JP2001039756A - Low environmental load type concrete - Google Patents

Low environmental load type concrete

Info

Publication number
JP2001039756A
JP2001039756A JP21321699A JP21321699A JP2001039756A JP 2001039756 A JP2001039756 A JP 2001039756A JP 21321699 A JP21321699 A JP 21321699A JP 21321699 A JP21321699 A JP 21321699A JP 2001039756 A JP2001039756 A JP 2001039756A
Authority
JP
Japan
Prior art keywords
environmental load
concrete
low environmental
industrial
basic unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21321699A
Other languages
Japanese (ja)
Other versions
JP3765689B2 (en
Inventor
Kenji Yamamoto
賢司 山本
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP21321699A priority Critical patent/JP3765689B2/en
Publication of JP2001039756A publication Critical patent/JP2001039756A/en
Application granted granted Critical
Publication of JP3765689B2 publication Critical patent/JP3765689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B11/00Calcium sulfate cements
    • C04B11/05Calcium sulfate cements obtaining anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low environmental load type concrete not only small in carbon output basic unit, but high in compressive strength, having the effect of small calorific value of hydration, or the like and exhibiting a large contribution for environmental problems. SOLUTION: This low environmental load type concrete is prepared by blending cement, anhydrous gypsum generated as an industrial by-product and having pH <=4.5 and lime stone powder and has >=30 N/mm2 compressive strength in 28 day material age and <=70 kg/m3 carbon output basic unit. Further, siliceous fine powder generated as the industrial by-product is desirably blended and the unit quantity of cement is <=280 kg/m3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に、土木・建築
分野において使用される低環境負荷型コンクリートに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low environmental load concrete used mainly in the field of civil engineering and construction.

【0002】[0002]

【従来の技術】近年、環境問題が顕在化してきており、
例えば、1997年12月に気候変動枠組条約・第三回締約国
会議が京都で開かれ、先進国の温室効果ガス排出量につ
いて、法的拘束力のある削減目標を規定した京都議定書
が採択された。これに伴い、各産業において二酸化炭素
排出量の削減が必要になってきているが、全産業の二酸
化炭素排出量に対する土木・建設業の占める割合は極め
て大きく、要求性能を満足しつつ、環境負荷の小さなコ
ンクリートの開発が切望されている。特に、ダム等で打
設されるマスコンクリートは、多量のセメントを使用す
るため二酸化炭素の排出量が多く、環境への影響が大き
い。又、マスコンクリートは、温度応力によるひび割れ
が発生し易いため、水和発熱量を小さくすることが必要
である。しかしながら、構造物に要求される強度、例え
ば、30N/mm2以上の強度レベルを維持し水和発熱量を抑
制することは困難であった。
2. Description of the Related Art In recent years, environmental problems have become apparent,
For example, the Third Conference of the Parties to the United Nations Framework Convention on Climate Change was held in Kyoto in December 1997, and the Kyoto Protocol, which stipulates legally binding targets for greenhouse gas emissions in developed countries, was adopted. Was. As a result, each industry has been required to reduce carbon dioxide emissions.However, the ratio of civil engineering and construction industries to the total carbon dioxide emissions of all industries is extremely large, and while satisfying the required performance, the environmental load is reduced. The development of small concrete has been eagerly awaited. In particular, mass concrete cast at a dam or the like uses a large amount of cement and therefore emits a large amount of carbon dioxide, which has a large impact on the environment. Also, mass concrete tends to crack due to temperature stress, so it is necessary to reduce the amount of heat generated by hydration. However, it has been difficult to maintain the strength required for the structure, for example, a strength level of 30 N / mm 2 or more, and to suppress the hydration calorific value.

【0003】[0003]

【発明が解決しようとする課題】環境負荷の低減、水和
発熱量の低減及び強度発現性を全て満足するコンクリー
トの開発が待たれている。又、産業副産物をリサイクル
することは、我が国のように資源の少ない国では、資源
の有効利用にもつながり、極めて重要である。本発明者
らは、これらの課題を解決すべく種々の検討を重ねた結
果、特定の産業副産物を配合したコンクリートにおい
て、要求性能を満足しつつ二酸化炭素排出量の小さい低
環境負荷型コンクリートとなるとの知見を得て本発明を
完成するに至った。
The development of concrete that satisfies all of the requirements of reducing the environmental load, reducing the calorific value of hydration and developing the strength has been awaited. In addition, recycling industrial by-products is extremely important in countries with few resources such as Japan, which leads to effective use of resources. The present inventors have conducted various studies in order to solve these problems, and as a result, concrete with a specific industrial by-product will be a low-environmental load type concrete with low carbon dioxide emission while satisfying required performance. With the knowledge described above, the present invention has been completed.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は、セメン
トと、pHが4.5以下の産業副産物として発生する無水
セッコウと、石灰石微粉末とを配合し、材齢28日の圧縮
強度が30N/mm2以上、炭素排出量の原単位が70kgC/m3
下であることを特徴とする低環境負荷型コンクリートで
あり、更に産業副産物として発生するシリカ質微粉末を
配合してなることを特徴とする該低環境負荷型コンクリ
ートであり、単位セメント量が280kg/m3以下であること
を特徴とする該低環境負荷型コンクリートであり、断熱
温度上昇量が40℃以下であることを特徴とする該低環境
負荷型コンクリートである。
That is, the present invention provides a method of mixing cement, anhydrous gypsum produced as an industrial by-product having a pH of 4.5 or less, and limestone fine powder, and having a compressive strength of 30 N / day at 28 days of age. mm 2 or more, and wherein the carbon emissions intensity is low environmental load type concrete, characterized in that at 70kgC / m 3 or less, formed by blending the siliceous fine powder further generated as industrial by-products The low environmental load type concrete, wherein the unit cement amount is 280 kg / m 3 or less, and the low environmental load type concrete is characterized in that an adiabatic temperature rise amount is 40 ° C. or less. This is a low environmental load concrete.

【0005】[0005]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0006】本発明のコンクリートの炭素排出量の原単
位とは、1m3のコンクリートを製造する際に排出され
る炭素重量を意味し、その単位は(kgC/m3)で表す。コ
ンクリートの炭素排出量の原単位とは、コンクリートを
製造する際に使用される材料、即ち、セメント、砂、砂
利、混和剤(材)等の炭素排出量の原単位を用い、コン
クリート配合から算出する。各材料の炭素排出量の原単
位は、LCA(ライフサイクルアセスメント)手法によっ
て算出され定められている。ここで、LCA手法とは、材
料を製造する際に、原料の調達、運搬、製造、消費、廃
棄に至るまでのライフサイクルにおいて発生する、二酸
化炭素の排出量を炭素排出量として表す手法である。土
木・建設業で用いられる材料の炭素排出量の原単位は、
例えば、(社)土木学会、(社)空衛建築学会、建設省
建築研究所、建設省土木研究所等の各学術団体や研究機
関によって提案されている。具体例としては、例えば、
(社)土木学会地球環境委員会LCA小委員会推奨値によ
ると、普通ポルトランドセメントの炭素排出量の原単位
は0.228kgC/kgであり、高炉セメントは0.135kgC/kgであ
り、砂は0.00154kgC/kg、砂利は砕石の場合は0.00189kg
C/kg、採石の場合は0.00154kgC/kgと定められている。
石灰石微粉末は、石灰石を粉砕することによって得られ
るので、砕石と同様の炭素排出量の原単位を用いること
ができる。又、産業副産物をリサイクルした場合の炭素
排出量は、零と見なされるので、産業副産物を利用する
ことが極めて重要である。産業副産物の粒度を調整する
ために粉砕する場合は、粉砕に要する燃料消費分を加味
する。
The basic unit of carbon emission of the concrete of the present invention means the weight of carbon emitted when producing 1 m 3 of concrete, and the unit is expressed in (kgC / m 3 ). The basic unit of carbon emissions of concrete is calculated from the concrete composition using the basic unit of carbon emissions of materials used when manufacturing concrete, that is, cement, sand, gravel, admixture (material), etc. I do. The basic unit of carbon emissions for each material is calculated and determined by the LCA (Life Cycle Assessment) method. Here, the LCA method is a method of expressing the carbon dioxide emissions that occur in the life cycle of raw material procurement, transportation, manufacturing, consumption, and disposal when manufacturing materials as carbon emissions. . The basic unit of carbon emissions of materials used in the civil engineering and construction industries is:
For example, proposals have been made by various academic organizations and research institutions such as the Japan Society of Civil Engineers, the Japan Aerospace Exploration Association, the Ministry of Construction, the Institute of Construction and the Ministry of Construction. As a specific example, for example,
According to the values recommended by the LCA Subcommittee of the Global Environment Committee of the Japan Society of Civil Engineers, the basic unit of carbon emission of ordinary Portland cement is 0.228 kgC / kg, blast furnace cement is 0.135 kgC / kg, and sand is 0.00154 kgC. / kg, gravel is 0.00189kg for crushed stone
C / kg and quarrying are set at 0.00154kgC / kg.
Since the limestone fine powder is obtained by pulverizing limestone, the same unit of carbon emission as crushed stone can be used. In addition, since the carbon emission when recycling industrial by-products is considered to be zero, it is extremely important to use industrial by-products. When crushing for adjusting the particle size of industrial by-products, the fuel consumption required for crushing is taken into account.

【0007】本発明の低環境負荷型コンクリートは、材
齢28日の圧縮強度が30N/mm2以上であると共に、前記の
(社)土木学会地球環境委員会LCA小委員会推奨値に基
づいて算出した炭素排出量の原単位が70kgC/m3以下であ
ることを特徴とする。
The low-environmental load type concrete of the present invention has a compressive strength of 30 N / mm 2 or more at 28 days of age, and is based on the above-mentioned LCA subcommittee recommended by the Japan Society of Civil Engineers Global Environment Committee. The basic unit of the calculated carbon emission is 70 kgC / m 3 or less.

【0008】本発明のセメントは、特に限定されるもの
ではなく、普通、早強、中庸熱及び低熱等の各種ポルト
ランドセメントや、高炉セメント及びフライアッシュセ
メント等の各種混合セメント等が挙げられる。
[0008] The cement of the present invention is not particularly limited, and includes various portland cements such as ordinary, early strength, moderate heat and low heat, and various mixed cements such as blast furnace cement and fly ash cement.

【0009】本発明の産業副産物として発生する無水セ
ッコウは、JIS R 9101に準じて測定したpHが4.5以下
であることが好ましく、pHが4.5を超えると良好な強
度発現性が得られない。セッコウは二水セッコウ、半水
セッコウ及び無水セッコウに大別されるが、本発明では
無水セッコウが好ましく、二水セッコウや半水セッコウ
では良好な強度発現性は得られない。無水セッコウに
は、フッ酸製造時に副生する無水セッコウや天然に産出
する無水セッコウ等があるが、環境負荷低減のため、産
業副産物として発生する無水セッコウを使用することが
好ましい。天然無水セッコウは、pHが4.5を超え、炭
素排出量も産業副産物の無水セッコウより大きく、本発
明の低環境負荷型コンクリートは得られない。
The anhydrous gypsum produced as an industrial by-product of the present invention preferably has a pH of 4.5 or less as measured according to JIS R 9101. If the pH exceeds 4.5, good strength development cannot be obtained. Gypsum is roughly divided into dihydrate gypsum, hemihydrate gypsum and anhydrous gypsum, but anhydrous gypsum is preferred in the present invention, and good strength development cannot be obtained with dihydrate gypsum or hemihydrate gypsum. Examples of anhydrous gypsum include anhydrous gypsum produced as a by-product during hydrofluoric acid production and anhydrous gypsum produced naturally, but it is preferable to use anhydrous gypsum produced as an industrial by-product in order to reduce the environmental load. Natural anhydrous gypsum has a pH of more than 4.5 and carbon emissions are greater than anhydrous gypsum, an industrial by-product, and the environmentally-friendly concrete of the present invention cannot be obtained.

【0010】本発明の産業副産物の無水セッコウの粒度
は、特に限定されるものではないが、通常、ブレーン比
表面積で3000〜10000cm2/gが好ましく、4000〜9000cm2/
gがより好ましい。3000cm2/g未満では強度発現性が充分
でなく、10000cm2/gを超えても更なる効果の増進が期待
できない。又、強度発現性の面から、無水セッコウの平
均粒径は、10μm以下が好ましい。
[0010] The particle size of the anhydrous gypsum industry byproduct of the present invention, but are not particularly limited, is preferably 3000~10000cm 2 / g in Blaine specific surface area, 4000~9000cm 2 /
g is more preferred. If it is less than 3000 cm 2 / g, the strength developability is not sufficient, and if it exceeds 10,000 cm 2 / g, further enhancement of the effect cannot be expected. Further, from the viewpoint of developing strength, the average particle size of anhydrous gypsum is preferably 10 μm or less.

【0011】本発明の産業副産物の無水セッコウの配合
割合は、特に限定されるものではないが、通常、コンク
リート配合において10〜50kg/m3の範囲が好ましく、20
〜40kg/m3がより好ましい。10kg/m3未満では、強度発現
性が充分でなく、50kg/m3を超えて配合しても更なる強
度の増進が期待できない。
The mixing ratio of anhydrous gypsum as an industrial by-product of the present invention is not particularly limited, but is usually preferably in the range of 10 to 50 kg / m 3 in concrete mixing.
~40kg / m 3 is more preferable. If it is less than 10 kg / m 3 , the strength development is not sufficient, and even if it exceeds 50 kg / m 3 , further increase in strength cannot be expected.

【0012】本発明の石灰石微粉末は、石灰石を粉砕し
たものであり、その粒度は、特に限定されるものではな
いが、通常、ブレーン比表面積で2000〜10000cm2/gが好
ましく、3000〜9000cm2/gがより好ましい。2000cm2/g未
満ではコンクリートの作業性(ワーカビリティ)の確保
が充分でなく、10000cm2/gを超えても更なる効果の増進
が期待できない。
The fine limestone powder of the present invention is obtained by pulverizing limestone, and its particle size is not particularly limited. However, it is generally preferable that the specific surface area of the limestone be 2000 to 10000 cm 2 / g, and 3000 to 9000 cm 2 / g is more preferred. If it is less than 2000 cm 2 / g, the workability (workability) of the concrete is not sufficient, and if it exceeds 10,000 cm 2 / g, further improvement of the effect cannot be expected.

【0013】本発明の石灰石微粉末の配合割合は、特に
限定されるものではないが、通常、コンクリート配合に
おいて20〜120kg/m3の範囲が好ましく、30〜100kg/m3
より好ましい。20kg/m3未満では、コンクリートの作業
性(ワーカビリティ)の確保が充分でなく、120kg/m3
超えて配合しても更なる効果の増進が期待できない。
The mixing ratio of the limestone fine powder of the present invention is not particularly limited, but is usually preferably in the range of 20 to 120 kg / m 3 , more preferably 30 to 100 kg / m 3 in concrete mixing. If it is less than 20 kg / m 3 , workability (workability) of concrete is not sufficiently ensured, and even if it exceeds 120 kg / m 3 , further improvement of the effect cannot be expected.

【0014】本発明では、更に産業副産物として発生す
るシリカ質微粉末を併用することが強度発現性の面から
好ましい。産業副産物として発生するシリカ質微粉末
は、特に限定されるものではないが、具体例としては、
金属シリコンやフェロシリコン等を製造する際に副生す
るシリカフュームや溶融シリカを製造する際に発生する
シリカダスト等が挙げられる。
In the present invention, it is preferable from the viewpoint of developing strength that a silica-based fine powder generated as an industrial by-product is further used in combination. Siliceous fine powder generated as an industrial by-product is not particularly limited, but as a specific example,
Examples include silica fume produced as a by-product when producing metallic silicon or ferrosilicon, silica dust produced when producing fused silica, and the like.

【0015】本発明の産業副産物のシリカ質微粉末の粒
度は、特に限定されるものではないが、通常、ブレーン
比表面積で10〜30m2/gが好ましく、15〜25m2/gがより好
ましい。10m2/g未満では強度発現性が充分でなく、30m2
/gを超えても更なる効果の増進が期待できない。
The siliceous fine powder of a particle size of industrial by-product of the present invention, but are not particularly limited, is preferably 10 to 30 m 2 / g in Blaine specific surface area, more preferably 15~25m 2 / g . It is insufficient strength development is less than 10m 2 / g, 30m 2
Even if it exceeds / g, further improvement of the effect cannot be expected.

【0016】本発明の産業副産物のシリカ質微粉末の配
合割合については、特に限定されるものではないが、通
常、コンクリート配合において、無水セッコウとシリカ
質微粉末の合計で10〜100kg/m3の範囲で配合することが
好ましい。10kg/m3未満では、強度発現性が充分でな
く、100kg/m3を超えて配合しても更なる効果の増進が期
待できない。
The mixing ratio of the siliceous fine powder of the industrial by-product of the present invention is not particularly limited, but usually, in concrete mixing, the total of anhydrous gypsum and the siliceous fine powder is 10 to 100 kg / m 3. It is preferable to mix in the range of. If the amount is less than 10 kg / m 3 , the strength development is not sufficient, and even if the amount exceeds 100 kg / m 3 , further enhancement of the effect cannot be expected.

【0017】本発明の低環境負荷型コンクリートの単位
セメント量は、280kg/m3以下が好ましい。単位セメント
量が280kg/m3を超えると、コンクリートの炭素排出量の
原単位が大きくなる。
The unit cement amount of the low environmental load concrete of the present invention is preferably 280 kg / m 3 or less. When the unit cement amount exceeds 280 kg / m 3 , the basic unit of carbon emission of concrete increases.

【0018】本発明の低環境負荷型コンクリートの断熱
温度上昇量は、40℃以下であることが好ましい。断熱温
度上昇量が40℃を超えると、水和発熱によりコンクリー
トに熱ひび割れが発生し易くなる。
The amount of increase in the adiabatic temperature of the low environmental load concrete of the present invention is preferably 40 ° C. or less. If the adiabatic temperature rise exceeds 40 ° C., heat cracking is likely to occur in concrete due to hydration heat.

【0019】本発明では、減水剤、高性能減水剤、AE
減水剤、高性能AE減水剤、流動化剤、消泡剤、増粘
剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン
及び凝結調整剤、並びにセメント急硬材、セメント膨張
材、ベントナイト等の粘土鉱物及びハイドロタルサイト
等のアニオン交換体等のうちの一種又は二種以上を、本
発明の目的を実質的に阻害しない範囲で使用することが
可能である。
In the present invention, a water reducing agent, a high-performance water reducing agent, AE
Water reducing agent, high-performance AE water reducing agent, fluidizing agent, defoaming agent, thickener, rust inhibitor, anti-freezing agent, shrinkage reducing agent, polymer emulsion and setting regulator, cement hardening material, cement expanding material, One or more of clay minerals such as bentonite and anion exchangers such as hydrotalcite can be used within a range that does not substantially hinder the object of the present invention.

【0020】本発明において、コンクリートの混練り方
法については、特に限定されるものではなく、それぞれ
の材料を混練り時に混合しても良いし、予めその一部、
或いは全部を混合しておいても差し支えない。混練り装
置としては、既存の如何なる装置も使用可能であり、例
えば、二軸強制ミキサー、パン型強制ミキサー、遊星型
ミキサー、傾胴型ミキサー、オムニミキサー等が挙げら
れる。
In the present invention, the method of kneading concrete is not particularly limited, and the respective materials may be mixed at the time of kneading, or some of them may be mixed in advance.
Alternatively, all may be mixed. As the kneading apparatus, any existing apparatus can be used, and examples thereof include a twin-screw forced mixer, a pan-type forced mixer, a planetary mixer, a tilted mixer, an omni mixer, and the like.

【0021】[0021]

【実施例】以下、実施例により本発明を詳細に説明す
る。
The present invention will be described below in detail with reference to examples.

【0022】混和材として使用した、各種セッコウのp
Hを測定した。その結果を表1に示す。又、LCA手法に
より混和材の炭素排出量の原単位を算出した。但し、産
業副産物を使用する場合には、粉砕時に消費した動力よ
り、材料の炭素排出量の原単位を算出した。
The p of various gypsum used as an admixture
H was measured. Table 1 shows the results. In addition, the basic unit of carbon emission of the admixture was calculated by the LCA method. However, when an industrial by-product was used, the basic unit of carbon emission of the material was calculated from the power consumed at the time of grinding.

【0023】<使用材料> 混和材a:フッ酸製造時に副生する無水セッコウ、比重
2.96。ブレーン比表面積5000cm2/gに粉砕、平均粒径10
μm。粉砕時の動力0.06kwhr/kg。動力の炭素排出量の
原単位0.129kgC/kwhrより算出した炭素排出量の原単位
0.008kgC/kg。 混和材b:フッ酸製造時に副生する無水セッコウ、比重
2.95。ブレーン比表面積5000cm2/gに粉砕、平均粒径8μ
m。粉砕時の動力0.07kwhr/kg。動力の炭素排出量の原
単位0.129kgC/kwhrより算出した炭素排出量の原単位0.0
09kgC/kg。 混和材c:天然無水セッコウ、比重2.96。ブレーン比表
面積5000cm2/gに粉砕、平均粒径18μm。粉砕時の動力
0.17kwhr/kg。動力の炭素排出量の原単位0.129kgC/kwhr
より算出した炭素排出量の原単位0.022kgC/kg。 混和材d:天然二水セッコウを約130℃で加熱し半水セ
ッコウとしたもの。比重2.65。ブレーン比表面積5000cm
2/gに粉砕、平均粒径12μm。加熱時の動力0.15kwhr/k
g。粉砕時の動力0.10kwhr/kg。動力の炭素排出量の原単
位0.129kgC/kwhrより算出した炭素排出量の原単位0.032
kgC/kg。 混和材e:排煙脱硫二水セッコウ、比重2.32。ブレーン
比表面積5000cm2/gに粉砕、平均粒径11μm。粉砕時の
動力0.06kwhr/kg。動力の炭素排出量の原単位0.129kgC/
kwhrより算出した炭素排出量の原単位0.008kgC/kg。 <測定方法> 比重、ブレーン比表面積:JIS R 5201に準じて測定 平均粒径:レーザ式粒度分布測定装置により測定 pH:JIS R 9101に準じて測定
<Materials> Admixture a: anhydrous gypsum by-produced during the production of hydrofluoric acid, specific gravity
2.96. Pulverized to a specific surface area of 5000 cm 2 / g, average particle size 10
μm. Power for grinding 0.06kwhr / kg. Basic unit of carbon emissions calculated from 0.129 kgC / kwhr
0.008kgC / kg. Admixture b: anhydrous gypsum by-product during hydrofluoric acid production, specific gravity
2.95. Pulverized to a specific surface area of 5000 cm 2 / g, average particle size 8μ
m. Power for grinding 0.07kwhr / kg. Power unit carbon emissions 0.129kg C / kwhr Unit carbon emissions calculated from 0.0 / 0.0hr 0.0
09kgC / kg. Admixture c: natural anhydrous gypsum, specific gravity 2.96. Pulverized to a Blaine specific surface area of 5000 cm 2 / g, average particle size 18 μm. Power for grinding
0.17kwhr / kg. 0.129kgC / kwhr per unit of power carbon emissions
The basic unit of carbon emissions calculated from the above is 0.022kgC / kg. Admixture d: Natural dihydrate gypsum heated at about 130 ° C. to form hemihydrate gypsum. Specific gravity 2.65. Brain specific surface area 5000cm
2 / g, average particle size 12μm. Power for heating 0.15kwhr / k
g. Power for grinding is 0.10kwhr / kg. Basic unit of carbon emissions of power 0.129kgC / kwhr Unit of carbon emissions calculated from 0.032kgC / kwhr
kgC / kg. Admixture e: flue gas desulfurized dihydrate gypsum, specific gravity 2.32. Pulverized to a Blaine specific surface area of 5000 cm 2 / g, average particle size 11 μm. Power for grinding 0.06kwhr / kg. Basic unit of carbon emissions of power 0.129kgC /
Basic unit of carbon emission calculated from kwhr 0.008kgC / kg. <Measurement method> Specific gravity, Blaine specific surface area: Measured according to JIS R 5201 Average particle size: Measured by laser type particle size distribution analyzer pH: Measured according to JIS R 9101

【0024】[0024]

【表1】 [Table 1]

【0025】本発明で使用する産業副産物の無水セッコ
ウのpHは、4.5以下であり、天然無水セッコウ、半水
セッコウ及び二水セッコウのpHは、何れも4.5を超え
ている。
The pH of anhydrous gypsum, an industrial by-product used in the present invention, is 4.5 or less, and the pH of natural anhydrous gypsum, hemihydrate gypsum and dihydrate gypsum all exceed 4.5.

【0026】表2に示す配合のコンクリートを調製し、
コンクリートのスランプが18±1.5cmとなるように高性
能減水剤を添加し、空気量3.0±1.5%とした。コンクリ
ート物性は、材齢28日における圧縮強度と断熱温度上昇
量を測定した。低セメント量のものについては、コンク
リートのワーカビリティーを良くするため、石灰石微粉
末を配合した。コンクリートの炭素排出量の原単位は、
LCA手法により算出した。但し、各材料の炭素排出量の
原単位は、土木学会地球環境委員会LCA小委員会推奨値
を用いた。又、産業副産物を使用する場合には、粉砕時
に消費した動力より、材料の炭素排出量の原単位を算出
した。その結果を表2に示す。
A concrete having the composition shown in Table 2 was prepared.
A high performance water reducing agent was added so that the slump of the concrete became 18 ± 1.5 cm, and the air volume was adjusted to 3.0 ± 1.5%. Concrete properties were measured for compressive strength and adiabatic temperature rise on 28 days of age. For those with low cement content, fine limestone powder was blended to improve the workability of concrete. The basic unit of carbon emission of concrete is
Calculated by LCA method. However, as the basic unit of carbon emissions of each material, the values recommended by the LCA subcommittee of the Global Environment Committee of the Japan Society of Civil Engineers were used. When using industrial by-products, the basic unit of carbon emission of the material was calculated from the power consumed at the time of grinding. Table 2 shows the results.

【0027】<使用材料> 石灰石微粉末:市販品、比重2.70。ブレーン比表面積50
00cm2/g、平均粒径10μm。粉砕時の動力0.10kwhr/kg。
動力の炭素排出量の原単位0.129kgC/kwhrより算出した
炭素排出量の原単位0.00189kgC/kg。 シリカ質微粉末A:シリカフューム、産業副産物として
のシリカ質微粉末、比重2.20。ブレーン比表面積20m2/
g、平均粒径0.2μm。 混和材f:混和材b50重量部とシリカ質微粉末A50重量
部をブレーン比表面積9000cm2/gに混合粉砕したもの、
比重2.58。粉砕時の動力0.08kwhr/kg。動力の炭素排出
量の原単位0.129kgC/kwhrより算出した炭素排出量の原
単位0.014kgC/kg。 セメント(C):市販普通ポルトランドセメント、比重3.1
5。炭素排出量の原単位0.228kgC/kg。 水(W):水道水 砂(S):新潟県姫川産、比重2.62。炭素排出量の原単位
0.00154kgC/kg。 砂利(G):新潟県姫川産、比重2.64。炭素排出量の原単
位0.00189kgC/kg。 高性能減水剤:ポリカルボン酸系市販品 <測定方法> 圧縮強度:JIS A 1108、JIS A 1132、JIS A 1138に準じ
て測定。 断熱温度上昇量:東京理工(株)社製の断熱温度上昇量
測定装置を用いて、打設温度20℃の条件で測定。
<Materials used> Limestone fine powder: Commercial product, specific gravity 2.70. Brain specific surface area 50
00 cm 2 / g, average particle size 10 μm. Power for grinding is 0.10kwhr / kg.
The basic unit of carbon emissions calculated from the basic unit of power carbon emissions of 0.129 kgC / kwhr is 0.00189 kgC / kg. Siliceous fine powder A: Silica fume, siliceous fine powder as an industrial by-product, specific gravity 2.20. Brain specific surface area 20m 2 /
g, average particle size 0.2 μm. Admixture f: 50 parts by weight of admixture b and 50 parts by weight of siliceous fine powder A mixed and ground to a Blaine specific surface area of 9000 cm 2 / g,
Specific gravity 2.58. Power at the time of grinding 0.08kwhr / kg. Unit of carbon emission 0.014kgC / kg calculated from unit of power carbon emission 0.129kgC / kwhr. Cement (C): Commercial ordinary Portland cement, specific gravity 3.1
Five. Basic unit of carbon emissions: 0.228kgC / kg. Water (W): tap water Sand (S): from Himekawa, Niigata Prefecture, specific gravity 2.62. Basic unit of carbon emissions
0.00154kgC / kg. Gravel (G): From Himekawa, Niigata Prefecture, specific gravity 2.64. Basic unit of carbon emissions: 0.00189kgC / kg. High-performance water reducing agent: Polycarboxylic acid-based commercial product <Measurement method> Compressive strength: Measured according to JIS A 1108, JIS A 1132, and JIS A 1138. Adiabatic temperature rise: Measured at a casting temperature of 20 ° C using an adiabatic temperature rise measuring device manufactured by Tokyo Riko Co., Ltd.

【0028】[0028]

【表2】 [Table 2]

【0029】本発明の低環境負荷型高強度コンクリート
は、何れも炭素排出量原単位が小さく(70kgC/m3
下)、圧縮強度が高く(30N/mm2以上)、断熱温度上昇
量が小さい(40℃以下)ことが示されている。一方、比
較例では、何れも本発明の低環境負荷型高強度コンクリ
ートよりも炭素排出量原単位や断熱温度上昇量が大きい
か、圧縮強度が低い。
The low environmental load type high-strength concrete of the present invention has a small unit of carbon emission (70 kgC / m 3 or less), a high compressive strength (30 N / mm 2 or more), and a small increase in adiabatic temperature. (40 ° C. or less). On the other hand, in each of the comparative examples, the carbon emission intensity and the adiabatic temperature rise amount are larger or the compressive strength is lower than the low environmental load type high-strength concrete of the present invention.

【0030】[0030]

【発明の効果】本発明により、炭素排出量原単位が小さ
いだけでなく、圧縮強度が高く、水和発熱量が小さい等
の効果を奏し、環境問題に大きく貢献する低環境負荷型
コンクリートを作製することができる。
According to the present invention, not only a small unit of carbon emission but also a high compressive strength and a small calorific value of hydration are produced, thereby producing a low environmental load concrete which greatly contributes to environmental problems. can do.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 14:28) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 14:28)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】セメントと、pHが4.5以下の産業副産物
として発生する無水セッコウと、石灰石微粉末とを配合
し、材齢28日の圧縮強度が30N/mm2以上、炭素排出量の
原単位が70kgC/m3以下であることを特徴とする低環境負
荷型コンクリート。
1. A blend of cement, anhydrous gypsum produced as an industrial by-product having a pH of 4.5 or less, and limestone fine powder, a compressive strength of 28 days of age of 30 N / mm 2 or more, and a basic unit of carbon emission. Low environmental load concrete characterized in that the concrete is 70 kgC / m 3 or less.
【請求項2】更に産業副産物として発生するシリカ質微
粉末を配合してなることを特徴とする請求項1記載の低
環境負荷型コンクリート。
2. The low environmental load concrete according to claim 1, further comprising a silica fine powder generated as an industrial by-product.
【請求項3】単位セメント量が280kg/m3以下であること
を特徴とする請求項1又は2に記載の低環境負荷型コン
クリート。
3. The low environmental load concrete according to claim 1, wherein a unit cement amount is 280 kg / m 3 or less.
【請求項4】断熱温度上昇量が40℃以下であることを特
徴とする請求項1乃至3の何れかに記載の低環境負荷型
コンクリート。
4. The low environmental load concrete according to claim 1, wherein an adiabatic temperature rise amount is 40 ° C. or less.
JP21321699A 1999-07-28 1999-07-28 Low environmental impact type concrete Expired - Lifetime JP3765689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21321699A JP3765689B2 (en) 1999-07-28 1999-07-28 Low environmental impact type concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21321699A JP3765689B2 (en) 1999-07-28 1999-07-28 Low environmental impact type concrete

Publications (2)

Publication Number Publication Date
JP2001039756A true JP2001039756A (en) 2001-02-13
JP3765689B2 JP3765689B2 (en) 2006-04-12

Family

ID=16635464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21321699A Expired - Lifetime JP3765689B2 (en) 1999-07-28 1999-07-28 Low environmental impact type concrete

Country Status (1)

Country Link
JP (1) JP3765689B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320835A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2009227549A (en) * 2008-03-25 2009-10-08 Taiheiyo Cement Corp Cement additive and cement composition
JP2010540383A (en) * 2007-09-25 2010-12-24 ラファルジュ Concrete containing low clinker
JP2012521344A (en) * 2009-03-24 2012-09-13 ラファルジュ Concrete containing low clinker
CN109626850A (en) * 2019-02-18 2019-04-16 胡瑾 Modified ardealite and preparation method thereof
JP2022522931A (en) * 2018-12-20 2022-04-21 クナウフ ギプス カーゲー Gypsum-based building materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320835A (en) * 2006-06-05 2007-12-13 Denki Kagaku Kogyo Kk Extra-quick hardening cement composition, extra-quick hardening cement concrete composition, and extra-quick hardening cement concrete
JP2010540383A (en) * 2007-09-25 2010-12-24 ラファルジュ Concrete containing low clinker
KR101523795B1 (en) * 2007-09-25 2015-05-28 라파르쥐 Concrete with low clinker content
JP2009227549A (en) * 2008-03-25 2009-10-08 Taiheiyo Cement Corp Cement additive and cement composition
JP2012521344A (en) * 2009-03-24 2012-09-13 ラファルジュ Concrete containing low clinker
JP2022522931A (en) * 2018-12-20 2022-04-21 クナウフ ギプス カーゲー Gypsum-based building materials
CN109626850A (en) * 2019-02-18 2019-04-16 胡瑾 Modified ardealite and preparation method thereof
CN109626850B (en) * 2019-02-18 2021-09-14 胡瑾 Modified phosphogypsum and preparation method thereof

Also Published As

Publication number Publication date
JP3765689B2 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
JP5818579B2 (en) Neutralization suppression type early strong cement composition
CN102459116A (en) Expansive admixture and method for producing same
WO2009136518A1 (en) Hydraulic composition and concrete using the hydraulic composition
JP2014169213A (en) Ultra-high-strength high-fluidity concrete and cement composition
JP2008179504A (en) Blast furnace slag cement
JP2015187068A (en) Cement admixture, and cement composition
JP2001064066A (en) High strength concrete
JP2011132111A (en) Hydraulic composition
JP3765690B2 (en) Low environmental load cement admixture and cement composition
JP6234739B2 (en) Method for producing hardened cement and hardened cement
JP2001039756A (en) Low environmental load type concrete
JP3765693B2 (en) Low environmental impact type high strength concrete
JP7173827B2 (en) Ultra fast-hardening composition, cement composition, concrete composition and spraying method
JP3765691B2 (en) Low environmental load ultra-high strength concrete
JP3976452B2 (en) Low environmental impact type high strength concrete
WO2022196633A1 (en) Cement admixture, cement composition, and method for producing concrete product
JP2009035451A (en) Cement additive and cement composition
JP2003073155A (en) Cement admixture, cement composition and high fluidity concrete using the same
JP3976453B2 (en) Low environmental impact type high strength concrete
JP3765692B2 (en) Low environmental impact type high strength concrete
JP6207992B2 (en) Cement admixture and cement composition-hardened cement using the same
JP4944750B2 (en) Cement additive and cement composition
JP2002029796A (en) Cement admixture and cement composition
JP2003206167A (en) Cement admixture and cement composition
JP6676999B2 (en) Cement composition and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3765689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

EXPY Cancellation because of completion of term