JP2001040452A - Gear superior in fatigue life strength in contact - Google Patents

Gear superior in fatigue life strength in contact

Info

Publication number
JP2001040452A
JP2001040452A JP21063499A JP21063499A JP2001040452A JP 2001040452 A JP2001040452 A JP 2001040452A JP 21063499 A JP21063499 A JP 21063499A JP 21063499 A JP21063499 A JP 21063499A JP 2001040452 A JP2001040452 A JP 2001040452A
Authority
JP
Japan
Prior art keywords
gear
mns
fatigue life
pitting
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21063499A
Other languages
Japanese (ja)
Other versions
JP3537357B2 (en
Inventor
Masahiro Toda
正弘 戸田
Seiji Ito
誠司 伊藤
Hideo Kanisawa
秀雄 蟹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP21063499A priority Critical patent/JP3537357B2/en
Publication of JP2001040452A publication Critical patent/JP2001040452A/en
Application granted granted Critical
Publication of JP3537357B2 publication Critical patent/JP3537357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To find a simple and effective measure for improving pitting fatigue life of a gear so that the gear withstands increased bearing pressure by load as a result of miniaturization, weight reduction and power increase of automobile parts especially for a gear ground after heat treatment for noise reduction. SOLUTION: A material of the gear consists of, in weight %, 0.1-0.3% C, 0.3-1.5% Mn, 0.01-0.06% S, 0.3-1.5% Cr, and the balance Fe with inevitable impurities. Also the material has the maximum ratio (L/D) of a length of a long diameter L of MnS to that of a short diameter D being not more than 7, or the maximum length being not more than 12 μm, and no oxidation layer of grain boundary on the gear surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車および工作
機械などに用いられる歯車に係わり、特に自動車のトラ
ンスミッション等の駆動伝達系に使用される鋼製の高強
度歯車に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear used for an automobile and a machine tool, and more particularly to a high-strength steel gear used for a drive transmission system such as an automobile transmission.

【0002】[0002]

【従来の技術】自動車の駆動系に用いられる歯車は、歯
切り加工された後に浸炭焼入れ・焼戻し(以後、浸
炭)、或いは浸炭窒化焼入れ・焼戻し(以降、浸炭窒
化)等の熱処理によって表面の硬さを上げ、歯車同士の
接触疲労寿命強度を確保している。近年、自動車におけ
る騒音が問題になり、歯車の精度向上が必要となってい
る。精度向上に対して、熱処理前に仕上げ加工であるシ
ェービング加工が行われているが、一層の精度向上には
熱処理時に生じる熱ひずみの除去が必要であり、熱処理
後にホーニング等の研削加工が行われるようになってき
た。
2. Description of the Related Art Gears used in a drive system of an automobile are subjected to heat treatment such as carburizing and quenching and tempering (hereinafter, carburizing) or carbonitriding, quenching and tempering (hereinafter, carbonitriding) after gear cutting. To ensure the contact fatigue life strength of the gears. In recent years, noise in automobiles has become a problem, and it has become necessary to improve the accuracy of gears. To improve the accuracy, shaving as a finishing process is performed before heat treatment. However, further improvement in accuracy requires removal of thermal strain generated during heat treatment, and grinding such as honing is performed after heat treatment. It has become.

【0003】また、車両重量の軽量化のための部品サイ
ズの小型化、及びエンジンの高出力化等に伴い、歯車に
対する負荷が大きくなり、とりわけ歯面に発生するピッ
チングに対する疲労寿命向上が要求されるようになって
いる。歯車のピッチング疲労寿命向上に関しては、特開
平1−264727号公報に開示されるように熱処理後
にショットピーニングを行い歯車に圧縮残留応力を付与
する方法が提案されている。しかし、特開平3−107
418号公報はショットピーニングにより歯面のピッチ
ング疲労寿命はかえって低下するとの記載もある。ま
た、ショットピーニングは歯車表面を荒らすため、使用
時の騒音問題も有している。
[0003] Further, with the downsizing of parts in order to reduce the weight of the vehicle and the increase in the output of the engine, the load on the gears increases, and it is required to improve the fatigue life especially for pitching generated on the tooth surface. It has become so. To improve the pitting fatigue life of a gear, there has been proposed a method of imparting compressive residual stress to a gear by performing shot peening after heat treatment as disclosed in JP-A-1-264727. However, JP-A-3-107
Japanese Patent Publication No. 418 discloses that shot peening shortens the pitting fatigue life of the tooth surface. In addition, shot peening has a problem of noise during use because the surface of the gear is roughened.

【0004】歯車表面にTiC,TiNなどの硬質皮膜
を蒸着させる方法が、特開昭62−199765号公報
あるいは日本機械学会論文集(C編)59巻557号2
72頁(1993年)に報告されている。しかし皮膜成
膜時に950℃まで再加熱するため、騒音で問題となる
熱ひずみが生じる。しかも、硬質なセラミックス皮膜が
形成されているため、研削等による熱歪みの除去が困難
であるという問題を有している。
A method of depositing a hard coating such as TiC or TiN on the gear surface is disclosed in Japanese Patent Application Laid-Open No. Sho 62-199765 or Transactions of the Japan Society of Mechanical Engineers, Vol.
72, 1993. However, since the film is reheated to 950 ° C. at the time of film formation, heat distortion which is a problem due to noise occurs. In addition, since a hard ceramic film is formed, there is a problem that it is difficult to remove thermal distortion by grinding or the like.

【0005】さらには、ピッチング疲労寿命に優れた鋼
材として各種鋼材が、特殊鋼44巻3号39〜48頁
(1995年)に報告されているが、いずれも浸炭、或
いは浸炭窒化等の表面硬化処理まま材が対象にされてい
る。表面硬化処理ままの歯面近傍には浸炭時に粒界酸化
層が生成され、ピッチングはその粒界酸化部から発生す
る。そのため粒界酸化層を抑制すべくSi,Mn,C
r,Ni等の成分調整が検討さている。
Further, various steel materials having excellent pitting fatigue life have been reported in Special Steel, Vol. 44, No. 3, pp. 39-48 (1995), all of which are surface hardened by carburizing or carbonitriding. The material is processed as is. A grain boundary oxide layer is generated in the vicinity of the tooth surface with the surface hardened during carburization, and pitting occurs from the grain boundary oxidized portion. Therefore, in order to suppress the grain boundary oxide layer, Si, Mn, C
Adjustment of components such as r and Ni is under study.

【0006】このように、高負荷荷重下における歯車の
ピッチング疲労特性に関して、その疲労寿命を向上させ
る工業的に有益な技術は、未だ見出されていないのが実
状である。特に、熱ひずみ除去のために、表面硬化処理
後に研削が施される歯車に対するピッチング疲労寿命向
上に関する有効な対策は見出されていなかった。
As described above, with respect to the pitting fatigue characteristics of a gear under a high load, an industrially useful technique for improving the fatigue life has not been found yet. In particular, no effective countermeasure has been found for improving the pitting fatigue life of a gear that is subjected to grinding after surface hardening in order to remove thermal strain.

【0007】[0007]

【発明が解決しようとする課題】本発明は、自動車のト
ランスミッション等の駆動伝達系に使用される歯車にお
いて、歯車におけるピッチング疲労寿命を向上させるこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the pitching fatigue life of a gear used in a drive transmission system such as a transmission of an automobile.

【0008】[0008]

【課題を解決するための手段】本発明者らは、熱ひずみ
除去のため表面硬化処理後に研削加工が施された歯車、
或いは真空浸炭された歯車など、歯面に粒界酸化層がな
い場合にMnS介在物がピッチングの起点となることを
見出した。熱間圧延時に延伸したMnSは歯面の歯幅方
向に延伸した形態で存在する。図1は、歯車におけるM
nSの延伸方向と接触荷重の移動方向を示しているが、
歯車では歯面上を荷重が接触しながら移動し、その方向
は歯幅とは直角方向に交差している。そのため、延伸し
たMnSはそれと直角方向に引張応力を受けることにな
る。そして接触荷重が歯面を移動する際、MnSは地鉄
との界面での密着性が低いこと、また硬質なMnSは変
形せず地鉄が変形するなどしてMnSと地鉄の間に空孔
ができピッチングに至っている。そしてこのMnSの形
状によって発生する引張応力が異なり、ピッチング寿命
が左右されることから、ピッチング疲労寿命向上策とし
て以下のような達成手段を明らかにし、本発明に至っ
た。
Means for Solving the Problems The present inventors have developed a gear that has been subjected to a grinding process after a surface hardening treatment to remove thermal strain,
Alternatively, it has been found that MnS inclusions serve as a starting point of pitting when there is no grain boundary oxide layer on the tooth surface such as a gear that has been carburized by vacuum. MnS stretched during hot rolling exists in a form stretched in the tooth width direction of the tooth surface. FIG. 1 shows the M
Although the drawing direction of nS and the moving direction of the contact load are shown,
In a gear, a load moves on a tooth surface while making contact, and the direction intersects the tooth width in a direction perpendicular to the tooth width. Therefore, the stretched MnS receives a tensile stress in a direction perpendicular to the stretched MnS. When the contact load moves on the tooth surface, MnS has low adhesion at the interface with the ground iron, and hard MnS does not deform but deforms the ground iron. A hole has been created and pitching has taken place. Since the tensile stress generated varies depending on the shape of MnS, and the pitting life is affected, the following means for achieving the pitting fatigue life are clarified, and the present invention has been achieved.

【0009】すなわち、本発明は、下記(1)〜(4)
を提供する。 (1)重量%で、C:0.1〜0.3%、Mn:0.3
〜1.5%、S:0.01〜0.06%、Cr:0.3
〜1.5%を含有し、残部Feおよび不可避不純物から
なり、MnSの長径長さLと短径長さDの最大比(L/
D)が7以下であるか、最大長さが12μm以下であ
り、歯面に粒界酸化層が無いことを特徴とする接触疲労
寿命強度に優れた歯車。
That is, the present invention provides the following (1) to (4)
I will provide a. (1) By weight%, C: 0.1-0.3%, Mn: 0.3
1.5%, S: 0.01-0.06%, Cr: 0.3
~ 1.5%, the balance being Fe and unavoidable impurities, and the maximum ratio (L / L) of the major axis length L and the minor axis length D of MnS.
A gear excellent in contact fatigue life strength, wherein D) is 7 or less, or the maximum length is 12 μm or less, and there is no grain boundary oxide layer on the tooth surface.

【0010】(2)更に、重量%で、Mo:0.2〜
1.0%、Ni:0.3〜1.0%の1種又は2種を含
有することを特徴とする(1)記載の接触疲労寿命強度
の優れた歯車。 (3)更に、重量%で、V:0.05〜0.3%、T
i:0.01〜0.2%、Nb:0.02〜0.2%の
1種または2種を更に含有することを特徴とする(1)
又は(2)記載の接触疲労寿命強度の優れた歯車。
(2) Further, in terms of% by weight, Mo: 0.2 to
(1) The gear excellent in contact fatigue life strength according to (1), wherein one or two kinds of Ni: 0.3 to 1.0% are contained. (3) Further, by weight%, V: 0.05 to 0.3%, T
i: 0.01 to 0.2%, Nb: 0.02 to 0.2%, one or two kinds of which are further contained (1).
Or the gear excellent in contact fatigue life strength according to (2).

【0011】(4)更に、重量%で、Ca:0.001
〜0.01%、Te:0.001〜0.01%、Mg:
0.001〜0.01%、Zr:0.005〜0.1%
の1種又は2種以上を含有することを特徴とする(1)
〜(3)のいずれか1項に記載の接触疲労寿命強度に優
れた歯車にある。
(4) Further, in weight%, Ca: 0.001
-0.01%, Te: 0.001-0.01%, Mg:
0.001-0.01%, Zr: 0.005-0.1%
(1) characterized by containing one or more of
A gear excellent in contact fatigue life strength according to any one of (1) to (3).

【0012】[0012]

【発明の実施の形態】以下に本発明を詳細に説明する。
Cは部品として必要な強度、特に芯部の強度を確保する
ために添加する元素であるが、0.1%未満ではこの様
な効果を十分に得ることができず、0.3%を超えると
靭性が低下するので、0.1%〜0.3%とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
C is an element added to secure the strength required for parts, particularly the strength of the core, but if it is less than 0.1%, such effects cannot be sufficiently obtained, and it exceeds 0.3%. Therefore, the toughness is reduced, so the content is set to 0.1% to 0.3%.

【0013】Mnは溶製時に脱酸材及び脱硫材として用
いられる他、強度、靭性、焼入れ性を確保するために必
要な元素であり、0.3%以上必要である。しかし、
1.5%を超えると熱間圧延後の冷却家庭でベイナイト
やマルテンサイトの硬質な組織になり、歯切り等の切削
加工性に適さなくなる。Sは被削性を高めるのに必要な
元素である。歯車部品は鍛造で粗成形された後に歯形部
はホブ切り、シェーパー切り等の歯切り加工され、浸炭
等の表面硬化処理が行われる。Sはその歯切り加工、切
削における被削性に有効であり0.01%以上含有させ
る必要がある。しかし、0.06%を超えると鍛造時の
加工限界を著しく低下させる。また、Sが多いとピッチ
ングの起点となるMnSが多くなり疲労寿命が低下する
ので、上限を0.06%とする。
Mn is used as a deoxidizing material and a desulfurizing material at the time of melting, and is an element necessary for ensuring strength, toughness, and hardenability, and is required to be 0.3% or more. But,
If it exceeds 1.5%, a hardened structure such as bainite or martensite will be formed in the cooled home after hot rolling, and it will not be suitable for cutting workability such as gear cutting. S is an element necessary for enhancing machinability. After the gear component is roughly formed by forging, the tooth profile portion is subjected to gear cutting such as hob cutting and shaper cutting, and surface hardening treatment such as carburizing is performed. S is effective in the machinability in the gear cutting and cutting, and needs to be contained at 0.01% or more. However, if it exceeds 0.06%, the working limit during forging is significantly reduced. Further, if the amount of S is large, MnS, which is a starting point of pitting, is increased and the fatigue life is reduced. Therefore, the upper limit is set to 0.06%.

【0014】Crは鋼の機械的性質、焼入れ性、耐摩耗
性の向上に寄与するが、この元素も1.5%を超える
と、熱間圧延後の冷却においてベイナイトやマルテンサ
イトの硬質な組織になり、その後の切削他の二次加工に
は適さなくなるため、1.5%以下とする。しかし、C
rの添加量が0.3%未満では焼入れ性の効果が十分で
ないので、その含有量は0.3%以上とする。
[0014] Cr contributes to the improvement of the mechanical properties, hardenability and wear resistance of steel, but if this element also exceeds 1.5%, the hard structure of bainite or martensite in cooling after hot rolling. And becomes unsuitable for subsequent cutting or other secondary processing, so the content is set to 1.5% or less. But C
If the addition amount of r is less than 0.3%, the effect of hardenability is not sufficient, so the content is made 0.3% or more.

【0015】焼入れ性を確保するためにCrだけでは不
十分であり、Mo及びNiなどの元素を必要に応じて含
有させる。従来鋼と同等あるいはそれ以上の焼入れ性を
与えるために、Moは0.2%以上含有させる。しかし
1.0%を超えて含有させても、その効果は飽和してし
まい経済性を損なうため1.0%以下とする。また、N
iも焼入れ性の効果を得るために0.3%以上含有させ
ることが好ましい。しかし1.0%を超えて含有させて
もその効果は飽和して経済性を損なうため、1.0%以
下とする。
Cr alone is not enough to ensure hardenability, and elements such as Mo and Ni are contained as necessary. Mo is added in an amount of 0.2% or more to provide hardenability equal to or higher than that of conventional steel. However, if the content exceeds 1.0%, the effect is saturated and the economy is impaired, so the content is set to 1.0% or less. Also, N
It is preferable that i is contained in an amount of 0.3% or more in order to obtain the effect of hardenability. However, if the content exceeds 1.0%, the effect is saturated and the economy is impaired. Therefore, the content is set to 1.0% or less.

【0016】MnSの形状については、本発明者らはM
nSの形状とピッチング寿命との関係を明らかにするべ
く研究した結果、MnSの長径長さLと短径長さDの最
大比(L/D)が7以下であるか、最大長さが12μm
以下であれば高いピッチング疲労寿命を確保できること
が分かった。Ca等を添加するとMnSの変形能を低下
させるため、圧延時にMnSは延伸せず楕円形状に成っ
ている。延伸した形状から、楕円さらに球状となること
によってMnS端における応力集中が小さくなるために
MnSと自鉄との剥離が生じにくく、ピッチング疲労寿
命が向上する。従って、MnSの長径長さLと短径長さ
の比L/Dが小さい(1に近い)程ピッチング疲労寿命
は向上するが、L/D>7であるとその効果が小さいた
めL/D≦7とした。また、L/Dの値を最大値で限定
したのは、ピッチング起点となるのはもっとも高い応力
が発生する延伸したMnSから発生するのであり、平均
値が小さくても意味がないからである。さらに、L/D
が大きくてもMnS自体が小さければピッチングの起点
に成りにくい。図1に示される様に、MnSの延伸方向
長さである長径が短ければピッチングの起点と成りにく
いことから最大長径を12μm以下とした。12μmを
超えるとMnSの最大L/Dをいくら小さくしても、ピ
ッチング起点になる可能性が高いからである。なお、こ
こでは実施例に示されるように、素材である丸棒の半径
/2部での圧延方向縦断面に対して200〜500倍の
光顕写真から約200個のMnSについて長径Lと、短
径Dを測定してL/Dの最大値、及び最大長さを定義し
た。なおMnSは、Ca,Te,Zr,Mgを含有する
場合も含む。
Regarding the shape of MnS, the present inventors have proposed M
As a result of studying to clarify the relationship between the shape of nS and the pitting life, the maximum ratio (L / D) of the major axis length L and the minor axis length D of MnS is 7 or less, or the maximum length is 12 μm.
It was found that a high pitting fatigue life can be ensured if it is below. When Ca or the like is added, the deformability of MnS decreases, so that MnS does not stretch during rolling and has an elliptical shape. Since the stretched shape becomes an ellipse and a sphere, the stress concentration at the MnS end is reduced, so that the MnS and the self-iron are less likely to be separated, and the pitting fatigue life is improved. Accordingly, the pitching fatigue life is improved as the ratio L / D of the major axis length L to the minor axis length Lm (small to 1) of MnS is improved. ≦ 7. The reason why the value of L / D is limited to the maximum value is that the starting point of pitching is generated from stretched MnS where the highest stress is generated, and it is meaningless even if the average value is small. Furthermore, L / D
Is large, it is difficult to become a starting point of pitching if MnS itself is small. As shown in FIG. 1, if the major axis, which is the length of the MnS in the stretching direction, is short, it is difficult to become a starting point of pitching, so the maximum major axis was set to 12 μm or less. This is because if it exceeds 12 μm, no matter how much the maximum L / D of MnS is reduced, there is a high possibility of becoming the starting point of pitching. Here, as shown in the examples, the major axis L and the short diameter of about 200 MnS were measured from a photomicrograph of 200 to 500 times the longitudinal section in the rolling direction at the radius / 2 part of the round bar as the material. The diameter D was measured to define the maximum value of L / D and the maximum length. Note that MnS includes the case where Ca, Te, Zr, and Mg are contained.

【0017】浸炭処理時に生成される粒界酸化層が残留
する歯車では、酸化した粒界部を起点としてピッチング
が発生するためMnS形状を抑制する効果がほとんど無
い。そのため表面硬化処理後に粒界酸化層が無いことが
必要であり、表面硬化処理後に熱ひずみ除去も兼ねて研
削を施する。或いは熱ひずみ除去が必要とされない場合
は真空浸炭によって表面硬化処理される工程も考えられ
る。なお、歯面断面の粒界酸化層は走査型顕微鏡で10
00倍以上で観察でき、実施例においても同様にして粒
界酸化層が無いことを確認している。
In a gear in which a grain boundary oxidized layer formed during carburizing treatment remains, pitting occurs from the oxidized grain boundary part, and thus there is almost no effect of suppressing the MnS shape. Therefore, it is necessary that there is no grain boundary oxide layer after the surface hardening treatment, and after the surface hardening treatment, grinding is performed to also remove thermal strain. Alternatively, when heat distortion removal is not required, a step of performing surface hardening treatment by vacuum carburization may be considered. The grain boundary oxide layer on the tooth surface cross section was 10
Observation was made at a magnification of 00 or more, and it was confirmed that there was no grain boundary oxide layer in the example in the same manner.

【0018】また、歯車軽量化においては、歯元におけ
る曲げ疲労強度も重要である。歯元曲げ疲労も歯面の表
面から発生するため、粒界酸化層の影響が検討されてき
た。しかし、本発明では粒界酸化層が無い歯車に限定さ
れており、より歯元曲げ疲労強度を向上させるためには
浸炭後の結晶粒の微細化が必要である。V,Ti,及び
Nbは炭窒化物を生成し、浸炭結晶粒の微細化に効果の
ある元素であり、任意に添加することができる。その効
果を得るにはVは0.05%以上で、Tiで0.01%
以上、およびNbは0.02%以上の含有が必要であ
る。しかし、Vで0.3%を超えて、Tiで0.2%を
超えて、Nbで0.2%を超えて含有しても効果は飽和
するため、Vは0.05〜0.3%、Tiは0.01〜
0.2%、Nbは0.02〜0.2%とする。
Further, in reducing the weight of the gear, the bending fatigue strength at the root of the tooth is also important. Since the root bending fatigue also occurs from the surface of the tooth surface, the influence of the grain boundary oxide layer has been studied. However, the present invention is limited to a gear without a grain boundary oxide layer, and it is necessary to refine the crystal grains after carburizing in order to further improve the root fatigue strength. V, Ti, and Nb are elements that form carbonitrides and are effective in refining carburized crystal grains, and can be arbitrarily added. To obtain the effect, V is 0.05% or more, and Ti is 0.01%.
As described above, Nb must be contained at 0.02% or more. However, if the content exceeds 0.3% in V, exceeds 0.2% in Ti, and exceeds 0.2% in Nb, the effect is saturated, so V is 0.05 to 0.3%. %, Ti is 0.01 to
0.2% and Nb are 0.02 to 0.2%.

【0019】MnSの形態制御のため、Ca,Te,M
g,Zrの1種又は2種以上を含有させるが、Ca,T
eは0.001%以上、Zrは0.005%以上含有す
ることが好ましい。一方、Ca,Teは0.01%、Z
rは0.1%を超えて含有してもその効果は飽和してく
るので、Ca,Teは0.001〜0.01%、Zrは
0.005〜0.1%とする。MgはMnSなどの硫化
物を鋼中に均一分散させる効果がある。0.001%未
満ではMnSの微細化効果は小さく、また0.01%を
超えて含有してもその効果は飽和するため、Mgは0.
001〜0.01%とした。
For controlling the morphology of MnS, Ca, Te, M
g, Zr, or Ca, T
e is preferably contained at 0.001% or more, and Zr is preferably contained at 0.005% or more. On the other hand, Ca and Te are 0.01%, Z
Even if the content of r exceeds 0.1%, the effect is saturated. Therefore, Ca and Te are set to 0.001 to 0.01%, and Zr is set to 0.005 to 0.1%. Mg has an effect of uniformly dispersing sulfides such as MnS in steel. If it is less than 0.001%, the refining effect of MnS is small, and if it exceeds 0.01%, the effect is saturated.
001 to 0.01%.

【0020】なお、表面硬化処理として浸炭、或いは浸
炭窒化後ショットピーニングが行われこともある。その
場合も、ショットピーニング後の研削により粒界酸化層
が除去されていれば、ショットピーニングによる歯面の
荒れも無くなるためMnSを起点としたピッチングが発
生する。従って、浸炭、浸炭窒化後にショットピーニン
グを施し、研削加工する方法によっても本発明の効果は
達成できる。
Incidentally, shot peening may be performed after carburizing or carbonitriding as a surface hardening treatment. Also in this case, if the grain boundary oxide layer is removed by the grinding after the shot peening, the roughness of the tooth surface due to the shot peening is eliminated, so that the pitting starting from MnS occurs. Therefore, the effects of the present invention can also be achieved by a method in which shot peening is performed after carburizing or carbonitriding and then ground.

【0021】[0021]

【実施例】表1に示す化学成分の鋼を溶製したのち造塊
し、次に分塊圧延、棒鋼圧延して直径70mm(圧延比
50)を製造し、さらに直径32mmの丸棒へ圧延し
た。Ca,Te,Mg,Zr等を添加してMnSの形態
を制御した。各圧延材を925℃で焼きならし処理し、
その後、直径32mmの丸棒から直径が26mm、幅2
8mmの円筒部を有するローラー状試験片を作成した。
また直径70mmの丸棒を直径150mmへ鍛造した
後、925℃で焼きならし処理し、直径130mm、幅
18mmの大ローラーを作成した。
EXAMPLES Steel having the chemical composition shown in Table 1 was smelted, then ingot-formed, then slab-rolled and rolled into a steel bar to produce a 70 mm diameter (rolling ratio 50), and further rolled into a round bar having a diameter of 32 mm. did. The form of MnS was controlled by adding Ca, Te, Mg, Zr and the like. Normalize each rolled material at 925 ° C,
Then, from a round bar with a diameter of 32 mm, a diameter of 26 mm and a width of 2 mm
A roller-shaped test piece having an 8 mm cylindrical portion was prepared.
After forging a round bar having a diameter of 70 mm to a diameter of 150 mm, a normalizing process was performed at 925 ° C. to form a large roller having a diameter of 130 mm and a width of 18 mm.

【0022】ローラー状試験片と大ローラーを浸炭ガス
雰囲気中で930℃×5時間加熱→130℃油焼入れ→
180℃×1時間焼戻しの条件で浸炭処理を行った。そ
の後、直径で50μmの研削を行った。浸炭時に生じる
粒界酸化層深さは、小ローラーの断面を走査型電子顕微
鏡で2000倍で観察したところ約15μmであり、こ
の研削により粒界酸化層は除去されていた。なお、研削
後の粗さはRmax 2μm以下であった。
Heat the roller-shaped test piece and the large roller in a carburizing gas atmosphere at 930 ° C. × 5 hours → 130 ° C. oil quenching →
Carburizing was performed under the condition of tempering at 180 ° C. for 1 hour. Thereafter, grinding with a diameter of 50 μm was performed. The depth of the grain boundary oxide layer generated during carburization was about 15 μm when the cross section of the small roller was observed with a scanning electron microscope at a magnification of 2000 times, and the grain boundary oxide layer was removed by this grinding. The roughness after the grinding was Rmax 2 μm or less.

【0023】表1のNo.17,18に示されるよう
に、浸炭に代わり浸炭窒化処理、及び真空浸炭処理も行
った。浸炭窒化処理条件としては、ガス浸炭窒化(93
0℃×5時間加熱→炉冷→840℃×2時間NH3ガス
により窒化→油焼入れ)し、180℃×1時間の焼戻し
を行った。真空浸炭は、炉内のカーボンポテンシャルの
関係で加熱温度を1100℃で行い、その後の研削は行
っていない。
No. 1 in Table 1. As shown in FIGS. 17 and 18, instead of carburizing, carbonitriding and vacuum carburizing were also performed. As carbonitriding conditions, gas carbonitriding (93
Heating at 0 ° C. × 5 hours → furnace cooling → nitriding with NH 3 gas → oil quenching at 840 ° C. × 2 hours) and tempering at 180 ° C. × 1 hour. The vacuum carburizing was performed at a heating temperature of 1100 ° C. due to the carbon potential in the furnace, and the subsequent grinding was not performed.

【0024】表1のNo.19に示されるように、浸炭
処理後ショットピーニングを施した試験片、及び大ロー
ラーも作成した。ショットピーニング条件は、直径0.
8mmの鋼球を用い、ショット玉の照射速度85m/
s、アークハイト0.6mmAの条件で行った。ピッチ
ング疲労寿命評価として、上記ローラー状試験片と大ロ
ーラーを組み合わせたローラーピッチング試験を行っ
た。試験条件は、試験片の回転数1000rpm、すべ
り率40%、潤滑剤にはオートマチック用オイルを用
い、油温は約80℃で行った。
No. 1 in Table 1. As shown in FIG. 19, a test piece subjected to shot peening after carburizing and a large roller were also prepared. The shot peening conditions are as follows.
Using an 8 mm steel ball, the irradiation speed of the shot ball is 85 m /
s and arc height of 0.6 mmA. As a pitting fatigue life evaluation, a roller pitting test using the above roller-shaped test piece and a large roller was performed. The test conditions were as follows: the rotational speed of the test piece was 1000 rpm, the slip ratio was 40%, the oil used was an automatic oil as a lubricant, and the oil temperature was about 80 ° C.

【0025】評価は、健全なままで107 回まで回転が
可能な最大面圧をその鋼材のピッチング疲労強度とし
た。なお、面圧はヘルツ面圧で計算した。歯元疲労試験
として、一歯曲げ疲労試験を行った。前述の直径70m
mの丸棒を用い、熱間鍛造により直径120mmに加工
し、925℃で焼きならし処理した。切削によりモジュ
ール4、歯数27、ピッチ円直径108mm、歯幅9m
mの試験用平歯車を作成し、各歯車を浸炭処理た後、ホ
ブにより精度JIS0〜1級の歯車へ研削加工した。油
圧サーボ式引張試験機を用い、試験歯車の歯一枚に他方
の歯車から負荷されるようにこの試験歯車を組み見合わ
せて歯元に曲げ荷重を付与する疲労試験を行った。
In the evaluation, the maximum surface pressure that can be rotated up to 10 7 times while maintaining the soundness was defined as the pitting fatigue strength of the steel material. The surface pressure was calculated based on the Hertz surface pressure. A single tooth bending fatigue test was performed as a tooth root fatigue test. 70m diameter mentioned above
Using a round bar of m, it was processed to a diameter of 120 mm by hot forging and normalized at 925 ° C. Module 4 by cutting, number of teeth 27, pitch circle diameter 108mm, tooth width 9m
After preparing a test spur gear of m and carburizing each gear, it was ground by a hob into a gear having a precision of JIS 0 to 1 class. Using a hydraulic servo tensile testing machine, a fatigue test was conducted in which a combination of the test gear was applied to one tooth of the test gear from the other gear and a bending load was applied to the tooth base.

【0026】さらに、切削性評価として直径70mmの
丸棒の外周切削を行った。加工条件は、工具:SKH5
7、切削速度75〜84mm/rev、工具送り速度
0.02mm/rev、切削油:不水溶性油120l/
minで行った。その際、3000サイクル後の工具の
前逃げ面溝摩耗の長さが300μm以内のものを合格と
いう基準で切削加工性を評価した。
Further, the outer periphery of a round bar having a diameter of 70 mm was cut to evaluate the machinability. The processing conditions are tool: SKH5
7, cutting speed 75-84 mm / rev, tool feed speed 0.02 mm / rev, cutting oil: water-insoluble oil 120 l /
min. At that time, the cutting workability was evaluated based on the criteria that a tool with a flank wear of the front flank after 3000 cycles of less than 300 μm was acceptable.

【0027】表1に各種供試材の成分、及びMnS形状
として最大長径/短径比と最大長径を示す。MnSの最
大長径/短径比と最大長径は、前述した直径32mmの
各圧延材において、半径/2部の圧延方向の縦断面を光
学顕微鏡で500倍で撮影し、その写真から約200個
のMnSについて長径Lと短径Dを実測し、その測定値
から求めている。
Table 1 shows the components of various test materials and the maximum major axis / minor axis ratio and the maximum major axis as MnS shapes. The maximum major axis / minor axis ratio and the maximum major axis of MnS can be determined by measuring the longitudinal section in the rolling direction of radius / 2 part in each of the above-mentioned rolled materials having a diameter of 32 mm with an optical microscope at a magnification of 500 times. With respect to MnS, the major axis L and the minor axis D are actually measured and determined from the measured values.

【0028】表2にローラーピッチング試験でのピッチ
ング疲労強度、さらに一歯曲げ疲労強度、切削加工性の
評価結果を示す。表1より、本発明のNo.1〜No.
19の内、No.4及びNo.12以外はL/D≦7と
なっている。No.4及びNo.12はL/D>14で
あるが、最大長径がL≦12であり、本発明の条件を満
足している。これらの供試材を用いたピッチング疲労強
度は、表2より、いずれも320kgf/mm2 以上であり高
い寿命となている。また、No.11〜No.14の
V,Ti,Nb等を添加した供試材では、一歯曲げ疲労
強度は110kgf/mm2 以上であり、これらの成分を添加
していない供試材より高い疲労強度となった。また表2
より、本発明例ではSの量によらずMnSのL/Dが小
さいため、いずれの場合も切削加工性は合格であった。
Table 2 shows the results of evaluation of the pitting fatigue strength, the one-tooth bending fatigue strength, and the cutting workability in the roller pitting test. From Table 1, it can be seen that No. 1 of the present invention. 1 to No.
19, No. 19 4 and No. 4. L / D ≦ 7 other than 12. No. 4 and No. 4. 12, L / D> 14, but the maximum major axis is L ≦ 12, which satisfies the condition of the present invention. From Table 2, the pitting fatigue strength using these test materials is 320 kgf / mm 2 or more in each case, indicating a long life. In addition, No. 11-No. In the test material to which V, Ti, Nb, etc. were added, the one-tooth bending fatigue strength was 110 kgf / mm 2 or more, which was higher than the test material to which these components were not added. Table 2
Thus, in the examples of the present invention, the L / D of MnS was small irrespective of the amount of S, so that the cutability was acceptable in each case.

【0029】一方比較例のNo.20〜No.26で
は、表1より、いずれもL/D>15、かつL>14で
あり本発明法の条件を満足していない。従って、ピッチ
ング疲労強度も260kgf/mm2 以下と本発明法に比べて
60kgf/mm2 以上も小さかった。60kgf/mm2 の差を疲
労寿命で考えてみる。例えばNo.21のピッチング疲
労強度は260kgf/mm2 であり、面圧260kgf/mm2
時に107 回以上までピッチングは発生しない。しかし
60kgf/mm2 高い面圧320kgf/mm2 の場合、疲労寿命
は2.4×106 回であった。従って疲労寿命は約4倍
も異なり、寿命として大きな差となる。
On the other hand, in Comparative Example No. 20-No. 26, L / D> 15 and L> 14 from Table 1, all of which do not satisfy the conditions of the method of the present invention. Thus, 60 kgf / mm 2 or more was small compared to the pitting fatigue strength 260kgf / mm 2 or less and the present invention method. Consider the difference of 60 kgf / mm 2 in terms of fatigue life. For example, no. Pitting fatigue strength of 21 is 260kgf / mm 2, pitching to over 10 7 times when the surface pressure 260kgf / mm 2 is not generated. However, in the case of 60 kgf / mm 2 higher surface pressure 320 kgf / mm 2, the fatigue life was 2.4 × 10 6 times. Therefore, the fatigue life differs by about four times, and there is a great difference in the life.

【0030】また、比較例ではMnSが延伸しているた
めに、一歯曲げ疲労強度も本発明法により低かった。N
o.27は、表1より、添加されるS量が少ないためピ
ッチングの起点となるMnSが少ない。その為ピッチン
グ疲労強度は表2より340kgf/mm2 であり、本発明例
と同様である。しかし、MnSが少ないことから切削加
工性が悪く歯車製造時に問題を生じることになる。
In the comparative example, since the MnS was stretched, the one-tooth bending fatigue strength was also low by the method of the present invention. N
o. 27 shows that MnS, which is a starting point of pitting, is small because the amount of S added is small from Table 1. Therefore, the pitting fatigue strength is 340 kgf / mm 2 from Table 2, which is the same as that of the present invention. However, since the amount of MnS is small, the machinability is poor and a problem occurs during gear manufacturing.

【0031】No.28はNo.27と逆に添加される
S量が多い。そのため鍛造時に割れが発生することも懸
念されたが今回の試験片製造時には特に問題は生じなか
った。しかしピッチング疲労強度は280kgf/mm2 程度
であり、本発明例に比べて低い疲労強度であった。これ
はピッチングの起点となるMnSが多いことと考えられ
る。
No. No. 28 is No. The amount of S added opposite to 27 is large. For this reason, there was a concern that cracks would occur during forging, but no particular problem occurred during the production of the test pieces. However, the pitting fatigue strength was about 280 kgf / mm 2 , which was lower than that of the present invention. This is thought to be due to the large amount of MnS serving as the starting point of pitching.

【0032】No.29はMnS形状も本発明例の条件
をみたすものの、浸炭まま、即ち粒界酸化層が残留した
ままであり、ピッチングが粒界酸化層から発生するため
ピッチング疲労強度は240kgf/mm2 と低い。粒界酸化
層が除去されることで初めてMnS形状の抑制がピッチ
ング寿命に効果がある。
No. 29, although the MnS shape also satisfies the conditions of the present invention, the carburized state, that is, the grain boundary oxide layer remains, and the pitting occurs from the grain boundary oxide layer, so that the pitting fatigue strength is as low as 240 kgf / mm 2 . Only after the grain boundary oxide layer is removed, the suppression of the MnS shape has an effect on the pitting life.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明では、浸炭、或いは浸炭窒化等の
表面硬化処理を行った後に研削加工をするなど、粒界酸
化層が無い歯車においてMnSの形態制御をすることに
より、使用時のピッチング寿命を飛躍的に向上すること
ができる。これにより、歯車の受ける負荷荷重を増大で
き、或いは歯車自体の小型軽量化が可能となり、歯車を
多く用いる自動車、建築用機械の小型軽量化を実現し、
燃費改善など多大の効果をもたらす。
According to the present invention, the pitting during use is controlled by controlling the morphology of MnS in a gear having no grain boundary oxidized layer, such as by grinding after performing a surface hardening treatment such as carburizing or carbonitriding. The life can be significantly improved. As a result, the load applied to the gears can be increased, or the gears themselves can be reduced in size and weight, and automobiles and construction machines that use many gears can be reduced in size and weight.
It brings great effects such as improved fuel efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】歯車におけるMnSの延伸方向と接触荷重の移
動方向を示す概念図。
FIG. 1 is a conceptual diagram showing an extending direction of MnS and a moving direction of a contact load in a gear.

【手続補正書】[Procedure amendment]

【提出日】平成11年7月30日(1999.7.3
0)
[Submission date] July 30, 1999 (July 7, 1999)
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Correction target item name] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】(2)更に、重量%で、Mo:0.2〜
1.0%、Ni:0.2〜1.0%の1種又は2種を含
有することを特徴とする(1)記載の接触疲労寿命強度
の優れた歯車。 (3)更に、重量%で、V:0.05〜0.3%、T
i:0.01〜0.2%、Nb:0.02〜0.2%の
1種または2種を更に含有することを特徴とする(1)
又は(2)記載の接触疲労寿命強度の優れた歯車。
(2) Further, in terms of% by weight, Mo: 0.2 to
(1) The gear having excellent contact fatigue life strength according to (1), wherein one or two kinds of Ni: 0.2 to 1.0% are contained. (3) Further, by weight%, V: 0.05 to 0.3%, T
i: 0.01 to 0.2%, Nb: 0.02 to 0.2%, one or two kinds of which are further contained (1).
Or the gear excellent in contact fatigue life strength according to (2).

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】焼入れ性を確保するためにCrだけでは不
十分であり、Mo及びNiなどの元素を必要に応じて含
有させる。従来鋼と同等あるいはそれ以上の焼入れ性を
与えるために、Moは0.2%以上含有させる。しかし
1.0%を超えて含有させても、その効果は飽和してし
まい経済性を損なうため1.0%以下とする。また、N
iも焼入れ性の効果を得るために0.2%以上含有させ
ることが好ましい。しかし1.0%を超えて含有させて
もその効果は飽和して経済性を損なうため、1.0%以
下とする。
Cr alone is not enough to ensure hardenability, and elements such as Mo and Ni are contained as necessary. Mo is added in an amount of 0.2% or more to provide hardenability equal to or higher than that of conventional steel. However, if the content exceeds 1.0%, the effect is saturated and the economy is impaired, so the content is set to 1.0% or less. Also, N
It is preferable that i is contained in an amount of 0.2 % or more in order to obtain the effect of hardenability. However, if the content exceeds 1.0%, the effect is saturated and the economy is impaired. Therefore, the content is set to 1.0% or less.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 誠司 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製造所内 (72)発明者 蟹沢 秀雄 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製造所内 Fターム(参考) 3J030 BA01 BC03 BC06 CA10  ──────────────────────────────────────────────────の Continued on front page (72) Inventor Seiji Ito 12 Nakamachi, Muroran, Hokkaido Nippon Steel Corporation Muroran Factory (72) Inventor Hideo Kanisawa 12 Nakamachi, Muroran, Hokkaido Nippon Steel Corporation Muroran Manufacturing In-house F-term (reference) 3J030 BA01 BC03 BC06 CA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C :0.1〜0.3%、M
n:0.3〜1.5%、S :0.01〜0.06%、
Cr:0.3〜1.5%、を含有し、残部Feおよび不
可避不純物からなり、MnSの長径長さLと短径長さD
の最大比(L/D)が7以下であるか、最大長さが12
μm以下であり、歯面に粒界酸化層が無いことを特徴と
する接触疲労寿命強度に優れた歯車。
C .: 0.1 to 0.3% by weight, M:
n: 0.3 to 1.5%, S: 0.01 to 0.06%,
Cr: 0.3 to 1.5%, the balance being Fe and inevitable impurities, and the major axis length L and the minor axis length D of MnS.
The maximum ratio (L / D) is 7 or less, or the maximum length is 12
A gear with excellent contact fatigue life strength, characterized by having a grain boundary oxide layer on the tooth surface of not more than μm.
【請求項2】 更に、重量%で、Mo:0.2〜1.0
%、Ni:0.3〜1.0%、の1種又は2種を含有す
ることを特徴とする請求項1記載の接触疲労寿命強度に
優れた歯車。
2. Mo: 0.2 to 1.0 in weight%.
%, Ni: 0.3 to 1.0%, the gear having excellent contact fatigue life strength according to claim 1.
【請求項3】 更に、重量%で、V :0.05〜0.
3%、Ti:0.01〜0.2%、Nb:0.02〜
0.2%、の1種又は2種を含有することを特徴とする
請求項1または2記載の接触疲労寿命強度に優れた歯
車。
3. The composition according to claim 1, wherein V: 0.05 to 0.5% by weight.
3%, Ti: 0.01-0.2%, Nb: 0.02-
3. The gear excellent in contact fatigue life strength according to claim 1 or 2, wherein the gear contains 0.2% of one or two kinds.
【請求項4】 更に、重量%で、Ca:0.001〜
0.01%、Te:0.001〜0.01%、Mg:
0.001〜0.01%、Zr:0.005〜0.1
%、の1種又は2種以上を含有することを特徴とする請
求項1から3までのいずれか1項に記載の接触疲労寿命
強度に優れた歯車。
4. The composition according to claim 1, further comprising:
0.01%, Te: 0.001 to 0.01%, Mg:
0.001-0.01%, Zr: 0.005-0.1
The gear according to any one of claims 1 to 3, wherein the gear has excellent contact fatigue life strength.
JP21063499A 1999-07-26 1999-07-26 Gears with excellent contact fatigue life strength Expired - Fee Related JP3537357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21063499A JP3537357B2 (en) 1999-07-26 1999-07-26 Gears with excellent contact fatigue life strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21063499A JP3537357B2 (en) 1999-07-26 1999-07-26 Gears with excellent contact fatigue life strength

Publications (2)

Publication Number Publication Date
JP2001040452A true JP2001040452A (en) 2001-02-13
JP3537357B2 JP3537357B2 (en) 2004-06-14

Family

ID=16592572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21063499A Expired - Fee Related JP3537357B2 (en) 1999-07-26 1999-07-26 Gears with excellent contact fatigue life strength

Country Status (1)

Country Link
JP (1) JP3537357B2 (en)

Also Published As

Publication number Publication date
JP3537357B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP3308377B2 (en) Gear with excellent tooth surface strength and method of manufacturing the same
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP4853366B2 (en) Steel carburized or carbonitrided parts with shot peening
JP4102866B2 (en) Gear manufacturing method
JP2002212672A (en) Steel member
JP3932102B2 (en) Case-hardened steel and carburized parts using the same
JPH07188895A (en) Manufacture of parts for machine structure use
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JP6160054B2 (en) High surface pressure resistant parts
JP2615126B2 (en) Gear steel
JP3623313B2 (en) Carburized gear parts
JP3537357B2 (en) Gears with excellent contact fatigue life strength
JP5335523B2 (en) Gear shaft steel and gear shaft excellent in bending fatigue resistance and peeling resistance
JP2021006659A (en) Steel component and method for producing the same
JPWO2002044435A1 (en) Carburizing steel and carburizing gear
JP4821582B2 (en) Steel for vacuum carburized gear
JPH08165557A (en) Production of pitting resisting soft-nitrided gear
JP2002327237A (en) Gear with long dedendum life and contact fatigue life, and manufacturing method therefor
JPH0559432A (en) Production of carburized gear excellent in fatigue strength
JP4371481B2 (en) Gear having excellent contact fatigue life strength and manufacturing method thereof
JP2946653B2 (en) Manufacturing method of high strength gear
JPH08174340A (en) Part for machine structure having excellent surface fatigue strength and manufacture thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040217

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100326

LAPS Cancellation because of no payment of annual fees