JP2001039964A - Production of tetrahydrofuran - Google Patents

Production of tetrahydrofuran

Info

Publication number
JP2001039964A
JP2001039964A JP11211953A JP21195399A JP2001039964A JP 2001039964 A JP2001039964 A JP 2001039964A JP 11211953 A JP11211953 A JP 11211953A JP 21195399 A JP21195399 A JP 21195399A JP 2001039964 A JP2001039964 A JP 2001039964A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
metal oxide
water
tetrahydrofuran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11211953A
Other languages
Japanese (ja)
Other versions
JP4019562B2 (en
Inventor
Kazuhiko Kiyooka
和彦 清岡
Toshiharu Yokoyama
壽治 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP21195399A priority Critical patent/JP4019562B2/en
Publication of JP2001039964A publication Critical patent/JP2001039964A/en
Application granted granted Critical
Publication of JP4019562B2 publication Critical patent/JP4019562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing tetrahydrofuran by which there are advantages that the yield and amount of the produced tetrahydrofuran based on the weight of a catalyst (STY) are improved, a reaction can be carried out within a wide range of low temperatures to high temperatures without requiring the use of a high-class material in a reactor due to no use of sulfuric acid, etc., and the reaction further completely proceeds even when the amount of water required for the reaction is reduced and a load on water separation after the reaction is reduced or the like. SOLUTION: A hydrous metal oxide catalyst is used as a catalyst in a method for subjecting a fatty acid ester of 1,4-butanediol to a catalytic reaction with water and producing tetrahydrofuran. The metal of the hydrous metal oxide catalyst is preferably at least one kind of metal selected from groups 4, 5 and 14 elements of the periodic table and the metal of the hydrous metal oxide catalyst is more preferably niobium or tantalum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、テトラヒドロフラ
ンの製造法に関する。詳しくは、1,4−ブタンジオー
ルの脂肪酸エステルと水とを含水金属酸化物触媒の存在
下に反応させてテトラヒドロフランを製造する方法に関
する。テトラヒドロフランは、有機溶媒或いはポリテト
ラメチレンエーテルグリコール等の原料として極めて有
用な化合物である。
The present invention relates to a method for producing tetrahydrofuran. More specifically, the present invention relates to a method for producing tetrahydrofuran by reacting a fatty acid ester of 1,4-butanediol with water in the presence of a hydrous metal oxide catalyst. Tetrahydrofuran is an extremely useful compound as a raw material such as an organic solvent or polytetramethylene ether glycol.

【0002】[0002]

【従来の技術】テトラヒドロフランの製造方法として
は、例えば、アセチレンとホルムアルデヒドより得られ
るブチンジオールを水素化してブタンジオールとなし、
次いで脱水環化する方法、或いは1,4−ブタンジオー
ルの酢酸エステルを酸触媒の存在下、水と反応させる方
法等が従来から知られている。
2. Description of the Related Art As a method for producing tetrahydrofuran, for example, butynediol obtained by hydrogenating acetylene and formaldehyde is converted to butanediol,
Next, a method of dehydration cyclization or a method of reacting 1,4-butanediol acetate with water in the presence of an acid catalyst has been conventionally known.

【0003】後者の方法の場合、1,4−ブタンジオー
ルとテトラヒドロフランを同時に製造することができる
が、触媒として硫酸を用いる方法(特開昭52−937
62号公報)、陽イオン交換樹脂を用いる方法(特開昭
54−32409号公報)、複合酸化物触媒、例えば活
性白土を用いる方法(英国特許第1170222号明細
書)、シリカアルミナを用いる方法(特開昭52−95
656号公報)等が提案されている。
[0003] In the latter method, 1,4-butanediol and tetrahydrofuran can be produced at the same time, but a method using sulfuric acid as a catalyst (JP-A-52-937).
No. 62), a method using a cation exchange resin (JP-A-54-32409), a method using a composite oxide catalyst such as activated clay (UK Patent No. 1170222), a method using a silica alumina ( JP-A-52-95
No. 656) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、硫酸を
用いる方法の場合、高濃度の硫酸が用いられるため反応
液の着色が著しく、又、反応生成物との分離が困難であ
り、更に硫酸による反応器の腐食が激しく、収率も低
い。また、陽イオン交換樹脂を用いる方法の場合、反応
に有利な高温で反応を行うことができないため活性が低
く、又、反応に必要な水の量も多いため、その後の生成
物と水との分離処理に大きな負担がかゝる。更に、活性
白土やシリカアルミナ等のような複合酸化物を用いる方
法の場合、反応の選択性が低く、生成物と未反応物との
分離コストがかゝることや収率が低いという問題があ
る。
However, in the case of the method using sulfuric acid, a high concentration of sulfuric acid is used, so that the color of the reaction solution is remarkable, and it is difficult to separate the reaction solution from the reaction product. The vessel is severely corroded and the yield is low. In the case of using a cation exchange resin, the activity is low because the reaction cannot be performed at a high temperature that is advantageous for the reaction, and the amount of water necessary for the reaction is large. A heavy burden is placed on the separation process. Furthermore, in the case of a method using a complex oxide such as activated clay or silica alumina, there is a problem that the selectivity of the reaction is low, the separation cost between the product and the unreacted material is high, and the yield is low. is there.

【0005】本発明は、上記従来技術の問題点を解決
し、1,4−ブタンジオールの脂肪酸エステルと水とを
触媒の存在下に反応させてテトラヒドロフランを長期に
亘り安定且つ高収率で製造する方法を提供することを目
的とする。
The present invention solves the above-mentioned problems of the prior art, and produces a stable and high-yield tetrahydrofuran over a long period of time by reacting a fatty acid ester of 1,4-butanediol with water in the presence of a catalyst. The purpose is to provide a way to:

【0006】[0006]

【課題を解決するための手段】本発明者らは、かゝる事
情に鑑み鋭意検討した結果、1,4−ブタンジオールの
脂肪酸エステルと水とを接触反応させてテトラヒドロフ
ランを製造するに際して、触媒として含水金属酸化物を
用いることにより、従来の触媒を用いる場合に比べて収
率が向上し、低温から高温迄幅広い反応温度で反応を行
うことができ、副生物の生成がなく、高温ないし長時間
の反応においても触媒劣化が起こらないこと、また反応
に必要な水の量を減少させても反応が完全に進行し、後
の水分離の負荷を軽減できることを見出し、本発明を完
成するに至った。
Means for Solving the Problems As a result of intensive studies in view of such circumstances, the present inventors have found that when a fatty acid ester of 1,4-butanediol is brought into contact with water to produce tetrahydrofuran, a catalyst is produced. By using a hydrated metal oxide as the catalyst, the yield is improved as compared with the case of using a conventional catalyst, the reaction can be performed at a wide range of reaction temperatures from low to high, no by-products are generated, and high or low temperatures are obtained. In order to complete the present invention, it was found that catalyst deterioration did not occur even in the reaction for a long time, and that the reaction proceeded completely even if the amount of water required for the reaction was reduced, and that the load of subsequent water separation could be reduced. Reached.

【0007】即ち、本発明の要旨は、1,4−ブタンジ
オールの脂肪酸エステルと水とを接触反応させてテトラ
ヒドロフランを製造する方法において、触媒として含水
金属酸化物触媒を用いることを特徴とするテトラヒドロ
フランの製造法、にある。
That is, the gist of the present invention is to provide a process for producing tetrahydrofuran by contacting a fatty acid ester of 1,4-butanediol with water, wherein a hydrous metal oxide catalyst is used as a catalyst. Manufacturing method.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で用いられる含水金属酸化物触媒とは、金属−酸
素−金属結合を有し、且つ金属に直接結合した水酸基も
残存させた物質であると考えられるものであり、対応す
る金属水酸化物の部分脱水縮合物と言えるものである。
一般的な化学式としては、Mx y ・nH2 O(Mは任
意の金属であり、x及びyは金属により決定される自然
数であり、nは0〜yから選ばれる数である)と表され
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The hydrated metal oxide catalyst used in the present invention is considered to be a substance having a metal-oxygen-metal bond and having a hydroxyl group directly bonded to a metal remaining, and a corresponding metal hydroxide. Can be said to be a partially dehydrated condensate.
As a general chemical formula, M x O y · nH 2 O (M is an arbitrary metal, x and y are natural numbers determined by the metal, and n is a number selected from 0 to y) expressed.

【0009】本発明で用いられる含水金属酸化物につい
ては特に限定はされないが、好ましくは、周期表第4、
5、14族の含水金属酸化物、更に好ましくは、含水ニ
オブ酸化物(ニオブ酸)、含水タンタル酸化物(タンタ
ル酸)が用いられる。これらの含水金属酸化物は一種を
単独で用いても、二種以上を併用してもよい。また、こ
の含水金属酸化物は粉末でも、適当な粒度に成型して用
いてもよい。更に適当な担体、例えば、シリカ、アルミ
ナ、ジルコニア、活性炭等に担持させて用いてもよい。
この場合でも粉末、成型体いずれも用いることができ
る。
The hydrated metal oxide used in the present invention is not particularly limited.
A hydrated metal oxide of Group 5 or 14, more preferably a hydrated niobium oxide (niobate) or a hydrated tantalum oxide (tantalic acid) is used. These hydrated metal oxides may be used alone or in a combination of two or more. The hydrated metal oxide may be used in the form of powder or molded into an appropriate particle size. Further, it may be used by being supported on a suitable carrier, for example, silica, alumina, zirconia, activated carbon and the like.
Even in this case, both powder and molded body can be used.

【0010】上記含水金属酸化物は、当該金属水酸化物
又は当該金属の酸化物、塩化物、無機酸塩、有機酸塩等
から水酸化物を経て、乾燥、焼成することにより、調製
することができる。但し、金属に直接結合した水酸基が
残っていることが重要で、高温焼成により完全に脱水し
た酸化物の状態の触媒では活性が低下する。例えば水酸
化ニオブでは、600℃以下で焼成することが好まし
く、100〜500℃で焼成することが更に好ましく、
150〜400℃で焼成することが特に好ましい。焼成
時間については、特に制限はないが、通常0〜100時
間程度であり、好ましくは0.5〜50時間である。昇
温速度についても特に制限はないが、通常0.5〜10
0℃/分程度であり、好ましくは1〜50℃/分であ
る。
The above hydrated metal oxide is prepared by drying and calcining the metal hydroxide or the oxide, chloride, inorganic acid salt, organic acid salt or the like of the metal, via the hydroxide, and the like. Can be. However, it is important that the hydroxyl group directly bonded to the metal remains, and the activity of the catalyst in the form of an oxide completely dehydrated by calcination at a high temperature is reduced. For example, in the case of niobium hydroxide, firing at 600 ° C. or lower is preferable, and firing at 100 to 500 ° C. is more preferable,
It is particularly preferable to bake at 150 to 400 ° C. The firing time is not particularly limited, but is usually about 0 to 100 hours, preferably 0.5 to 50 hours. Although there is no particular limitation on the heating rate, it is usually 0.5 to 10
It is about 0 ° C./min, preferably 1 to 50 ° C./min.

【0011】また本発明に用いられる含水金属酸化物と
しては、できるだけ純度の高いものが望ましいが、不純
物として他の元素を含有していてもよい。これらの不純
物含量は一般的には10重量%以下、好ましくは5重量
%以下、更に好ましくは3重量%以下である。本発明で
用いられる含水金属酸化物触媒は、どのような比表面積
のものでも用いることができるが、比表面積(SA)が
大きいものの方が好ましい。例えば、含水ニオブ酸化物
(ニオブ酸)については5m2 /g以上のものが好まし
く、10m2 /g以上のものが更に好ましい。本発明で
用いられる含水金属酸化物触媒の含水量については、ど
の割合でも用いることができるが、例えば含水ニオブ酸
化物(ニオブ酸、Nb2 5 ・nH2O)ではnが0.
5〜4.5が好ましく、1〜4が更に好ましい。本発明
の反応は従来法と同様に回分式、半回分式、連続式のい
ずれの方法でも実施することができる。
The hydrated metal oxide used in the present invention is preferably as pure as possible, but may contain other elements as impurities. The content of these impurities is generally at most 10% by weight, preferably at most 5% by weight, more preferably at most 3% by weight. The hydrated metal oxide catalyst used in the present invention may have any specific surface area, but preferably has a large specific surface area (SA). For example, the hydrated niobium oxide (niobate) is preferably at least 5 m 2 / g, more preferably at least 10 m 2 / g. Regarding the water content of the hydrous metal oxide catalyst used in the present invention, any ratio can be used. For example, in the case of hydrous niobium oxide (niobic acid, Nb 2 O 5 .nH 2 O), n is 0.
5 to 4.5 are preferable, and 1 to 4 are more preferable. The reaction of the present invention can be carried out by any of a batch system, a semi-batch system, and a continuous system as in the conventional method.

【0012】本発明の反応は、気相、液相のいずれでも
実施できるが、気相で行うと便利である。また気相で反
応を行う場合には、原料、水の他、窒素、アルゴン、二
酸化炭素等不活性ガスで希釈することもできる。気相で
反応を行う場合の条件を以下に示す。この場合、通常、
含水金属酸化物触媒を充填した反応管に原料の1,4−
ブタンジオールの脂肪酸エステル及び水を供給して反応
が行われる。
The reaction of the present invention can be carried out in either a gas phase or a liquid phase, but it is convenient to carry out the reaction in the gas phase. When the reaction is performed in a gas phase, the reaction can be diluted with an inert gas such as nitrogen, argon, carbon dioxide, etc., in addition to the raw material and water. The conditions for carrying out the reaction in the gas phase are shown below. In this case,
In a reaction tube filled with a hydrated metal oxide catalyst, the raw material 1,4-
The reaction is carried out by supplying a fatty acid ester of butanediol and water.

【0013】単位触媒容量当りの1,4−ブタンジオー
ルの脂肪酸エステルの供給速度(LHSV)は広範囲に
変化させることができるが、一般的には0.01〜10
00hr-1、好ましくは0.05〜500hr-1、更に
好ましくは0.1〜100hr-1である。本反応に用い
られる水の量としては、特に制限はないが、一般的には
1,4−ブタンジオールの脂肪酸エステルに対して、モ
ル比で0.01〜100倍、好ましくは0.1〜50
倍、更に好ましくは0.3〜20倍、特に好ましくは
0.5〜15倍が用いられる。従来の触媒に比べ、少量
の水(1,4−ブタンジオールのジ脂肪酸エステルに対
して当量であるエステル基に対して0.5モル比の水)
でも容易に高転化率、高選択率でテトラヒドロフランを
製造することができ、またこれにより反応後に残る水を
極めて少なくすることができるため、その後の生成物と
水との分離の負担が減少する。また原料の1,4−ブタ
ンジオールの脂肪酸エステルが全てモノエステルである
場合には水を用いずに反応を完全に進行させることもで
きる。
The feed rate (LHSV) of the fatty acid ester of 1,4-butanediol per unit catalyst volume can be varied over a wide range, but is generally from 0.01 to 10%.
00hr -1, preferably 0.05~500hr -1, more preferably 0.1~100hr -1. The amount of water used in this reaction is not particularly limited, but is generally 0.01 to 100 times, preferably 0.1 to 100 times, the molar ratio to the fatty acid ester of 1,4-butanediol. 50
Times, more preferably 0.3 to 20 times, particularly preferably 0.5 to 15 times. Smaller amount of water (0.5 mole ratio of water to ester groups equivalent to di-fatty acid ester of 1,4-butanediol) compared to conventional catalysts
However, tetrahydrofuran can be easily produced at a high conversion and high selectivity, and the amount of water remaining after the reaction can be extremely reduced, so that the burden of separating the product and water thereafter is reduced. When the fatty acid ester of 1,4-butanediol as a raw material is all monoesters, the reaction can be completely advanced without using water.

【0014】本反応における反応温度は広い範囲で行う
ことができるが、一般的には50〜350℃、好ましく
は150〜300℃である。使用温度が高温のため副生
成物が増加し、選択率が低下する従来の触媒に比べ、高
温で反応を行っても副生成物の増加や触媒劣化が殆どな
いため、反応速度的に有利な高温で反応を行うこともで
きる。本反応における圧力についても特に限定はされな
いが、通常は0.01〜1MPa、好ましくは0.03
〜0.8MPa、更に好ましくは0.05〜0.5MP
aの範囲で行われる。
The reaction temperature in this reaction can be carried out in a wide range, but is generally 50 to 350 ° C., preferably 150 to 300 ° C. Compared to conventional catalysts in which by-products increase due to the high operating temperature and selectivity decreases, there is almost no increase in by-products and catalyst deterioration even when the reaction is performed at high temperatures, which is advantageous in terms of reaction rate. The reaction can also be performed at elevated temperatures. The pressure in this reaction is not particularly limited, but is usually 0.01 to 1 MPa, preferably 0.03 MPa.
~ 0.8MPa, more preferably 0.05 ~ 0.5MPa
This is performed in the range of a.

【0015】また、液相で反応を行う場合の条件を以下
に示す。本反応で用いられる触媒の量については特に制
限はないが、一般的には1,4−ブタンジオールの脂肪
酸エステルに対して重量比で0.001〜100倍、好
ましくは0.005〜10倍、更に好ましくは0.01
〜1倍が用いられる。また本反応は、無溶媒で行っても
よく、また溶媒を用いて行うこともできる。溶媒を使用
する場合は、その溶媒としては、基本的に本反応に悪影
響を与えないものであれば、何でも使用することができ
る。また、生成するテトラヒドロフランよりも沸点の高
い物質を溶媒として用いると、生成物の分離が容易にな
るので好ましい。このような溶媒の具体例としては、例
えば炭素数6以上の(環状)脂肪族又は芳香族の炭化水
素、クロロベンゼン等の芳香族ハロゲン化物類、ジメト
キシエタンのようなエーテル類、プロパノール等のアル
コール類、N,N−ジメチルホルムアミド等のアミド
類、ジメチルスルホキシド等のスルホキシド類、等が挙
げられる。
The conditions for carrying out the reaction in the liquid phase are shown below. The amount of the catalyst used in this reaction is not particularly limited, but is generally 0.001 to 100 times, preferably 0.005 to 10 times by weight relative to the fatty acid ester of 1,4-butanediol. , More preferably 0.01
~ 1 times is used. This reaction may be performed without a solvent, or may be performed using a solvent. When a solvent is used, any solvent can be used as long as it does not adversely affect the reaction. Further, it is preferable to use a substance having a boiling point higher than that of tetrahydrofuran to be formed as a solvent, because the product can be easily separated. Specific examples of such a solvent include (cyclic) aliphatic or aromatic hydrocarbons having 6 or more carbon atoms, aromatic halides such as chlorobenzene, ethers such as dimethoxyethane, and alcohols such as propanol. And amides such as N, N-dimethylformamide, and sulfoxides such as dimethylsulfoxide.

【0016】また、生成するテトラヒドロフランは原料
に比べて沸点が低いため、反応蒸留により生成物を反応
系外に除去して反応の平衡をずらしながら反応させる方
法も好適に採用することができる。反応時間は広範囲に
変化させることもできるが、一般的には0.01〜50
時間、好ましくは0.05〜20時間、更に好ましくは
0.1〜5時間である。液相反応におけるその他の条件
については、気相反応における条件に準ずる。なお、こ
のようにして得られた粗テトラヒドロフランについて
は、原料が1,4−ジアセトキシブタンの場合、蒸留に
より未反応原料の1,4−ジアセトキシブタン、酢酸、
水等を分離して精製することができる。
Further, since the generated tetrahydrofuran has a lower boiling point than the starting material, a method of removing the product out of the reaction system by reactive distillation and reacting while shifting the equilibrium of the reaction can also be suitably adopted. The reaction time can be varied over a wide range but is generally from 0.01 to 50.
Time, preferably 0.05 to 20 hours, more preferably 0.1 to 5 hours. Other conditions in the liquid phase reaction conform to the conditions in the gas phase reaction. In addition, about the crude tetrahydrofuran obtained in this way, when the raw material is 1,4-diacetoxybutane, unreacted raw materials 1,4-diacetoxybutane, acetic acid,
Water and the like can be separated and purified.

【0017】[0017]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り、実施例に限
定されるものではない。なお以下「%」は「mol%」
を示す。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the examples unless it exceeds the gist. In the following, “%” means “mol%”
Is shown.

【0018】実施例1 1,4−ジアセトキシブタン(1,4−DAB)8.1
4mmol/hr、水9.92mol/hr(水/1,
4−DAB=1.2)、窒素1.35l/hrを常圧
で、240℃に保ったガラス製の反応器に供給した。反
応器にはニオブ酸(Nb2 5 ・nH2 O、CBMM社
製、水酸化ニオブを300℃で2時間焼成、昇温速度
2.5℃/分 SA121m2 /g)1ml、0.95
g(10〜20メッシュ)を充填したものを使用した。
反応器底部から得られた生成液をGCで分析し、以下の
結果を得た(以下分析はすべてGCを使用した)。 転化率(1,4−ジアセトキシブタン) 90.8% 選択率(テトラヒドロフラン) 99.3% STY(kg(THF)/kg(Cat.)*hr) 0.541 また反応後の触媒に着色は見られず、反応を5時間継続
しても劣化は見られなかった。5時間後の生成液を分析
し、以下の結果を得た。 転化率(1,4−ジアセトキシブタン) 90.9% 選択率(テトラヒドロフラン) 99.3% STY(kg(THF)/kg(Cat.)*hr) 0.541
Example 1 1,4-diacetoxybutane (1,4-DAB) 8.1
4 mmol / hr, water 9.92 mol / hr (water / 1,
4-DAB = 1.2) and 1.35 l / hr of nitrogen were supplied at normal pressure to a glass reactor kept at 240 ° C. In the reactor, 1 ml of niobic acid (Nb 2 O 5 .nH 2 O, manufactured by CBMM, baking niobium hydroxide at 300 ° C. for 2 hours, heating rate 2.5 ° C./min SA121 m 2 / g), 0.95
g (10 to 20 mesh) was used.
The product liquid obtained from the bottom of the reactor was analyzed by GC, and the following results were obtained (all GCs were used in the following analysis). Conversion rate (1,4-diacetoxybutane) 90.8% Selectivity (tetrahydrofuran) 99.3% STY (kg (THF) / kg (Cat.) * Hr) 0.541 No degradation was observed even when the reaction was continued for 5 hours. The product liquid after 5 hours was analyzed, and the following results were obtained. Conversion (1,4-diacetoxybutane) 90.9% Selectivity (tetrahydrofuran) 99.3% STY (kg (THF) / kg (Cat.) * Hr) 0.541

【0019】比較例1 反応器に含水金属酸化物の代わりに、金属に直接結合し
た水酸基を全て失った五酸化ニオブ(Nb2 5 、CB
MM社製)1ml、1.46g(10〜20メッシュ)
を充填したものを使用した以外は実施例1と同様にして
反応を行い、同様に生成液を分析し、以下の結果を得
た。 転化率(1,4−ジアセトキシブタン) 2.8% 選択率(テトラヒドロフラン) 99.1% STY(kg(THF)/kg(Cat.)*hr) 0.009 実施例1から、触媒として含水金属酸化物を用いた本発
明の製造方法では、触媒劣化が起こらず、1,4−ブタ
ンジオールのジ脂肪酸エステルのエステル基に対して水
の量をほぼ0.5倍mol量まで減少させても、高い転
化率、選択率、及び非常に高いSTY(触媒重量当りの
THF生成量(1hr))が得られた。また、比較例1
より、触媒として用いる含水金属酸化物は、金属に直接
結合した水酸基を持つことが重要であり、これを全て失
った五酸化ニオブでは活性は著しく低下することが示さ
れた。
COMPARATIVE EXAMPLE 1 Instead of a hydrated metal oxide, niobium pentoxide (Nb 2 O 5 , CB) having lost all the hydroxyl groups directly bonded to the metal was used in the reactor.
1 ml, 1.46 g (10-20 mesh)
The reaction was carried out in the same manner as in Example 1 except that the product filled with was used, and the resulting solution was analyzed in the same manner, and the following results were obtained. Conversion (1,4-diacetoxybutane) 2.8% Selectivity (tetrahydrofuran) 99.1% STY (kg (THF) / kg (Cat.) * Hr) 0.009 From Example 1, water was used as a catalyst. In the production method of the present invention using a metal oxide, catalyst degradation does not occur, and the amount of water is reduced to about 0.5 times the molar amount with respect to the ester group of the difatty acid ester of 1,4-butanediol. Also, high conversion, selectivity, and very high STY (amount of THF produced per catalyst weight (1 hr)) were obtained. Comparative Example 1
Thus, it is important that the hydrated metal oxide used as the catalyst has a hydroxyl group directly bonded to the metal, and the activity of niobium pentoxide, which has lost all of the hydroxyl groups, is remarkably reduced.

【0020】[0020]

【発明の効果】本発明の方法によれば、収率及びSTY
が向上し、また低温から高温まで幅広い反応温度で反応
を行うことができ、硫酸等を用いないため反応器に高級
材質を用いる必要がないこと、加えて反応に必要な水の
量を減少させても反応が完全に進行すること等の特徴を
有し、更に反応後の水分離の負担が減少する等の利点が
ある。
According to the method of the present invention, the yield and STY
The reaction can be carried out at a wide range of reaction temperatures from low to high, and it does not require high-grade materials in the reactor because it does not use sulfuric acid or the like.In addition, it reduces the amount of water required for the reaction. However, there is an advantage that the reaction proceeds completely, and further, the burden of water separation after the reaction is reduced.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1,4−ブタンジオールの脂肪酸エステ
ルと水とを接触反応させてテトラヒドロフランを製造す
る方法において、触媒として含水金属酸化物触媒を用い
ることを特徴とするテトラヒドロフランの製造法。
1. A method for producing tetrahydrofuran by contacting a fatty acid ester of 1,4-butanediol with water to produce tetrahydrofuran, wherein a hydrous metal oxide catalyst is used as a catalyst.
【請求項2】 含水金属酸化物触媒の金属が周期表第4
族、第5族及び第14族の元素から選ばれる少なくとも
一種の金属であることを特徴とする請求項1に記載のテ
トラヒドロフランの製造法。
2. The metal of the hydrated metal oxide catalyst has a periodic table of No. 4.
The method for producing tetrahydrofuran according to claim 1, wherein the metal is at least one metal selected from the elements of Group 5, Group 5, and Group 14.
【請求項3】 含水金属酸化物触媒の金属がニオブ又は
タンタルである請求項1又は2に記載のテトラヒドロフ
ランの製造法。
3. The method for producing tetrahydrofuran according to claim 1, wherein the metal of the hydrous metal oxide catalyst is niobium or tantalum.
【請求項4】 含水金属酸化物触媒が対応する金属水酸
化物を600℃以下で焼成して調製されたものであるこ
とを特徴とする請求項1ないし3のいずれかに記載のテ
トラヒドロフランの製造法。
4. The process for producing tetrahydrofuran according to claim 1, wherein the hydrous metal oxide catalyst is prepared by calcining the corresponding metal hydroxide at a temperature of 600 ° C. or lower. Law.
【請求項5】 脂肪酸エステルが酢酸エステルであるこ
とを特徴とする請求項1ないし4のいずれかに記載のテ
トラヒドロフランの製造法。
5. The method for producing tetrahydrofuran according to claim 1, wherein the fatty acid ester is an acetic acid ester.
JP21195399A 1999-07-27 1999-07-27 Tetrahydrofuran production process Expired - Lifetime JP4019562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21195399A JP4019562B2 (en) 1999-07-27 1999-07-27 Tetrahydrofuran production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21195399A JP4019562B2 (en) 1999-07-27 1999-07-27 Tetrahydrofuran production process

Publications (2)

Publication Number Publication Date
JP2001039964A true JP2001039964A (en) 2001-02-13
JP4019562B2 JP4019562B2 (en) 2007-12-12

Family

ID=16614441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21195399A Expired - Lifetime JP4019562B2 (en) 1999-07-27 1999-07-27 Tetrahydrofuran production process

Country Status (1)

Country Link
JP (1) JP4019562B2 (en)

Also Published As

Publication number Publication date
JP4019562B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
US20060135823A1 (en) Process for preparing dimethylether from methanol
WO2014199349A2 (en) Metal impregnated amorphous silicates for the selective conversion of ethanol to butadiene
US4521638A (en) Process for preparation of tertiary olefins
EP0277562B1 (en) Hydrogenation of citric acid and substituted citric acids to 3-substituted tetrahydrofuran, 3- and 4-substituted butyrolactones and mixtures thereof
TWI418542B (en) Process for preparation of n-methyl pyrrolidone
EP1939190A1 (en) Production of tetrahydrofuran from 1,4-butanediol
US6140545A (en) Preparation of alcohols
EP0227868B1 (en) Process for production of methyl isobutyl ketone
CN108976183B (en) Method for preparing gamma-valerolactone by furfural gas phase hydrogenation
CA1274546A (en) Process for production of methyl isobutyl ketone
US4124600A (en) Preparation of tetrahydrofuran
KR100543496B1 (en) Method for Producing Hexanediol
JPH0673042A (en) Production 0f gamma-butyrolactone
JP2001039964A (en) Production of tetrahydrofuran
US5910612A (en) Preparation of anhydrous 2-amino-1-methoxypropane
JP3899783B2 (en) Method for producing cyclic ethers
EP0099665B1 (en) Catalytic carbonylation of alcohols
JP2000178213A (en) Production of 1,4-butanediol and/or tetrahydrofuran
EP0171206B1 (en) Preparation of hydrocarbons and oxygenated hydrocarbons
JPS62258335A (en) Production of methyl isobutyl ketone
WO1998017657A2 (en) Preparation of 3-alkyltetrahydrofurans
KR100688797B1 (en) Method for producing ?-olefin by dehydration of secondary alcohol
JPH11158102A (en) Production of dibutyl ether
US6700003B2 (en) Process for producing a saturated cyclic ether
KR100313669B1 (en) Process for preparing N,N- dimethylacetamide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4019562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term