JP2001040130A - Production of resin foamed product - Google Patents

Production of resin foamed product

Info

Publication number
JP2001040130A
JP2001040130A JP11213588A JP21358899A JP2001040130A JP 2001040130 A JP2001040130 A JP 2001040130A JP 11213588 A JP11213588 A JP 11213588A JP 21358899 A JP21358899 A JP 21358899A JP 2001040130 A JP2001040130 A JP 2001040130A
Authority
JP
Japan
Prior art keywords
resin
resin composition
pressure
impregnation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11213588A
Other languages
Japanese (ja)
Other versions
JP4332938B2 (en
Inventor
Mitsunori Nodono
光紀 野殿
Tatsuma Kuroda
竜磨 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP21358899A priority Critical patent/JP4332938B2/en
Priority to EP00106631A priority patent/EP1040902B1/en
Priority to US09/536,802 priority patent/US6399667B1/en
Priority to DE60031026T priority patent/DE60031026T2/en
Priority to CN00108892.0A priority patent/CN1270968A/en
Publication of JP2001040130A publication Critical patent/JP2001040130A/en
Priority to US10/094,801 priority patent/US6596783B2/en
Application granted granted Critical
Publication of JP4332938B2 publication Critical patent/JP4332938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for producing resin foamed products having fine cells at a higher cell density. SOLUTION: This process for producing resin foamed products comprises a step of impregnating a resin composition containing 60-90 pts.wt. crystalline thermoplastic resin and 10-40 pt.wt. amorphous thermoplastic resin with a fluid of a substance under a pressure of not lower than the critical pressure of the substance with which the resin composition is to be impregnated and a step of releasing the resin composition impregnated with the substance from its pressurized state. The above described resin composition is composed of a crystalline phase and an amorphous phase, and the size of the amorphous phase is 10-200 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂発泡体の製造
方法に関し、詳しくは、微細気泡を高気泡密度で有する
樹脂発泡体の製造方法に関する。
The present invention relates to a method for producing a resin foam, and more particularly, to a method for producing a resin foam having fine cells having a high cell density.

【従来の技術】[Prior art]

【0002】近年、樹脂発泡体の製造方法として、従来
の化学的発泡法や物理的発泡法に加えて、超臨界状態の
不活性物質(二酸化炭素や窒素など)を用いて微細気泡
を高気泡密度で有する発泡体を製造する超臨界発泡法が
開発されたが[例えば、マテリアル アンド マニュフ
ァクチャリング プロセス(Materials &Manufacturing
Processes、4(2)、253−262(1989))
や米国特許第5160674号を参照]、より高い気泡
密度を達成することができる方法の開発が望まれてい
る。
In recent years, as a method for producing a resin foam, in addition to a conventional chemical foaming method and a physical foaming method, a supercritical inert material (such as carbon dioxide or nitrogen) has been used to produce fine bubbles. Supercritical foaming methods have been developed to produce foams having a high density [see, for example, Materials & Manufacturing Process.
Processes, 4 (2), 253-262 (1989))
And U.S. Pat. No. 5,160,674], and it is desired to develop a method that can achieve a higher bubble density.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、微細
気泡をより高気泡密度で有する樹脂発泡体を製造する方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a resin foam having fine cells having a higher cell density.

【0004】[0004]

【課題を解決するための手段】本発明者等は、微細気泡
をより高気泡密度で有する樹脂発泡体の製造方法につい
て鋭意検討を行った結果、結晶性熱可塑性樹脂と非晶性
熱可塑性樹脂とを特定の比率で含有する樹脂組成物に、
これに含浸させるべき物質の臨界圧力以上の加圧下で該
物質の流体を含浸させ、次いで該物質が含浸した前記樹
脂組成物を前記加圧状態から開放することにより、上記
目的を達成し得ることを見出し本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on a method for producing a resin foam having fine cells having a higher cell density, and as a result, a crystalline thermoplastic resin and an amorphous thermoplastic resin have been obtained. And in a resin composition containing a specific ratio,
The above object can be achieved by impregnating the material with the fluid of the substance under pressure equal to or higher than the critical pressure of the substance to be impregnated, and then releasing the resin composition impregnated with the substance from the pressurized state. And completed the present invention.

【0005】すなわち本発明は、結晶性熱可塑性樹脂6
0〜90重量部と非晶性熱可塑性樹脂10〜40重量部
とからなる樹脂組成物に、これに含浸させるべき物質の
臨界圧力以上の加圧下で該物質の流体を含浸させる工
程、および該物質を含浸させた前記樹脂組成物を前記加
圧状態から開放する工程とからなることを特徴とする樹
脂発泡体の製造方法である。上記方法によれば、上記樹
脂組成物以外の樹脂材料を発泡させる場合に比べてより
高い気泡密度の樹脂発泡体を得ることができる。
That is, the present invention relates to a method for manufacturing a crystalline thermoplastic resin 6.
Impregnating a resin composition consisting of 0 to 90 parts by weight and 10 to 40 parts by weight of an amorphous thermoplastic resin with a fluid of the substance under a pressure equal to or higher than the critical pressure of the substance to be impregnated; Releasing the resin composition impregnated with a substance from the pressurized state. According to the above method, a resin foam having a higher cell density can be obtained as compared with a case where a resin material other than the resin composition is foamed.

【0006】[0006]

【発明の実施の形態】本発明の方法では、まず結晶性熱
可塑性樹脂60〜90重量部と非晶性熱可塑性樹脂10
〜40重量部とからなる樹脂組成物に、これに含浸させ
るべき物質(以下、含浸物質)の臨界圧力以上の加圧下
で該含浸物質の流体を含浸させる工程を行う。以下、こ
の工程を含浸工程と称する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, first, 60 to 90 parts by weight of a crystalline thermoplastic resin and 10 parts of an amorphous thermoplastic resin are used.
A step of impregnating the resin composition consisting of 〜40 parts by weight with a fluid of the impregnating substance under a pressure equal to or higher than the critical pressure of the substance to be impregnated (hereinafter, impregnating substance) is performed. Hereinafter, this step is referred to as an impregnation step.

【0007】前記結晶性熱可塑性樹脂は、例えばポリオ
レフィン系樹脂(例えばポリエチレン系樹脂やポリプロ
ピレン系樹脂など)、ポリアミド系樹脂、ポリエチレン
テレフタレート系樹脂、シンジオタクチックポリスチレ
ン系樹脂、ポリビニルアルコール系樹脂等である。該結
晶性熱可塑性樹脂は、結晶相のみからなる樹脂であって
もよいし、結晶相と非晶相とからなる樹脂であってもよ
いが、後者がより好ましい。結晶性熱可塑性樹脂は、1
種類のみでもよく、2種類以上が併用されてもよい。
The crystalline thermoplastic resin is, for example, a polyolefin resin (eg, a polyethylene resin or a polypropylene resin), a polyamide resin, a polyethylene terephthalate resin, a syndiotactic polystyrene resin, a polyvinyl alcohol resin, or the like. . The crystalline thermoplastic resin may be a resin composed of only a crystalline phase or a resin composed of a crystalline phase and an amorphous phase, with the latter being more preferred. The crystalline thermoplastic resin is 1
Only the types may be used, or two or more types may be used in combination.

【0008】本発明に適用可能なポリプロピレン系樹脂
としては、プロピレンの単独重合体やプロピレンに由来
する繰り返し単位を50重量%以上含むプロピレンと重
合性モノマーとの共重合体が挙げられるが、これに限定
されるものではない。上記重合性モノマーは、プロピレ
ンと重合可能である限り特に制限されないが、好ましく
は、エチレンやα−オレフィン(典型的には、1−ブテ
ン、4−メチルペンテン−1、1−ヘキセン、1−オク
テン、1−デセン等の炭素原子数が4〜10のα−オレ
フィン)が挙げられる。共重合体中の重合性モノマーに
由来する繰り返し単位の含有量は、該重合性モノマーが
エチレンの場合には10重量%以下、他のエチレン以外
の重合性モノマーの場合には30重量%以下が好まし
い。
Examples of the polypropylene resin applicable to the present invention include a homopolymer of propylene and a copolymer of propylene and a polymerizable monomer containing at least 50% by weight of a repeating unit derived from propylene. It is not limited. The polymerizable monomer is not particularly limited as long as it can be polymerized with propylene, but is preferably ethylene or α-olefin (typically, 1-butene, 4-methylpentene-1, 1-hexene, 1-octene). , 1-decene and the like, α-olefins having 4 to 10 carbon atoms). The content of the repeating unit derived from the polymerizable monomer in the copolymer is 10% by weight or less when the polymerizable monomer is ethylene, and 30% by weight or less when the polymerizable monomer is other than ethylene. preferable.

【0009】ポリプロピレン系樹脂としては、特開昭6
2−121704号公報に開示されているごとき、低レ
ベルの電子線架橋によって長鎖分岐が導入されたポリプ
ロピレン樹脂も好ましく用いられる。また、超高分子量
成分が導入されたポリプロピレン樹脂も好ましく用いら
れ、その好ましい例としては、第一段階でプロピレンを
主成分とするモノマーを重合して超高分子量成分である
極限粘度が5dl/g以上のポリプロピレン系重合体
(I)を製造し、第二段階以降でプロピレンを主成分と
するモノマーを重合して極限粘度が3dl/g未満のポ
リプロピレン系重合体(II)を連続的に製造して得られ
る重合体であって、ポリプロピレン系重合体(I)のブ
ロック及びポリプロピレン系重合体(II)のブロックか
らなり、重合体(I)のブロックの濃度が0.05重量
%以上35重量%未満、重合体全体の極限粘度が3dl
/g未満、Mw/Mnが10未満であるものが挙げられ
る。
[0009] As a polypropylene-based resin,
As disclosed in JP-A-2-121704, a polypropylene resin having long-chain branches introduced by low-level electron beam crosslinking is also preferably used. Further, a polypropylene resin into which an ultrahigh molecular weight component is introduced is also preferably used. As a preferable example, a monomer having propylene as a main component is polymerized in the first stage to obtain an ultrahigh molecular weight component having an intrinsic viscosity of 5 dl / g. The above-mentioned polypropylene polymer (I) is produced, and a monomer having propylene as a main component is polymerized in the second and subsequent steps to continuously produce a polypropylene polymer (II) having an intrinsic viscosity of less than 3 dl / g. A block of the polypropylene polymer (I) and a block of the polypropylene polymer (II), wherein the concentration of the block of the polymer (I) is 0.05% by weight or more and 35% by weight. Less, the intrinsic viscosity of the whole polymer is 3 dl
/ G and Mw / Mn of less than 10.

【0010】前記樹脂組成物が含有する非晶性熱可塑性
樹脂は、その好ましい例としてポリエステル系エラスト
マー、ポリアミド系エラストマー、ポリオレフィン系エ
ラストマーなどの熱可塑性エラストマーが挙げられる
が、これらに限定されるものではない。上に例示した非
晶性熱可塑性樹脂のうち、ポリエステル系エラストマー
は結晶性ポリエステル系樹脂と、ポリアミド系エラスト
マーは結晶性ポリアミド系樹脂と、ポリオレフィン系エ
ラストマーは結晶性ポリオレフィン系樹脂との組み合わ
せとして好ましく用いられる。前記結晶性熱可塑性樹脂
が結晶相と非晶相とからなるとき、前記非晶性熱可塑性
樹脂の一部または全部は、前記結晶性熱可塑性樹脂の非
晶相と相溶してこれを拡大させることができる。従っ
て、結晶相と非晶相とからなる結晶性熱可塑性樹脂と非
晶性熱可塑性樹脂とを併用することにより、結晶性熱可
塑性樹脂の非晶相の大きさを適宜調節することができ
る。
Preferred examples of the amorphous thermoplastic resin contained in the resin composition include thermoplastic elastomers such as polyester-based elastomer, polyamide-based elastomer, and polyolefin-based elastomer, but are not limited thereto. Absent. Among the amorphous thermoplastic resins exemplified above, a polyester-based elastomer is preferably used as a combination of a crystalline polyester-based resin, a polyamide-based elastomer is used as a combination of a crystalline polyamide-based resin, and a polyolefin-based elastomer is used as a combination with a crystalline polyolefin-based resin. Can be When the crystalline thermoplastic resin is composed of a crystalline phase and an amorphous phase, part or all of the amorphous thermoplastic resin is compatible with and expands the amorphous phase of the crystalline thermoplastic resin. Can be done. Therefore, the size of the amorphous phase of the crystalline thermoplastic resin can be appropriately adjusted by using the crystalline thermoplastic resin composed of the crystalline phase and the amorphous phase in combination with the amorphous thermoplastic resin.

【0011】特に、結晶性ポリプロピレン系樹脂とポリ
オレフィン系エラストマーとが組み合わせて用いられる
場合、該ポリオレフィン系エラストマーは、例えばエチ
レン/α−オレフィン共重合体、プロピレン/α−オレ
フィン共重合体、、エチレン/プロピレン/ジエン/メ
チレン共重合体(EPDMR)、ポリブタジエン及びそ
の水素添加物、スチレン/イソプレン/スチレン共重合
体、スチレン/エチレン/ブタジエン/スチレン共重合
体、スチレン/ブタジエン共重合体、スチレン/エチレ
ン/プロピレン/スチレン共重合体、およびスチレン/
ブタジエン/スチレン共重合体及びその水素添加物が好
ましく、より好ましくはスチレン/ブタジエン共重合
体、プロピレン/ブテン共重合体である。スチレン由来
の繰り返し単位を10重量%程度含有するスチレン/ブ
タジエン共重合体の水素添加物が特に好ましく用いられ
る。
In particular, when a crystalline polypropylene resin and a polyolefin elastomer are used in combination, the polyolefin elastomer may be, for example, an ethylene / α-olefin copolymer, a propylene / α-olefin copolymer, Propylene / diene / methylene copolymer (EPDMR), polybutadiene and its hydrogenated product, styrene / isoprene / styrene copolymer, styrene / ethylene / butadiene / styrene copolymer, styrene / butadiene copolymer, styrene / ethylene / Propylene / styrene copolymer and styrene /
Butadiene / styrene copolymers and hydrogenated products thereof are preferred, and styrene / butadiene copolymers and propylene / butene copolymers are more preferred. A hydrogenated styrene / butadiene copolymer containing about 10% by weight of a repeating unit derived from styrene is particularly preferably used.

【0012】前記樹脂組成物における前記非晶性熱可塑
性樹脂の量は、これと前記結晶性熱可塑性樹脂との合計
を100重量部としたときに、10〜40重量部、より
好ましくは10〜30重量部である。非晶性熱可塑性樹
脂の量が10重量部未満では、気泡密度の向上効果を十
分にに享受できなくなり、40重量部を超えると、併せ
て使用される結晶性熱可塑性樹脂の特性が損なわれる傾
向がある。例えば、ポリプロピレン系樹脂と非晶性熱可
塑性樹脂とからなる樹脂組成部においては、非晶性熱可
塑性樹脂の含有量が40重量部を超えると、ポリプロピ
レン系樹脂の耐熱性および耐油性が損なわれる。
The amount of the amorphous thermoplastic resin in the resin composition is 10 to 40 parts by weight, more preferably 10 to 40 parts by weight, when the total of the amorphous thermoplastic resin and the crystalline thermoplastic resin is 100 parts by weight. 30 parts by weight. If the amount of the amorphous thermoplastic resin is less than 10 parts by weight, the effect of improving the cell density cannot be sufficiently obtained, and if it exceeds 40 parts by weight, the properties of the crystalline thermoplastic resin used together will be impaired. Tend. For example, in the resin composition portion composed of a polypropylene-based resin and an amorphous thermoplastic resin, when the content of the amorphous thermoplastic resin exceeds 40 parts by weight, heat resistance and oil resistance of the polypropylene-based resin are impaired. .

【0013】前記樹脂組成物がポリプロピレン系樹脂、
ポリエチレン系樹脂およびポリオレフィン系熱可塑性エ
ラストマーを含有する場合、該ポリエチレン系樹脂の含
有量は、樹脂組成物全体の0.01〜30重量%が好ま
しく、3〜20重量%がより好ましい。かかる量のポリ
エチレン系樹脂を配合することにより、優れた気泡密度
向上効果を得ることができる。エチレン系樹脂として
は、低密度ポリエチレン(LDPE)、高密度ポリエチ
レン(HDPE)、および直鎖状低密度ポリエチレン
(LLDPE)が好ましく用いられる。ポリエチレン系
樹脂のメルトフローレート(MFR)は、1g/10分
以上10g/10分以下が好ましい。
The resin composition is a polypropylene resin,
When a polyethylene-based resin and a polyolefin-based thermoplastic elastomer are contained, the content of the polyethylene-based resin is preferably 0.01 to 30% by weight, more preferably 3 to 20% by weight of the whole resin composition. By blending the polyethylene resin in such an amount, an excellent bubble density improving effect can be obtained. As the ethylene resin, low-density polyethylene (LDPE), high-density polyethylene (HDPE), and linear low-density polyethylene (LLDPE) are preferably used. The melt flow rate (MFR) of the polyethylene resin is preferably from 1 g / 10 min to 10 g / 10 min.

【0014】前記樹脂組成物全体のMFRは、0.1g
/10分以上50g/10分以下の範囲にあることが好
ましい。MFRが0.1g/10分未満では、押出加工
性の低下が顕著となり、MFRが50g/10分を超え
ると、発泡時の膨張ガス圧に樹脂組成物が耐えられず破
泡が起こり、均一な微細気泡を有する発泡体を得るのが
難しくなる傾向がある。
The MFR of the entire resin composition is 0.1 g.
It is preferably in the range of / 10 min to 50 g / 10 min. If the MFR is less than 0.1 g / 10 min, the extrusion processability is significantly reduced, and if the MFR is more than 50 g / 10 min, the resin composition cannot withstand the inflation gas pressure during foaming, causing foam breakage and uniformity. It tends to be difficult to obtain a foam having fine cells.

【0015】結晶性熱可塑性樹脂と非晶性熱可塑性樹脂
とからなる前記樹脂組成物は結晶相と非晶相とからなる
が、該非晶相の大きさが10〜200nmである場合に
良好な気泡密度向上効果が得られ、非晶相の大きさが1
5〜100nmであることがより好ましい。ここで、非
晶相の大きさとは、次の方法で求められる平均値であ
る。まず、冷却固化させた樹脂組成物をミクロトームを
用いて切断し、断面を染色剤(例えばRuO4)で染色
する。染色部分を冷却下に1000Å以下の厚みに薄切
する。得られた切片を透過型顕微鏡(通常は倍率500
00〜60000倍程度)により写真撮影する。写真
中、50個程度の非晶相断面を含む正方形視野におい
て、それぞれの非晶相断面に内包される最大円の直径を
測定し、それらの平均値を算出する。この平均値を該樹
脂組成物の非晶相の大きさと定義する。
The resin composition comprising a crystalline thermoplastic resin and an amorphous thermoplastic resin is composed of a crystalline phase and an amorphous phase. When the size of the amorphous phase is from 10 to 200 nm, it is satisfactory. The effect of improving the bubble density is obtained, and the size of the amorphous phase is 1
More preferably, it is 5 to 100 nm. Here, the size of the amorphous phase is an average value obtained by the following method. First, the cooled and solidified resin composition is cut using a microtome, and the cross section is dyed with a dye (for example, RuO 4 ). The dyed portion is sliced under cooling to a thickness of 1000 mm or less. The obtained section is examined with a transmission microscope (usually at a magnification of 500).
(Approximately 00 to 60,000 times). In the photograph, the diameter of the largest circle included in each amorphous phase cross section is measured in a square field including about 50 amorphous phase cross sections, and the average value thereof is calculated. This average value is defined as the size of the amorphous phase of the resin composition.

【0016】前記樹脂組成物の調製方法は特に限定され
ず、例えば樹脂材料の混練に通常用いられる単軸あるい
は二軸押出機を用いて結晶性熱可塑性樹脂と非晶性熱可
塑性樹脂とを溶融混練することにより製造することがで
きる。得られた樹脂組成物は、押出しによりペレット状
やシート状に成形することができる。溶融混練は、バン
バリー型ミキサーなどの混練機を用いて行うこともでき
る。
The method for preparing the resin composition is not particularly limited. For example, a single-screw or twin-screw extruder usually used for kneading a resin material is used to melt a crystalline thermoplastic resin and an amorphous thermoplastic resin. It can be manufactured by kneading. The obtained resin composition can be formed into a pellet or a sheet by extrusion. Melt kneading can also be performed using a kneader such as a Banbury mixer.

【0017】含浸工程では、前記樹脂組成物に、これに
含浸させるべき物質(含浸物質)の臨界圧力以上の加圧
下において該含浸物質の流体(すなわち、液体または超
臨界流体)を含浸させる。好ましく用いられる物質とし
ては、常温常圧下で気体状の物質、例えばブタン、ペン
タン等の有機化合物、あるいは二酸化炭素、空気、水
素、窒素、ネオン、アルゴン等の無機化合物が挙げられ
る。前記含浸物質は、2種以上の混合物であってもよ
い。扱い易さの観点からは、二酸化炭素、空気、窒素、
ネオン、アルゴン等の不活性物質が好ましい。特に、経
済性および安全性の観点から二酸化炭素が好ましく用い
られる。
In the impregnation step, the resin composition is impregnated with a fluid of the impregnating substance (ie, liquid or supercritical fluid) under a pressure equal to or higher than the critical pressure of the substance to be impregnated (impregnating substance). Examples of the substance preferably used include a gaseous substance at normal temperature and normal pressure, for example, an organic compound such as butane and pentane, or an inorganic compound such as carbon dioxide, air, hydrogen, nitrogen, neon, and argon. The impregnated material may be a mixture of two or more. In terms of ease of handling, carbon dioxide, air, nitrogen,
Inert substances such as neon and argon are preferred. In particular, carbon dioxide is preferably used from the viewpoint of economy and safety.

【0018】前記含浸物質の樹脂組成物への含浸量は、
その含浸物質の種類、目的とする樹脂発泡体の発泡倍
率、気泡密度等に応じて適宜設定され、含浸量の下限
は、通常は十分な発泡倍率で微細気泡が形成されるだけ
の量である。含浸量の上限は特にないが、通常は含浸物
質の樹脂組成物に対する飽和溶解量またはそれに近い量
である。含浸量は、必ずしも飽和溶解量に達する必要は
ない。例えばポリオレフィン系樹脂を主成分とする樹脂
組成物に二酸化炭素を含浸させる場合の好ましい含浸量
は、樹脂組成物100重量部に対して、0.1重量部以
上20重量部以下の範囲、より好ましくは0.1〜15
重量部の範囲である。
The amount of the impregnating substance impregnated into the resin composition is as follows:
The type of the impregnated substance, the expansion ratio of the target resin foam, the bubble density, etc. are appropriately set, and the lower limit of the impregnation amount is usually an amount sufficient to form fine cells at a sufficient expansion ratio. . Although there is no particular upper limit for the amount of impregnation, the amount is usually a saturated dissolution amount of the impregnated substance in the resin composition or an amount close thereto. The impregnation amount does not necessarily have to reach the saturation dissolution amount. For example, the preferred impregnation amount when carbon dioxide is impregnated into a resin composition containing a polyolefin-based resin as a main component is in the range of 0.1 to 20 parts by weight, more preferably 100 parts by weight of the resin composition. Is 0.1 to 15
It is in the range of parts by weight.

【0019】含浸物質を樹脂組成物に含浸させる際の圧
力(以下、含浸圧力)、温度、および含浸に要する時間
等は所望の含浸量により異なる。例えば、臨界圧力が約
7.5MPaである二酸化炭素を樹脂組成物に含浸させ
る場合、含浸圧力はこの臨界圧力以上であればよいが、
10MPa以上が好ましい。また含浸圧力の上限値は装
置等の能力に依存するが、通常は50MPa程度であ
る。
The pressure (hereinafter referred to as impregnation pressure), temperature and time required for impregnation of the resin composition with the impregnating substance differ depending on the desired impregnation amount. For example, when impregnating the resin composition with carbon dioxide having a critical pressure of about 7.5 MPa, the impregnation pressure may be equal to or higher than the critical pressure.
10 MPa or more is preferable. The upper limit of the impregnation pressure depends on the performance of the apparatus and the like, but is usually about 50 MPa.

【0020】含浸物質を樹脂組成物に含浸させる際の温
度(以下、含浸温度)は、該含浸物質が液体または超臨
界流体となる温度であり、該含浸物質の臨界温度以上で
あることが好ましい。含浸温度の上限値は使用する樹脂
組成物が分解しない温度であればよく、通常は300℃
以下である。臨界温度が約31℃である二酸化炭素を用
いる場合、含浸温度はこの臨界温度以上であることが好
ましく、特に、樹脂組成物への二酸化炭素の浸透速度と
生産性の観点から60℃以上が好ましく、また、樹脂組
成物への溶解量の観点から230℃以下が好ましい。
The temperature at which the resin composition is impregnated with the impregnating substance (hereinafter referred to as impregnation temperature) is a temperature at which the impregnating substance becomes a liquid or a supercritical fluid, and is preferably not lower than the critical temperature of the impregnating substance. . The upper limit of the impregnation temperature may be any temperature at which the used resin composition does not decompose, and is usually 300 ° C.
It is as follows. When using carbon dioxide having a critical temperature of about 31 ° C., the impregnation temperature is preferably equal to or higher than the critical temperature, and particularly preferably 60 ° C. or higher from the viewpoint of the rate of penetration of carbon dioxide into the resin composition and productivity. Further, the temperature is preferably 230 ° C. or lower from the viewpoint of the amount dissolved in the resin composition.

【0021】含浸物質を樹脂組成物に含浸させるのに費
やす時間(以下、含浸時間)は、含浸物質の樹脂組成物
への浸透速度により異なり、上記含浸圧力と含浸温度に
依存する。含浸操作を継続すると含浸量は通常飽和溶解
量まで増加するが、含浸時間は、通常は長くとも含浸物
質の含浸量が飽和溶解量に達するまでの時間に設定さ
れ、通常は数時間までである。生産性の観点からは含浸
時間は短いほど好ましく、必ずしも飽和溶解量に達する
まで含浸させる必要はない。例えば超臨界状態の二酸化
炭素の場合の含浸時間は、通常は数分から5時間程度で
あり、生産性と含浸量のバランスの観点からは数分程度
から3時間程度が好ましい。
The time required for impregnating the resin composition with the impregnating substance (hereinafter referred to as impregnation time) depends on the rate of penetration of the impregnating substance into the resin composition and depends on the impregnation pressure and the impregnation temperature. When the impregnation operation is continued, the impregnation amount usually increases up to the saturation dissolution amount, but the impregnation time is usually set to the time until the impregnation amount of the impregnating substance reaches the saturation dissolution amount at most, and is usually up to several hours. . From the viewpoint of productivity, the shorter the impregnation time is, the more preferable it is. It is not always necessary to impregnate until the saturation amount is reached. For example, the impregnation time in the case of carbon dioxide in a supercritical state is usually about several minutes to about 5 hours, and is preferably about several minutes to about 3 hours from the viewpoint of the balance between productivity and impregnation amount.

【0022】本発明の方法では、前記含浸工程に引き続
いて、含浸物質が含浸した樹脂組成物を前記加圧状態か
ら開放する工程が行われる。以下、この工程を圧力開放
工程と称する。圧力開放工程において、加圧状態から開
放された樹脂組成物の内部で発泡が起こる。圧力開放工
程の後に樹脂組成物を更に加熱してもよい。前記圧力開
放工程において、加圧状態からの開放はできるだけ短時
間で行うのが好ましい。この操作が緩慢に行われると、
所望の気泡密度を有する発泡体が得られないこともあ
る。通常は、含浸圧力から常圧付近まで瞬間的に圧力を
開放する。ここで、「圧力を瞬間的に開放する」とは、
できるだけ短時間に含浸圧力から常圧付近まで圧力を低
下させることを意味する。含浸物質の含浸に用いた容器
の容量、排ガス管の太さ等にもよるが、含浸圧力から常
圧付近までの圧力低下時間は、通常は10秒間未満であ
り、約3秒間以下が好ましい。
In the method of the present invention, subsequent to the impregnation step, a step of releasing the resin composition impregnated with the impregnation substance from the pressurized state is performed. Hereinafter, this step is referred to as a pressure release step. In the pressure release step, foaming occurs inside the resin composition released from the pressurized state. After the pressure release step, the resin composition may be further heated. In the pressure release step, the release from the pressurized state is preferably performed in as short a time as possible. If this operation is performed slowly,
A foam having a desired cell density may not be obtained. Normally, the pressure is released instantaneously from the impregnation pressure to around normal pressure. Here, "to release the pressure momentarily" means
This means reducing the pressure from the impregnation pressure to near normal pressure in as short a time as possible. Although it depends on the capacity of the vessel used for impregnation with the impregnating substance, the thickness of the exhaust gas pipe, and the like, the pressure drop time from the impregnation pressure to about normal pressure is usually less than 10 seconds, preferably about 3 seconds or less.

【0023】上記圧力開放工程における圧力の急激な開
放は、含浸工程よりも高い温度で行ってもよいし、含浸
工程よりも低い温度で行ってもよく、あるいは含浸工程
と同じ温度で行なってもよい。より微細な気泡径と高い
気泡密度を達成するために、含浸工程よりも低い温度で
含浸工程の圧力開放を行なうことが好ましい。
The rapid release of the pressure in the pressure release step may be performed at a higher temperature than the impregnation step, at a lower temperature than the impregnation step, or at the same temperature as the impregnation step. Good. In order to achieve a finer cell diameter and a higher cell density, it is preferable to release the pressure in the impregnation step at a lower temperature than in the impregnation step.

【0024】例えば、含浸工程を含浸物質の臨界温度以
上かつ樹脂組成物の融点以下の温度で行い、圧力開放工
程において、含浸工程の温度よりも高い温度、例えば樹
脂組成物の融点以上の温度で圧力を急激に開放すること
により気泡核を生成、成長させ、圧力の急激な開放によ
る温度低下を利用して気泡核の成長を適度に制御するこ
とにより発泡体を得ることができる。また、含浸工程に
おいて樹脂組成物をその融点以上とし、圧力開放工程に
おいて該樹脂組成物を一旦含浸工程よりも低い温度、例
えば樹脂組成物の融点以下の温度まで冷却し、その後に
圧力を急激に開放して気泡核を生成させ、更に該気泡核
を適度に成長させて発泡体を得ることもできる。更に
は、含浸工程で温度を樹脂組成物の融点以下とし、その
温度で圧力開放工程を行なってもよい。より微細な気泡
径と高い気泡密度を得るためには、含浸工程よりも低い
温度で圧力の開放を行なうことが好ましい。
For example, the impregnating step is performed at a temperature not lower than the critical temperature of the impregnating substance and not higher than the melting point of the resin composition, and in the pressure release step, at a temperature higher than the temperature of the impregnating step, for example, at a temperature not lower than the melting point of the resin composition. The foam can be obtained by generating and growing cell nuclei by suddenly releasing the pressure, and appropriately controlling the growth of the cell nuclei by utilizing the temperature drop caused by the rapid release of the pressure. In addition, in the impregnation step, the resin composition is heated to a temperature equal to or higher than its melting point, and in the pressure release step, the resin composition is once cooled to a temperature lower than that in the impregnation step, for example, to a temperature equal to or lower than the melting point of the resin composition. The foam can also be obtained by opening to generate cell nuclei and further growing the cell nuclei appropriately. Furthermore, in the impregnation step, the temperature may be lower than the melting point of the resin composition, and the pressure release step may be performed at that temperature. In order to obtain a finer cell diameter and a higher cell density, it is preferable to release the pressure at a lower temperature than in the impregnation step.

【0025】破泡をできるだけ抑制するためには、圧力
開放時の樹脂組成物の温度は、樹脂組成物の融点以下が
好ましく、微細な気泡径と高い気泡密度を達成するため
には、(結晶性熱可塑性樹脂の融点−100℃)以上、
結晶性熱可塑性樹脂の融点以下の範囲が好ましく、(結
晶性熱可塑性樹脂の融点−50℃)以上、結晶性熱可塑
性樹脂の融点以下の範囲が特に好ましい。圧力を開放す
るときの温度は必ずしも一定である必要はなく、通常は
圧力開放と共に温度低下が起こる。この温度の低下を必
ずしも制御する必要はないが、気泡密度の制御の観点か
らは、温度の低下を制御する方が好ましい。
In order to suppress bubble breakage as much as possible, the temperature of the resin composition when the pressure is released is preferably equal to or lower than the melting point of the resin composition. Melting point of the thermoplastic resin -100 ° C) or higher,
The range of the melting point of the crystalline thermoplastic resin or lower is preferable, and the range of (melting point of the crystalline thermoplastic resin −50 ° C.) or higher and the melting point of the crystalline thermoplastic resin or lower is particularly preferable. The temperature at the time of releasing the pressure does not necessarily have to be constant, and usually, the temperature decreases with the release of the pressure. Although it is not always necessary to control the temperature drop, it is preferable to control the temperature drop from the viewpoint of controlling the bubble density.

【0026】また、気泡密度をより適切に制御するため
に圧力開放工程において、気泡核を生成させる過程に続
いて行われる気泡核を成長させる過程、および気泡の成
長を停止させる過程の両過程の温度、時間を更に制御す
ることが好ましい。
In order to more appropriately control the bubble density, in the pressure release step, both the step of growing the bubble nucleus, which is performed subsequent to the step of generating the bubble nucleus, and the step of stopping the growth of the bubble are performed. It is preferable to further control the temperature and time.

【0027】上記気泡核成長の過程において、気泡核を
成長させる温度は、破泡をできるだけ抑制するために、
樹脂組成物の結晶化温度以上、融点以下の範囲内に制御
することが好ましい。また気泡核を成長させる時間は、
所望の気泡密度に応じて適宜設定されるが、通常は20
秒〜30秒である。
In the process of growing the bubble nuclei, the temperature at which the bubble nuclei are grown is determined in order to suppress bubble breakage as much as possible.
It is preferable to control the temperature within the range from the crystallization temperature to the melting point of the resin composition. The time to grow the bubble nucleus is
It is set as appropriate according to the desired bubble density, but usually 20
Seconds to 30 seconds.

【0028】気泡の過度の成長による破泡を抑制するた
めに、気泡核成長の過程の温度と共に、気泡の成長停止
の過程の温度をも制御することが好ましい。気泡の成長
を止める時の温度は、樹脂組成物の結晶化温度以下が好
ましく、発泡体全体が結晶化温度以下になるまで十分に
冷却することが好ましい。なお、以上の説明において
は、主に本発明の方法を回分方式で行う態様について述
べたが、本発明の方法には、例えば単軸あるいは多軸押
出機を用いて含浸工程および圧力開放工程を連続的に行
う連続方式を適用することもできる。
In order to suppress bubble breakage due to excessive growth of bubbles, it is preferable to control not only the temperature of the bubble nucleus growth process but also the temperature of the bubble growth stop process. The temperature at which the growth of the bubbles is stopped is preferably equal to or lower than the crystallization temperature of the resin composition, and is preferably sufficiently cooled until the entire foam becomes equal to or lower than the crystallization temperature. Note that, in the above description, the embodiment in which the method of the present invention is mainly performed in a batch mode has been described. It is also possible to apply a continuous method in which continuous operation is performed.

【0029】[0029]

【発明の効果】本発明によれば、結晶性熱可塑性樹脂6
0〜90重量部と非晶性熱可塑性樹脂10〜40重量部
とからなる樹脂組成物を発泡させることにより、これ以
外の材料を用いた場合に比べて、より高い気泡密度の樹
脂発泡体を得ることができる。得られた樹脂発泡体は例
えば、自動車用材、食品用トレーまたは容器、建材、緩
衝材、断熱材等に好適に用いることができる。
According to the present invention, the crystalline thermoplastic resin 6
By foaming the resin composition consisting of 0 to 90 parts by weight and 10 to 40 parts by weight of the amorphous thermoplastic resin, a resin foam having a higher cell density can be obtained as compared with the case where other materials are used. Obtainable. The obtained resin foam can be suitably used for, for example, automotive materials, food trays or containers, building materials, cushioning materials, heat insulating materials, and the like.

【0030】[0030]

【実施例】以下に実施例によって本発明を更に説明する
が、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

【0031】非晶相の大きさ 冷却固化させた樹脂組成物をミクロトームを用いて切断
し、断面をRuO4で染色した。染色した部分を冷却下
にミクロトームを用いて1000Å以下の厚みに薄切
し、得られた切片を倍率60000倍の透過型電子顕微
鏡を用いて写真撮影した。該写真を用いて、非晶相の大
きさ(平均値)を求めた。
The size of the amorphous phase The cooled and solidified resin composition was cut using a microtome, and the cross section was dyed with RuO 4 . The stained portion was sliced under cooling with a microtome to a thickness of 1000 ° or less, and the obtained section was photographed using a transmission electron microscope with a magnification of 60,000. The size (average value) of the amorphous phase was determined using the photograph.

【0032】平均気泡径 樹脂発泡体を液体窒素で冷却後、剃刀で切断しその断面
を走査型電子顕微鏡にて撮影した。倍率は電子顕微鏡の
視野内に約50個程度の気泡が見えるように調節した。
撮影した発泡体断面の写真より、視野内の各気泡の最大
長さを測定し、更にその平均値を求めて平均気泡径(2
r)とした。
[0032] After cooling the average cell diameter resin foam in liquid nitrogen, were taken the cross-section was cut with a razor in a scanning electron microscope. The magnification was adjusted so that about 50 bubbles could be seen in the field of view of the electron microscope.
From the photograph of the cross section of the foam taken, the maximum length of each cell in the visual field was measured, and the average value was further obtained to determine the average cell diameter (2
r).

【0033】平均気泡密度 平均気泡径の測定に用いた電子顕微鏡による写真を用い
て発泡体の断面積1cm 2当たりの気泡数(n)を算出
し、それを3/2乗して単位体積当たりの気泡数(N)
を算出した。この気泡数(N)と、上記で求めた平均気
泡径(2r)から該発泡体を構成する樹脂組成物の単位
実体積当たりの気泡数、すなわち平均気泡密度(単位:
個気泡/cm3材料)を求めた。
[0033]Average bubble density Using the electron microscope photograph used to measure the average bubble diameter
1cm cross section of foam TwoCalculate the number of bubbles per unit (n)
Then, it is raised to the power of 3/2 and the number of bubbles per unit volume (N)
Was calculated. The number of air bubbles (N) and the average air
Unit of the resin composition constituting the foam from the bubble diameter (2r)
Number of bubbles per actual volume, that is, average bubble density (unit:
Individual bubbles / cmThreeMaterial).

【0034】実施例1〜6 ポリプロピレン(住友化学工業製住友ノーブレンW10
1;MFR=8〜10g/10分)90重量部および水
添スチレン/ブタジエン共重合体(JSR社製1320
P;スチレン量=10%;MFR=3.5g/10分)
10重量部を二軸押出機により溶融混合し、押し出して
シート(厚さ1.5mm、縦4cm、横2cm、非晶相
の大きさ:15nm)を得た。このシートを耐圧容器内
に置き、更に同容器内に超臨界状態の二酸化炭素を導入
して前記シートに含浸させた。含浸時の圧力、温度、時
間は表1の通りであった。所定の含浸時間の経過後、耐
圧容器内の圧力を開放し、樹脂発泡体を得た。
Examples 1 to 6 Polypropylene (Sumitomo Noblen W10 manufactured by Sumitomo Chemical Co., Ltd.)
1; MFR = 8 to 10 g / 10 min) 90 parts by weight and hydrogenated styrene / butadiene copolymer (1320 manufactured by JSR)
P; styrene content = 10%; MFR = 3.5 g / 10 min)
10 parts by weight were melt-mixed with a twin-screw extruder and extruded to obtain a sheet (thickness: 1.5 mm, length: 4 cm, width: 2 cm, size of amorphous phase: 15 nm). The sheet was placed in a pressure vessel, and carbon dioxide in a supercritical state was introduced into the vessel to impregnate the sheet. The pressure, temperature and time during the impregnation were as shown in Table 1. After a lapse of a predetermined impregnation time, the pressure in the pressure vessel was released to obtain a resin foam.

【0035】[0035]

【表1】 [Table 1]

【0036】比較例1〜5 ポリプロピレン(住友化学工業製住友ノーブレンW10
1;MFR=8〜10g/10分)のみからなるシート
(厚さ1.5mm、縦4cm、横2cm、非晶相の大き
さ:9nm)を耐圧容器内に置き、更に同容器内に超臨
界状態の二酸化炭素を導入して前記シートに含浸させ
た。含浸時の圧力、温度、時間は表2の通りであった。
所定の含浸時間の経過後、耐圧容器内の圧力を開放し
た。比較例5においては、圧力解放後にシートを170
℃のオイルバスに30秒間漬して発泡させた。
Comparative Examples 1 to 5 Polypropylene (Sumitomo Noblen W10 manufactured by Sumitomo Chemical Co., Ltd.)
1; a sheet (1.5 mm thick, 4 cm long, 2 cm wide, size of amorphous phase: 9 nm) consisting solely of MFR = 8 to 10 g / 10 min) was placed in a pressure-resistant container, and further placed in the same container. The sheet was impregnated by introducing carbon dioxide in a critical state. Table 2 shows the pressure, temperature, and time during impregnation.
After a lapse of a predetermined impregnation time, the pressure in the pressure vessel was released. In Comparative Example 5, after releasing the pressure,
It was immersed in a 30 ° C. oil bath for 30 seconds to foam.

【0037】[0037]

【表2】 「−」は、気泡が生成しなかったことを意味する。[Table 2] "-" Means that no bubbles were generated.

【0038】比較例6、7 ポリプロピレン(住友化学工業製住友ノーブレンW10
1;MFR=8〜10g/10分)90重量部とポリス
チレン(GPPS)10重量部とからなるシート(厚さ
1.5mm、縦4cm、横2cm、非晶相の大きさ:1
000nm)を耐圧容器内に置き、更に同容器に超臨界
状態の二酸化炭素を導入し該シートに含浸させた。含浸
時の圧力、温度、時間は下記表3の通りとした。所定の
含浸時間の経過後、耐圧容器内の圧力を開放した。圧力
解放後にシートを170℃のオイルバスに30秒間浸し
た。
Comparative Examples 6 and 7 Polypropylene (Sumitomo Noblen W10 manufactured by Sumitomo Chemical Co., Ltd.)
1; MFR = 8 to 10 g / 10 min) Sheet (90 mm by weight) and 10 parts by weight of polystyrene (GPPS) (thickness: 1.5 mm, length: 4 cm, width: 2 cm, size of amorphous phase: 1)
000 nm) in a pressure vessel, and supercritical carbon dioxide was introduced into the vessel to impregnate the sheet. The pressure, temperature, and time during the impregnation were as shown in Table 3 below. After a lapse of a predetermined impregnation time, the pressure in the pressure vessel was released. After releasing the pressure, the sheet was immersed in a 170 ° C. oil bath for 30 seconds.

【0039】[0039]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F074 AA16A AA32A AA42A AA66A AA71A AC01 AC17 AD01 BA31 BA32 BA33 BA37 BA39 CB32 CB43 CC03X CC10X CC30Y CC32Y CC34X CC34Y DA02 DA03 DA32 DA33 DA34 DA35 4J002 AA011 AC032 AC112 BB002 BB031 BB052 BB121 BB142 BB152 BC031 BE021 CF002 CF061 CL001 CL002 DA006 DE016 EA016 FD326 GG01 GL00  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4F074 AA16A AA32A AA42A AA66A AA71A AC01 AC17 AD01 BA31 BA32 BA33 BA37 BA39 CB32 CB43 CC03X CC10X CC30Y CC32Y CC34X CC34Y DA02 DA03 DA32 DA33 DA34 DA35 4J002 AA011 BB BB2 BC031 BE021 CF002 CF061 CL001 CL002 DA006 DE016 EA016 FD326 GG01 GL00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶性熱可塑性樹脂60〜90重量部と非
晶性熱可塑性樹脂10〜40重量部とを含有する樹脂組
成物に、これに含浸させるべき物質の臨界圧力以上の加
圧下で該物質の流体を含浸させる工程、および該物質を
含浸させた前記樹脂組成物を前記加圧状態から開放する
工程とからなることを特徴とする樹脂発泡体の製造方
法。
1. A resin composition containing 60 to 90 parts by weight of a crystalline thermoplastic resin and 10 to 40 parts by weight of an amorphous thermoplastic resin under a pressure higher than the critical pressure of a substance to be impregnated therein. A method for producing a resin foam, comprising: a step of impregnating a fluid of the substance; and a step of releasing the resin composition impregnated with the substance from the pressurized state.
【請求項2】前記樹脂組成物が結晶相と非晶相とからな
り、該非晶相の大きさが10〜200nmであることを
特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the resin composition comprises a crystalline phase and an amorphous phase, and the size of the amorphous phase is 10 to 200 nm.
JP21358899A 1999-03-30 1999-07-28 Manufacturing method of resin foam Expired - Fee Related JP4332938B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP21358899A JP4332938B2 (en) 1999-07-28 1999-07-28 Manufacturing method of resin foam
EP00106631A EP1040902B1 (en) 1999-03-30 2000-03-28 Foamed resin article
US09/536,802 US6399667B1 (en) 1999-03-30 2000-03-28 Process for producing foamed resin article
DE60031026T DE60031026T2 (en) 1999-03-30 2000-03-28 Object made of foamed resin
CN00108892.0A CN1270968A (en) 1999-03-30 2000-03-28 Process for preparing foam resin product
US10/094,801 US6596783B2 (en) 1999-03-30 2002-03-12 Process for producing foamed resin article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21358899A JP4332938B2 (en) 1999-07-28 1999-07-28 Manufacturing method of resin foam

Publications (2)

Publication Number Publication Date
JP2001040130A true JP2001040130A (en) 2001-02-13
JP4332938B2 JP4332938B2 (en) 2009-09-16

Family

ID=16641695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21358899A Expired - Fee Related JP4332938B2 (en) 1999-03-30 1999-07-28 Manufacturing method of resin foam

Country Status (1)

Country Link
JP (1) JP4332938B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447891B1 (en) * 2013-04-18 2014-10-08 경상대학교산학협력단 Manufacturing method of light weight root isolation sheet and light weight root isolation sheet thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447891B1 (en) * 2013-04-18 2014-10-08 경상대학교산학협력단 Manufacturing method of light weight root isolation sheet and light weight root isolation sheet thereof

Also Published As

Publication number Publication date
JP4332938B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US5180751A (en) Polypropylene foam sheets
JP4669301B2 (en) Conductive thermoplastic resin foam particles and foamed moldings thereof
EP2161298B1 (en) Polypropylene resin foam particle and molding thereof
US5667728A (en) Blowing agent, expandable composition, and process for extruded thermoplastic foams
US4483809A (en) Process for preparing polyolefin foam
EP2208751B1 (en) Pre-expanded polypropylene resin particle, and method for production thereof
US5358675A (en) Controlling heterogeneous nucleation and growth of foams
US20040138320A1 (en) Polyolefin foams and methods of making the same
CN114341237B (en) Polypropylene resin foam pellets, process for producing the same, and polypropylene resin foam molded article
US5124097A (en) Method of providing closed-cell polyolefin foam having reduced blowing agent content to the end user
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
EP4112678A1 (en) Polypropylene-based resin foamed particles, method for producing same, and polypropylene-based resin foam molded body
US6716914B2 (en) Compatible linear and branched ethylenic polymers and foams therefrom
EP1870434B1 (en) Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends
JP4157206B2 (en) Polypropylene resin foamed particles and molded polypropylene resin foam particles
US6399667B1 (en) Process for producing foamed resin article
CN111727213B (en) Foamed polyethylene articles
JP4332938B2 (en) Manufacturing method of resin foam
EP4316764A1 (en) Method for producing polypropylene resin extruded foam particles
JP2000281829A (en) Foamed body
WO2022050375A1 (en) Extruded foam particles and method for producing same
EP3707204B1 (en) Foamed polyethylene article
JP2016190991A (en) Seed particle for seed polymerization, composite resin particle, foamable particle, foamed particle, and composite resin foamed molded body
JP2001040131A (en) Thermoplastic resin foamed product and its production
CN115960383B (en) Method for preparing physical foaming material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees