JP2001037775A - Treatment device - Google Patents

Treatment device

Info

Publication number
JP2001037775A
JP2001037775A JP11211180A JP21118099A JP2001037775A JP 2001037775 A JP2001037775 A JP 2001037775A JP 11211180 A JP11211180 A JP 11211180A JP 21118099 A JP21118099 A JP 21118099A JP 2001037775 A JP2001037775 A JP 2001037775A
Authority
JP
Japan
Prior art keywords
treatment
microwave
applicator
frequency
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11211180A
Other languages
Japanese (ja)
Inventor
Toru Nagase
徹 長瀬
Makoto Inaba
誠 稲葉
Satoshi Mizukawa
聡 水川
Norihiko Haruyama
典彦 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11211180A priority Critical patent/JP2001037775A/en
Publication of JP2001037775A publication Critical patent/JP2001037775A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00128Electrical control of surgical instruments with audible or visual output related to intensity or progress of surgical action
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/00488Esophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance

Abstract

PROBLEM TO BE SOLVED: To provide a treatment device capable of using microwaves as treatment energy, recognizing the geometric enlargement of a treatment area in the axial direction of an energy supplying tool and controlling the output of the microwaves. SOLUTION: The microwaves for treatment of a microwave oscillation part 2 are impressed to a microwave piercing applicator 5 and radiated from a microwave antenna part 6 on the tip side to the side of a viable tissue 7 to which it is pierced. At this time, along the axial direction of the microwave piercing applicator 5, by first electrodes 8A and 8B and second electrodes 9A and 9B respectively arranged in a pair inside a cauterization range to be cauterized near the microwave antenna part 6 and on the outer side, the impedance of the viable tissue is measured by high frequency signals from an HF oscillation part 14. With the impedance between the second electrodes 9A and 9B as a reference, the geometric enlargement of the treatment area to the axial direction of the microwave piercing applicator 5 is recognized from an impedance measured value between the other electrodes and the output of the microwaves is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は生体組織に対し、治
療のためのエネルギを付与して治療を行う治療装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a treatment apparatus for applying treatment energy to living tissue for treatment.

【0002】[0002]

【従来の技術】悪性または良性の腫瘍に対する処置とし
て高周波、ラジオ波、アルゴンビーム、マイクロ波、レ
ーザなど各種のエネルギを用いた、加温や凝固焼灼療法
が実施されている。
2. Description of the Related Art As treatment for malignant or benign tumors, heating or coagulation ablation therapy using various energies such as radio frequency, radio wave, argon beam, microwave and laser has been performed.

【0003】特にエネルギの組織深部到達性に優れるマ
イクロ波は、たとえば肝小細胞癌の凝固処置などに広く
行なわれるようになってきている。
[0003] Microwaves, which are particularly excellent in the ability of energy to penetrate deep into tissues, have been widely used, for example, for coagulation treatment of hepatocellular carcinoma.

【0004】しかしながら本法は、生体の深部で実施さ
れるため直視観測下では施行できず、予め用意されたマ
イクロ波出力値と出力時間のテーブルに従ってマイクロ
波を出力することが未だに一般的であり、症例や部位に
よる血流効果の差を最適に考慮することが困難である。
However, this method cannot be performed under direct observation because it is performed in a deep part of a living body, and it is still general to output microwaves according to a table of microwave output values and output time prepared in advance. However, it is difficult to optimally consider the difference in blood flow effect depending on the case or site.

【0005】また近年では、超音波診断装置を術中併用
して処置部組織の変性をリアルタイムに観測しながら凝
固を行なう手法も提案されている。しかしながら、手技
が煩雑となること、マイクロ波放射時に組織内バブリン
グが発生しやすく超音波観測の視野を妨げる可能性があ
ること、凝固範囲を超音波画像から判別するにあたり術
者による判断の差が介入する余地があること、などが問
題点となっている。
In recent years, a technique has been proposed in which coagulation is performed while observing degeneration of a treatment site tissue in real time by using an ultrasonic diagnostic apparatus together during the operation. However, the procedure becomes complicated, there is a possibility that intracellular bubbling is likely to occur during microwave radiation, which may obstruct the visual field of ultrasonic observation, and the difference in judgment by the operator in determining the coagulation range from the ultrasonic image is The problem is that there is room for intervention.

【0006】一方、特開平9−117456に示される
ように、処置中、マイクロ波電極から組織に放射される
マイクロ波の進行波、反射波のレベルを観測して凝固の
程度を推定するアイデアが提案されている。
On the other hand, as disclosed in Japanese Patent Application Laid-Open No. Hei 9-117456, there is an idea to estimate the degree of coagulation by observing the level of a traveling wave and a reflected wave of a microwave radiated from a microwave electrode to a tissue during a treatment. Proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、マイク
ロ波電極の種類の違いにより判別基準が異なること、マ
イクロ波電極近傍の生体特性から決定される反射波のレ
ベルを判断基準としているため凝固領域の幾何学的寸法
の進展を明確に把握することが容易でないこと、が問題
である。
However, the criterion is different depending on the type of the microwave electrode, and the level of the reflected wave determined from the biological characteristics near the microwave electrode is used as the criterion. The problem is that it is not easy to grasp the progress of the geometric dimensions clearly.

【0008】(発明の目的)本発明は、凝固深達性の優
れるマイクロ波を処置のためのエネルギとして用い、か
つその凝固等の処置領域の幾何学的拡大をエネルギ供給
具(アプリケータ)の軸方向において把握してマイクロ
波の出力を制御できる治療装置を提供することを第1の
目的とする。
(Object of the Invention) The present invention uses a microwave having excellent coagulation depth as energy for treatment, and uses a microwave for an energy supply device (applicator) to geometrically expand a treatment area such as coagulation. It is a first object of the present invention to provide a treatment apparatus capable of controlling the output of microwaves by grasping in the axial direction.

【0009】また、本発明は処置領域の幾何学的拡大を
エネルギ供給具(アプリケータ)の軸方向において把握
してマイクロ波の出力を制御し、処置の安全性、確実
性、および簡便性を向上させる治療装置を提供すること
も目的である。
Further, the present invention grasps the geometric expansion of the treatment area in the axial direction of the energy supply device (applicator) and controls the microwave output, thereby improving the safety, reliability and simplicity of the treatment. It is also an object to provide an improved treatment device.

【0010】また、本発明は、マイクロ波以外のエネル
ギを処置に利用した場合にも、エネルギ供給具(アプリ
ケータ)の軸方向において把握してマイクロ波の出力を
制御し、処置の安全性、確実性、および簡便性を向上さ
せる治療装置を提供することも目的である。
[0010] Further, even when energy other than microwaves is used for treatment, the present invention controls the output of microwaves by grasping in the axial direction of an energy supply tool (applicator), thereby improving the safety of treatment. It is also an object to provide a treatment device that improves certainty and simplicity.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の治療装置は、生体組織内部に穿刺挿入さ
れる針形状で、先端側に治療のためのエネルギを生体に
付与する処置部を備えたアプリケータと、前記アプリケ
ータの軸方向に前記処置部と離間して設けられた測定電
極と、前記処置部に治療のための治療用エネルギをマイ
クロ波で供給するエネルギ供給手段と、前記測定電極に
前記治療用エネルギの周波数と異なる周波数の測定用の
高周波信号を供給する測定用信号発生手段と、前記測定
電極に供給された測定用信号発生手段の出力からインピ
ーダンスを測定するインピーダンス測定手段と、前記イ
ンピーダンス測定手段の測定結果により前記エネルギ供
給手段の出力を制御する制御手段と、を備えたことによ
り、凝固深達性の良好なマイクロ波による治療用エネル
ギの照射により処置部付近から生体組織を凝固等の処置
領域をその外側に拡大させ、その際高周波信号により測
定電極間の生体組織のインピーダンスの測定により、ア
プリケータの軸方向への処置領域の幾何学的な広がりを
把握して、マイクロ波による治療用エネルギの出力制御
を行えるようにしている。
In order to achieve the above object, a treatment apparatus according to the present invention has a needle shape which is inserted into a living tissue by puncture and applies treatment energy to a living body at a distal end side. An applicator having a treatment section, a measurement electrode provided at a distance from the treatment section in the axial direction of the applicator, and energy supply means for supplying microwave energy to the treatment section for treatment energy for treatment Measuring signal generating means for supplying a high-frequency signal for measurement at a frequency different from the frequency of the therapeutic energy to the measuring electrode; and measuring impedance from an output of the measuring signal generating means supplied to the measuring electrode. By providing an impedance measuring means and a control means for controlling the output of the energy supply means based on the measurement result of the impedance measuring means, By irradiating the treatment energy with a favorable microwave, the treatment area such as coagulation of the living tissue is expanded from the vicinity of the treatment portion to the outside thereof. By grasping the geometric spread of the treatment area in the axial direction, the output of the treatment energy by microwaves can be controlled.

【0012】また、生体組織内部に穿刺挿入される先端
部に治療のためのエネルギを生体に付与する処置部を備
えたアプリケータと、少なくとも前記アプリケータの前
記処置部より手前側に設けられた測定電極と、前記処置
部に治療のためのエネルギを供給するエネルギ供給手段
と、前記測定電極に測定用の周波数の信号を供給する周
波数発生手段と、前記測定電極に供給された周波数発生
手段の出力からインピーダンスを測定するインピーダン
ス測定手段と、前記インピーダンス測定手段の測定結果
により前記エネルギ供給手段の出力を制御する制御手段
と、を備えたことにより、治療用エネルギの照射により
処置部付近から生体組織を凝固等の処置領域をその外側
に拡大させ、その際測定用の周波数の信号により測定電
極間の生体組織のインピーダンスの測定により、アプリ
ケータの軸方向への処置領域の幾何学的な広がりを把握
して、治療用エネルギの出力制御を行えるようにしてい
る。
In addition, an applicator having a treatment section for applying energy for treatment to a living body at a distal end portion punctured and inserted into the living tissue, and at least a front side of the treatment section of the applicator are provided. A measurement electrode, an energy supply unit that supplies energy for treatment to the treatment unit, a frequency generation unit that supplies a signal of a measurement frequency to the measurement electrode, and a frequency generation unit that is supplied to the measurement electrode. By providing an impedance measuring means for measuring the impedance from the output, and a control means for controlling the output of the energy supplying means based on the measurement result of the impedance measuring means, the living tissue can be irradiated from the vicinity of the treatment section by irradiation of therapeutic energy. The treatment area such as coagulation is expanded to the outside, and at that time, the biological tissue between the measurement electrodes is Measurement of impedance, to grasp the geometrical spread of the treatment area in the axial direction of the applicator, and to allow the output control of the therapeutic energy.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。 (第1の実施の形態)図1ないし図8は本発明の第1の
実施の形態に係り、図1は第1の実施の形態の治療装置
の構成を示し、図2は焼灼範囲モニタ部の構成を示し、
図3はマイクロ波アプリケータの先端側の構成を示し、
図4はマイクロ波アプリケータを生体組織に穿刺して凝
固処置をしている様子を示し、図5は図4よりも深く穿
刺して凝固処置をしている様子を示し、図6はマイクロ
波アプリケータに設けた測定用電極とモニタ部との接続
関係を示し、図7は凝固処置の際のマイクロ波出力とモ
ニタ動作のタイミング関係を示し、図8はマイクロ波出
力量と焼灼レベルの関係を示す。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIGS. 1 to 8 relate to a first embodiment of the present invention, FIG. 1 shows a configuration of a treatment apparatus according to the first embodiment, and FIG. Shows the configuration of
FIG. 3 shows the configuration of the distal end side of the microwave applicator,
FIG. 4 shows a state in which a microwave applicator is punctured into a living tissue to perform a coagulation treatment, FIG. 5 shows a state in which the microwave applicator is punctured deeper than in FIG. 4 to perform a coagulation treatment, and FIG. FIG. 7 shows a connection relationship between a measurement electrode provided on an applicator and a monitor unit, FIG. 7 shows a microwave output during a coagulation treatment and a timing relationship of a monitor operation, and FIG. 8 shows a relationship between a microwave output amount and a cauterization level. Is shown.

【0014】図1に示す本発明の第1の実施の形態の凝
固範囲認識機能を備えた治療装置1は治療のためのエネ
ルギ、より具体的にはマイクロ波のエネルギを発生する
マイクロ波発振部2を有し、このマイクロ波発振部2で
発振された例えば2450MHzの周波数のマイクロ波
はマイクロ波伝送ケーブル3で伝送され、マイクロ波穿
刺アプリケータ5の基端に印加され、針状のマイクロ波
穿刺アプリケータ5によりその先端側に伝送され、その
先端側の処置部となるマイクロ波放射アンテナ部6から
このマイクロ波放射アンテナ部6が穿刺される生体組織
7の患部等の治療対象部位に照射される。
A treatment apparatus 1 having a coagulation range recognition function according to a first embodiment of the present invention shown in FIG. 1 is a microwave oscillating unit for generating energy for treatment, more specifically, microwave energy. The microwave having a frequency of, for example, 2450 MHz oscillated by the microwave oscillating unit 2 is transmitted by the microwave transmission cable 3 and applied to the base end of the microwave puncturing applicator 5 to generate a needle-shaped microwave. It is transmitted to the distal end side by the puncture applicator 5 and irradiated from a microwave radiating antenna section 6 serving as a treatment section on the distal end side to a treatment target site such as a diseased part of a living tissue 7 into which the microwave radiating antenna section 6 is punctured. Is done.

【0015】このマイクロ波による焼灼状態をモニタで
きるようにするために、マイクロ波穿刺アプリケータ5
には、処置部となるマイクロ波放射アンテナ部6から
(アプリケータ5の軸方向に離間して)対となる第1の
電極8A、8Bと対となる第2の電極9A、9Bとが設
けてある。
In order to be able to monitor the state of cauterization by the microwave, the microwave puncturing applicator 5
Is provided with a pair of first electrodes 8A and 8B (separated in the axial direction of the applicator 5) and a pair of second electrodes 9A and 9B from the microwave radiating antenna unit 6 serving as a treatment unit. It is.

【0016】より詳しくは、図3に示すようにマイクロ
波放射アンテナ部6におけるマイクロ波を放射する中心
部に対し、(針状のアプリケータ)中心軸方向に沿った
遠点側(先端側)と近点側(手前側)とで互いに対向す
るような対称となる外周面の位置に1対の第1電極8
A、8Bと、該第1電極8A、8Bにおける例えば近点
側8Bより更に近点側の位置に向かい合って配置された
1対の第2電極9A、9Bとが設けてある。
More specifically, as shown in FIG. 3, with respect to the center of the microwave radiating antenna section 6 which radiates the microwave, a (needle-shaped applicator) at a far point side (tip side) along the center axis direction. And a pair of first electrodes 8 at symmetrical outer peripheral positions facing each other on the near point side (front side).
A and 8B, and a pair of second electrodes 9A and 9B arranged to face the first electrodes 8A and 8B, for example, at positions closer to the near point than the near point 8B.

【0017】第1電極8A、8Bはマイクロ波放射アン
テナ部6から放射されるマイクロ波により焼灼される生
体組織7のインピーダンスを測定するための電極であ
り、焼灼しようとする焼灼範囲10の内側或いは境界付
近に設定される。
The first electrodes 8A and 8B are electrodes for measuring the impedance of the living tissue 7 cauterized by the microwave radiated from the microwave radiating antenna unit 6, and are provided inside the cauterization area 10 to be cauterized or Set near the boundary.

【0018】これに対し、第2電極9A、9Bはこの焼
灼範囲10の外の生体組織7中に設定されるように、マ
イクロ波放射アンテナ部6からその軸方向に(焼灼範囲
10程度)離間して配置される第1電極8A、8Bより
もさらに離間して配置され、焼灼されない生体組織7部
分の基準となるインピーダンスを測定するための電極で
ある。
On the other hand, the second electrodes 9A and 9B are separated from the microwave radiating antenna section 6 in the axial direction (cauterizing area 10) so as to be set in the living tissue 7 outside the cauterizing area 10. These electrodes are arranged further apart than the first electrodes 8A and 8B, and are used to measure the reference impedance of the portion of the living tissue 7 that is not cauterized.

【0019】そして、図6に示すように上記第1電極8
A、8Bは焼灼範囲モニタ部11に接続され、その一方
の電極8Aと第2の電極9A、9Bの一方(9A)は焼
灼レベルモニタ部12に接続され、第2の電極9A、9
Bは焼灼基準モニタ部13に接続される。
Then, as shown in FIG.
A and 8B are connected to the cautery range monitor unit 11, and one electrode 8A and one (9A) of the second electrodes 9A and 9B are connected to the cautery level monitor unit 12, and the second electrodes 9A and 9B.
B is connected to the ablation reference monitor 13.

【0020】そして、図1に示すようにこれらは焼灼範
囲モニタ部11、焼灼レベルモニタ部12及び焼灼基準
モニタ部13は例えば350kHz或いは500kHz
の測定用の高周波信号を発生する高周波発振部(HF発
振部と略記)14と接続される。
As shown in FIG. 1, the ablation range monitor 11, the ablation level monitor 12, and the ablation reference monitor 13 are, for example, 350 kHz or 500 kHz.
Is connected to a high-frequency oscillation unit (abbreviated as HF oscillation unit) 14 for generating a high-frequency signal for measurement.

【0021】つまり、HF発振部14は各モニタ部1
1、12、13を介してそれぞれ2つの電極と接続さ
れ、電極間の生体組織7のインピーダンスを測定して、
焼灼範囲、焼灼レベル、焼灼基準の情報を得る。
That is, the HF oscillator 14 is connected to each monitor 1
Each is connected to two electrodes via 1, 12, and 13, and measures the impedance of the living tissue 7 between the electrodes,
Obtain information on the cautery range, cautery level, and cautery standard.

【0022】このHF発振部14は制御部15と接続さ
れ、制御部15により発振動作がコントロールされる。
また、焼灼範囲モニタ部11と焼灼基準モニタ部13の
信号は、焼灼範囲比較部16に入力される。また、焼灼
レベルモニタ部12と焼灼基準モニタ部13の信号は、
焼灼レベル比較部17に入力される。
The HF oscillating unit 14 is connected to a control unit 15, and the oscillating operation is controlled by the control unit 15.
Signals from the cautery range monitor 11 and the cautery reference monitor 13 are input to the cautery range comparator 16. The signals of the cautery level monitor 12 and the cautery reference monitor 13 are
It is input to the cautery level comparison unit 17.

【0023】上記焼灼範囲比較部16と焼灼レベル比較
部17の信号は、凝固範囲認識部18に入力され、凝固
範囲認識部18は制御部15にその結果を送信する。制
御部15には入力部19からも焼灼レベル等の設定値が
送信される。
The signals from the cauterizing range comparing section 16 and the cauterizing level comparing section 17 are input to the coagulation range recognizing section 18, which transmits the result to the control section 15. Set values such as the cautery level are also transmitted from the input unit 19 to the control unit 15.

【0024】制御部15からは入力信号に応じてその結
果が、マイクロ波出力制御部20に送信され、マイクロ
波出力制御部20はマイクロ波発振部2の出力をコント
ロールすると同時に、告知部21に送信され、音声又は
表示により焼灼情報を告知する。
The result is transmitted from the control unit 15 to the microwave output control unit 20 in accordance with the input signal, and the microwave output control unit 20 controls the output of the microwave oscillation unit 2 and simultaneously notifies the notification unit 21 of the output. Sent and announces cautery information by voice or display.

【0025】インピーダンスを測定する焼灼範囲モニタ
部11、焼灼レベルモニタ部12、焼灼基準モニタ部1
3は、同じ構成をなしているので、その代表として例え
ば焼灼範囲モニタ部11の構成を図2に示す。
An ablation range monitor 11, an ablation level monitor 12, and an ablation reference monitor 1 for measuring impedance.
3 has the same configuration, and for example, FIG. 2 shows the configuration of the ablation range monitor 11 as a representative example.

【0026】HF発振部14からの高周波信号は焼灼範
囲モニタ部11の電流測定部23を経て第1電極対8
A、8Bに印加され、その際に流れる高周波電流が測定
される。
The high-frequency signal from the HF oscillating unit 14 passes through the current measuring unit 23 of the ablation range monitoring unit 11, and the first electrode pair 8
A and 8B, and the high-frequency current flowing at that time is measured.

【0027】また、焼灼範囲モニタ部11には、第1電
極対8Aと8B間の電圧を測定する電圧測定部24が設
けてあり、電流測定部23で測定された高周波電流とこ
の電圧測定部24で測定された高周波電圧はインピーダ
ンスを演算するインピーダンス演算部25に入力され、
インピーダンス演算部25でインピーダンスが算出さ
れ、その算出結果は、焼灼範囲比較部16に送信され
る。
The cauterizing range monitor 11 is provided with a voltage measuring unit 24 for measuring a voltage between the first pair of electrodes 8A and 8B. The high frequency current measured by the current measuring unit 23 and the voltage measuring unit 24 are measured. The high-frequency voltage measured at 24 is input to an impedance calculator 25 for calculating impedance,
The impedance is calculated by the impedance calculation unit 25, and the calculation result is transmitted to the ablation range comparison unit 16.

【0028】なお、図3では第1電極8A、8Bは、中
心軸に対して互いに180°反対側となる外周面の位置
に配置した構成としたが、これに限定されるのもでな
く、同一方向に配置したものでもよい。また、電流測定
部23は、通常の電流計以外に電流プローブを用いても
良い。次に本実施の形態の作用を説明する。
In FIG. 3, the first electrodes 8A and 8B are arranged at positions on the outer peripheral surfaces that are 180 ° opposite to each other with respect to the center axis. However, the present invention is not limited to this. They may be arranged in the same direction. Further, the current measuring unit 23 may use a current probe other than a normal ammeter. Next, the operation of the present embodiment will be described.

【0029】マイクロ波穿刺アプリケータ5は、図3に
示すマイクロ波放射アンテナ部6を先端付近に備えてお
り、その図3にあるようにマイクロ波放射アンテナ部6
を中心にマイクロ波が放射され、(穿刺によりマイクロ
波放射アンテナ部6を生体組織7中に設定した状態にお
いて)その周囲の生体組織7の温度を上昇させて凝固す
る処置を行うことができる。
The microwave puncturing applicator 5 is provided with a microwave radiating antenna 6 shown in FIG. 3 near the tip, and as shown in FIG.
Microwaves are radiated at the center, and a treatment for coagulating the living tissue 7 by increasing the temperature of the surrounding living tissue 7 (with the microwave radiating antenna unit 6 set in the living tissue 7 by puncturing) can be performed.

【0030】図4と図5にその様子を示す。図4に示す
ように、マイクロ波放射アンテナ部6まで生体組織7に
刺入して凝固すると、表面付近が最も強く凝固されるた
め、その凝固の様子を断面で見るように確認できる。
FIGS. 4 and 5 show the state. As shown in FIG. 4, when the microwave radiating antenna 6 is inserted into the living tissue 7 and solidified, the vicinity of the surface is most strongly coagulated, so that the coagulation can be confirmed as seen in a cross section.

【0031】一方、図5のように深く刺入した場合は、
その凝固の様子が隠されて表面からは確認できない。本
実施の形態は、そのような場合にも、凝固をモニタでき
るように工夫されたものである。図6に示すように、焼
灼範囲モニタ部11に接続される第1電極8Aと8B
は、焼灼範囲10の中に設定され、焼灼開始してマイク
ロ波放射アンテナ部6付近から凝固範囲が広がってくる
のをモニタできる。
On the other hand, in the case of deep penetration as shown in FIG.
The state of the solidification is hidden and cannot be confirmed from the surface. The present embodiment is devised so that coagulation can be monitored even in such a case. As shown in FIG. 6, the first electrodes 8A and 8B connected to the cautery range monitor 11
Is set in the cauterization range 10, and the coagulation range can be monitored from the vicinity of the microwave radiating antenna unit 6 after the cauterization starts.

【0032】また、焼灼基準モニタ部13に接続される
第2電極9Aと9Bは、焼灼範囲10外にあり、焼灼さ
れていない組織の基準となるインピーダンスが測定され
る。焼灼範囲モニタ部11のインピーダンス値を、前記
焼灼基準モニタ部13により得られる基準となるインピ
ーダンス値と比較することで、その焼灼の範囲を精度よ
く検知できる。この比較は、焼灼範囲比較部16で行わ
れる。
The second electrodes 9A and 9B connected to the cautery reference monitor 13 are outside the cautery range 10, and the reference impedance of the non-cauterized tissue is measured. By comparing the impedance value of the cauterization range monitoring unit 11 with the reference impedance value obtained by the cauterization reference monitoring unit 13, the cauterization range can be detected with high accuracy. This comparison is performed by the ablation range comparison unit 16.

【0033】更に、焼灼レベルモニタ部12には、対と
なる第1電極の一方の電極8Aと、対となる第2電極の
一方の電極9Aが接続されている。つまり、焼灼範囲1
0内にある電極と焼灼範囲10外の電極間のインピーダ
ンスを測定することで焼灼の程度を知ることができる。
そして、前記焼灼基準モニタ部13の値と比較すること
で、その焼灼のレベルを検知できる。この比較は、焼灼
レベル比較部17にて行われる。
Further, the cautery level monitor section 12 is connected to one electrode 8A of the first electrode to be paired and one electrode 9A of the second electrode to be paired. That is, cauterization range 1
By measuring the impedance between the electrode within 0 and the electrode outside the cauterization range 10, the degree of cauterization can be known.
The level of the ablation can be detected by comparing the value with the value of the ablation reference monitor 13. This comparison is performed by the ablation level comparison unit 17.

【0034】なお、焼灼レベルモニタ部12は第1電極
8Aと第2電極9Aに接続した組み合わせで説明した
が、この組合せの他に第1電極8Aと第2電極9B、或
いは第1電極8Bと第2電極9A、或いは第1電極8B
と第2電極9Bを採用してもよい。
Although the ablation level monitor 12 has been described as a combination connected to the first electrode 8A and the second electrode 9A, in addition to this combination, the first electrode 8A and the second electrode 9B, or the first electrode 8B and Second electrode 9A or first electrode 8B
And the second electrode 9B.

【0035】焼灼範囲比較部16での焼灼範囲検知結果
と、焼灼レベル比較部17の焼灼レベル検知結果は、凝
固範囲認識部18によって、凝固の広がりと深さの両
面、つまり焼灼の広がりと、焼灼の程度の双方を認識す
ることができる。
The ablation range detection result by the ablation range comparison unit 16 and the ablation level detection result by the ablation level comparison unit 17 are used by the coagulation range recognition unit 18 to determine both the extent of coagulation and the depth, that is, the extent of ablation. Both degrees of cauterization can be recognized.

【0036】入力部19から焼灼範囲と焼灼レベルの程
度を設定しておくことで、焼灼の状態を告知部21によ
り音声や表示映像で告知できる。また、その結果に応じ
て、マイクロ波出力制御部20をコントロールし、自動
的にマイクロ波出力を下げたり、停止したりすることが
できる。
By setting the cautery range and the level of the cautery level from the input unit 19, the cauterization state can be notified by the notification unit 21 by voice or display image. Further, according to the result, the microwave output control unit 20 can be controlled to automatically reduce or stop the microwave output.

【0037】焼灼の程度によりマイクロ波出力をコント
ロールする具体例を、図7と図8のタイムチャートを用
いて説明する。図7は、マイクロ波出力とモニタ動作の
タイミングを示す。図7(A)に示すようにマイクロ波
が例えば15秒出力(図中ではON)されると出力が短
い期間停止し、その停止期間(図中、Lowレベル)に
図7(B)に示すHF発振部14のHF出力がON(図
中、Highレベル)して、図7(C)及び図7(D)
の焼灼基準モニタ部13と、焼灼レベルモニタ部12で
のインピーダンスを測定し、その凝固レベルを確認す
る。
A specific example of controlling the microwave output according to the degree of cauterization will be described with reference to the time charts of FIGS. FIG. 7 shows the timing of the microwave output and the monitor operation. As shown in FIG. 7A, when the microwave is output, for example, for 15 seconds (ON in the figure), the output is stopped for a short period, and during the stop period (Low level in the figure), as shown in FIG. 7B. The HF output of the HF oscillating unit 14 is turned ON (high level in the figure), and FIG. 7 (C) and FIG. 7 (D)
The impedance of the cautery reference monitor 13 and the cautery level monitor 12 is measured to confirm the coagulation level.

【0038】測定が終了すると、再びマイクロ波が15
秒出力され、その後同様にインピーダンスを測定する。
以下、入力部19による設定値に達するまで、繰り返さ
れる。図7では示していないが、焼灼範囲モニタ部11
についても同様である。また、マイクロ波出力時間は入
力部19で可変設定することができる。
When the measurement is completed, the microwave is again applied for 15 minutes.
Secondly, the impedance is measured in the same manner.
Hereinafter, the process is repeated until the value set by the input unit 19 is reached. Although not shown in FIG. 7, the ablation range monitor 11
The same applies to. The microwave output time can be variably set by the input unit 19.

【0039】図8は、マイクロ波出力量と焼灼レベル値
(インピーダンス値)との関係を示す。図8(A)に示
すように初期のマイクロ波出力量を例えば50Wとし、
図8(B)に示す焼灼レベルに応じて出力を可変させる
ようにした。
FIG. 8 shows the relationship between the microwave output amount and the ablation level value (impedance value). As shown in FIG. 8A, the initial microwave output amount is, for example, 50 W,
The output was varied according to the ablation level shown in FIG.

【0040】焼灼レベルを1〜5の段階に設定し、その
段階に応じて50W、40W、30Wと減少させ、自動
的に期待する焼灼レベルを行なえるようにした。マイク
ロ波出力量のステップ及び焼灼レベルのステップは、入
力部19で可変設定できる。また、焼灼レベルステップ
は、インピーダンス値で設定してもよい。
The ablation level was set at 1 to 5 stages, and was reduced to 50 W, 40 W, and 30 W according to the stage, so that the expected ablation level could be automatically performed. The step of the microwave output amount and the step of the ablation level can be variably set by the input unit 19. Further, the cauterization level step may be set by an impedance value.

【0041】本実施の形態は以下の効果を有する。凝固
範囲を確認しながら治療するので、安全かつ確実な焼灼
治療ができる。
This embodiment has the following effects. Since the treatment is performed while checking the coagulation range, a safe and reliable cautery treatment can be performed.

【0042】つまり、凝固深達性の良好なマイクロ波に
よる治療用エネルギの照射により処置部付近から生体組
織を凝固等の処置領域をその外側に拡大させ、その際高
周波信号により測定電極間の生体組織のインピーダンス
の測定により、アプリケータの軸方向への処置領域の幾
何学的な広がりを把握して、マイクロ波による治療用エ
ネルギの出力制御を行うことにより、凝固範囲を確認し
ながら治療できるので、安全かつ確実な焼灼治療ができ
る。
That is, a treatment area such as coagulation of a living tissue is expanded from the vicinity of the treatment portion to the outside thereof by irradiating therapeutic energy with a microwave having a good coagulation penetration property. By measuring the impedance of the tissue, grasping the geometric spread of the treatment area in the axial direction of the applicator, and controlling the output of therapeutic energy using microwaves, treatment can be performed while confirming the coagulation range. A safe and reliable cautery treatment can be performed.

【0043】(第2の実施の形態)次に図9及び図10
を参照して本発明の第2の実施の形態の治療装置を説明
する。図9は治療装置の構成を使用例で示し、図10は
アプリケータの構成を示す。
(Second Embodiment) Next, FIGS.
A treatment apparatus according to a second embodiment of the present invention will be described with reference to FIG. FIG. 9 shows the configuration of the treatment apparatus in a usage example, and FIG. 10 shows the configuration of an applicator.

【0044】図9に示す治療装置31はマイクロ波の治
療用エネルギを発生すると共に、測定用の高周波エネル
ギを発生するマイクロ波装置本体(本体と略記)32
と、この本体32のパネルに設けられたコネクタ33、
34にそれぞれマイクロ波伝送用延長ケーブル(第1周
波数用延長ケーブル)35及び、高周波伝送用延長ケー
ブル(第2周波数用延長ケーブル)36を介して接続さ
れるアプリケータ37とを有する。
The therapeutic device 31 shown in FIG. 9 generates microwave therapeutic energy and generates a microwave high-frequency energy for measurement.
A connector 33 provided on a panel of the main body 32;
Each has an extension cable for microwave transmission (extension cable for first frequency) 35 and an applicator 37 connected via an extension cable for high-frequency transmission (extension cable for second frequency).

【0045】このアプリケータ37はマイクロ波を放射
して治療の処置を行う先端がとがった針(或いは円柱)
形状のアプリケータ本体部38に、第2周波数用電極5
3及び54をアプリケータ本体部38の外周面に設けた
構成にしてある。そして、アプリケータ本体部38の基
端(後端)の同軸コネクタ41がマイクロ波伝送用延長
ケーブル35と接続され、また被覆リード55の基端
(後端)のコネクタ42(の端子43a,43b)が高
周波伝送用延長ケーブル36と接続される。
The applicator 37 has a pointed needle (or a cylinder) for emitting a microwave to perform a medical treatment.
The electrode 5 for the second frequency is provided on the applicator body 38 having the shape.
3 and 54 are provided on the outer peripheral surface of the applicator body 38. Then, the coaxial connector 41 at the base end (rear end) of the applicator main body 38 is connected to the microwave transmission extension cable 35, and the terminals 43 a and 43 b of the connector 42 at the base end (rear end) of the covering lead 55 are provided. ) Is connected to the extension cable 36 for high-frequency transmission.

【0046】図10に示すようにアプリケータ37のア
プリケータ本体部38は先端がとがった円柱形状であ
り、銅または鋼線などからなる中心導体44と、その周
囲を覆うようにその外側に配置された中空の誘電体45
と、この誘電体45を覆うようにその外側に配置された
銅またはステンレスなどからなる金属円筒管46と、誘
電体45と同じフッ素樹脂などからなる円筒状のスペー
サ47と、中心導体44の先端に電気的に接続され、銅
またはステンレスなどからなる先端導体48と、先端導
体48を中心導体44に電気的に接続する半田などの接
合材49と、先端導体48に設けられた嵌合手段50
と、嵌合手段50に嵌合して設置され、樹脂で構成され
る先端ピン51と、少なくとも先端導体48と金属円筒
管46とを被覆し、フッ素樹脂などで構成される被覆5
2と、アプリケータ本体部38の後端に設置された同軸
コネクタ41とを有する。
As shown in FIG. 10, the applicator body 38 of the applicator 37 has a cylindrical shape with a sharp tip, and is disposed outside a central conductor 44 made of copper or steel wire so as to cover the periphery thereof. Hollow dielectric 45
A metal cylindrical tube 46 made of copper, stainless steel, or the like disposed outside the dielectric 45 so as to cover the same; a cylindrical spacer 47 made of the same fluororesin as the dielectric 45; A tip conductor 48 made of copper or stainless steel, a bonding material 49 such as solder for electrically connecting the tip conductor 48 to the center conductor 44, and a fitting means 50 provided on the tip conductor 48.
And a tip pin 51, which is installed by fitting to the fitting means 50 and is made of resin, and covers at least the tip conductor 48 and the metal cylindrical tube 46, and is made of fluorocarbon resin or the like.
2 and a coaxial connector 41 installed at the rear end of the applicator body 38.

【0047】また、このアプリケータ本体部38の外周
面には、アプリケータ本体部38の先端近傍で被覆52
上に設置された例えば円環形状に構成された導電部材か
らなる第2周波数用電極53及び54とが設けられてお
り、さらに第2周波数用電極53及び54にそれぞれ独
立して電気接続された被覆リード線55と、リード線5
5の後端に設置されたコネクタ42と、コネクタ42上
に設置された端子43a及び43bが設けられている。
The outer peripheral surface of the applicator body 38 is covered with a coating 52 near the tip of the applicator body 38.
Second frequency electrodes 53 and 54 made of, for example, a ring-shaped conductive member provided on the second frequency electrodes 53 and 54 are provided. The second frequency electrodes 53 and 54 are independently electrically connected to the second frequency electrodes 53 and 54, respectively. Insulated lead wire 55 and lead wire 5
5, a connector 42 is provided at the rear end, and terminals 43a and 43b are provided on the connector 42.

【0048】次に本実施の形態の作用を説明する。図9
に示すように、アプリケータ37は生体56内の例えば
実質臓器である肝臓57に発生した肝小細胞癌などの被
処置部位に到達するように経皮的に穿刺される。この
際、トロッカや超音波観測装置、X線観測装置、MRI
観測装置を併用しても良い。
Next, the operation of the present embodiment will be described. FIG.
As shown in (1), the applicator 37 is percutaneously punctured so as to reach a site to be treated, such as hepatocellular carcinoma, which has developed in the living body 56, for example, the liver 57, which is a substantial organ. At this time, trocars, ultrasonic observation equipment, X-ray observation equipment, MRI
An observation device may be used in combination.

【0049】アプリケータ37は予め本体32に第1周
波数用延長ケーブル35と、第2周波数用延長ケーブル
36とによってそれぞれ本体32のパネル上に備えられ
たコネクタ33、34を介して接続されている。
The applicator 37 is connected to the main body 32 in advance by a first frequency extension cable 35 and a second frequency extension cable 36 via connectors 33 and 34 provided on the panel of the main body 32, respectively. .

【0050】アプリケータ37が穿刺された状態で第2
の周波数、例えば350kHzの数ワット以下の微弱な
高周波が術者の操作により本体32より供給され、アプ
リケータ37上に設置された第2周波数用電極53およ
び54を介して生体56側に通電される。供給される高
周波の電圧と電流から、第2周波数帯における生体イン
ピーダンスが測定される。
With the applicator 37 punctured, the second
Frequency, for example, a weak high frequency of several watts of 350 kHz or less is supplied from the main body 32 by the operation of the operator, and is supplied to the living body 56 through the second frequency electrodes 53 and 54 provided on the applicator 37. You. The bioimpedance in the second frequency band is measured from the supplied high-frequency voltage and current.

【0051】測定された生体インピーダンスの値を本体
32内のメモリ等に保存したうえで本体32から、治療
のための第1の周波数、例えば2450MHzのマイク
ロ波が術者のスイッチ操作によりアプリケータ37に供
給され、スペーサ47を略中心として構成される第1周
波数用電極(本実施の形態においてはマイクロ波アンテ
ナ)からマイクロ波が生体に投入されて加熱が開始され
る。
The measured bioimpedance value is stored in a memory or the like in the main body 32, and a first frequency for treatment, for example, a microwave of 2450 MHz is applied from the main body 32 to the applicator 37 by the operator's switch operation. Is supplied to the living body, and microwaves are injected into the living body from a first frequency electrode (microwave antenna in the present embodiment) which is configured substantially at the center of the spacer 47, and heating is started.

【0052】生体56側が加熱される過程において、前
述の第2の周波数による生体インピーダンス検知は連続
的に行われており逐次インピーダンス値の変化を観測す
る。マイクロ波のエネルギ投入量が時間経過とともに増
大すると、生体組織には加熱→蛋白変性→乾燥(→炭
化)と順次、相変化が発生し凝固領域58が幾何学的に
拡大する。
In the process of heating the living body 56, the detection of the biological impedance at the second frequency is continuously performed, and the change in the impedance value is sequentially observed. When the amount of microwave energy input increases with the passage of time, a phase change occurs sequentially in the living tissue in the order of heating → protein denaturation → drying (→ carbonization), and the coagulated region 58 is geometrically expanded.

【0053】この相変化と第2周波数による生体インピ
ーダンスの変化には相関があるため、予め生体インピー
ダンスに絶対閾値または相対変化量を設定しておけば、
所望の生体56の相変化を検出することが可能となる。
従って所望の相変化が得られた時点で第1の周波数の出
力を停止すれば、一定の組織凝固を得ることができる。
特に、アプリケータ37の軸方向に第2周波数用電極5
3および54を設けているので、アプリケータ37の軸
方向への凝固処置の領域を把握できる。
Since there is a correlation between the phase change and the change in bioimpedance due to the second frequency, if an absolute threshold value or a relative change amount is set in advance in bioimpedance,
A desired phase change of the living body 56 can be detected.
Therefore, if the output of the first frequency is stopped when a desired phase change is obtained, a constant tissue coagulation can be obtained.
In particular, the second frequency electrode 5 is disposed in the axial direction of the applicator 37.
Because of the provision of 3 and 54, the region of the coagulation treatment in the axial direction of the applicator 37 can be grasped.

【0054】第2周波数用電極53、54は図9或いは
図10に示されるように第1周波数用電極の中心部から
アプリケータ37の軸方向に略均等の位置に配置されて
いても良いし、均等でない位置関係に配置されていても
良い。また第1周波数電極を越えたアプリケータの遠位
端側に第2周波数電極の双方が配置されていても良い
し、逆に近位端側に配置されていても良い。
The second frequency electrodes 53 and 54 may be arranged at substantially equal positions in the axial direction of the applicator 37 from the center of the first frequency electrode as shown in FIG. 9 or FIG. , May be arranged in an uneven positional relationship. Further, both of the second frequency electrodes may be arranged on the distal end side of the applicator beyond the first frequency electrode, or may be arranged on the proximal end side.

【0055】また、生体インピーダンス値が無限大、つ
まり第2周波数電極間で高周波の通電が全く行われない
場合にはアプリケータ37の組織への刺入が不十分であ
ると判断するように構成すれば、第1周波数の不要放射
を防止することも可能である。
When the bioimpedance value is infinite, that is, when no high-frequency current is applied between the second frequency electrodes, it is determined that the applicator 37 is insufficiently inserted into the tissue. Then, unnecessary radiation of the first frequency can be prevented.

【0056】また、治療のためのエネルギとしては前述
に示したマイクロ波に限定されるものではなく、高周
波、ラジオ波、レーザ光、または超音波などを用いても
良いし、上記に示した肝臓57のほかに、脳、舌、前立
腺などに適用することも可能である。
The energy for the treatment is not limited to the microwaves described above, but may be high-frequency waves, radio waves, laser light, ultrasonic waves, or the like. In addition to 57, it can be applied to the brain, tongue, prostate and the like.

【0057】本実施の形態は以下の効果を有する。本実
施の形態によれば、生体の血流効果や術者の経験則など
の不定要素に左右されず、実質臓器内の処置部位におい
て特にアプリケータの軸方向の幾何学的凝固領域の拡大
と凝固状態を常に観測することができるため、治療効
果、安全性、および治療の操作性を向上することができ
る。
This embodiment has the following effects. According to this embodiment, the expansion of the geometrical coagulation region in the axial direction of the applicator, particularly in the treatment site in the parenchymal organ, is not affected by indeterminate factors such as the blood flow effect of the living body and the operator's rule of thumb. Since the coagulation state can always be observed, the therapeutic effect, safety, and operability of the treatment can be improved.

【0058】さらに、高周波帯域にて生体インピーダン
スの検知を行なえるため、マイクロ波の場合よりも高価
な部品等を必要としないため、装置を安価に構成するこ
とができる。
Further, since the bioimpedance can be detected in the high frequency band, components which are more expensive than in the case of microwaves are not required, so that the apparatus can be constructed at low cost.

【0059】(第3の実施の形態)次に図11および図
12を参照して本発明の第3の実施の形態を説明する。
図11に示すアプリケータ61は、図10に示すアプリ
ケータ37において、その被覆52の先端にほぼ半球形
状の先端部材52aを一体的に設けた構成にしている。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIGS.
The applicator 61 shown in FIG. 11 has a configuration in which a substantially hemispherical tip member 52a is integrally provided at the tip of the coating 52 in the applicator 37 shown in FIG.

【0060】より詳細に説明すると、このアプリケータ
61は銅または鋼の単線または撚り線などからなる中心
導体44と、この中心導体44の外周に配置された中空
の誘電体45と、銅または鋼など網組み線からなる外部
シールド46と、誘電体45と同等のフッ素樹脂などか
らなる円筒状のスペーサ47と、中心導体44と電気的
に接続され銅またはステンレスなどからなる先端導体4
8と、先端導体48を中心導体44に電気的に接続する
半田などの接合材49と、少なくとも先端導体48と外
部シールド46とを被覆しフッ素樹脂などで構成される
被覆52と、先端導体48を覆うように被覆52の先端
に設けられた先端部材52aと、このアプリケータ61
の後端に設置された同軸コネクタ(図示しない)と、ア
プリケータ61の先端近傍で被覆52上に設置された例
えば円筒形状に構成された導電部材からなる第2周波数
用電極53及び54と、第2周波数用電極53及び54
にそれぞれ独立して電気接続された被覆リード線55
と、リード線55の後端に設置されたコネクタおよび端
子(図示しない)と、から構成されている。
More specifically, the applicator 61 includes a central conductor 44 made of a single or stranded wire of copper or steel, a hollow dielectric 45 disposed on the outer periphery of the central conductor 44, and a copper or steel An outer shield 46 made of a braided wire, a cylindrical spacer 47 made of fluorine resin equivalent to the dielectric 45, and a tip conductor 4 electrically connected to the center conductor 44 and made of copper or stainless steel.
8, a bonding material 49 such as solder for electrically connecting the tip conductor 48 to the center conductor 44, a coating 52 covering at least the tip conductor 48 and the outer shield 46 and made of a fluororesin, A distal end member 52a provided at the distal end of the coating 52 so as to cover the
A coaxial connector (not shown) installed at the rear end of the second applicator; second frequency electrodes 53 and 54 made of, for example, a cylindrically-shaped conductive member installed on the coating 52 near the tip of the applicator 61; Second frequency electrodes 53 and 54
Lead wires 55 electrically connected to the
And a connector and a terminal (not shown) installed at the rear end of the lead wire 55.

【0061】次に本実施の形態の作用を説明する。第2
の実施の形態のアプリケータ37と比較して本実施の形
態のアプリケータ61は全体が柔軟に構成されるため、
例えば図12に示すように軟性内視鏡66、67と併用
することが可能である。
Next, the operation of the present embodiment will be described. Second
Since the applicator 61 of the present embodiment is configured as a whole flexibly as compared with the applicator 37 of the embodiment,
For example, as shown in FIG. 12, it is possible to use together with flexible endoscopes 66 and 67.

【0062】経口的に挿入された内視鏡66と併用すれ
ばアプリケータ61により食道68に発生した被処置部
位69(例えば食道静脈瘤やバレット食道など)の凝固
処置を行なうことができる。
When used in conjunction with an endoscope 66 inserted orally, a coagulation treatment of a treatment site 69 (for example, esophageal varices or Barrett's esophagus) generated in the esophagus 68 can be performed by the applicator 61.

【0063】また胃71を越えて十二指腸乳頭部72ま
で挿入された内視鏡67からアプリケータ61を操作す
ることにより、十二指腸乳頭72経由で胆管73に発生
した被処置部74(胆管狭窄など)の凝固処置を行なう
ことができる。基本的な作用機序は前述の第2の実施の
形態に同等であり、それぞれ最適な凝固処置を行なうこ
とが可能となる。
By operating the applicator 61 from the endoscope 67 inserted through the stomach 71 to the duodenal papilla 72, a treated part 74 (such as bile duct stenosis) generated in the bile duct 73 via the duodenal papilla 72. Coagulation treatment can be performed. The basic mechanism of action is equivalent to that of the above-described second embodiment, and it is possible to perform optimal coagulation treatment.

【0064】更に必要に応じては各部位によって生体イ
ンピーダンスの絶対閾値または相対変化量を個別に設定
していても良い。尚、本実施の形態のアプリケータの適
用範囲は図12の記載に限定されるものではなく、口
腔、耳腔、鼻腔、胃、小腸、大腸、結腸、直腸、尿道、
尿管、子宮、膣などの管腔臓器へ適用できることは明ら
かである。
Further, if necessary, the absolute threshold value or the relative change amount of the bioelectrical impedance may be individually set for each part. In addition, the applicable range of the applicator of the present embodiment is not limited to the description of FIG. 12, and the oral cavity, ear cavity, nasal cavity, stomach, small intestine, large intestine, colon, rectum, urethra,
Obviously, it can be applied to luminal organs such as the ureter, uterus, and vagina.

【0065】本実施の形態は以下の効果を有する。本実
施の形態によれば、生体の血流効果や術者の経験則など
の不定要素に左右されず、管腔臓器に発生した処置部位
において特にアプリケータの軸方向の幾何学的凝固領域
の拡大と凝固状態を常に観測することができるため、治
療効果、安全性、および治療の操作性を向上することが
できる。
This embodiment has the following effects. According to the present embodiment, the geometrical coagulation region in the axial direction of the applicator, particularly in the treatment site generated in the luminal organ, is not affected by indefinite factors such as the blood flow effect of the living body and the operator's rule of thumb. Since the enlargement and coagulation state can always be observed, the treatment effect, safety, and operability of treatment can be improved.

【0066】(第4の実施の形態)次に図13を参照し
て本発明の第4の実施の形態を説明する。本実施の形態
におけるアプリケータ81は図10に示すアプリケータ
37において、さらに測定のための第3の第3周波数用
電極82及び83と、この第3周波数用電極82及び8
3に接続されたリード線84と、該リード線84の後端
に接続したコネクタ85(及びこのコネクタ85上の端
子86a、86b)とを設けた構成にしている。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to FIG. The applicator 81 in the present embodiment is different from the applicator 37 shown in FIG. 10 in that third third frequency electrodes 82 and 83 for measurement and the third frequency electrodes 82 and 8 are further provided.
3, and a connector 85 (and terminals 86a and 86b on the connector 85) connected to the rear end of the lead wire 84 is provided.

【0067】より詳細に説明すると、図13のアプリケ
ータ81は、銅または鋼線などからなる中心導体44
と、この中心導体44を覆うように配置された中空の円
筒形状の誘電体45と、銅またはステンレスなどからな
る金属円筒管46と、誘電体45と同等のフッ素樹脂な
どからなる円筒状のスペーサ47と、中心導体44と電
気的に接続され銅またはステンレスなどからなる先端導
体48と、先端導体48を中心導体44に電気的に接続
する半田などの接合材49と、先端導体49に設けられ
た嵌合手段50と、嵌合手段50に嵌合して設置され樹
脂で構成される先端ピン51と、少なくとも先端導体4
8と金属円筒管46とを被覆しフッ素樹脂などで構成さ
れる被覆52と、アプリケータ81後端に設置された同
軸コネクタ41と、アプリケータ81の先端近傍で被覆
52上に設置された例えば円筒形状に構成された導電部
材からなる第2周波数用電極53及び54と、第3周波
数用電極82及び83と、第2周波数用電極53及び5
4にそれぞれ独立して電気接続された被覆リード線55
と、リード線55の後端に設置されたコネクタ42と、
コネクタ42上に設置された端子43a及び43bと、
第3周波数用電極82及び83にそれぞれ独立して電気
接続された被覆リード線84と、リード線84の後端に
設置されたコネクタ85と、コネクタ85上に設置され
た端子86a及び86bと、から構成されている。
More specifically, the applicator 81 shown in FIG. 13 includes a central conductor 44 made of copper or steel wire or the like.
And a hollow cylindrical dielectric 45 arranged to cover the center conductor 44, a metal cylindrical tube 46 made of copper or stainless steel, and a cylindrical spacer made of fluororesin equivalent to the dielectric 45. 47, a tip conductor 48 electrically connected to the center conductor 44 and made of copper, stainless steel, or the like; a bonding material 49 such as solder for electrically connecting the tip conductor 48 to the center conductor 44; Fitting means 50, a tip pin 51 fitted and fitted with the fitting means 50 and made of resin, and at least a tip conductor 4.
8, a coating 52 made of a fluororesin or the like covering the metal cylindrical tube 46, a coaxial connector 41 installed at the rear end of the applicator 81, and a coaxial connector 41 installed on the coating 52 near the tip of the applicator 81. The second frequency electrodes 53 and 54, the third frequency electrodes 82 and 83, and the second frequency electrodes 53 and 5 which are formed of a cylindrical conductive member.
4 are electrically connected independently to each other.
A connector 42 installed at the rear end of the lead wire 55;
Terminals 43a and 43b installed on the connector 42;
A coated lead wire 84 electrically connected to the third frequency electrodes 82 and 83 independently of each other, a connector 85 installed at the rear end of the lead wire 84, and terminals 86a and 86b installed on the connector 85; It is composed of

【0068】次に本実施の形態の作用を説明する。第1
の周波数のエネルギにより生体組織内の凝固範囲が進展
するに伴い、第2周波数用電極、第3周波数用電極が順
次その領域内に取り込まれていく。
Next, the operation of the present embodiment will be described. First
As the coagulation range in the living tissue is advanced by the energy of the frequency, the second frequency electrode and the third frequency electrode are sequentially taken into the region.

【0069】第2の周波数として例えば350kHzの
高周波、第3の周波数として例えば500kHzの高周
波を用いればそれぞれの電極間で独立に生体インピーダ
ンスを測定することができる。
When a high frequency of, for example, 350 kHz is used as the second frequency and a high frequency of, for example, 500 kHz is used as the third frequency, the bioimpedance can be measured independently between the electrodes.

【0070】また、第2、第3周波数電極の配置は図1
3に示すものに限定されるものではなく、各々の電極は
凝固中心となるスペーサ47の遠位端側及び近位端側の
いずれにも任意に配置して良い。
The arrangement of the second and third frequency electrodes is shown in FIG.
The electrodes are not limited to those shown in FIG. 3, and each electrode may be arbitrarily arranged on either the distal end side or the proximal end side of the spacer 47 which is a coagulation center.

【0071】本実施の形態は以下の効果を有する。本実
施の形態によれば凝固領域の幾何学的拡大をより確実に
検出することができるため、一層の治療効果、安全性の
向上を図ることが可能となる。
This embodiment has the following effects. According to the present embodiment, since the geometric expansion of the coagulation region can be detected more reliably, it is possible to further improve the therapeutic effect and safety.

【0072】(第5の実施の形態)次に図14、図15
を参照して本発明の第5の実施の形態を説明する。図1
4に示す治療装置91は治療用のマイクロ波を発生する
マイクロ波発振器92と、測定用の高周波を発生し、イ
ンピーダンスを測定するインピーダンス測定器93と、
マイクロ波発振器92及びインピーダンス測定器93に
それぞれマイクロ波ケーブル94及び信号ケーブル95
を介してマイクロ波コネクタ96及び測定電極コネクタ
97が接続されるマイクロ波アプリケータ98とからな
り、図14では例えば肝臓99の凝固治療を行う様子を
示しており、マイクロ波アプリケータ98が肝臓99に
穿刺されている。
(Fifth Embodiment) Next, FIGS.
A fifth embodiment of the present invention will be described with reference to FIG. FIG.
The treatment apparatus 91 shown in FIG. 4 includes a microwave oscillator 92 that generates a microwave for treatment, an impedance measuring device 93 that generates a high frequency for measurement, and measures impedance.
A microwave cable 94 and a signal cable 95 are connected to the microwave oscillator 92 and the impedance measuring device 93, respectively.
14 shows a microwave applicator 98 to which a microwave connector 96 and a measurement electrode connector 97 are connected, and FIG. 14 shows, for example, a state in which coagulation treatment of the liver 99 is performed. Has been punctured.

【0073】マイクロ波アプリケータ98のマイクロ波
コネクタ96をマイクロ波ケーブル94を介してマイク
ロ波発振器92に接続することにより、このマイクロ波
発振器92から治療用のマイクロ波が伝達され、マイク
ロ波アプリケータ98の先端部から照射される。
By connecting the microwave connector 96 of the microwave applicator 98 to the microwave oscillator 92 via the microwave cable 94, the microwave for medical treatment is transmitted from the microwave oscillator 92, and the microwave applicator 98 is connected to the microwave oscillator 92. Irradiation is performed from the tip portion of the reference numeral 98.

【0074】また、マイクロ波アプリケータ98の測定
電極コネクタ97を信号ケーブル95を介してインピー
ダンス測定器93に接続することにより、このインピー
ダンス測定器93からマイクロ波の周波数と大きく異な
る周波数の高周波信号がマイクロ波出力中も出力され、
マイクロ波出力中にもインピーダンスの測定を可能にし
ている。
By connecting the measuring electrode connector 97 of the microwave applicator 98 to the impedance measuring device 93 via the signal cable 95, a high frequency signal having a frequency greatly different from the frequency of the microwave is output from the impedance measuring device 93. Also output during microwave output,
The impedance can be measured even during microwave output.

【0075】図15はマイクロ波アプリケータ98の全
体を示す。マイクロ波アプリケータ98は同軸構造にな
っており、内部導体はマイクロ波アンテナ部101a
に、外部導体はマイクロ波アンテナ部101bに導通し
ている。
FIG. 15 shows the entire microwave applicator 98. The microwave applicator 98 has a coaxial structure, and the inner conductor is a microwave antenna unit 101a.
Meanwhile, the external conductor is electrically connected to the microwave antenna unit 101b.

【0076】マイクロ波アンテナ部101aと101b
の間を中心としてマイクロ波が照射され、凝固領域10
3が広がっていく。マイクロ波アプリケータ101の表
面にはその軸方向に沿って6つの測定電極102a〜1
02fが先端側から順にリング状に配置してあり、互い
に絶縁されていて、信号コネクタ97に接続されてい
る。
Microwave antenna units 101a and 101b
Microwaves are irradiated around the space between
3 spreads. The surface of the microwave applicator 101 has six measurement electrodes 102a to 102a along its axial direction.
02f are arranged in a ring shape in order from the front end side, are insulated from each other, and are connected to the signal connector 97.

【0077】なお、本実施の形態では測定電極102a
はマイクロ波アンテナ部101aと導通している。測定
電極102b〜102fはマイクロ波アンテナ部101
bの後端側に等間隔(例えば5mm)に配置されてい
る。
In this embodiment, the measuring electrode 102a
Is electrically connected to the microwave antenna unit 101a. The measurement electrodes 102b to 102f are connected to the microwave antenna unit 101.
b are arranged at equal intervals (for example, 5 mm) on the rear end side.

【0078】次に本実施の形態の作用を説明する。マイ
クロ波治療実行中に様々な測定電極対のインピーダンス
を測定する。組織の凝固が進むとインピーダンスが高く
なることから、このインピーダンスの推移を観測するこ
とで凝固範囲の広がり具合を知ることが出来る。
Next, the operation of the present embodiment will be described. The impedance of the various measurement electrode pairs is measured during microwave therapy. As the coagulation of the tissue progresses, the impedance increases. By observing the change in the impedance, the extent of the coagulation range can be known.

【0079】対の測定電極102a−102b、102
a−102c、102a−102d、102a−102
e、102a−102fのインピーダンスを測定し、そ
の推移を観測することで凝固領域103の広がり具合の
情報が得られる。また、対の測定電極102b−102
c、102c−102d、102d−102e、102
e−102fのインピーダンスを観測すると、より感度
良く凝固領域103の広がり具合の情報が得られる。
A pair of measuring electrodes 102a-102b, 102
a-102c, 102a-102d, 102a-102
e, the impedance of 102a-102f is measured, and information on the extent of expansion of the solidified region 103 is obtained by observing the transition. Also, a pair of measurement electrodes 102b-102
c, 102c-102d, 102d-102e, 102
By observing the impedance of e-102f, information on the extent of the coagulation region 103 can be obtained with higher sensitivity.

【0080】また、対の測定電極102a−102bの
インピーダンスが開放値になった場合、マイクロ波アン
テナ部101a、101bが組織外に抜けてしまったこ
とがわかる。 ここではリジッドな穿刺用マイクロ波ア
プリケータ98を示したが、フレキシブルなマイクロ波
アプリケータでもよい。
When the impedance of the pair of measurement electrodes 102a-102b becomes an open value, it can be seen that the microwave antenna portions 101a and 101b have fallen out of the tissue. Although the rigid microwave applicator 98 for puncturing is shown here, a flexible microwave applicator may be used.

【0081】本実施の形態は以下の効果を有する。この
アプリケータ98で凝固治療を実施し、その処置範囲の
広がり具合を特にアプリケータ98の軸方向への広がり
具合を詳細に知ることが出来る。また、先端の測定電極
102aをアプリケータ98の内部導体と接続している
ため、アンテナ部に余計な電線を必要とせずマイクロ波
放射特性に影響がない。これにより従来と同等の処置能
力を維持できる。
This embodiment has the following effects. The coagulation therapy is performed by the applicator 98, and the extent of the treatment range can be known in detail, particularly the extent of the applicator 98 in the axial direction. Further, since the measuring electrode 102a at the tip is connected to the internal conductor of the applicator 98, no extra electric wire is required for the antenna unit, and there is no influence on the microwave radiation characteristics. This makes it possible to maintain the same treatment capacity as before.

【0082】(第6の実施の形態)次に図16を参照し
て本発明の第6の実施の形態を説明する。図16に示す
第6の実施の形態におけるマイクロ波アプリケータ9
8′の図15に示す第5の実施の形態におけるマイクロ
波アプリケータ98と異なる点は、マイクロ波アプリケ
ータ98の先端側マイクロ波アンテナ部101aと導通
した測定電極がないことである。測定電極はマイクロ波
アンテナ部101bの後端側のみに102b〜102f
まで5つある。
(Sixth Embodiment) Next, a sixth embodiment of the present invention will be described with reference to FIG. Microwave applicator 9 according to the sixth embodiment shown in FIG.
The difference from the microwave applicator 98 in the fifth embodiment 8 'shown in FIG. 15 is that there is no measurement electrode connected to the microwave antenna section 101a on the distal end side of the microwave applicator 98. The measuring electrodes are 102b to 102f only on the rear end side of the microwave antenna unit 101b.
There are five.

【0083】次に本実施の形態の作用を説明する。第5
の実施の形態と同様に、マイクロ波治療実行中に様々な
測定電極対のインピーダンスを測定する。組織の凝固が
進むとインピーダンスが高くなることから、このインピ
ーダンスの推移を観測することで凝固領域103の広が
り具合を知ることが出来る。
Next, the operation of the present embodiment will be described. Fifth
As in the first embodiment, the impedance of various measurement electrode pairs is measured during the execution of the microwave therapy. Since the impedance increases as the coagulation of the tissue progresses, the extent of the coagulation region 103 can be known by observing the change in the impedance.

【0084】対の測定電極102b−102c、102
c−102d、102d−102e、102e−102
fのインピーダンスを測定し、その推移を観測すること
で凝固領域103の広がり具合の情報が得られる。ここ
ではリジッドな穿刺用マイクロ波アプリケータ98′を
示したが、フレキシブルなマイクロ波アアプリケータで
もよい。
A pair of measuring electrodes 102b-102c, 102
c-102d, 102d-102e, 102e-102
By measuring the impedance of f and observing its transition, information on the extent of the solidification region 103 can be obtained. Although a rigid puncture microwave applicator 98 'is shown here, a flexible microwave applicator may be used.

【0085】本実施の形態は以下の効果を有する。第5
の実施の形態と同様に、このアプリケータ98′で凝固
治療を実施し、その処置範囲の広がり具合を知ることが
出来る。加えて、測定電極全てがマイクロ波アンテナ部
と絶縁されているため、インピーダンス測定器側に必要
なフィルタを設ける必要を軽減できる。
This embodiment has the following effects. Fifth
In the same manner as in the embodiment, the coagulation treatment is performed by the applicator 98 ', and the extent of the treatment range can be known. In addition, since all of the measurement electrodes are insulated from the microwave antenna unit, it is possible to reduce the necessity of providing a necessary filter on the impedance measuring instrument side.

【0086】(第7の実施の形態)次に図17を参照し
て本発明の第6の実施の形態を説明する。本実施の形態
におけるマイクロ波アプリケータ106は図16のマイ
クロ波アプリケータ98′をマイクロ波アプリケータ部
107と、このマイクロ波アプリケータ部107を通す
ことができる中空の穿刺カテーテル部108とに分離し
たような構成にしている。
(Seventh Embodiment) Next, a sixth embodiment of the present invention will be described with reference to FIG. Microwave applicator 106 in the present embodiment separates microwave applicator 98 ′ in FIG. 16 into microwave applicator section 107 and hollow puncture catheter section 108 through which microwave applicator section 107 can pass. The configuration is as follows.

【0087】図17に示すように本実施の形態における
マイクロ波アプリケータ部107は同軸構造になってお
り、内部導体はマイクロ波アンテナ部101aに、外部
導体はマイクロ波アンテナ部101bに導通している。
マイクロ波コネクタ96からマイクロ波が伝達され、マ
イクロ波アンテナ部101aと101bの間を中心とし
てマイクロ波が照射される。
As shown in FIG. 17, the microwave applicator 107 in the present embodiment has a coaxial structure, and the inner conductor is connected to the microwave antenna 101a and the outer conductor is connected to the microwave antenna 101b. I have.
Microwaves are transmitted from the microwave connector 96, and the microwaves are irradiated mainly between the microwave antenna units 101a and 101b.

【0088】一方、このマイクロ波アプリケータ部10
7が挿通される円筒形状の穿刺カテーテル部108はそ
の先端側の表面には5つの測定電極102b〜102f
が先端側から等間隔(例えば5mm)で順に配置してあ
り、互いに絶縁されていて、信号コネクタ97に接続さ
れている。穿刺カテーテル部108にはマイクロ波アプ
リケータ部107が挿入可能で、挿入した状態は図16
のようになる。
On the other hand, the microwave applicator section 10
7 is inserted into the cylindrical puncture catheter section 108, and five measurement electrodes 102b to 102f
Are arranged at regular intervals (for example, 5 mm) from the front end side, are insulated from each other, and are connected to the signal connector 97. The microwave applicator 107 can be inserted into the puncture catheter 108, and the inserted state is shown in FIG.
become that way.

【0089】次に本実施の形態の作用を説明する。穿刺
カテーテル部108を処置部に穿刺したあと、マイクロ
波アプリケータ部107を挿入、穿刺する。マイクロ波
治療実行中に様々な測定電極対のインピーダンスを測定
する。組織の凝固が進むとインピーダンスが高くなるこ
とから、このインピーダンスの推移を観測することで凝
固範囲の広がり具合を知ることが出来る。
Next, the operation of the present embodiment will be described. After puncturing the puncture catheter section 108 into the treatment section, the microwave applicator section 107 is inserted and punctured. The impedance of the various measurement electrode pairs is measured during microwave therapy. As the coagulation of the tissue progresses, the impedance increases. By observing the change in the impedance, the extent of the coagulation range can be known.

【0090】図16の第6の実施の形態と同様に、測定
電極対102b−102c、102e−102d、10
2d−102e、102e−102fのインピーダンス
を測定し、その推移を観測することで凝固範囲の広がり
具合の情報が得られる。
As in the sixth embodiment shown in FIG. 16, measurement electrode pairs 102b-102c, 102e-102d,
By measuring the impedances of 2d-102e and 102e-102f and observing the transition, information on the extent of the coagulation range can be obtained.

【0091】本実施の形態は以下の効果を有する。他の
実施の形態と同様に凝固治療を行い、その処置範囲の広
がり具合を知ることが出来る。また、測定電極を穿刺カ
テーテル部に配置したので、マイクロ波アプリケータの
構造を複雑にすることがない。
This embodiment has the following effects. Coagulation therapy is performed as in the other embodiments, and the extent of the treatment range can be known. Further, since the measurement electrode is arranged on the puncture catheter section, the structure of the microwave applicator does not become complicated.

【0092】(第8の実施の形態)次に図18〜図20
を参照して本発明の第8の実施の形態を説明する。図1
8は本実施の形態に関わるプローブ130の挿入部13
1の先端側を示す。
(Eighth Embodiment) Next, FIGS.
An eighth embodiment of the present invention will be described with reference to FIG. FIG.
8 is an insertion portion 13 of the probe 130 according to the present embodiment.
1 shows the tip side.

【0093】挿入部131の先端には超音波送受波手段
132が備えられ、その手前側に光学観察手段133と
挿入部131内に設けられたチャンネル134の開口部
135が設けられている。さらにその手前の挿入部表面
には面電極136が設けられている。チャンネル134
には針状電極137が挿通され、開口部135から突没
自在に配置されている。
An ultrasonic wave transmitting / receiving means 132 is provided at the tip of the insertion section 131, and an optical observation means 133 and an opening 135 of a channel 134 provided in the insertion section 131 are provided on the front side. Further, a surface electrode 136 is provided on the surface of the insertion portion in front thereof. Channel 134
The needle-shaped electrode 137 is inserted through the opening 135 and is disposed so as to be able to protrude and retract from the opening 135.

【0094】超音波送受波手段132によって観測され
る観測視野としての超音波視野138と光学観察手段1
33によって観察される光学視野139の方向は略一致
しており、この視野方向の組織に針状電極137が穿刺
されるように開口部135の開口角度が調整されてい
る。針状電極137は図19に示すように先端が鋭利に
形成された電極141と電極141の周囲を覆う絶縁部
材142とから形成されている。また、光学観察手段1
33はその先端の対物レンズ系143とその結像位置に
その先端面が配置されたイメージガイド144とからな
る。
An ultrasonic field of view 138 as an observation field observed by the ultrasonic wave transmitting / receiving means 132 and the optical observation means 1
The directions of the optical field of view 139 observed by 33 substantially coincide with each other, and the opening angle of the opening 135 is adjusted so that the needle-shaped electrode 137 is punctured into the tissue in the direction of the visual field. As shown in FIG. 19, the needle-like electrode 137 is formed of an electrode 141 having a sharp tip and an insulating member 142 covering the periphery of the electrode 141. Optical observation means 1
Reference numeral 33 denotes an objective lens system 143 at the tip and an image guide 144 having a tip face disposed at the image forming position.

【0095】次に本実施の形態の作用を説明する。生体
腔内、例えば図20に示すように食道145に、プロー
ブ130の挿入部131を光学観察手段133によって
腔内を観察しながら所望の位置まで挿入する。所望位置
に到達したところで、超音波送受波手段132によって
組織内部を超音波観測しながら針状電極137を前進さ
せて所望の位置に穿刺する。
Next, the operation of the present embodiment will be described. The insertion section 131 of the probe 130 is inserted into a living body cavity, for example, into the esophagus 145 as shown in FIG. Upon reaching the desired position, the needle electrode 137 is advanced while puncturing the desired position while observing the inside of the tissue with ultrasonic waves by the ultrasonic wave transmitting / receiving means 132.

【0096】この状態で針状電極137の電極141と
面電極136との間に高周波電流を印加し、電極141
周辺の組織を凝固する。同時に両電極間のインピーダン
スを測定し、予め設定したインピーダンス値に達した時
点で高周波電流の印加を停止する。
In this state, a high-frequency current is applied between the electrode 141 of the needle electrode 137 and the surface electrode 136,
Coagulate surrounding tissue. Simultaneously, the impedance between the two electrodes is measured, and when the impedance value reaches a preset impedance value, the application of the high-frequency current is stopped.

【0097】本実施の形態は以下の効果を有する。光学
観察手段133によって所望の管腔内表面を目視し、且
つ超音波送受波手段132によって所望部位の組織内部
を観測しながら針状電極を組織に穿刺できるので、間違
いなく所望の部位に針状電極を穿刺留置できる。
This embodiment has the following effects. The needle-like electrode can be punctured into the tissue while observing the desired inner surface of the lumen by the optical observation means 133 and observing the inside of the tissue at the desired part by the ultrasonic wave transmitting / receiving means 132. The electrode can be punctured and placed.

【0098】また凝固中も穿刺部の超音波観測が可能で
あるから針状電極の位置ズレを知ることができるので所
望部位を確実に凝固できる。さらにインピーダンス測定
によって所望部位の組織変性状態、即ち凝固の度合いが
検知できるので凝固の不足や過剰な凝固を防止し、常に
一定の凝固を行うことができる。
Further, since the ultrasonic observation of the puncture portion is possible even during the coagulation, the positional deviation of the needle electrode can be known, so that the desired portion can be surely coagulated. Furthermore, since the tissue degeneration state of a desired site, that is, the degree of coagulation, can be detected by impedance measurement, insufficient or excessive coagulation can be prevented, and constant coagulation can always be performed.

【0099】尚、本プローブ130の適用は上記例の食
道145に限定されるものではなく、生体のあらゆる腔
に適用され、例えば図21に示すように尿道146を経
て、つまり経尿道的に膀胱147の下部の前立腺148
に適用したり、図22のように直腸149を経て、つま
り経直腸的に前立腺148や直腸149に適用したり、
図23のように食道145を経て,つまり経口的に気管
支151に適用したりしてもよい。
The application of the probe 130 is not limited to the esophagus 145 of the above example, but is applied to all cavities of a living body, for example, through the urethra 146 as shown in FIG. 147 lower prostate 148
Or via the rectum 149 as shown in FIG. 22, ie, transrectally to the prostate 148 or rectum 149,
As shown in FIG. 23, it may be applied to the bronchus 151 via the esophagus 145, that is, orally.

【0100】また、凝固手段は本実施の形態のモノポー
ラ電極による高周波凝固手段でも良いが、その他に図2
4、図25のようにバイポーラやマイクロ波、レーザを
使用したものでも良い。
The solidification means may be a high-frequency solidification means using a monopolar electrode according to the present embodiment.
4. As shown in FIG. 25, a bipolar, microwave, or laser may be used.

【0101】図24に示すバイポーラ電極161は内部
電極162と、この内部電極162を被覆する絶縁被覆
163と、この絶縁被覆163の外側に配置された外部
電極164と、この外部電極164の先端以外の部分を
覆うように設けた外部被覆165とから構成される。な
お、外部電極164は変性状態検出用電極の機能も兼用
しても良い。
The bipolar electrode 161 shown in FIG. 24 has an inner electrode 162, an insulating coating 163 covering the inner electrode 162, an outer electrode 164 disposed outside the insulating coating 163, and a tip of the outer electrode 164. And an outer coating 165 provided so as to cover the portion. Note that the external electrode 164 may also serve as a function of a denatured state detection electrode.

【0102】また、図25に示すレーザ処置具171は
レーザファイバ172とこのレーザファイバ172の外
周に設けられた外部電極173と、外部被覆174とか
ら構成される。
The laser treatment tool 171 shown in FIG. 25 comprises a laser fiber 172, an external electrode 173 provided on the outer periphery of the laser fiber 172, and an external coating 174.

【0103】[付記] 1.生体組織内部に穿刺挿入される針形状で、先端側に
治療のためのエネルギを生体に付与する処置部を備えた
アプリケータと、前記アプリケータの軸方向に前記処置
部と離間して設けられた測定電極と、前記処置部に治療
のための治療用エネルギをマイクロ波で供給するエネル
ギ供給手段と、前記測定電極に前記治療用エネルギの周
波数と異なる周波数の測定用の高周波信号を供給する測
定用信号発生手段と、前記測定電極に供給された測定用
信号発生手段の出力からインピーダンスを測定するイン
ピーダンス測定手段と、前記インピーダンス測定手段の
測定結果により前記エネルギ供給手段の出力を制御する
制御手段と、を備えたことを特徴とする治療装置。
[Supplementary Notes] An applicator having a treatment section for applying energy for treatment to a living body at a distal end side in a needle shape that is punctured and inserted into a living tissue, and provided separately from the treatment section in the axial direction of the applicator. A measuring electrode, an energy supply unit for supplying the treatment unit with treatment energy for treatment by microwave, and a measurement for supplying a high-frequency signal for measurement of a frequency different from the frequency of the treatment energy to the measurement electrode. Signal generation means, impedance measurement means for measuring impedance from the output of the measurement signal generation means supplied to the measurement electrode, and control means for controlling the output of the energy supply means based on the measurement result of the impedance measurement means. , A treatment device comprising:

【0104】2.生体組織内部に穿刺挿入される先端部
に治療のためのエネルギを生体に付与する処置部を備え
たアプリケータと、少なくとも前記アプリケータの前記
処置部より手前側に設けられた測定電極と、前記処置部
に治療のためのエネルギを供給するエネルギ供給手段
と、前記測定電極に測定用の周波数の信号を供給する周
波数発生手段と、前記測定電極に供給された周波数発生
手段の出力からインピーダンスを測定するインピーダン
ス測定手段と、前記インピーダンス測定手段の測定結果
により前記エネルギ供給手段の出力を制御する制御手段
と、を備えたことを特徴とする治療装置。
2. An applicator provided with a treatment unit that applies energy for treatment to a living body at a distal end portion that is punctured and inserted into a living tissue, a measurement electrode provided at least on the near side of the treatment unit of the applicator, and Energy supply means for supplying energy for treatment to the treatment section, frequency generation means for supplying a signal of a frequency for measurement to the measurement electrode, and impedance measurement from the output of the frequency generation means supplied to the measurement electrode And a control unit for controlling an output of the energy supply unit based on a measurement result of the impedance measurement unit.

【0105】3.治療のためのエネルギを供給する第1
の周波数発生装置と、測定のためのエネルギを供給する
第2の周波数発生装置と、治療のためのエネルギを生体
に投入する第1周波数用電極を備えたアプリケータと、
アプリケータ上に設置された第2周波数用電極と、第2
周波数電極間のインピーダンスを測定する手段と、イン
ピーダンスの測定結果に応じて第1の周波数の出力を制
御する手段と、からなる治療装置。
3. First to supply energy for treatment
A frequency generator, a second frequency generator for supplying energy for measurement, and an applicator including a first frequency electrode for supplying energy for treatment to a living body;
An electrode for a second frequency installed on the applicator;
A treatment apparatus comprising: means for measuring impedance between frequency electrodes; and means for controlling output of a first frequency in accordance with a result of impedance measurement.

【0106】4.付記3に記載の治療装置であり、第2
周波数用電極が複数の電極対から構成されているもの。 5.付記4に記載の治療装置であり、第2周波数用第1
電極対と、第2周波数用第2電極対と、各電極間を選択
的に作動する第2周波数発生手段と、該第1電極間のイ
ンピーダンスを測定する手段と、該第2電極間のインピ
ーダンスを測定する手段と、該第1と該第2電極間のイ
ンピーダンスを測定する手段と、3つの測定結果に応じ
て第1の周波数の出力を制御する手段と、を含むもの。 6.付記5に記載の治療装置であり、第2周波数用第1
電極対が第1周波数による焼灼対象範囲内に配置され、
第2周波数用第2電極対が第1周波数による焼灼対象範
囲外に配置され、該第1電極間のインピーダンスを測定
する手段が焼灼レベルモニタを構成し、該第2電極間の
インピーダンスを測定する手段が非焼灼レベルモニタを
構成し、該第1と該第2電極間のインピーダンスを測定
する手段が、焼灼範囲モニタを構成するもの。
4. The treatment device according to claim 3, wherein
The frequency electrode is composed of a plurality of electrode pairs. 5. The treatment device according to claim 4, wherein the first device for the second frequency is provided.
An electrode pair, a second electrode pair for a second frequency, a second frequency generating means for selectively operating between the electrodes, a means for measuring an impedance between the first electrodes, and an impedance between the second electrodes. , A means for measuring the impedance between the first and second electrodes, and a means for controlling the output of the first frequency in accordance with the three measurement results. 6. The treatment device according to claim 5, wherein the first device for the second frequency is provided.
An electrode pair is disposed within a range to be ablated by the first frequency;
The second pair of electrodes for the second frequency is disposed outside the range to be ablated by the first frequency, and the means for measuring the impedance between the first electrodes constitutes a cautery level monitor, and measures the impedance between the second electrodes. The means comprises a non-cautery level monitor and the means for measuring the impedance between the first and second electrodes comprises a cautery range monitor.

【0107】7.付記3〜6のいずれかに記載の治療装
置であり、測定のためのエネルギを供給する第3の周波
数発生装置と、アプリケータ上に設置された第3周波数
用電極と、第3周波数電極間のインピーダンスを測定す
る手段と、インピーダンスの測定結果に応じて第1の周
波数の出力を制御する手段と、を更に含むもの。 8.第1の周波数が1GHz以上の周波数、第2の周波
数が1GHz以下の周波数である付記3〜7のいずれか
に記載の治療装置。
7. The treatment device according to any one of supplementary notes 3 to 6, wherein a third frequency generator that supplies energy for measurement, a third frequency electrode installed on the applicator, and a third frequency electrode And means for controlling the output of the first frequency in accordance with the impedance measurement result. 8. The treatment device according to any one of supplementary notes 3 to 7, wherein the first frequency is a frequency of 1 GHz or more, and the second frequency is a frequency of 1 GHz or less.

【0108】9.第1の周波数が2450±100MH
zであり、第1周波数用電極がマイクロ波アンテナであ
る付記3〜8のいずれかに記載の治療装置。 10.第2の周波数が350±35KHzである付記3
〜9のいずれかに記載の治療装置。 11.第2の周波数が500±50KHzである付記3
〜9のいずれかに記載の治療装置。 12.第2の周波数が350±50KHz、第3の周波
数が500±50KHzである付記7に記載の治療装
置。
9. The first frequency is 2450 ± 100MH
9. The treatment apparatus according to any one of appendices 3 to 8, wherein z is the first frequency electrode is a microwave antenna. 10. Appendix 3 in which the second frequency is 350 ± 35 KHz
10. The treatment device according to any one of claims 9 to 9. 11. Appendix 3 where the second frequency is 500 ± 50 KHz
10. The treatment device according to any one of claims 9 to 9. 12. 8. The treatment device according to claim 7, wherein the second frequency is 350 ± 50 KHz, and the third frequency is 500 ± 50 KHz.

【0109】13.付記3〜12の治療装置に組み合わ
されて使用されるアプリケータであり、出力用の第1周
波数用電極と測定用の第2周波数用または第3周波数用
電極が同軸上に配置されたもの。
13. An applicator used in combination with the treatment apparatus according to Supplementary notes 3 to 12, wherein the first frequency electrode for output and the second or third frequency electrode for measurement are coaxially arranged.

【0110】14.複数の測定用電極対を有する付記1
3に記載のアプリケータ。 15.治療用の第1周波数用電極の外表面が絶縁コーテ
ィングされた付記13、14のいずれかに記載のアプリ
ケータ。 16.治療用の第1周波数用電極と、測定用電極の一つ
とが導通した付記13〜14のいずれかに記載のアプリ
ケータ。
14. Appendix 1 having a plurality of measurement electrode pairs
4. The applicator according to 3. 15. 15. The applicator according to any one of supplementary notes 13 and 14, wherein an outer surface of the therapeutic first frequency electrode is insulated. 16. 15. The applicator according to any of supplementary notes 13 to 14, wherein the treatment first frequency electrode and one of the measurement electrodes are electrically connected.

【0111】17.測定用電極の全てが治療用の第1周
波数用電極と絶縁されている付記13〜15のいずれか
に記載のアプリケータ。 18.付記3〜12の治療装置に組み合わされて使用さ
れるカテーテルであり、測定用電極が中空のカテーテル
体の外表面上に配置され、その内部に治療用の第1周波
数電極を有するアプリケータを着脱自在に内蔵するも
の。
17. 16. The applicator according to any one of appendices 13 to 15, wherein all of the measurement electrodes are insulated from the first frequency electrode for treatment. 18. A catheter used in combination with the treatment apparatus according to Supplementary Notes 3 to 12, wherein a measurement electrode is disposed on an outer surface of a hollow catheter body, and an applicator having a first frequency electrode for treatment is detachably attached to the inside thereof. Built-in freely.

【0112】19.視野方向が略一致した光学観察手段
および超音波観測手段と、上記視野内の生体組織に穿刺
可能な針状電極と、上記針状電極に比較して十分に広い
面積を有する電極と、を備えた生体の体腔内に挿入可能
なプローブであり、上記2つの電極により針状電極周辺
組織の生体情報を検知する手段を有するもの。
19. An optical observation unit and an ultrasonic observation unit whose viewing directions are substantially the same, a needle-like electrode capable of puncturing a living tissue in the field of view, and an electrode having a sufficiently large area as compared with the needle-like electrode, are provided. A probe which can be inserted into a body cavity of a living body, and which has means for detecting biological information of a tissue around the needle electrode by the two electrodes.

【0113】20.付記19に記載のプローブで、針状
電極にエネルギ放出手段が設けられており、前記付記3
〜9のいずれかに記載の構成と組み合わせて使用される
ことにより、少なくともエネルギ放出時におけるインピ
ーダンスを測定し、その測定結果によりエネルギ放出手
段から放出されるエネルギが制御されるもの。 21.付記20に記載の治療装置でありエネルギ放出手
段が、モノポーラ電極、バイポーラ電極、またはレーザ
プローブで構成されているもの。
20. The probe according to Supplementary Note 19, wherein the needle-shaped electrode is provided with energy emission means,
9 to measure the impedance at least at the time of energy release, and control the energy released from the energy release means based on the measurement result. 21. 21. The treatment apparatus according to Supplementary Note 20, wherein the energy emitting means is constituted by a monopolar electrode, a bipolar electrode, or a laser probe.

【0114】[0114]

【発明の効果】以上説明したように本発明によれば、生
体組織内部に穿刺挿入される針形状で、先端側に治療の
ためのエネルギを生体に付与する処置部を備えたアプリ
ケータと、前記アプリケータの軸方向に前記処置部と離
間して設けられた測定電極と、前記処置部に治療のため
の治療用エネルギをマイクロ波で供給するエネルギ供給
手段と、前記測定電極に前記治療用エネルギの周波数と
異なる周波数の測定用の高周波信号を供給する測定用信
号発生手段と、前記測定電極に供給された測定用信号発
生手段の出力からインピーダンスを測定するインピーダ
ンス測定手段と、前記インピーダンス測定手段の測定結
果により前記エネルギ供給手段の出力を制御する制御手
段と、を備えているので、凝固深達性の良好なマイクロ
波による治療用エネルギの照射により処置部付近から生
体組織を凝固等の処置領域をその外側に拡大させ、その
際高周波信号により測定電極間の生体組織のインピーダ
ンスの測定により、アプリケータの軸方向への処置領域
の幾何学的な広がりを把握して、マイクロ波による治療
用エネルギの出力制御を行える。
As described above, according to the present invention, there is provided an applicator having a treatment section for applying energy for treatment to a living body at a distal end side in the form of a needle which is punctured and inserted into a living tissue, A measuring electrode provided at a distance from the treatment section in the axial direction of the applicator; an energy supply unit for supplying a treatment energy for treatment to the treatment section by microwave; Measuring signal generating means for supplying a high-frequency signal for measuring a frequency different from the frequency of energy, impedance measuring means for measuring impedance from an output of the measuring signal generating means supplied to the measuring electrode, and the impedance measuring means And control means for controlling the output of the energy supply means based on the measurement results of the above. The treatment area such as coagulation of the living tissue is expanded from the vicinity of the treatment section to the outside by irradiation of the lugi, and the impedance of the living tissue between the measurement electrodes is measured by a high-frequency signal. By grasping the geometric spread, it is possible to control the output of the treatment energy by microwaves.

【0115】また、生体組織内部に穿刺挿入される先端
部に治療のためのエネルギを生体に付与する処置部を備
えたアプリケータと、少なくとも前記アプリケータの前
記処置部より手前側に設けられた測定電極と、前記処置
部に治療のためのエネルギを供給するエネルギ供給手段
と、前記測定電極に測定用の周波数の信号を供給する周
波数発生手段と、前記測定電極に供給された周波数発生
手段の出力からインピーダンスを測定するインピーダン
ス測定手段と、前記インピーダンス測定手段の測定結果
により前記エネルギ供給手段の出力を制御する制御手段
と、を備えているので、治療用エネルギの照射により処
置部付近から生体組織を凝固等の処置領域をその外側に
拡大させ、その際測定用の信号により測定電極間の生体
組織のインピーダンスの測定により、アプリケータの軸
方向への処置領域の幾何学的な広がりを把握して、治療
用エネルギの出力制御を行える。
Further, an applicator provided with a treatment section for applying energy for treatment to a living body at a distal end portion which is punctured and inserted into a living tissue, and provided at least in front of the treatment section of the applicator. A measurement electrode, an energy supply unit that supplies energy for treatment to the treatment unit, a frequency generation unit that supplies a signal of a measurement frequency to the measurement electrode, and a frequency generation unit that is supplied to the measurement electrode. Since there are provided impedance measuring means for measuring impedance from the output and control means for controlling the output of the energy supply means based on the measurement result of the impedance measuring means, the living tissue can be irradiated from the vicinity of the treatment section by irradiation of therapeutic energy. The treatment area such as coagulation is expanded to the outside, and the impedance of the biological tissue between the measurement electrodes is measured by the measurement signal. The scan measurements, to grasp the geometrical spread of the treatment area in the axial direction of the applicator, allows the output control of the therapeutic energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の治療装置の構成を
示すブロック図。
FIG. 1 is a block diagram showing a configuration of a treatment apparatus according to a first embodiment of the present invention.

【図2】焼灼範囲モニタ部の構成を示すブロック図。FIG. 2 is a block diagram showing a configuration of an ablation range monitoring unit.

【図3】マイクロ波アプリケータの先端側の構成を示す
側面図。
FIG. 3 is a side view showing the configuration on the distal end side of the microwave applicator.

【図4】マイクロ波アプリケータを生体組織に穿刺して
凝固処置をしている様子を示す図。
FIG. 4 is a diagram showing a state in which a microwave applicator punctures a living tissue to perform a coagulation treatment.

【図5】図4よりも深く穿刺して凝固処置をしている様
子を示す図。
FIG. 5 is a diagram showing a state in which a coagulation treatment is performed by puncturing deeper than in FIG. 4;

【図6】マイクロ波アプリケータに設けた測定用電極と
モニタ部との接続関係を示す説明図。
FIG. 6 is an explanatory diagram showing a connection relationship between a measurement electrode provided in a microwave applicator and a monitor unit.

【図7】凝固処置の際のマイクロ波出力とモニタ動作の
タイミング関係を示す説明図。
FIG. 7 is an explanatory diagram showing a timing relationship between a microwave output and a monitoring operation during a coagulation treatment.

【図8】マイクロ波出力量と焼灼レベルの関係を示す
図。
FIG. 8 is a diagram showing a relationship between a microwave output amount and an ablation level.

【図9】本発明の第2の実施の形態の治療装置の構成を
示す斜視図。
FIG. 9 is a perspective view showing a configuration of a treatment apparatus according to a second embodiment of the present invention.

【図10】アプリケータの内部構成を示す図。FIG. 10 is a diagram showing an internal configuration of an applicator.

【図11】本発明の第3の実施の形態におけるアプリケ
ータの内部構成を示す図。
FIG. 11 is a diagram showing an internal configuration of an applicator according to a third embodiment of the present invention.

【図12】内視鏡のチャンネル内に挿通して治療の処置
を行う説明図。
FIG. 12 is an explanatory diagram of performing a treatment procedure by being inserted into a channel of an endoscope.

【図13】本発明の第4の実施の形態におけるアプリケ
ータの内部構成を示す図。
FIG. 13 is a diagram illustrating an internal configuration of an applicator according to a fourth embodiment of the present invention.

【図14】本発明の第5の実施の形態の治療装置の構成
を示す斜視図。
FIG. 14 is a perspective view showing a configuration of a treatment apparatus according to a fifth embodiment of the present invention.

【図15】マイクロ波アプリケータの構成を示す斜視
図。
FIG. 15 is a perspective view showing a configuration of a microwave applicator.

【図16】本発明の第6の実施の形態におけるマイクロ
波アプリケータの構成を示す斜視図。
FIG. 16 is a perspective view showing a configuration of a microwave applicator according to a sixth embodiment of the present invention.

【図17】本発明の第7の実施の形態におけるマイクロ
波アプリケータの構成を示す斜視図。
FIG. 17 is a perspective view showing a configuration of a microwave applicator according to a seventh embodiment of the present invention.

【図18】本発明の第8の実施の形態におけるプローブ
の先端側の構成を示す断面図。
FIG. 18 is a cross-sectional view illustrating a configuration of a distal end side of a probe according to an eighth embodiment of the present invention.

【図19】針状電極の構成を示す断面図。FIG. 19 is a cross-sectional view showing a configuration of a needle electrode.

【図20】食道内に挿通して治療を行う様子を示す図。FIG. 20 is a diagram showing a state in which treatment is performed by being inserted into the esophagus.

【図21】尿道に挿通して治療を行う様子を示す図。FIG. 21 is a view showing a state in which a treatment is performed by being inserted into the urethra.

【図22】経直腸的に挿入して治療を行う様子を示す
図。
FIG. 22 is a view showing a state in which treatment is performed by transrectal insertion.

【図23】経口腔的に挿通して気管支を治療を行う様子
を示す図。
FIG. 23 is a diagram showing a state in which a bronchus is treated by being inserted orally.

【図24】変形例における凝固処置を行うバイポーラ電
極の構成を示す断面図。
FIG. 24 is a cross-sectional view showing a configuration of a bipolar electrode that performs a coagulation treatment in a modified example.

【図25】他の変形例におけるレーザ処置具の構成を示
す断面図。
FIG. 25 is a sectional view showing the configuration of a laser treatment tool according to another modification.

【符号の説明】[Explanation of symbols]

1…治療装置 2…マイクロ波発振部 3…マイクロ波伝送ケーブル 5…マイクロ波穿刺アプリケータ 6…マイクロ波アンテナ部 7…生体組織 8A、8B…第1の電極 9A、9B…第2の電極 10…焼灼範囲 11…焼灼範囲モニタ部 12…焼灼レベルモニタ部 13…焼灼基準モニタ部 14…HF発振部 15…制御部 16…焼灼範囲比較部 17…焼灼レベル比較部 18…凝固範囲認識部 19…入力部 20…マイクロ波出力制御部 21…告知部 23…電流測定部 24…電圧測定部 25…インピーダンス演算部 DESCRIPTION OF SYMBOLS 1 ... Treatment apparatus 2 ... Microwave oscillation part 3 ... Microwave transmission cable 5 ... Microwave puncture applicator 6 ... Microwave antenna part 7 ... Biological tissue 8A, 8B ... 1st electrode 9A, 9B ... 2nd electrode 10 ... Ablation range 11 ... Ablation range monitor section 12 ... Ablation level monitor section 13 ... Ablation reference monitor section 14 ... HF oscillation section 15 ... Control section 16 ... Ablation range comparison section 17 ... Ablation level comparison section 18 ... Coagulation range recognition section 19 ... Input unit 20 ... Microwave output control unit 21 ... Notification unit 23 ... Current measurement unit 24 ... Voltage measurement unit 25 ... Impedance calculation unit

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年8月12日(1999.8.1
2)
[Submission date] August 12, 1999 (1999.8.1)
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0113[Correction target item name]

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0113】20.付記19に記載のプローブで、針状
電極にエネルギ放出手段が設けられており、前記付記3
12のいずれかに記載の構成と組み合わせて使用され
ることにより、少なくともエネルギ放出時におけるイン
ピーダンスを測定し、その測定結果によりエネルギ放出
手段から放出されるエネルギが制御されるもの。 21.付記20に記載の治療装置でありエネルギ放出手
段が、モノポーラ電極、バイポーラ電極、またはレーザ
プローブで構成されているもの。
20. The probe according to Supplementary Note 19, wherein the needle-shaped electrode is provided with energy emission means,
By being used in combination with construction according to any one of 1 to 12, measuring the impedance at least energy release, the measurement results by what energy emitted from the energy emitting means is controlled. 21. 21. The treatment apparatus according to Supplementary Note 20, wherein the energy emitting means is constituted by a monopolar electrode, a bipolar electrode, or a laser probe.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図13[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図13】 FIG. 13

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水川 聡 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 晴山 典彦 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 Fターム(参考) 4C026 AA03 AA04 FF39 GG03 GG06 HH02 HH13 4C060 KK04 KK06 KK07 KK10 KK13 KK20 KK23 4C082 MA02 MC01 ME02 ME05 ME06 RA02 RA06 RE40 RJ03 RJ06 RL02 RL13  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoshi Mizukawa 2-43-2 Hatagaya, Shibuya-ku, Tokyo Inside Olympus Optical Industrial Co., Ltd. (72) Norihiko Haruyama 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. F term (reference) 4C026 AA03 AA04 FF39 GG03 GG06 HH02 HH13 4C060 KK04 KK06 KK07 KK10 KK13 KK20 KK23 4C082 MA02 MC01 ME02 ME05 ME06 RA02 RA06 RE40 RJ03 RJ06 RL02 RL13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生体組織内部に穿刺挿入される針形状
で、先端側に治療のためのエネルギを生体に付与する処
置部を備えたアプリケータと、 前記アプリケータの軸方向に前記処置部と離間して設け
られた測定電極と、 前記処置部に治療のための治療用エネルギをマイクロ波
で供給するエネルギ供給手段と、 前記測定電極に前記治療用エネルギの周波数と異なる周
波数の測定用の高周波信号を供給する測定用信号発生手
段と、 前記測定電極に供給された測定用信号発生手段の出力か
らインピーダンスを測定するインピーダンス測定手段
と、 前記インピーダンス測定手段の測定結果により前記エネ
ルギ供給手段の出力を制御する制御手段と、 を備えたことを特徴とする治療装置。
1. An applicator having a needle-shaped puncture-inserted inside a living tissue and having a treatment section on the distal end side for applying energy for treatment to a living body; A measuring electrode provided at a distance, energy supplying means for supplying a treatment energy for treatment to the treatment section by microwaves, and a high frequency for measurement of a frequency different from the frequency of the treatment energy to the measurement electrode A signal generation unit for measurement that supplies a signal; an impedance measurement unit that measures impedance from an output of the signal generation unit for measurement supplied to the measurement electrode; and an output of the energy supply unit based on a measurement result of the impedance measurement unit. A treatment device comprising: control means for controlling;
【請求項2】 生体組織内部に穿刺挿入される先端部に
治療のためのエネルギを生体に付与する処置部を備えた
アプリケータと、 少なくとも前記アプリケータの前記処置部より手前側に
設けられた測定電極と、 前記処置部に治療のためのエネルギを供給するエネルギ
供給手段と、 前記測定電極に測定用の周波数の信号を供給する周波数
発生手段と、 前記測定電極に供給された周波数発生手段の出力からイ
ンピーダンスを測定するインピーダンス測定手段と、 前記インピーダンス測定手段の測定結果により前記エネ
ルギ供給手段の出力を制御する制御手段と、 を備えたことを特徴とする治療装置。
2. An applicator provided with a treatment section for applying energy for treatment to a living body at a distal end portion punctured and inserted into a living tissue, and provided at least on the near side of the treatment section of the applicator. A measurement electrode, an energy supply unit that supplies energy for treatment to the treatment unit, a frequency generation unit that supplies a signal of a measurement frequency to the measurement electrode, and a frequency generation unit that is supplied to the measurement electrode. A treatment apparatus comprising: impedance measuring means for measuring impedance from an output; and control means for controlling an output of the energy supply means based on a measurement result of the impedance measuring means.
JP11211180A 1999-07-26 1999-07-26 Treatment device Pending JP2001037775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11211180A JP2001037775A (en) 1999-07-26 1999-07-26 Treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11211180A JP2001037775A (en) 1999-07-26 1999-07-26 Treatment device

Publications (1)

Publication Number Publication Date
JP2001037775A true JP2001037775A (en) 2001-02-13

Family

ID=16601749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11211180A Pending JP2001037775A (en) 1999-07-26 1999-07-26 Treatment device

Country Status (1)

Country Link
JP (1) JP2001037775A (en)

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500138A (en) * 2004-05-21 2008-01-10 ボストン サイエンティフィック リミテッド 3-D ultrasound navigation during radiofrequency ablation
WO2008117789A1 (en) * 2007-03-27 2008-10-02 National University Corporation Shiga University Of Medical Science Microwave surgical device
JP2008245990A (en) * 2007-03-30 2008-10-16 Namiki Precision Jewel Co Ltd High-frequency therapy apparatus and system, and their usage
JP2009000528A (en) * 2007-06-20 2009-01-08 Vivant Medical Inc Reflective power monitoring for microwave applications
JP2010259600A (en) * 2009-05-01 2010-11-18 Shiga Univ Of Medical Science Microwave surgical instrument
JP2010269148A (en) * 2009-05-19 2010-12-02 Vivant Medical Inc Tissue impedance measurement using secondary frequency
JP2011092715A (en) * 2009-10-27 2011-05-12 Vivant Medical Inc System and method for monitoring ablation size
JP2011092721A (en) * 2009-10-28 2011-05-12 Vivant Medical Inc System and method for monitoring ablation size
JP2011092720A (en) * 2009-10-28 2011-05-12 Vivant Medical Inc System and method for monitoring ablation size
EP2347727A1 (en) * 2010-01-25 2011-07-27 Vivant Medical, Inc. System for method for monitoring ablation size
JP2012161603A (en) * 2011-02-03 2012-08-30 Vivant Medical Inc System and method for ablation procedure monitoring using electrodes
JP2012217856A (en) * 2011-04-12 2012-11-12 Tyco Healthcare Group Lp System and method for process monitoring and intelligent shut-off
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
WO2013062039A1 (en) 2011-10-27 2013-05-02 オリンパスメディカルシステムズ株式会社 Ultrasonic observation device
JP2013520269A (en) * 2010-02-26 2013-06-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Interventional ablation device with tissue identification capability
US8473077B2 (en) 2009-09-16 2013-06-25 Covidien Lp Perfused core dielectrically loaded dipole microwave antenna probe
US8480665B2 (en) 2007-09-07 2013-07-09 Covidien Lp Cool tip junction
US8480666B2 (en) 2007-01-31 2013-07-09 Covidien Lp Thermal feedback systems and methods of using the same
US8491580B2 (en) 2007-11-27 2013-07-23 Covidien Lp Targeted cooling of deployable microwave antenna and methods of use
US8512329B2 (en) 2008-08-25 2013-08-20 Covidien Lp Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8523854B2 (en) 2008-08-28 2013-09-03 Covidien Lp Microwave antenna
US8568407B2 (en) 2009-08-17 2013-10-29 Covidien Lp Surface ablation antenna with dielectric loading
US8628527B2 (en) 2009-08-05 2014-01-14 Covidien Lp Directive window ablation antenna with dielectric loading
US8667674B2 (en) 2008-06-09 2014-03-11 Covidien Lp Surface ablation process with electrode cooling methods
US8679108B2 (en) 2009-02-20 2014-03-25 Covidien Lp Leaky-wave antennas for medical applications
US8745854B2 (en) 2009-09-09 2014-06-10 Covidien Lp Method for constructing a dipole antenna
US8747402B2 (en) 2007-01-19 2014-06-10 Covidien Lp Electrical conductivity probes for measuring attributes of tissue
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
US8801709B2 (en) 2008-02-07 2014-08-12 Covidien Lp Endoscopic instrument for tissue identification
US8832927B2 (en) 2009-03-10 2014-09-16 Covidien Lp Method of manufacturing surgical antennas
US8847830B2 (en) 2009-06-19 2014-09-30 Covidien Lp Microwave ablation antenna radiation detector
JP2014525778A (en) * 2011-07-11 2014-10-02 コーニンクレッカ フィリップス エヌ ヴェ Energy application planning device
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US8894640B2 (en) 2009-09-24 2014-11-25 Covidien Lp Optical detection of interrupted fluid flow to ablation probe
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US8945113B2 (en) 2012-04-05 2015-02-03 Covidien Lp Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US8969722B2 (en) 2008-01-23 2015-03-03 Covidien Lp Thermally tuned coaxial cable for microwave antennas
US8968300B2 (en) 2009-08-05 2015-03-03 Covidien Lp Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
WO2015033618A1 (en) 2013-09-04 2015-03-12 オリンパスメディカルシステムズ株式会社 Puncture treatment tool for endoscope
EP2716251A4 (en) * 2011-07-07 2015-03-18 Yamashina Seiki Co Ltd Bipolar needle-shaped microwave surgical instrument
US9017328B2 (en) 2008-01-29 2015-04-28 Covidien Lp Polyp encapsulation system and method
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US9023026B2 (en) 2008-01-31 2015-05-05 Covidien Lp Articulating ablation device and method
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9044254B2 (en) 2012-08-07 2015-06-02 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
WO2015114995A1 (en) 2014-01-29 2015-08-06 オリンパス株式会社 Cystourethroscope for prostate biopsy and treatment tool
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9113888B2 (en) 2004-10-08 2015-08-25 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9121774B2 (en) 2012-06-22 2015-09-01 Covidien Lp Microwave thermometry for microwave ablation systems
US9168178B2 (en) 2012-05-22 2015-10-27 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US9192437B2 (en) 2009-05-27 2015-11-24 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US9192426B2 (en) 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9192308B2 (en) 2012-03-27 2015-11-24 Covidien Lp Microwave-shielded tissue sensor probe
US9192439B2 (en) 2012-06-29 2015-11-24 Covidien Lp Method of manufacturing a surgical instrument
US9271792B2 (en) 2012-05-04 2016-03-01 Covidien Lp Peripheral switching device for microwave energy platforms
US9276367B2 (en) 2009-11-17 2016-03-01 Covidien Lp Method of manurfacturing an electromagnetic energy delivery device
US9271788B2 (en) 2010-03-26 2016-03-01 Cividien LP Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US9332959B2 (en) 2012-06-26 2016-05-10 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9358067B2 (en) 2010-02-26 2016-06-07 Covidien Lp Tissue ablation system with internal and external radiation sources
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9370392B2 (en) 2012-10-02 2016-06-21 Covidien Lp Heat-sensitive optical probes
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9375252B2 (en) 2012-08-02 2016-06-28 Covidien Lp Adjustable length and/or exposure electrodes
US9439712B2 (en) 2012-07-12 2016-09-13 Covidien Lp Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US9522033B2 (en) 2012-10-02 2016-12-20 Covidien Lp Devices and methods for optical detection of tissue contact
US9526568B2 (en) 2012-05-31 2016-12-27 Covidien Lp Drug-delivery device for use with ablation device
US9610122B2 (en) 2013-03-29 2017-04-04 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
USRE46362E1 (en) 2009-11-16 2017-04-11 Covidien Lp Twin sealing chamber hub
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
US9867670B2 (en) 2009-04-01 2018-01-16 Covidien Lp Microwave ablation system and user-controlled ablation size and method of use
US9867665B2 (en) 2013-09-06 2018-01-16 Covidien Lp Microwave ablation catheter, handle, and system
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
US9993283B2 (en) 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device
US10039602B2 (en) 2002-04-16 2018-08-07 Covidien Lp Electrosurgical energy channel splitters and systems for delivering electrosurgical energy
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US10080600B2 (en) 2015-01-21 2018-09-25 Covidien Lp Monopolar electrode with suction ability for CABG surgery
US10130416B2 (en) 2012-04-30 2018-11-20 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
US10363094B2 (en) 2011-04-08 2019-07-30 Covidien Lp Flexible microwave catheters for natural or artificial lumens
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
WO2020041195A1 (en) * 2018-08-23 2020-02-27 Boston Scientific Scimed, Inc. Microwave ablation probe with radiofrequency impedance sensing
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US10716619B2 (en) 2017-06-19 2020-07-21 Covidien Lp Microwave and radiofrequency energy-transmitting tissue ablation systems
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US10814128B2 (en) 2016-11-21 2020-10-27 Covidien Lp Electroporation catheter
US11000332B2 (en) 2016-08-02 2021-05-11 Covidien Lp Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11147621B2 (en) 2017-11-02 2021-10-19 Covidien Lp Systems and methods for ablating tissue
US11160600B2 (en) 2018-03-01 2021-11-02 Covidien Lp Monopolar return electrode grasper with return electrode monitoring
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
WO2023136305A1 (en) * 2022-01-13 2023-07-20 テルモ株式会社 Puncture needle and cauterizing puncture needle
US11884833B2 (en) 2016-01-26 2024-01-30 Swimc Llc Damage-tolerant coating

Cited By (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11045253B2 (en) 2002-04-16 2021-06-29 Covidien Lp Electrosurgical energy channel splitters and systems for delivering electrosurgical energy
US10039602B2 (en) 2002-04-16 2018-08-07 Covidien Lp Electrosurgical energy channel splitters and systems for delivering electrosurgical energy
JP2008500138A (en) * 2004-05-21 2008-01-10 ボストン サイエンティフィック リミテッド 3-D ultrasound navigation during radiofrequency ablation
US9113888B2 (en) 2004-10-08 2015-08-25 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US8747402B2 (en) 2007-01-19 2014-06-10 Covidien Lp Electrical conductivity probes for measuring attributes of tissue
US8480666B2 (en) 2007-01-31 2013-07-09 Covidien Lp Thermal feedback systems and methods of using the same
US9833287B2 (en) 2007-01-31 2017-12-05 Covidien Lp Thermal feedback systems and methods of using the same
US8568402B2 (en) 2007-01-31 2013-10-29 Covidien Lp Thermal feedback systems and methods of using the same
US8956350B2 (en) 2007-01-31 2015-02-17 Covidien Lp Thermal feedback systems and methods of using the same
US9289260B2 (en) 2007-03-27 2016-03-22 National University Corporation Shiga University Of Medical Science Microwave surgical device
JP2008237627A (en) * 2007-03-27 2008-10-09 Shiga Univ Of Medical Science Microwave surgical device
WO2008117789A1 (en) * 2007-03-27 2008-10-02 National University Corporation Shiga University Of Medical Science Microwave surgical device
JP2008245990A (en) * 2007-03-30 2008-10-16 Namiki Precision Jewel Co Ltd High-frequency therapy apparatus and system, and their usage
JP2009000528A (en) * 2007-06-20 2009-01-08 Vivant Medical Inc Reflective power monitoring for microwave applications
US9023024B2 (en) 2007-06-20 2015-05-05 Covidien Lp Reflective power monitoring for microwave applications
US9827043B2 (en) 2007-06-20 2017-11-28 Covidien Lp Reflective power monitoring for microwave applications
US10987165B2 (en) 2007-06-20 2021-04-27 Covidien Lp Reflective power monitoring for microwave applications
US8480665B2 (en) 2007-09-07 2013-07-09 Covidien Lp Cool tip junction
US8491580B2 (en) 2007-11-27 2013-07-23 Covidien Lp Targeted cooling of deployable microwave antenna and methods of use
US8655454B2 (en) 2007-11-27 2014-02-18 Covidien Lp Targeted cooling of deployable microwave antenna with cooling chamber
US9305682B2 (en) 2008-01-23 2016-04-05 Covidien Lp Thermally tuned coaxial cable for microwave antennas
US8969722B2 (en) 2008-01-23 2015-03-03 Covidien Lp Thermally tuned coaxial cable for microwave antennas
US9017328B2 (en) 2008-01-29 2015-04-28 Covidien Lp Polyp encapsulation system and method
US9023026B2 (en) 2008-01-31 2015-05-05 Covidien Lp Articulating ablation device and method
US11540873B2 (en) 2008-02-07 2023-01-03 Covidien Lp Surgical instrument for tissue identification
US9370314B2 (en) 2008-02-07 2016-06-21 Covidien Lp Endoscopic instrument for tissue identification
US8801709B2 (en) 2008-02-07 2014-08-12 Covidien Lp Endoscopic instrument for tissue identification
US10631922B2 (en) 2008-02-07 2020-04-28 Covidien Lp Endoscopic instrument for tissue identification
US10045814B2 (en) 2008-02-07 2018-08-14 Covidien Lp Endoscopic instrument for tissue identification
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
US8667674B2 (en) 2008-06-09 2014-03-11 Covidien Lp Surface ablation process with electrode cooling methods
US8512329B2 (en) 2008-08-25 2013-08-20 Covidien Lp Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US11147620B2 (en) 2008-08-28 2021-10-19 Covidien Lp Microwave antenna with cooled hub
US10022186B2 (en) 2008-08-28 2018-07-17 Covidien Lp Microwave antenna with cooled handle
US8795268B2 (en) 2008-08-28 2014-08-05 Covidien Lp Microwave antenna
US9113932B1 (en) 2008-08-28 2015-08-25 Covidien Lp Microwave antenna with choke
US9375280B2 (en) 2008-08-28 2016-06-28 Covidien Lp Microwave antenna with cooling system
US8523854B2 (en) 2008-08-28 2013-09-03 Covidien Lp Microwave antenna
US9707038B2 (en) 2008-08-28 2017-07-18 Covidien Lp Microwave antenna with cooled handle
US9198725B2 (en) 2008-08-28 2015-12-01 Covidien Lp Microwave antenna with choke
US8968292B2 (en) 2009-02-20 2015-03-03 Covidien Lp Leaky-wave antennas for medical applications
US8679108B2 (en) 2009-02-20 2014-03-25 Covidien Lp Leaky-wave antennas for medical applications
US10080610B2 (en) 2009-02-20 2018-09-25 Covidien Lp Leaky-wave antennas for medical applications
US8832927B2 (en) 2009-03-10 2014-09-16 Covidien Lp Method of manufacturing surgical antennas
US9867670B2 (en) 2009-04-01 2018-01-16 Covidien Lp Microwave ablation system and user-controlled ablation size and method of use
JP2010259600A (en) * 2009-05-01 2010-11-18 Shiga Univ Of Medical Science Microwave surgical instrument
US9504524B2 (en) 2009-05-19 2016-11-29 Covidien Lp Tissue impedance measurement using a secondary frequency
US8486057B2 (en) 2009-05-19 2013-07-16 Covidien Lp Tissue impedance measurement using a secondary frequency
US10675090B2 (en) 2009-05-19 2020-06-09 Covidien Lp Tissue impedance measurement using a secondary frequency
JP2010269148A (en) * 2009-05-19 2010-12-02 Vivant Medical Inc Tissue impedance measurement using secondary frequency
US9192437B2 (en) 2009-05-27 2015-11-24 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US9662172B2 (en) 2009-05-27 2017-05-30 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US10499989B2 (en) 2009-05-27 2019-12-10 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US9625395B2 (en) 2009-06-19 2017-04-18 Covidien Lp Microwave ablation antenna radiation detector
US8847830B2 (en) 2009-06-19 2014-09-30 Covidien Lp Microwave ablation antenna radiation detector
US8968300B2 (en) 2009-08-05 2015-03-03 Covidien Lp Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US8628527B2 (en) 2009-08-05 2014-01-14 Covidien Lp Directive window ablation antenna with dielectric loading
US10213255B2 (en) 2009-08-05 2019-02-26 Covidien Lp Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure and method of manufacturing same
US8568407B2 (en) 2009-08-17 2013-10-29 Covidien Lp Surface ablation antenna with dielectric loading
US8745854B2 (en) 2009-09-09 2014-06-10 Covidien Lp Method for constructing a dipole antenna
US9379444B2 (en) 2009-09-09 2016-06-28 Covidien Lp Method for constructing a dipole antenna
US10363096B2 (en) 2009-09-09 2019-07-30 Covidien Lp Method for constructing a dipole antenna
US8473077B2 (en) 2009-09-16 2013-06-25 Covidien Lp Perfused core dielectrically loaded dipole microwave antenna probe
US8894640B2 (en) 2009-09-24 2014-11-25 Covidien Lp Optical detection of interrupted fluid flow to ablation probe
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
JP2015006370A (en) * 2009-10-27 2015-01-15 ヴィヴァン エルエルシー System and method for monitoring ablation size
JP2011092715A (en) * 2009-10-27 2011-05-12 Vivant Medical Inc System and method for monitoring ablation size
US10004559B2 (en) 2009-10-27 2018-06-26 Covidien Lp System and method for monitoring ablation size
US8894641B2 (en) 2009-10-27 2014-11-25 Covidien Lp System and method for monitoring ablation size
JP2016179386A (en) * 2009-10-27 2016-10-13 コビディエン エルピー System and method for monitoring ablation size
JP2018158166A (en) * 2009-10-28 2018-10-11 コビディエン エルピー System and method for monitoring ablation size
JP2015091346A (en) * 2009-10-28 2015-05-14 ヴィヴァン メディカル エルエルシー System and method for monitoring ablation size
JP2011092720A (en) * 2009-10-28 2011-05-12 Vivant Medical Inc System and method for monitoring ablation size
JP2017131729A (en) * 2009-10-28 2017-08-03 コビディエン エルピー System and method for monitoring ablation size
JP2018110928A (en) * 2009-10-28 2018-07-19 コビディエン エルピー System and method for monitoring ablation size
US10213256B2 (en) 2009-10-28 2019-02-26 Covidien Lp System and method for monitoring ablation size
JP2011092721A (en) * 2009-10-28 2011-05-12 Vivant Medical Inc System and method for monitoring ablation size
JP2017018662A (en) * 2009-10-28 2017-01-26 コビディエン エルピー System and method for monitoring ablation size
US8852180B2 (en) 2009-10-28 2014-10-07 Covidien Lp System and method for monitoring ablation size
JP2016135290A (en) * 2009-10-28 2016-07-28 コビディエン エルピー System and method for monitoring ablation size
US9271791B2 (en) 2009-10-28 2016-03-01 Covidien Lp System and method for monitoring ablation size
USRE46362E1 (en) 2009-11-16 2017-04-11 Covidien Lp Twin sealing chamber hub
US9276367B2 (en) 2009-11-17 2016-03-01 Covidien Lp Method of manurfacturing an electromagnetic energy delivery device
US8764744B2 (en) 2010-01-25 2014-07-01 Covidien Lp System for monitoring ablation size
US20180055567A1 (en) * 2010-01-25 2018-03-01 Covidien Lp System and method for monitoring ablation size
US9820813B2 (en) 2010-01-25 2017-11-21 Covidien Lp System and method for monitoring ablation size
JP2011152414A (en) * 2010-01-25 2011-08-11 Vivant Medical Inc System and method for monitoring ablation size
EP2347727A1 (en) * 2010-01-25 2011-07-27 Vivant Medical, Inc. System for method for monitoring ablation size
EP3453354A1 (en) * 2010-01-25 2019-03-13 Covidien LP System for monitoring ablation size
US10327845B2 (en) 2010-01-25 2019-06-25 Covidien Lp System and method for monitoring ablation size
JP2016064168A (en) * 2010-01-25 2016-04-28 コビディエン エルピー System and method for monitoring ablation size
JP2013520269A (en) * 2010-02-26 2013-06-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Interventional ablation device with tissue identification capability
US9358067B2 (en) 2010-02-26 2016-06-07 Covidien Lp Tissue ablation system with internal and external radiation sources
US10271901B2 (en) 2010-03-26 2019-04-30 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US9271788B2 (en) 2010-03-26 2016-03-01 Cividien LP Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
JP2012161603A (en) * 2011-02-03 2012-08-30 Vivant Medical Inc System and method for ablation procedure monitoring using electrodes
US9814525B2 (en) 2011-02-03 2017-11-14 Covidien Lp System and method for ablation procedure monitoring using electrodes
US10363094B2 (en) 2011-04-08 2019-07-30 Covidien Lp Flexible microwave catheters for natural or artificial lumens
JP2012217856A (en) * 2011-04-12 2012-11-12 Tyco Healthcare Group Lp System and method for process monitoring and intelligent shut-off
US9539050B2 (en) 2011-04-12 2017-01-10 Covidien Lp System and method for process monitoring and intelligent shut-off
US10543038B2 (en) 2011-04-12 2020-01-28 Covidien Lp System and method for process monitoring and intelligent shut-off
EP2716251A4 (en) * 2011-07-07 2015-03-18 Yamashina Seiki Co Ltd Bipolar needle-shaped microwave surgical instrument
JP2014525778A (en) * 2011-07-11 2014-10-02 コーニンクレッカ フィリップス エヌ ヴェ Energy application planning device
US9757201B2 (en) 2011-07-11 2017-09-12 Koninklijke Philips N.V. Energy application planning apparatus
US9808259B2 (en) 2011-07-15 2017-11-07 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US10869674B2 (en) 2011-07-15 2020-12-22 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US9113891B2 (en) 2011-07-15 2015-08-25 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US9724158B2 (en) 2011-08-09 2017-08-08 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US10675091B2 (en) 2011-08-09 2020-06-09 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
WO2013062039A1 (en) 2011-10-27 2013-05-02 オリンパスメディカルシステムズ株式会社 Ultrasonic observation device
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9925005B2 (en) 2012-01-05 2018-03-27 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9848951B2 (en) 2012-01-05 2017-12-26 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9247994B2 (en) 2012-01-05 2016-02-02 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9522042B2 (en) 2012-01-05 2016-12-20 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
US9681916B2 (en) 2012-01-06 2017-06-20 Covidien Lp System and method for treating tissue using an expandable antenna
US9693823B2 (en) 2012-01-06 2017-07-04 Covidien Lp System and method for treating tissue using an expandable antenna
US10271902B2 (en) 2012-01-06 2019-04-30 Covidien Lp System and method for treating tissue using an expandable antenna
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9192308B2 (en) 2012-03-27 2015-11-24 Covidien Lp Microwave-shielded tissue sensor probe
US9597151B2 (en) 2012-04-05 2017-03-21 Covidien Lp Electrosurgical tissue ablation systems and methods capable of detecting excessive bending of a probe and alerting a user
US8945113B2 (en) 2012-04-05 2015-02-03 Covidien Lp Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US10130416B2 (en) 2012-04-30 2018-11-20 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US10405918B2 (en) 2012-04-30 2019-09-10 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9700370B2 (en) 2012-04-30 2017-07-11 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9693824B2 (en) 2012-05-04 2017-07-04 Covidien Lp Peripheral switching device for microwave energy platforms
US9271792B2 (en) 2012-05-04 2016-03-01 Covidien Lp Peripheral switching device for microwave energy platforms
US9168178B2 (en) 2012-05-22 2015-10-27 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US9198721B2 (en) 2012-05-22 2015-12-01 Covidien Lp Electrosurgical instrument
US9597232B2 (en) 2012-05-22 2017-03-21 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US9974606B2 (en) 2012-05-22 2018-05-22 Covidien Lp Electrosurgical instrument
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US9526569B2 (en) 2012-05-22 2016-12-27 Covidien Lp Electrosurgical instrument
US9526568B2 (en) 2012-05-31 2016-12-27 Covidien Lp Drug-delivery device for use with ablation device
US9151680B2 (en) 2012-06-22 2015-10-06 Covidien Lp Microwave thermometry for microwave ablation systems
US9127989B2 (en) 2012-06-22 2015-09-08 Covidien Lp Microwave thermometry for microwave ablation systems
US10363095B2 (en) 2012-06-22 2019-07-30 Covidien Lp Microwave thermometry for microwave ablation systems
US9743986B2 (en) 2012-06-22 2017-08-29 Covidien Lp Microwave thermometry for microwave ablation systems
US9121774B2 (en) 2012-06-22 2015-09-01 Covidien Lp Microwave thermometry for microwave ablation systems
US9566111B2 (en) 2012-06-26 2017-02-14 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9332959B2 (en) 2012-06-26 2016-05-10 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9833288B2 (en) 2012-06-26 2017-12-05 Covidien Lp Methods and systems for enhancing ultrasonic visibilty of energy-delivery devices within tissue
US9192426B2 (en) 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9375198B2 (en) 2012-06-26 2016-06-28 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US11510732B2 (en) 2012-06-29 2022-11-29 Covidien Lp Microwave antenna probes
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9192439B2 (en) 2012-06-29 2015-11-24 Covidien Lp Method of manufacturing a surgical instrument
US9439712B2 (en) 2012-07-12 2016-09-13 Covidien Lp Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US9375252B2 (en) 2012-08-02 2016-06-28 Covidien Lp Adjustable length and/or exposure electrodes
US9247993B2 (en) 2012-08-07 2016-02-02 Covidien, LP Microwave ablation catheter and method of utilizing the same
US9370398B2 (en) 2012-08-07 2016-06-21 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9044254B2 (en) 2012-08-07 2015-06-02 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9993295B2 (en) 2012-08-07 2018-06-12 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9993296B2 (en) 2012-08-07 2018-06-12 Covidien Lp Microwave ablation catheter and method of utilizing the same
US11678934B2 (en) 2012-08-07 2023-06-20 Covidien Lp Microwave ablation system
US9247992B2 (en) 2012-08-07 2016-02-02 Covidien, LP Microwave ablation catheter and method of utilizing the same
US9259269B2 (en) 2012-08-07 2016-02-16 Covidien Lp Microwave ablation catheter and method of utilizing the same
US10271829B2 (en) 2012-10-02 2019-04-30 Covidien Lp Heat-sensitive optical probes
US9993283B2 (en) 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US10213257B2 (en) 2012-10-02 2019-02-26 Covidien Lp Devices and methods for optical detection of tissue contact
US9370392B2 (en) 2012-10-02 2016-06-21 Covidien Lp Heat-sensitive optical probes
US9522033B2 (en) 2012-10-02 2016-12-20 Covidien Lp Devices and methods for optical detection of tissue contact
US10080603B2 (en) 2012-10-02 2018-09-25 Covidien Lp Devices and methods for optical detection of tissue contact
US10828102B2 (en) 2012-12-17 2020-11-10 Covidien Lp Ablation probe with tissue sensing configuration
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
US10383688B2 (en) 2013-03-29 2019-08-20 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US11382692B2 (en) 2013-03-29 2022-07-12 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US9987087B2 (en) 2013-03-29 2018-06-05 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US9610122B2 (en) 2013-03-29 2017-04-04 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
WO2015033618A1 (en) 2013-09-04 2015-03-12 オリンパスメディカルシステムズ株式会社 Puncture treatment tool for endoscope
US11864829B2 (en) 2013-09-06 2024-01-09 Covidien Lp Microwave ablation catheter, handle, and system
US11324551B2 (en) 2013-09-06 2022-05-10 Covidien Lp Microwave ablation catheter, handle, and system
US10561463B2 (en) 2013-09-06 2020-02-18 Covidien Lp Microwave ablation catheter, handle, and system
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
US9867665B2 (en) 2013-09-06 2018-01-16 Covidien Lp Microwave ablation catheter, handle, and system
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US11241272B2 (en) 2013-09-30 2022-02-08 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
WO2015114995A1 (en) 2014-01-29 2015-08-06 オリンパス株式会社 Cystourethroscope for prostate biopsy and treatment tool
US9775589B2 (en) 2014-01-29 2017-10-03 Olympus Corporation Rigid endoscope for prostate biopsy and treatment instrument
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US11839426B2 (en) 2014-10-01 2023-12-12 Covidien Lp Miniaturized microwave ablation assembly
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US10080600B2 (en) 2015-01-21 2018-09-25 Covidien Lp Monopolar electrode with suction ability for CABG surgery
US11884833B2 (en) 2016-01-26 2024-01-30 Swimc Llc Damage-tolerant coating
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11000332B2 (en) 2016-08-02 2021-05-11 Covidien Lp Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10814128B2 (en) 2016-11-21 2020-10-27 Covidien Lp Electroporation catheter
US10716619B2 (en) 2017-06-19 2020-07-21 Covidien Lp Microwave and radiofrequency energy-transmitting tissue ablation systems
US11147621B2 (en) 2017-11-02 2021-10-19 Covidien Lp Systems and methods for ablating tissue
US11160600B2 (en) 2018-03-01 2021-11-02 Covidien Lp Monopolar return electrode grasper with return electrode monitoring
US11540881B2 (en) 2018-08-23 2023-01-03 Boston Scientific Scimed, Inc. Microwave ablation probe with radiofrequency impedance sensing
WO2020041195A1 (en) * 2018-08-23 2020-02-27 Boston Scientific Scimed, Inc. Microwave ablation probe with radiofrequency impedance sensing
JP7296450B2 (en) 2018-08-23 2023-06-22 ボストン サイエンティフィック サイムド,インコーポレイテッド Microwave ablation probe with high frequency impedance sensing
JP2021533925A (en) * 2018-08-23 2021-12-09 ボストン サイエンティフィック サイムド, インコーポレイテッドBoston Scientific Scimed, Inc. Microwave ablation probe with high frequency impedance detection
CN112566576A (en) * 2018-08-23 2021-03-26 波士顿科学国际有限公司 Microwave ablation probe with radio frequency impedance sensing
WO2023136305A1 (en) * 2022-01-13 2023-07-20 テルモ株式会社 Puncture needle and cauterizing puncture needle

Similar Documents

Publication Publication Date Title
JP2001037775A (en) Treatment device
US11540873B2 (en) Surgical instrument for tissue identification
EP2359902B1 (en) System for performing an electrosurgical procedure using an ablation device with an integrated imaging device
JP6429922B2 (en) Electrosurgical ablation system and method of operation for uterine fibroids
RU2499574C2 (en) Bipolar radio-frequency ablative instrument
US9375249B2 (en) System and method for directing energy to tissue
EP0703756B1 (en) Transurethral radio frequency ablation apparatus
JPH11267133A (en) Therapeutic apparatus
JP2003527888A (en) Tissue ablation method using protruding electrosurgical electrodes
JP2001340350A (en) Medical system
US20170014185A1 (en) Triaxial antenna for microwave tissue ablation
JP2001037776A (en) Treatment device
JP2021533925A (en) Microwave ablation probe with high frequency impedance detection
JPH10243947A (en) High-frequency device
EP3752084B1 (en) Energy delivery device
JPH08187297A (en) Microwave treatment device
US10383679B2 (en) Coil for electrosurgical instrument
JP3514854B2 (en) Ultrasound diagnostic treatment system
WO2020045572A1 (en) Endoscopic cancer treatment system
US20170360501A1 (en) Disposable bipolar coaxial radio frequency ablation needle, system and method
JPH11347044A (en) Prostate gland treatment instrument
EP1076523A1 (en) Method and system for trans-lumenal radio-frequency ablation through an endoscope
JP2002177298A (en) Resectoscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070130

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070309