in organic matterCToss
Then m = C respectivelyC/ CrC, N = OC/ CCRepresented by
And B1~ Bi, X1~ X iIs on each
Element M1~ MiCorresponding to )
【請求項3】 クロメート皮膜中に含有されるCr以外
の酸化物構成元素がSi単独である場合、上記(1)、
(2)、(5)式を下記(12)、(22),(52)
式に換えてクロメート皮膜中のCr量を算出することを
特徴とする請求項1に記載のクロメート皮膜中のCr量
測定方法。(12)化学組成が既知である標準クロメー
ト皮膜中のCr量: CrC =γ*SiI +K3 (22)上記標準皮膜中のCr量とO量との理論的比
率: 〔O/Cr〕T =0.923+1.143*x (52)上記標準皮膜の成分変動とOの化学量変化率と
の関係式の係数a: a=((x/x0 )−1)/((x/x0 )*RT
1) (上記式中、γ、K3 は定数であり、CrC は上記標準
皮膜中のCr量であり、OI 、OEIはそれぞれ上記標準
皮膜中のOの化学量測定値、Oの化学量計算値であり、
SiI は上記標準皮膜中のSiの化学量であり、〔O/
Cr〕T は上記標準皮膜中のCr量とO量との理論的比
率であり、xおよびx0 はそれぞれ上記標準皮膜中のC
r量とSi量との比率、Cr量とSi量との比率を上記
標準皮膜から変動させたクロメート皮膜中のCr量とS
i量との比率を表す。)
3. When the oxide constituent element other than Cr contained in the chromate film is Si alone, the above (1):
Equations (2) and (5) are replaced by the following equations (12), (22) and (52)
2. The method for measuring the amount of Cr in a chromate film according to claim 1, wherein the amount of Cr in the chromate film is calculated instead of the equation. (12) Cr content in the standard chromate film having a known chemical composition: Cr C = γ * Si I + K 3 (22) Theoretical ratio between the Cr content and the O content in the standard film: [O / Cr] T = 0.923 + 1.143 * x (52) Coefficient a of the relational expression between the component fluctuation of the standard film and the stoichiometric change rate of O: a = ((x / x 0 ) -1) / ((x / x 0) * R T -
1) (where γ and K 3 are constants, Cr C is the amount of Cr in the standard film, O I and O EI are the stoichiometric values of O in the standard film, and Calculated stoichiometry,
Si I is the stoichiometric amount of Si in the standard coating, [O /
Cr] T is the theoretical ratio between the Cr content and the O content in the standard coating, and x and x 0 are the C ratios in the standard coating, respectively.
The ratio of the amount of Cr to the amount of Si and the ratio of the amount of Cr to the amount of Si were varied from the above standard film, and the amounts of Cr and S in the chromate film were changed.
Indicates the ratio with the i amount. )
【請求項4】 クロメート皮膜中に含有されるCr以外
の酸化物構成元素がSiおよびPである場合、上記
(1)、(2)、(5)式を下記(13)、(23)、
(53)式に換えてクロメート皮膜中のCr量を算出す
ることを特徴とする請求項1に記載のクロメート皮膜中
のCr量測定方法。 (13)化学組成が既知である標準クロメート皮膜中の
Cr量: CrC =δ*SiI +K4 (23)上記標準皮膜中のCr量とO量との理論的比
率: 〔O/Cr〕T =0.923+1.143*x1 +1.
032*x2 (53)上記標準皮膜の成分変動とOの化学量変化率と
の関係式の係数a: a=((x1 /x10)−1)/((x1 /x10)*RT
−1) (上記式中、δ、K4 は定数であり、CrC は上記標準
皮膜中のCr量であり、OI 、OEIはそれぞれ上記標準
皮膜中のOの化学量測定値、Oの化学量計算値であり、
SiI は上記標準皮膜中のSiの化学量であり、〔O/
Cr〕T は上記標準皮膜中のCr量とO量との理論的比
率であり、x1 、x2 、およびx10はそれぞれ上記皮膜
中のCr量とSi量との比率、Cr量とP量との比率、
Cr量とSi量との比率を上記標準皮膜から変動させた
クロメート皮膜中のCr量とSi量との比率を表す。)
4. When the oxide constituent elements other than Cr contained in the chromate film are Si and P, the above formulas (1), (2) and (5) are replaced by the following formulas (13), (23),
The method for measuring the amount of Cr in a chromate film according to claim 1, wherein the amount of Cr in the chromate film is calculated in place of the equation (53). (13) Cr content in the standard chromate film whose chemical composition is known: Cr C = δ * Si I + K 4 (23) Theoretical ratio between the Cr content and the O content in the standard film: [O / Cr] T = 0.923 + 1.143 * x 1 +1.
032 * x 2 (53) Coefficient a of the relational expression between the component fluctuation of the standard film and the stoichiometric change rate of O: a = ((x 1 / x 10 ) -1) / ((x 1 / x 10 ) * RT
-1) (where δ and K 4 are constants, Cr C is the amount of Cr in the standard coating, O I and O EI are the stoichiometric values of O in the standard coating, Is the calculated stoichiometric value of
Si I is the stoichiometric amount of Si in the standard coating, [O /
Cr] T is the theoretical ratio between the Cr content and the O content in the standard coating, and x 1 , x 2 , and x 10 are the ratio between the Cr content and the Si content in the coating, the Cr content and the P content, respectively. Ratio with quantity,
The ratio between the amount of Cr and the amount of Si in the chromate film is shown by varying the ratio of the amount of Cr to the amount of Si from the standard film. )
【請求項5】 クロメート皮膜中の元素の化学量の測定
を螢光X線分析法にて行うことを特徴とする請求項1乃
至請求項4のいずれか1項に記載のクロメート皮膜中の
Cr量測定方法。
5. The Cr content in the chromate film according to claim 1, wherein the stoichiometry of the elements in the chromate film is measured by X-ray fluorescence analysis. Quantity measurement method.
JP11211775A 1999-07-27 1999-07-27 METHOD FOR MEASURING QUANTITY OF Cr IN CHROMATE COAT OF Cr-CONTAINING STEEL PLTE Withdrawn JP2001041910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11211775A JP2001041910A (en) 1999-07-27 1999-07-27 METHOD FOR MEASURING QUANTITY OF Cr IN CHROMATE COAT OF Cr-CONTAINING STEEL PLTE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11211775A JP2001041910A (en) 1999-07-27 1999-07-27 METHOD FOR MEASURING QUANTITY OF Cr IN CHROMATE COAT OF Cr-CONTAINING STEEL PLTE

Publications (1)

Publication Number Publication Date
JP2001041910A true JP2001041910A (en) 2001-02-16

Family

ID=16611397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11211775A Withdrawn JP2001041910A (en) 1999-07-27 1999-07-27 METHOD FOR MEASURING QUANTITY OF Cr IN CHROMATE COAT OF Cr-CONTAINING STEEL PLTE

Country Status (1)

Country Link
JP (1) JP2001041910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313132A (en) * 2005-05-09 2006-11-16 Fujitsu Ltd Sample analyzing method and x-ray analyzing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313132A (en) * 2005-05-09 2006-11-16 Fujitsu Ltd Sample analyzing method and x-ray analyzing system

Similar Documents

Publication Publication Date Title
JP5463422B2 (en) Online detection method of chrome-free coating film thickness on strip steel surface
Sieber et al. Investigations on the passivity of iron in borate and phosphate buffers, pH 8.4
JP2009511906A (en) Method for measuring hexavalent chromium in electronic parts and electronic assemblies
Campestrini et al. Study of the formation of chromate conversion coatings on Alclad 2024 aluminum alloy using spectroscopic ellipsometry
JP2001041910A (en) METHOD FOR MEASURING QUANTITY OF Cr IN CHROMATE COAT OF Cr-CONTAINING STEEL PLTE
KR100348065B1 (en) Method of measuring plating amount and alloying degree using fluorescence X-ray
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
JPH08304035A (en) Determination method for film thickness using colorimetery
JPH0619268B2 (en) Method for measuring thickness of coating film on metal
JP5526615B2 (en) Sample weight measurement method and apparatus, and hexavalent chromium analysis method and apparatus using the same
Lorang et al. Quantitative AES depth profiling of thin oxide films grown on stainless steels and aluminium
KR100489298B1 (en) Method of measuring alloying degree for galvannealed steels by XRD
JP2001337056A (en) METHOD FOR MEASURING Ti COATING MASS OF TITANIUM-BASED CHEMICAL CONVERSION COATING FORMED ON SURFACE TREATED STEEL PLATE
JP2004301672A (en) Deposited film amount measuring instrument for inorganic/organic film-coated metallic material
JP2001281176A (en) High-accuracy analysis method for carbon in steel
WO2018034089A1 (en) Method for measuring alloying degree and/or plating coating amount of zinc-plated steel sheet
JP6094156B2 (en) Iron oxide analysis method
KR102110677B1 (en) Method of estimating iron content of galvannealed steel
JP6094155B2 (en) Iron oxide analysis method
JPH01121743A (en) Determining method for characteristic value of two-layered film
KR100206491B1 (en) Metal quantity analyzing method of plated steel plate
JP3195469B2 (en) Control method of chromate treatment on Cr-containing electrodeposit
JP2819716B2 (en) X-ray spectroscopy for thin film determination and film thickness measurement
Dianova et al. Optimization of Operating Parameters for the Determination of Normalized Components in Thin Films Based on Trivalent Chromium and Titanium by the FP Method RFA
WO2015173220A1 (en) Method and system for monitoring a product property of a disposable diagnostic test product

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003