JP2001036252A - Multilayer printed wiring board and manufacture thereof - Google Patents

Multilayer printed wiring board and manufacture thereof

Info

Publication number
JP2001036252A
JP2001036252A JP11208785A JP20878599A JP2001036252A JP 2001036252 A JP2001036252 A JP 2001036252A JP 11208785 A JP11208785 A JP 11208785A JP 20878599 A JP20878599 A JP 20878599A JP 2001036252 A JP2001036252 A JP 2001036252A
Authority
JP
Japan
Prior art keywords
film
heat
wiring board
δhm
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11208785A
Other languages
Japanese (ja)
Other versions
JP4126582B2 (en
Inventor
Shingetsu Yamada
紳月 山田
Norio Kurosaki
礼郎 黒崎
Yuji Nakamura
雄二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP20878599A priority Critical patent/JP4126582B2/en
Publication of JP2001036252A publication Critical patent/JP2001036252A/en
Application granted granted Critical
Publication of JP4126582B2 publication Critical patent/JP4126582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the embedding properties of an inner layer circuit of an insulating material satisfactory by overlapping a plurality of alternately laminating materials, such as film-like wiring boards and a fusible film for interlayer connection, on upon another, and integrating these overlapped materials through fusion. SOLUTION: A film-like insulator 1, made of a thermoplastic resin composition having a prescribed composition and heat characteristics has through-holes 2 formed by a laser beam for machining, in a manner of passing through both surfaces of the insulator 1. The holes 2 are filled with a conductive paste 3 to form a fusible film 4 for interlayer connection of a laminated electrical circuit. Furthermore, sheets of conductor foil are fused onto both surfaces of the film 4 using a vacuum heat press, and unwanted portions of the conductor foil are then removed to form conductive circuits 5. A plurality of sheets of laminated materials selected from among boards 6 and 7 and the film 4 are overlapped for lamination and integration by fusion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、多層プリント配
線板およびその製造方法に関し、より詳しくは熱可塑性
樹脂からなる絶縁層を有する多層プリント配線板および
その製造方法に関する。
The present invention relates to a multilayer printed wiring board and a method for manufacturing the same, and more particularly, to a multilayer printed wiring board having an insulating layer made of a thermoplastic resin and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年の電子機器の小型・軽量・高速・高
機能化の要求に応えるため、プリント配線板に実装する
半導体の集積度が高まり、ピン数の増加および各半導体
同士の配置間隔(ピッチ)も減少し、多層プリント配線
板への高機能化の要望は日々に高まっている。
2. Description of the Related Art In order to respond to recent demands for smaller, lighter, faster, and more sophisticated electronic devices, the degree of integration of semiconductors mounted on printed wiring boards has increased, the number of pins has increased, and the spacing between semiconductors ( Pitch) has decreased, and the demand for higher functionality in multilayer printed wiring boards has been increasing day by day.

【0003】このような状況の中で使用されている多層
プリント配線板は、エポキシ樹脂等を繊維に含浸したプ
リプレグを絶縁材料とする樹脂多層基板からなるもので
あり、銅張積層板に形成した電気回路の各層間の接続を
可能とするために、層厚方向にビアホール(部品を挿入
しないメッキされたスルーホール)またはスルーホール
と呼ばれる穴径0.3〜1.2mm程度の貫通穴を有す
るものである。
The multilayer printed wiring board used in such a situation is made of a resin multilayer board using a prepreg in which fibers such as epoxy resin are impregnated as an insulating material, and is formed on a copper-clad laminate. In order to enable connection between the layers of the electric circuit, a through hole having a hole diameter of about 0.3 to 1.2 mm called a via hole (plated through hole in which no component is inserted) or a through hole is provided in the layer thickness direction. Things.

【0004】多層プリント配線板のスルーホールの形成
密度は、前述のような高機能化の要望に伴って高まり、
配線ピッチが例えば50〜150μmという高配線密度
に対応するために、ドリル穴開け加工によってスルーホ
ールを形成することが多層プリント配線板の回路を高密
度化するという要望に対する障害になった。このような
問題に対処するために、ミクロン単位の微小な穴径のビ
アホール(微小径ビアホール)等のスルーホールを形成
したビルドアップ層を有する多層プリント配線板が開発
されている。
[0004] The formation density of through-holes in a multilayer printed wiring board has been increasing in accordance with the demand for higher functionality as described above.
Forming through-holes by drilling in order to cope with a high wiring density of, for example, 50 to 150 μm in wiring pitch has been an obstacle to a demand for a higher density circuit of a multilayer printed wiring board. In order to cope with such a problem, a multilayer printed wiring board having a build-up layer in which a through hole such as a via hole having a microscopic hole diameter (microscopic via hole) has been developed.

【0005】ビルドアップ層を有する多層プリント配線
板は、予め所要数のスルーホールを形成した通常の配線
板をベース(基板)とし、レーザー加工またはエッチン
グによって微小径ビアホールを形成した銅箔付き樹脂フ
ィルム(ビルドアップ層)を前記のベースに重ねて接着
一体化するか、または全層のすべてを微小径のビアホー
ルを形成したビルドアップ層を積層して形成される。
[0005] A multilayer printed wiring board having a build-up layer is a resin film with a copper foil in which a small-diameter via hole is formed by laser processing or etching using a normal wiring board in which a required number of through holes are formed in advance as a base (substrate). (Build-up layer) is stacked on the base and bonded and integrated, or all layers are formed by laminating build-up layers in which via holes of small diameter are formed.

【0006】図2(a)、(b)、(c)に製造工程を
示すように、全6層がすべてビルドアップ層で形成され
た多層プリント配線板は、先ず、不織布にエポキシ樹脂
を含浸させたプリプレグにレーザー加工で両面に貫通す
る下穴11を開け、これに導電性ペースト12を印刷の
手法で充填して真空熱プレスにより銅箔と積層し、プリ
プレグおよび導電性ペーストを硬化させる。
As shown in FIGS. 2 (a), 2 (b) and 2 (c), a multilayer printed wiring board in which all six layers are formed by build-up layers, first impregnates a non-woven fabric with an epoxy resin. A prepared hole 11 penetrating both sides is formed in the prepreg by laser processing, a conductive paste 12 is filled in the prepared prepreg by a printing method, laminated with a copper foil by a vacuum hot press, and the prepreg and the conductive paste are cured.

【0007】次いで、銅箔をエッチングして回路パター
ン13を形成することにより、両面配線基板14を形成
したものをコア層とし、別途、下穴11を開けて導電性
ペースト12を充填したプリプレグ15および銅箔16
を前記コア層の両面に整合させて重ね、これに再度の熱
プレスとパターニング(エッチングして回路パターンを
形成すること)処理を施して、図2(b)に示すような
4層の基板17を製造する。
[0007] Next, a circuit pattern 13 is formed by etching the copper foil, so that a double-sided wiring board 14 is formed as a core layer, and a prepreg 15 in which a pilot hole 11 is separately formed and a conductive paste 12 is filled. And copper foil 16
Are aligned on both surfaces of the core layer, and are again subjected to hot pressing and patterning (forming a circuit pattern by etching) to obtain a four-layer substrate 17 as shown in FIG. To manufacture.

【0008】そして、図2(c)に示すように、4層基
板17の表面の銅箔をエッチングして両面に回路パター
ン13を形成した後、さらにプリプレグ18および銅箔
19の熱プレスとパターニングの工程を繰り返すことに
より、6層のプリント配線板を製造していた。因みに、
8層のプリント配線板についても前記6層配線板に対し
て、さらにプリプレグおよび銅箔の熱プレスとパターニ
ングの工程を繰り返すことにより2層を追加して製造で
きる。
Then, as shown in FIG. 2C, after the copper foil on the surface of the four-layer substrate 17 is etched to form circuit patterns 13 on both sides, hot pressing and patterning of the prepreg 18 and the copper foil 19 are further performed. By repeating the above steps, a six-layer printed wiring board was manufactured. By the way,
An eight-layer printed wiring board can also be manufactured by adding two layers to the six-layer wiring board by repeating the steps of hot pressing and patterning the prepreg and copper foil.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
た内容の従来の多層プリント配線板は、コア層とプリン
ト配線されたビルドアップ層の接着状態を確実にするこ
とが容易でなく、回路パターンがミクロン単位の配線ピ
ッチで形成されている高密度配線のものは配線間に絶縁
材料が完全に充填されない場合があり、絶縁材料のいわ
ゆる「内層回路の埋め込み性」が悪くなり易いという問
題がある。このような問題は、絶縁性などの特性が不均
一な製品が製造されることに関連し、プリント配線板の
信頼性や不良品の発生による製品の歩留り低下(製造効
率の低下)を招くことにもなる。
However, in the conventional multilayer printed wiring board having the above-mentioned contents, it is not easy to secure the adhesion state between the core layer and the build-up layer on which the printed wiring is formed, and the circuit pattern is not micron-sized. In the case of high-density wiring formed at a unit wiring pitch, the insulating material may not be completely filled between the wirings, and there is a problem that the so-called “embeddability of the inner layer circuit” of the insulating material is likely to deteriorate. Such a problem is related to the production of a product having non-uniform characteristics such as insulation properties, and leads to a decrease in product yield (reduction in production efficiency) due to the reliability of the printed wiring board and the occurrence of defective products. Also.

【0010】このように絶縁材料による高配線密度の内
層回路の埋め込み性が不確実であるため、4層を越える
多層プリント配線板の材料を一括して積層し、熱融着に
よって確実に一体化して絶縁の信頼性の高い製品を製造
することはできなかった。なお、液状の絶縁材料を使用
すれば、内層回路の埋め込み性の問題はかなり改善され
るが、絶縁材料の塗布・乾燥工程に長時間を要し、乾燥
工程では薄肉の基板が変形しやすくなるといった種々の
問題も生じる。そこで、多層プリント配線板に係る発明
の課題は、上記した問題点を解決し、熱融着性のフィル
ム状絶縁体を用いて積層一体化された多層プリント配線
板について、配線が高密度化した内層回路を有する場合
でも絶縁材料による配線の埋め込みが確実であるものを
提供することである。
As described above, since the embedding property of an inner layer circuit having a high wiring density with an insulating material is uncertain, materials for a multilayer printed wiring board exceeding four layers are collectively laminated and integrated reliably by heat fusion. As a result, it has not been possible to manufacture products with high insulation reliability. In addition, if a liquid insulating material is used, the problem of the embedding of the inner layer circuit is considerably improved, but the coating and drying process of the insulating material takes a long time, and the thin substrate is easily deformed in the drying process. Various problems also occur. Therefore, an object of the invention relating to a multilayer printed wiring board is to solve the above-mentioned problems, and to increase the wiring density of a multilayer printed wiring board laminated and integrated using a heat-fusible film-like insulator. It is an object of the present invention to provide a semiconductor device in which wiring is reliably embedded with an insulating material even when an internal circuit is provided.

【0011】また、多層プリント配線板の製造方法に係
る発明の課題は、フィルム状絶縁体を用いた多層プリン
ト配線板のビルドアップによる製造方法を改善し、絶縁
材料の内層回路の埋め込み性が良好であって高配線密度
の回路の絶縁信頼性が高く、しかも積層材料を多層に重
ねた際に一度の加熱加圧工程で一括して一度の熱融着に
より積層一体化できる効率のよい製造方法を提供するこ
とである。
Another object of the present invention relating to a method of manufacturing a multilayer printed wiring board is to improve a manufacturing method by build-up of a multilayer printed wiring board using a film-like insulator so that the embedding property of an inner layer circuit of an insulating material is good. An efficient manufacturing method that has high insulation reliability of circuits with a high wiring density and that can be laminated and integrated by a single heat-sealing process in a single heating / pressing step when multiple layers of laminated materials are stacked. It is to provide.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め、本発明では、シンジオタクチック構造を有するスチ
レン系樹脂組成物と、当該スチレン系樹脂組成物と相溶
性のある熱可塑性樹脂を主成分とし、上記スチレン系樹
脂組成物の含有率が35重量%以上のフィルム状絶縁体
であって、このフィルム状絶縁体に両面貫通孔を形成す
ると共に貫通孔内に導電性ペーストを充填して積層電気
回路の層間接続用熱融着性フィルムを形成し、この層間
接続用熱融着性フィルムの片面または両面に導体箔を熱
融着しかつ回路形成してフィルム状配線基板を設け、こ
のフィルム状配線基板および前記層間接続用熱融着性フ
ィルムからなる積層材料を交互に複数枚重ねて熱融着に
より一体化してなる多層プリント配線板としたのであ
る。
Means for Solving the Problems To solve the above problems, the present invention mainly comprises a styrene resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrene resin composition. As a component, a film-like insulator having a content of the styrene-based resin composition of 35% by weight or more, a double-sided through-hole is formed in the film-like insulator, and a conductive paste is filled in the through-hole. A heat-fusible film for interlayer connection of a laminated electric circuit is formed, a conductor foil is heat-sealed on one or both surfaces of the heat-fusible film for interlayer connection, and a circuit is formed to provide a film-shaped wiring board. A multilayer printed wiring board was obtained by alternately stacking a plurality of laminated materials composed of a film-shaped wiring board and the heat-fusible film for interlayer connection and integrating them by heat-sealing.

【0013】また、上記多層プリント配線板におけるフ
ィルム状絶縁体を形成する熱可塑性樹脂が、示差走査熱
量測定で昇温した時に測定される結晶融解ピーク温度が
260℃以上であり、かつ結晶融解熱量ΔHmと昇温中
の結晶化により発生する結晶化熱量Hcとの関係が下記
の式(I)で示される関係を満たす熱可塑性樹脂組成物
である多層プリント配線板としたのである。
The thermoplastic resin forming the film-like insulator in the multilayer printed wiring board has a crystal melting peak temperature of 260 ° C. or higher when measured by differential scanning calorimetry, and a heat of crystal melting. The multilayer printed wiring board was a thermoplastic resin composition in which the relationship between ΔHm and the amount of crystallization heat Hc generated by crystallization during the temperature rise satisfied the relationship represented by the following formula (I).

【0014】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.4 または、上記多層プリント配線板におけるフィルム状配
線基板を形成する熱可塑性樹脂が、結晶融解熱量ΔHm
と昇温中の結晶化により発生する結晶化熱量ΔHcとの
関係が下記の式(II)で示される関係を満たす熱可塑
性樹脂組成物である多層プリント配線板としたのであ
る。
Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.4 Alternatively, the thermoplastic resin forming the film-like wiring board in the multilayer printed wiring board has a heat of crystal fusion ΔHm.
The multilayer printed wiring board is a thermoplastic resin composition in which the relationship between the temperature and the amount of heat of crystallization ΔHc generated by crystallization during the temperature rise satisfies the relationship represented by the following formula (II).

【0015】 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6 または、上記多層プリント配線板における多層プリント
配線板を形成する熱可塑性樹脂が、結晶融解熱量ΔHm
と昇温中の結晶化により発生する結晶化熱量ΔHcとの
関係が下記の式(III)で示される関係を満たす熱可
塑性樹脂組成物である多層プリント配線板としたのであ
る。
Formula (II): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 Alternatively, the thermoplastic resin forming the multilayer printed wiring board in the multilayer printed wiring board has a heat of crystal fusion ΔHm.
Thus, the multilayer printed wiring board was a thermoplastic resin composition in which the relationship between the temperature and the amount of heat of crystallization ΔHc generated by crystallization during temperature rise satisfied the relationship represented by the following formula (III).

【0016】 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 また、前述した製造方法に係わる課題を解決するため、
本発明では、シンジオタクチック構造を有するスチレン
系樹脂組成物と、当該スチレン系樹脂組成物と相溶性の
ある熱可塑性樹脂を主成分とし、上記スチレン系樹脂組
成物の含有率が35重量%以上のフィルム状絶縁体であ
って、示差走査熱量測定で昇温した時に測定される結晶
融解ピーク温度が260℃以上であり、かつ結晶融解熱
量ΔHmと昇温中の結晶化により発生する結晶化熱量Δ
Hcとの関係が下記の式(I)で示される関係を満たす
熱可塑性樹脂組成物でフィルム状絶縁体を形成し、この
フィルム状絶縁体に両面貫通孔を形成すると共に貫通孔
内に導電性ペーストを充填して積層電気回路の層間接続
用熱融着性フィルムを形成し、この層間接続用熱融着性
フィルムの片面または両面に導体箔を重ねて熱可塑性樹
脂組成物が下記の式(II)で示される関係を満たすよ
うに熱融着した後、この導体箔に回路を形成してフィル
ム状配線基板を設け、このフィルム状配線基板および前
記層間接続用熱融着性フィルムからなる積層材料を交互
に複数枚重ね、各層を構成する熱可塑性樹脂組成物が下
記の式(III)で示される関係を満たすように熱融着
することからなる多層プリント配線板の製造方法とした
のである。
Formula (III): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 Further, in order to solve the problem relating to the above-described manufacturing method,
In the present invention, a styrene-based resin composition having a syndiotactic structure and a thermoplastic resin compatible with the styrene-based resin composition as main components, and the content of the styrene-based resin composition is 35% by weight or more. Having a crystal melting peak temperature of 260 ° C. or higher measured when the temperature is raised by differential scanning calorimetry, and a heat of crystal fusion ΔHm and a heat of crystallization generated by crystallization during the temperature rise. Δ
A film-like insulator is formed from a thermoplastic resin composition whose relationship with Hc satisfies the relationship represented by the following formula (I), a double-sided through-hole is formed in the film-like insulator, and a conductive material is formed in the through-hole. The paste is filled to form a heat-fusible film for interlayer connection of a laminated electric circuit, and a conductive foil is laminated on one or both surfaces of the heat-fusible film for interlayer connection. After heat-sealing so as to satisfy the relationship shown in II), a circuit is formed on the conductive foil to provide a film-like wiring board, and a laminate comprising the film-like wiring board and the heat-fusible film for interlayer connection is provided. This is a method for manufacturing a multilayer printed wiring board, in which a plurality of materials are alternately stacked, and the thermoplastic resin composition constituting each layer is heat-sealed so as to satisfy a relationship represented by the following formula (III). .

【0017】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.4 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 上記したように構成される本発明の多層プリント配線板
は、シンジオタクチック構造を有するスチレン系樹脂組
成物と、当該スチレン系樹脂組成物と相溶性のある熱可
塑性樹脂を主成分とするフィルム状絶縁体を有するもの
であり、プリント基板用絶縁材料に要求される導体箔と
の接着性、耐熱性、機械的強度および電気絶縁性を充分
に満足する。
Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.4 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 Formula (III): [(ΔHm−ΔHc) /ΔHm]≧0.7 The multilayer printed wiring board of the present invention configured as described above comprises a styrene resin composition having a syndiotactic structure, and a thermoplastic resin compatible with the styrene resin composition. , And sufficiently satisfies the adhesiveness with a conductor foil, heat resistance, mechanical strength, and electrical insulation required for an insulating material for printed circuit boards.

【0018】積層電気回路の層間接続用熱融着性フィル
ムは、絶縁性の前記熱可塑性樹脂成物で形成されてお
り、両面貫通孔内の導電性ペーストによって両面貫通孔
の開口部が電気的接点となって、フィルムの片面または
両面に配置形成された電気回路の要所を層厚方向に導通
する。このようなフィルム状絶縁体またはフィルム状配
線基板を形成する熱可塑性樹脂は、結晶融解ピーク温度
が260℃以上のものであり、かつ結晶融解熱量ΔHm
と昇温中の結晶化により発生する結晶化熱量ΔHcとの
関係が前記式(I)または式(II)で示される関係を
満たすものであるから、結晶化の進行状態が適当な範囲
に調整されたものであり、例えば250℃未満という比
較的低温での熱融着により優れた接着強度を発揮する。
そのため、4層を越えるようなビルドアップ層を有する
多層プリント配線板を一括して加熱加圧により積層一体
化することができる。導体箔として、表面が粗化されて
いる導体箔を使用すると、接着強度はより大きくなる。
The heat-fusible film for interlayer connection of the laminated electric circuit is formed of the above-mentioned insulating thermoplastic resin material, and the opening of the double-sided through-hole is electrically connected by the conductive paste in the double-sided through-hole. As a contact point, a portion of an electric circuit arranged and formed on one side or both sides of the film is conducted in a layer thickness direction. The thermoplastic resin forming such a film-like insulator or a film-like wiring board has a crystal melting peak temperature of 260 ° C. or more and a heat of crystal melting ΔHm.
And the amount of heat of crystallization ΔHc generated by crystallization during the temperature rise satisfies the relationship represented by the above formula (I) or (II), so that the progress of crystallization is adjusted to an appropriate range. It exhibits excellent adhesive strength by thermal fusion at a relatively low temperature of, for example, less than 250 ° C.
Therefore, multi-layer printed wiring boards having more than four build-up layers can be integrally laminated by heating and pressing. When a conductor foil whose surface is roughened is used as the conductor foil, the adhesive strength is further increased.

【0019】また、式(I)、(II)で示される関係
を満たす熱可塑性樹脂組成物は、導体箔との接着温度領
域で弾性率が低下するので、微細な配線ピッチにも充填
される。そのため、層間接続用熱融着性フィルムおよび
フィルム状絶縁体を使用した多層プリント配線板の内層
回路の埋め込み性、すなわち絶縁性が良好になる。本発
明の多層プリント配線板の製造方法は、フィルム状配線
基板および前記層間接続用熱融着性フィルムからなる積
層材料を交互に複数枚重ね、各層を構成する熱可塑性樹
脂組成物の結晶融解熱量ΔHmと昇温中の結晶化により
発生する結晶化熱量ΔHcとの関係が前記式(III)
で示される関係を満たすように熱融着する。このように
すると、熱融着後の熱可塑性樹脂組成物は、シンジオタ
クチック構造を有するスチレン系樹脂の結晶性が適当に
進行しているので、260℃に耐えるハンダ耐熱性を確
実に有する絶縁層になり、かつ導体箔との接着強度も大
きくなり、導体箔をエッチングして形成された導電性回
路もフィルム状絶縁体に強固に接着して層間剥離を起こ
し難いものになる。
Further, the thermoplastic resin composition satisfying the relations represented by the formulas (I) and (II) has a reduced elastic modulus in a bonding temperature region with the conductive foil, and is therefore filled in fine wiring pitches. . Therefore, the embedding property of the inner layer circuit of the multilayer printed wiring board using the heat-fusible film for interlayer connection and the film-like insulator, that is, the insulating property is improved. The method for producing a multilayer printed wiring board according to the present invention is characterized in that a plurality of laminated materials composed of a film-shaped wiring substrate and the heat-fusible film for interlayer connection are alternately laminated, and the heat of crystal fusion of the thermoplastic resin composition constituting each layer is increased. The relationship between ΔHm and the amount of heat of crystallization ΔHc generated by crystallization during heating is expressed by the above formula (III).
Is heat-sealed so as to satisfy the relationship shown by. By doing so, the thermoplastic resin composition after the heat fusion has an insulative property having solder heat resistance to withstand 260 ° C. since the crystallinity of the styrene resin having a syndiotactic structure is appropriately advanced. As a result, the conductive circuit formed by etching the conductive foil is firmly adhered to the film-like insulator, and delamination hardly occurs.

【0020】上記多層プリント配線板の製造方法におい
て、層間接続用熱融着性フィルムの片面または両面に導
体箔を重ねて熱融着する際に、熱可塑性樹脂組成物の熱
融着後の結晶融解熱量ΔHmと昇温中の結晶化により発
生する結晶化熱量ΔHcとの関係が前記式(II)で示
される関係を満たすように熱融着する方法では、その熱
融着後に再びフィルム状配線基板および前記層間接続用
熱融着性フィルムからなる積層材料を交互に複数枚重
ね、一括して加熱加圧による熱融着を行なう時にも熱可
塑性樹脂が導体箔との接着温度領域で弾性率が低下する
ので、微細な配線ピッチにも適当な低粘度の樹脂が確実
に充填されて、内層回路の埋め込み性、すなわち絶縁の
信頼性が極めて高い良好なものが製造できる。なお、フ
ィルム状絶縁体と導体箔の接着は、層間にエポキシ樹脂
などの接着剤を介在させずに熱融着するため、耐熱性、
耐薬品性、電気特性などの諸特性は接着剤の特性に支配
されることがなく、絶縁層の優れた諸特性が充分に生か
される。また、製造工程中に接着剤その他の液状積層材
料の塗布・乾燥の工程がないので、製造効率の良い多層
プリント配線板の製造方法となる。
In the above method for producing a multilayer printed wiring board, when a conductor foil is laminated on one side or both sides of a heat-fusible film for interlayer connection and heat-sealed, a crystal of the thermoplastic resin composition after heat-sealing is used. In the method of performing heat fusion so that the relationship between the heat of fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature rise satisfies the relationship represented by the above formula (II), the film-like wiring is again formed after the heat fusion. Even when a plurality of laminated materials composed of a substrate and the heat-fusible film for interlayer connection are alternately stacked, and the heat-sealing is performed by heating and pressing all at once, the thermoplastic resin has an elastic modulus in a bonding temperature region with the conductive foil. Therefore, an appropriate low-viscosity resin is surely filled even in a fine wiring pitch, and a good product having very high embedding property of the inner layer circuit, that is, extremely high insulation reliability can be manufactured. In addition, since the film-like insulator and the conductor foil are bonded by heat without interposing an adhesive such as epoxy resin between the layers, heat resistance,
Various properties such as chemical resistance and electrical properties are not affected by the properties of the adhesive, and the excellent properties of the insulating layer can be fully utilized. Also, since there is no step of applying and drying an adhesive or other liquid laminated material during the manufacturing process, a method of manufacturing a multilayer printed wiring board with high manufacturing efficiency can be achieved.

【0021】[0021]

【発明の実施の形態】本発明の多層配線板およびその製
造方法の実施形態を、以下に添付図面に基づいて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a multilayer wiring board and a method of manufacturing the same according to the present invention will be described below with reference to the accompanying drawings.

【0022】図1(a1 )と(b)、または同図(a2
)と(b)にそれぞれ2系統の製造工程を示すよう
に、この発明に係る多層プリント配線板は、所定の組成
および熱特性の熱可塑性樹脂組成物からなるフィルム状
絶縁体1に、レーザー加工により両面に貫通する孔2を
形成し、この孔2内に導電性ペースト3を充填して積層
電気回路の層間接続用熱融着性フィルム4を形成し、さ
らにこの層間接続用熱融着性フィルム4の両面(図1の
a1)または片面(同図a2 )に導体箔を真空熱プレス
機で熱融着すると共に、サブトラクティブ法によって導
体箔の不要部分を除いて導電性回路5を形成し、得られ
たフィルム状配線基板6、7および層間接続用熱融着性
フィルム4から選ばれる積層材料を複数枚重ねて、熱融
着により積層一体化して得られる。
FIG. 1 (a1) and (b) or FIG.
) And (b) show two production processes, respectively. The multilayer printed wiring board according to the present invention is obtained by laser processing a film-shaped insulator 1 made of a thermoplastic resin composition having a predetermined composition and thermal characteristics. Holes 2 are formed on both sides of the laminated electric circuit, and a conductive paste 3 is filled in the holes 2 to form a heat-fusible film 4 for interlayer connection of a laminated electric circuit. A conductive foil is heat-sealed on both sides (a1 in FIG. 1) or one side (a2 in FIG. 1) of the film 4 by a vacuum hot press machine, and a conductive circuit 5 is formed by a subtractive method except for unnecessary portions of the conductive foil. Then, a plurality of laminated materials selected from the obtained film-shaped wiring boards 6 and 7 and the heat-fusible film 4 for interlayer connection are laminated, and laminated and integrated by heat fusion.

【0023】図1(b)には実線で導電性回路5が4層
に形成された多層プリント配線板を示したが、図1(a
1 )と同図(b)に鎖線で示された部分を付加して、6
層またはそれ以上に多層化された多層プリント配線板を
製造することもできる。なお、フィルム状絶縁体を製造
するには、シンジオタクチック構造を有するスチレン系
樹脂と、当該スチレン系樹脂組成物と相溶性のある熱可
塑性樹脂とを配合し、式(I)で示される所定の結晶性
のものを調製する。
FIG. 1B shows a multilayer printed wiring board in which conductive circuits 5 are formed in four layers by solid lines.
1) and (b) in FIG.
It is also possible to manufacture a multilayer printed wiring board having multiple layers or more layers. In addition, in order to manufacture a film-shaped insulator, a styrene-based resin having a syndiotactic structure and a thermoplastic resin compatible with the styrene-based resin composition are blended, and a predetermined resin represented by the formula (I) is mixed. Is prepared.

【0024】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.4 フィルム状絶縁体に導体箔を熱融着する際には、熱可塑
性樹脂組成物のガラス転移点(Tg)は越えるが、結晶
融解ピーク温度(Tc)は越えず、すなわち非晶性が維
持される所定温度範囲に加熱し、好ましくは熱可塑性樹
脂組成物が前記式(II)で示される特性を維持する導
体箔が熱融着されたフィルム状基板を作製する。
Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.4 When the conductive foil is thermally fused to the film-like insulator, the glass transition point (Tg) of the thermoplastic resin composition is as follows: Is higher than the crystal melting peak temperature (Tc), that is, a conductor which is heated to a predetermined temperature range in which the amorphousness is maintained, and the thermoplastic resin composition preferably maintains the properties represented by the formula (II). A film-like substrate to which the foil is thermally fused is produced.

【0025】 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6 導体箔に対する導電性回路の形成方法は、周知のサブト
ラクティブ法を採用できるが、アディティブ法を採用す
ることもできる。因みに、サブトラクティブ法の具体例
としては、銅箔に紫外線硬化性樹脂からなるドライフィ
ルムをラミネートし、次に導電性回路の切り抜き型を形
成したパターンフィルムをドライフィルムに密着させた
状態で紫外線に露光させ、その後、パターンフィルムお
よび未硬化のドライフィルムを取り除いて塩化第二鉄溶
液でエッチングを行ない、導電性回路の不要部分の銅箔
を除去し、次に、水酸化ナトリム溶液に浸漬して残った
銅箔上のドライフィルムを除去して導電性回路を形成す
る。フィルム状配線基板および前記層間接続用熱融着性
フィルムからなる積層材料を複数枚重ねて一括して熱融
着する際には、各層を構成する熱可塑性樹脂組成物の結
晶融解熱量ΔHmと昇温中の結晶化により発生する結晶
化熱量ΔHcとの関係が式(III)で示される関係を
満たすように熱融着する。
Formula (II): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 As a method of forming a conductive circuit on the conductive foil, a well-known subtractive method can be employed, but an additive method can also be employed. . Incidentally, as a specific example of the subtractive method, a dry film made of an ultraviolet curable resin is laminated on a copper foil, and then a pattern film formed with a cutout mold of a conductive circuit is exposed to ultraviolet light in a state where the pattern film is in close contact with the dry film. Exposure, then remove the pattern film and uncured dry film, perform etching with a ferric chloride solution to remove the copper foil in unnecessary portions of the conductive circuit, and then immerse in a sodium hydroxide solution The remaining dry film on the copper foil is removed to form a conductive circuit. When a plurality of laminated materials comprising a film-shaped wiring board and the heat-fusible film for interlayer connection are laminated and heat-sealed collectively, the heat of crystal fusion ΔHm of the thermoplastic resin composition constituting each layer increases. Thermal fusion is performed so that the relationship with the heat of crystallization ΔHc generated by crystallization during warming satisfies the relationship represented by the formula (III).

【0026】 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 このようにすると、熱可塑性樹脂組成物の結晶融解ピー
ク温度(Tc)付近(例えば230〜250℃)まで加
熱することになって、確実な熱融着が可能になると共に
熱可塑性樹脂組成物の結晶化が進み、ハンダ耐熱性に優
れた多層プリント配線板を製造できる。
Formula (III): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 In this manner, the thermoplastic resin composition is heated to a temperature near the crystal melting peak temperature (Tc) (for example, 230 to 250 ° C.). As a result, reliable heat fusion becomes possible and crystallization of the thermoplastic resin composition proceeds, so that a multilayer printed wiring board having excellent solder heat resistance can be manufactured.

【0027】本発明においてフィルム状絶縁体を構成す
る第1の成分であるシンジオタクチック構造を有するス
チレン系樹脂は、立体化学構造がシンジオタクチック構
造、すなわちC−C結合から形成される主鎖に対して、
側鎖であるフェニル基や置換フェニル基が交互に反対方
向に位置する立体構造を有するものである。上記スチレ
ン系樹脂の含有量はフィルム状絶縁体の35重量%以
上、35〜70重量%の範囲が好適であり、35重量%
未満でははんだ耐熱性に劣り、70重量%を越えると導
体箔との接着性に劣り易い傾向がある。
In the present invention, the styrene resin having a syndiotactic structure, which is the first component constituting the film-like insulator, has a stereochemical structure having a syndiotactic structure, that is, a main chain formed from CC bonds. Against
It has a three-dimensional structure in which phenyl groups and substituted phenyl groups, which are side chains, are alternately located in opposite directions. The content of the styrene resin is preferably 35% by weight or more and 35 to 70% by weight of the film-like insulator, and 35% by weight.
If it is less than 70% by weight, the solder heat resistance tends to be poor, and if it exceeds 70% by weight, the adhesion to the conductor foil tends to be poor.

【0028】また、フィルム状絶縁体を構成する第2の
成分である上記スチレン系樹脂と相溶性のある熱可塑性
樹脂としては、溶融成形時に均一な分散が可能な樹脂で
あればよく、ポリオレフィン系、ポリスチレン系、ポリ
エステル系、ポリアミド系、ポリフェニレンエーテル
系、ポリフェニレンスルフィド系の樹脂などが挙げられ
るが、これに限定されるものではない。本発明において
は、変性ポリフェニレンエーテル(変性PPE)が好適
に使用される。このスチレン系樹脂と相溶性のある熱可
塑性樹脂の含有量はフィルム状絶縁体の30〜65重量
%の範囲が好適であり、30重量%未満では導体箔との
接着性に劣り易い傾向があり、65重量%を越えるとは
んだ耐熱性に劣り易い傾向がある。
The thermoplastic resin compatible with the styrene resin as the second component constituting the film-shaped insulator may be any resin that can be uniformly dispersed at the time of melt molding. And polystyrene-based, polyester-based, polyamide-based, polyphenylene ether-based, and polyphenylene sulfide-based resins, but are not limited thereto. In the present invention, a modified polyphenylene ether (modified PPE) is preferably used. The content of the thermoplastic resin compatible with the styrene resin is preferably in the range of 30 to 65% by weight of the film-like insulator, and if it is less than 30% by weight, the adhesiveness to the conductor foil tends to be poor. If it exceeds 65% by weight, the solder heat resistance tends to be poor.

【0029】フィルム状絶縁体には上記成分以外に機械
的強度を向上する目的で、さらに、ゴム状弾性体を含有
させてもよく、ゴム状弾性体としては、スチレン−ブタ
ジエンブロック共重合体(SBR)、水素添加スチレン
−ブタジエンブロック共重合体(SEB)、スチレン−
ブタジエン−スチレンブロック共重合体(SBS)、水
素添加スチレン−ブタジエン−スチレンブロック共重合
体(SEBS)などが挙げられるが、これに限定される
ものではない。本発明においては、上記ゴム状弾性体の
うちSEBSが好適に使用される。ゴム状弾性体はフィ
ルム状絶縁体の10〜20重量%の範囲で含有するのが
好ましく、10重量%未満では強度の改良効果が少な
く、20重量%を越えるものでは耐熱性が低下する傾向
がある。
The film-like insulator may further contain a rubber-like elastic body for the purpose of improving mechanical strength in addition to the above-mentioned components. As the rubber-like elastic body, a styrene-butadiene block copolymer ( SBR), hydrogenated styrene-butadiene block copolymer (SEB), styrene-
Examples include butadiene-styrene block copolymer (SBS) and hydrogenated styrene-butadiene-styrene block copolymer (SEBS), but are not limited thereto. In the present invention, SEBS is preferably used among the rubbery elastic bodies. The rubber-like elastic body is preferably contained in the range of 10 to 20% by weight of the film-like insulator, and if less than 10% by weight, the effect of improving the strength is small, and if it exceeds 20% by weight, the heat resistance tends to decrease. is there.

【0030】本発明における重要な制御因子であるフィ
ルム状絶縁体の熱特性は、結晶融解熱量ΔHmと昇温中
の結晶化により発生する結晶化熱量ΔHcとの関係が下
記の式(I)で示される関係を満たすことである。
The thermal characteristics of the film-like insulator, which is an important controlling factor in the present invention, are as follows. The relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during heating is expressed by the following formula (I). It is to satisfy the relationship shown.

【0031】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.4 (ΔHm−ΔHc)/ΔHmで示される熱特性は、JI
S K 7121、JIS K7122に準じた示差走
査熱量測定で昇温したときのDSC曲線に現れる2つの
転移熱の測定値、結晶融解熱量ΔHm(J/g)と結晶
化熱量ΔHc(J/g)の値から算出される。
The thermal characteristic represented by the formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.4 (ΔHm−ΔHc) / ΔHm is expressed by JI
The measured values of two heats of transition appearing on the DSC curve when the temperature is raised by differential scanning calorimetry according to S K 7121 and JIS K 7122, the heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) Is calculated from the value of

【0032】(ΔHm−ΔHc)/ΔHmで示される式
の値は、原料ポリマーの種類や分子量、組成物の配合比
率にも依存しているが、フィルム状絶縁体の成形・加工
条件に大きく影響する。すなわち、フィルム状に製膜す
る際に、原料ポリマーを溶融させた後、速やかに冷却す
ることにより、前記式の値を小さくすることができる。
また、これらの数値は、各工程でかかる熱履歴を調整す
ることにより、制御することができる。ここでいう熱履
歴とは、フィルム状絶縁体の温度と、その温度になって
いた時間を指し、温度が高いほど、この数値は大きくな
る傾向がある。導体箔と熱融着前のフィルム状絶縁体の
熱特性については、前記式(I)で示される値ができる
だけ小さいほうが好ましい。導体箔との熱融着前に0.
4を越えていると、すでに結晶性が高く、多層化の熱融
着時には結晶化がさらに進行して接着強度が低下するの
で好ましくない。前記式(II)で示される関係は、多
層プリント配線板を製造する過程において、フィルム状
絶縁体の少なくとも一面に導体箔を熱融着した銅張積層
基板における熱融着後の測定に基づくものである。
The value of the formula (ΔHm−ΔHc) / ΔHm also depends on the type and molecular weight of the raw material polymer and the compounding ratio of the composition, but greatly affects the molding and processing conditions of the film-shaped insulator. I do. That is, when the film is formed into a film, the raw material polymer is melted and then cooled immediately, whereby the value of the above formula can be reduced.
Further, these numerical values can be controlled by adjusting the heat history in each step. The heat history here refers to the temperature of the film-shaped insulator and the time during which the temperature has been reached, and the higher the temperature, the larger the numerical value tends to be. Regarding the thermal characteristics of the conductor foil and the film-like insulator before thermal fusion, it is preferable that the value represented by the above formula (I) is as small as possible. 0.
If it exceeds 4, the crystallinity is already high, and the crystallization further proceeds during the heat-sealing for multi-layering, and the adhesive strength is undesirably reduced. The relationship represented by the above formula (II) is based on the measurement after heat bonding in a copper-clad laminate in which a conductor foil is heat-bonded to at least one surface of a film-like insulator in a process of manufacturing a multilayer printed wiring board. It is.

【0033】前記式(II)で示される値が、0.6を
越えると、すでに結晶性が高く、多層化の熱融着時に結
晶化がさらに進行して接着強度が低下する。また、導体
箔との熱融着を高温で行なう必要があり製造効率の面か
らも好ましくない。そして、多層化後の熱融着後のフィ
ルム状絶縁体の熱特性は、下記式(III)の関係を満
たすことになる。 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 なぜなら、上記式(III)の値が、0.7未満の低い
値では、絶縁層の結晶化が不充分であり、ハンダ耐熱性
(通常260℃)を保てないからである。
When the value represented by the formula (II) exceeds 0.6, the crystallinity is already high, and the crystallization is further advanced during the heat-sealing for multilayering, whereby the adhesive strength is reduced. Further, it is necessary to perform heat fusion with the conductor foil at a high temperature, which is not preferable in terms of manufacturing efficiency. Then, the thermal characteristics of the film-like insulator after thermal bonding after multilayering satisfy the relationship of the following formula (III). Formula (III): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 Because, when the value of the above formula (III) is as low as less than 0.7, crystallization of the insulating layer is insufficient, and This is because heat resistance (usually 260 ° C.) cannot be maintained.

【0034】本発明に用いるフィルム状絶縁体は、通常
25〜300μmの膜厚のものであり、その製造方法
は、例えばTダイを用いた押出キャスト法やカレンダー
法などの周知の製膜方法を採用すればよく、特に限定さ
れた製造方法を採る必要はない。なお、製膜性や安定生
産性の面からTダイを用いた押出キャスト法を採用する
ことが好ましい。押出キャスト法の成形温度は、組成物
の流動特性や製膜特性によって適宜に調節するが、概ね
組成物の融点以上、430℃以下である。
The film-like insulator used in the present invention usually has a thickness of 25 to 300 μm, and its production method is, for example, a known film-forming method such as an extrusion casting method using a T-die or a calendering method. What is necessary is just to employ | adopt and it is not necessary to employ | adopt a manufacturing method especially limited. In addition, it is preferable to employ the extrusion casting method using a T-die from the viewpoint of film forming property and stable productivity. The molding temperature of the extrusion casting method is appropriately adjusted depending on the flow characteristics and film forming characteristics of the composition, but is generally from the melting point of the composition to 430 ° C. or less.

【0035】本発明に用いるフィルム状絶縁体を構成す
る樹脂組成物には、この発明の効果を阻害しない程度
に、他の樹脂その他の添加剤を配合してもよく、その具
体例としては、熱安定剤、紫外線吸収剤、光安定剤、着
色剤、滑剤、難燃剤、無機フィラーなどが挙げられる。
また、フィルム状絶縁体の表面に、ハンドリング性改良
等のためのエンボス化工やコロナ処理などを施してもよ
い。本発明に用いる導体箔としては、例えば銅、金、
銀、アルミニウム、ニッケル、錫などのように厚さ8〜
70μm程度の金属箔が挙げられる。このうち、適用さ
れる金属箔としては、その表面を黒色酸化処理などの化
成処理した銅箔が特に好ましい。導体箔は、接着効果を
高めるために、フィルム状絶縁体との接触面(重ねる
面)側を予め化学的または機械的に粗化したものを用い
ることが好ましい。表面粗化処理された導体箔の具体例
としては、電解銅箔を製造する際に電気化学的に処理さ
れた粗化銅箔などが挙げられる。
The resin composition constituting the film-shaped insulator used in the present invention may contain other resins and other additives to such an extent that the effects of the present invention are not impaired. Examples include a heat stabilizer, an ultraviolet absorber, a light stabilizer, a colorant, a lubricant, a flame retardant, and an inorganic filler.
Further, the surface of the film-shaped insulator may be subjected to embossing or corona treatment for improving the handling properties and the like. As the conductive foil used in the present invention, for example, copper, gold,
8 ~ thick like silver, aluminum, nickel, tin etc.
A metal foil of about 70 μm is used. Among them, the metal foil to be applied is particularly preferably a copper foil whose surface has been subjected to a chemical conversion treatment such as a black oxidation treatment. It is preferable to use a conductive foil whose contact surface (overlapping surface) with the film-shaped insulator has been chemically or mechanically roughened in advance in order to enhance the adhesive effect. Specific examples of the conductor foil subjected to the surface roughening treatment include a roughened copper foil that has been electrochemically treated when producing an electrolytic copper foil.

【0036】導体箔をフィルム状絶縁体の片面または両
面に重ねて加熱・加圧条件で熱融着する際には、例えば
熱プレス法もしくは熱ラミネートロール法またはこれら
を組み合わせた方法、その他の周知の加熱圧着方法を採
用することができる。なお、ここで、多層化にあって
は、フィルム上絶縁体の層厚みが、導体箔の総厚みの2
倍以上あることが望ましい。2倍未満では多層時に導体
回路部分への樹脂の埋め込み性が不十分となりやすい。
When the conductor foil is superimposed on one or both surfaces of the film-shaped insulator and heat-sealed under heating and pressing conditions, for example, a hot pressing method or a heat laminating roll method, a method combining these, or other well-known methods Can be adopted. Here, in the case of multilayering, the layer thickness of the insulator on the film is 2 times the total thickness of the conductor foil.
It is desirable that the number be twice or more. If it is less than twice, the resin embedding property into the conductor circuit portion tends to be insufficient at the time of multilayering.

【0037】[0037]

【実施例】まず、この発明のフィルム状絶縁体の条件を
満足するフィルム状絶縁体の製造例1〜3およびこれに
対比する参考例1、2の製造方法およびこれらの物性に
ついて以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the production methods of Production Examples 1 to 3 of the film insulator satisfying the conditions of the film insulation of the present invention and the production methods of Reference Examples 1 and 2 and the physical properties thereof will be described below. .

【0038】〔フィルム状絶縁体の製造例1〕シンジオ
タクチック構造を有するステレン系樹脂(出光石油化学
(株)製:ザレック)(以下の文中または表1、2にお
いて、SPSと略記する。)60重量%と、変性PPE
(三菱エンジニアリングプラスチックス(株)製:ユピ
エ−ス)40重量%をドライブレンドした。この混合組
成物を押出成形し、厚さ25μmのフィルム状絶縁体を
製造した。
[Production Example 1 of Film Insulator] A sterene resin having a syndiotactic structure (Zarek, manufactured by Idemitsu Petrochemical Co., Ltd.) (abbreviated as SPS in the following text or in Tables 1 and 2). 60% by weight and modified PPE
(Mitsubishi Engineering Plastics: Iupies) 40% by weight was dry blended. This mixed composition was extruded to produce a film insulator having a thickness of 25 μm.

【0039】〔フィルム状絶縁体の製造例2〕上記の製
造例1において、混合組成物の配合割合をSPS40重
量%、変性PPE60重量%としたこと以外は、同様に
してフィルム状絶縁体を製造した。
[Production Example 2 of Film Insulator] A film insulation was produced in the same manner as in Production Example 1 except that the mixing ratio of the mixed composition was 40% by weight of SPS and 60% by weight of modified PPE. did.

【0040】〔フィルム状絶縁体の製造例3〕製造例1
において、混合組成物の配合割合をSPS30重量%、
変性PPE70重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 3 of Film Insulator] Production Example 1
In, the mixture ratio of the mixed composition is SPS 30% by weight,
A film-like insulator was produced in the same manner except that the modified PPE was 70% by weight.

【0041】〔フィルム状絶縁体の参考例1、2〕製造
例1において、混合組成物の配合割合をSPS100重
量%(参考例1)、または変性PPE100重量%(参
考例2)としたこと以外は、同様にしてそれぞれのフィ
ルム状絶縁体を製造した。
[Reference Examples 1 and 2 of Film Insulator] Except that in Preparation Example 1, the mixture ratio of the mixed composition was 100% by weight of SPS (Reference Example 1) or 100% by weight of modified PPE (Reference Example 2). Manufactured the respective film-shaped insulators in the same manner.

【0042】上記製造例および参考例で得られたフィル
ム状絶縁体の物性を調べるため、以下の(1)および
(2)に示す項目を測定または測定値から計算値を算出
した。これらの結果は、表1にまとめて示した。
In order to examine the physical properties of the film-like insulators obtained in the above Production Examples and Reference Examples, the following items (1) and (2) were measured or calculated from the measured values. These results are summarized in Table 1.

【0043】(1) ガラス転移温度(℃)、結晶化温
度(℃)、結晶融解ピーク温度(℃)JIS K712
1に準じ、試料10mgを使用し、パーキンエルマー社
製:DSC−7を用いて加熱速度を10℃/分で昇温し
た時の上記各温度をサーモグラムから求めた。
(1) Glass transition temperature (° C.), crystallization temperature (° C.), crystal melting peak temperature (° C.) JIS K712
According to 1, a 10 mg sample was used, and the above-mentioned respective temperatures when the heating rate was increased at a rate of 10 ° C./min using Perkin Elmer: DSC-7 were determined from thermograms.

【0044】(2) (ΔHm−ΔHc)/ΔHm JIS K7122に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時のサーモグラムから結晶融解熱量
ΔHm(J/g)と結晶化熱量ΔHc(J/g)を求
め、上記式の値を算出した。
(2) (ΔHm−ΔHc) / ΔHm According to JIS K7122, 10 mg of a sample was used, and the heating rate was set to 1 using DSC-7 manufactured by PerkinElmer.
The heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) were determined from the thermogram when the temperature was raised at 0 ° C./min, and the value of the above equation was calculated.

【0045】[0045]

【表1】 [Table 1]

【0046】〔実施例1〕製造例1で得られた厚さ25
μmのフィルム状絶縁体に、レーザーでインナーバイア
ホール用の孔開け加工を施し、スクリーン印刷機を用い
て孔内に導電性ペースト剤を充填した。この導電性ペー
ストを充分に乾燥させた後、フィルム状絶縁体の両面に
厚さ12μmの電気化学的に表面を粗面化した電解銅箔
を積層し、真空雰囲気下760mmHgでプレス温度2
00℃、プレス圧力30kg/cm 2 、プレス時間10
分の条件で熱融着させ両面銅張積層板を作製した。作製
した両面銅張積層板のフィルム状絶縁体に対し、前記
(2)(ΔHm−ΔHc)/ΔHmの測定試験を前記同
じ方法で行ない、式値を表2に示した。また、上記得ら
れた両面銅張積層板に対して、後述する(3)の方法で
接着強度を調べ、この結果を表2中に併記した。
Example 1 Thickness 25 obtained in Production Example 1
Inner via with laser on μm film insulator
Making holes for holes and using a screen printing machine
The hole was filled with a conductive paste. This conductive page
After thoroughly drying the strike, apply it on both sides of the film insulator.
Electrochemically roughened copper foil with a thickness of 12 μm
And pressing at 760 mmHg in a vacuum atmosphere at a pressing temperature of 2
00 ° C, press pressure 30kg / cm Two, Press time 10
For 2 minutes to produce a double-sided copper-clad laminate. Production
For the film-like insulator of the double-sided copper-clad laminate,
(2) The measurement test of (ΔHm−ΔHc) / ΔHm
The results are shown in Table 2. In addition,
The double-sided copper-clad laminate obtained by the method (3) described later.
The adhesive strength was examined, and the results are shown in Table 2.

【0047】上記得られた両面銅張積層板にサブトラク
ティブ法によって回路パターンを形成し、導電性回路を
エッチングにより形成した配線基板を2枚製造した。そ
して、2枚の配線基板の間に製造例1で得られた厚さ2
5μmのフィルム状絶縁体を挟んで図1(a1 )に示す
状態に積み重ね、真空雰囲気下760mmHgでプレス
温度220℃、プレス圧力30kg/cm2 、プレス時
間20分の条件でピンラミネーション方式によって熱融
着し、4層の多層プリント配線板を製造した。得られた
多層プリント配線板に対して前記(2)(ΔHm−ΔH
c)/ΔHmの測定試験を行なうと共に、室温における
銅箔回路とフィルム状絶縁体との接着強度を以下の
(3)の試験方法で調べ、さらに層間剥離の有無を走査
型電子顕微鏡(下記の(5)の方法)で観察し、ハンダ
耐熱性を下記の(4)の試験方法で調べ、これらの結果
を表2中に示した。
A circuit pattern was formed on the obtained double-sided copper-clad laminate by a subtractive method, and two wiring boards were formed by etching a conductive circuit. The thickness 2 obtained in Production Example 1 between the two wiring boards
Stacked in a state shown in FIG. 1 (a1) with a 5 μm film-shaped insulator interposed therebetween, and under a vacuum atmosphere at 760 mmHg, a press temperature of 220 ° C., a press pressure of 30 kg / cm 2 , and a press time of 20 minutes by a pin lamination method. Then, a multilayer printed wiring board having four layers was manufactured. With respect to the obtained multilayer printed wiring board, the above (2) (ΔHm−ΔH
c) In addition to conducting a measurement test of / ΔHm, the adhesive strength between the copper foil circuit and the film-like insulator at room temperature is checked by the following test method (3), and the presence or absence of delamination is checked by a scanning electron microscope (described below). (Method (5)), and the solder heat resistance was examined by the following test method (4). The results are shown in Table 2.

【0048】(3) 接着強度 JIS C6481の常態の引き剥がし強さに準拠し
て、FPC素板の銅箔の引き剥がし強さを測定し、その
平均値をkgf/cmで示した。
(3) Adhesive strength The peel strength of the copper foil of the FPC blank was measured in accordance with the normal peel strength of JIS C6481, and the average value was shown in kgf / cm.

【0049】(4) ハンダ耐熱性 JIS C6481の常態のハンダ耐熱性に準拠し、2
60℃のハンダ浴に試験片の銅箔側がハンダ浴に接触す
る状態で10秒間浮かべた後、浴から取り出して室温ま
で放冷し、その膨れや剥がれ箇所の有無を目視観察し、
その良否を評価した。
(4) Solder heat resistance According to the normal solder heat resistance of JIS C6481,
After floating in a solder bath at 60 ° C. for 10 seconds with the copper foil side of the test piece in contact with the solder bath, take out from the bath and allow it to cool to room temperature, and visually observe the presence or absence of swelling or peeling,
The quality was evaluated.

【0050】(5) 多層プリント配線板をエポキシ樹
脂に包埋し、精密切断機で断面観察用サンプルを作製
し、走査型電子顕微鏡(SEM)で切断面を観察し、フ
ィルム状絶縁体と銅箔製の導電性回路との層間剥離の有
無を評価した。
(5) The multilayer printed wiring board is embedded in epoxy resin, a sample for section observation is prepared by a precision cutting machine, and the cut surface is observed by a scanning electron microscope (SEM). The presence or absence of delamination with the conductive circuit made of foil was evaluated.

【0051】[0051]

【表2】 [Table 2]

【0052】〔実施例2〕実施例1において、フィルム
状絶縁体として製造例2を使用し、両面銅張積層板を作
製する際のプレス温度を225℃、4層基板を作製する
際の熱プレス条件を温度240℃、ブレス時間を30分
に変更したこと以外は実施例1と同様にして4層のプリ
ント配線板を作製し、試験(3)〜(5)の評価を表2
中に併記した。
Example 2 In Example 1, using Production Example 2 as a film-like insulator, the press temperature for producing a double-sided copper-clad laminate was 225 ° C., and the heat for producing a four-layer substrate was A four-layer printed wiring board was prepared in the same manner as in Example 1 except that the pressing conditions were changed to a temperature of 240 ° C. and a breath time to 30 minutes, and the evaluations of tests (3) to (5) were evaluated in Table 2.
Also described in the inside.

【0053】〔実施例3〕実施例1において、両面銅張
積層板から回路パターンを形成し、導電性回路をエッチ
ングにより形成した配線基板を5枚取り揃え、この配線
基板の間に製造例1で得られたフィルム状絶縁体を挟ん
で積み重ねてピンラミネーション方式により一括して熱
融着したこと以外は、実施例1と同様にして10層の多
層プリント配線板を製造した。
Example 3 In Example 1, five circuit boards were formed in which a circuit pattern was formed from a double-sided copper-clad laminate, and a conductive circuit was formed by etching. A 10-layer multilayer printed wiring board was manufactured in the same manner as in Example 1, except that the obtained film-shaped insulators were stacked and stacked and heat-sealed at once by a pin lamination method.

【0054】〔比較例1〕実施例1において、両面銅張
積層板を作製する際のプレス温度を215℃としたこと
以外は実施例1と同様にして4層の多層プリント配線板
を作製し、これに対する試験(3)〜(5)の評価を表
2中に併記した。
Comparative Example 1 A four-layer multilayer printed wiring board was produced in the same manner as in Example 1, except that the pressing temperature for producing the double-sided copper-clad laminate was 215 ° C. Table 2 also shows the evaluations of tests (3) to (5) for this.

【0055】〔比較例2〕実施例2において、4層の多
層プリント配線板のプレス温度を230℃、プレス時間
を10分に変更したこと以外は実施例2と同様にして4
層の多層プリント配線板を作製し、試験(3)〜(5)
の評価を表2中に併記した。
Comparative Example 2 The procedure of Example 2 was repeated except that the pressing temperature of the four-layered multilayer printed wiring board was changed to 230 ° C. and the pressing time was changed to 10 minutes.
A multi-layer printed wiring board was prepared and tested (3) to (5).
Are also shown in Table 2.

【0056】〔比較例3〕実施例1において、フィルム
状絶縁体として製造例3を使用し、両面銅張積層板を作
製する際のプレス温度を240℃、プレス時間を20分
に変更したこと以外は実施例1と同様にして4層の多層
プリント配線板を作製し、これに対する試験(3)〜
(5)の評価を表2中に併記した。
[Comparative Example 3] In Example 1, the production temperature was changed to 240 ° C and the press time was changed to 20 minutes in the production of the double-sided copper-clad laminate using Production Example 3 as the film-like insulator. Except for the above, a four-layer multilayer printed wiring board was produced in the same manner as in Example 1, and tests (3) to
The evaluation of (5) is also shown in Table 2.

【0057】表2の結果からも明らかなように、実施例
1の両面銅張積層板の接着強度は、0.7kgf/10
cmという良好な値であり、(ΔHm−ΔHc)/ΔH
mの値も0.31と適正値であった。4層の多層プリン
ト配線板積層時の(ΔHm−ΔHc)/ΔHmの値も
0.96と適正値であり、接着強度は、1.5kgf/
10cmという良好な値であった。また、ハンダ耐熱性
試験の結果は基板に膨れや剥がれが一切観察されず、さ
らに4層の多層プリント配線板のSEM観察でも層間剥
離は全く観察されず、回路パターン近傍への樹脂の回り
込み(充填量)は良好でありボイドの発生は全く見受け
られなかった。
As is clear from the results in Table 2, the adhesive strength of the double-sided copper-clad laminate of Example 1 was 0.7 kgf / 10
cm, which is (ΔHm−ΔHc) / ΔH
The value of m was also an appropriate value of 0.31. The value of (ΔHm−ΔHc) / ΔHm at the time of laminating the four-layered multilayer printed wiring board is also an appropriate value of 0.96, and the adhesive strength is 1.5 kgf /
It was a good value of 10 cm. In the results of the solder heat resistance test, no swelling or peeling was observed on the substrate, and no delamination was observed at all by SEM observation of the four-layered multilayer printed wiring board, and the resin wrapped around the circuit pattern (filling). Amount) was good, and generation of voids was not observed at all.

【0058】実施例2の両面銅張積層板の接着強度も
1.3kgf/10cmという良好な値であり、ハンダ
耐熱性試験の結果も良好であり、4層熱融着後のSEM
観察でも層間剥離は全く観察されず、回路パターン近傍
への樹脂の回り込みも良好であった。
The adhesive strength of the double-sided copper-clad laminate of Example 2 was also a good value of 1.3 kgf / 10 cm, the results of the solder heat resistance test were good, and the SEM after four-layer heat fusion was performed.
No delamination was observed at all, and the resin wrapping around the circuit pattern was good.

【0059】また、実施例3でも接着強度は良好な値で
あり、ハンダ耐熱性試験の結果は基板に膨れや剥がれが
一切観察されず、10層の多層プリント配線板のSEM
観察でも層間剥離は全く観察されず、回路パターン近傍
への樹脂の回り込み(充填量)は良好でありボイドの発
生は全く見受けられなかった。従来のビルドアップ式の
多層プリント配線板の製造方法に比べて工程数はかなり
少なく、製造日数および製造コストも低減できるもので
あった。さらに多層プレス前の両面銅張積層板の段階で
基板の良否判定を行なえるので、歩留りが大幅に向上し
た。これに対して、比較例1の4層プリント配線板は、
層間の密着性が不十分であり、ハンダ耐熱性も膨れや剥
がれが観察されて不良であった。
Also in Example 3, the adhesive strength was a good value, and the results of the solder heat resistance test showed that no swelling or peeling was observed on the substrate, and the SEM of the 10-layer multilayer printed wiring board was not observed.
No delamination was observed at all, and the wraparound (filling amount) of the resin in the vicinity of the circuit pattern was good, and no generation of voids was observed. Compared with the conventional method of manufacturing a build-up type multilayer printed wiring board, the number of steps is considerably smaller, and the number of manufacturing days and manufacturing cost can be reduced. Furthermore, since the quality of the substrate can be determined at the stage of the double-sided copper-clad laminate before the multilayer press, the yield is greatly improved. On the other hand, the four-layer printed wiring board of Comparative Example 1
The adhesion between the layers was insufficient, and the solder heat resistance was poor, with swelling and peeling observed.

【0060】また、比較例2の4層プリント配線板は、
層間の密着性はあったが、ハンダ耐熱性は不良であっ
た。比較例3は、両面銅張積層板の銅箔とフィルムの接
着強度は0.2kgf/10cmという低い値であり、
エッチング工程において回路が剥離した。
The four-layer printed wiring board of Comparative Example 2
Although there was adhesion between the layers, the solder heat resistance was poor. In Comparative Example 3, the adhesive strength between the copper foil and the film of the double-sided copper-clad laminate was a low value of 0.2 kgf / 10 cm,
The circuit peeled off in the etching step.

【0061】[0061]

【発明の効果】本発明の多層プリント配線板は、以上説
明したように、所定のシンジオタクチック構造を有する
スチレン系樹脂組成物と該スチレン系樹脂組成物と相溶
性のある熱可塑性樹脂とを所定量配合し、所定の熱的特
性の結晶性熱可塑性樹脂組成物でフィルム状絶縁体を形
成し、このフィルム状絶縁体でもって積層電気回路の層
間接続用熱融着性フィルムを形成すると共に、これに回
路形成したフィルム状配線基板を形成し、これらを複数
枚重ねて熱融着により一体化したものであるので、各層
の熱可塑性樹脂成物は加熱融解時に優れた接着強度を発
揮し、4層を越えるような多層プリント配線板でも層間
の剥離がなく、前記熱可塑性樹脂組成物の耐熱性によっ
て所要のハンダ耐熱性を示すものになる。
As described above, the multilayer printed wiring board of the present invention comprises a styrene resin composition having a predetermined syndiotactic structure and a thermoplastic resin compatible with the styrene resin composition. A predetermined amount is blended to form a film-like insulator with a crystalline thermoplastic resin composition having a predetermined thermal property, and the film-like insulator is used to form a heat-fusible film for interlayer connection of a laminated electric circuit. Since a film-like wiring board with a circuit formed on it is formed, and a plurality of these are laminated and integrated by heat fusion, the thermoplastic resin composition of each layer exhibits excellent adhesive strength when melted by heating. Even in a multilayer printed wiring board having more than four layers, there is no delamination between layers, and the thermoplastic resin composition exhibits the required solder heat resistance due to the heat resistance.

【0062】また、式(I)で示される関係を満たす熱
可塑性樹脂組成物は、導体箔との接着温度領域で弾性率
が低下するので、各層の熱融着時に微細な配線ピッチ間
にも絶縁性材料が充填され、高配線密度に形成された内
層回路の絶縁性が良好な多層プリント配線板となる。本
発明の多層プリント配線板の製造方法は、所定の熱特性
を有する結晶性熱可塑性樹脂からなるフィルム状絶縁体
を用いた多層プリント配線板の製造方法であるので、絶
縁材料の高配線密度の内層回路に対する埋め込み性が良
好になって回路の絶縁信頼性が高いものが製造でき、し
かも積層材料を多層に重ねた際に一度の加熱加圧工程で
熱融着により積層一体化できるので、効率のよい製造方
法であるという利点がある。
The thermoplastic resin composition that satisfies the relationship represented by the formula (I) has a reduced elastic modulus in a bonding temperature region with the conductive foil, so that even when the layers are thermally fused, fine wiring pitches can be obtained. A multilayer printed wiring board with good insulation properties of an inner layer circuit formed with a high wiring density filled with an insulating material. The method for manufacturing a multilayer printed wiring board of the present invention is a method for manufacturing a multilayer printed wiring board using a film-like insulator made of a crystalline thermoplastic resin having predetermined thermal characteristics. The embedding property for the inner layer circuit is improved, and the circuit with high insulation reliability can be manufactured.Furthermore, when the laminated material is laminated in multiple layers, it can be laminated and integrated by heat fusion in a single heating and pressurizing process. There is an advantage that it is a good manufacturing method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】多層プリント配線板の製造工程を示す模式図FIG. 1 is a schematic view showing a manufacturing process of a multilayer printed wiring board.

【図2】従来の多層プリント配線板の製造工程を示す模
式図
FIG. 2 is a schematic view showing a manufacturing process of a conventional multilayer printed wiring board.

【符号の説明】[Explanation of symbols]

1 フィルム状絶縁体 2 孔 3、12 導電性ペースト 4 層間接続用熱融着性フィルム 5 導電性回路 6、7 フィルム状配線基板 11 下孔 13 回路パターン 14 両面配線基板 15、18 プリプレグ 16、19 銅箔 17 4層の基板 DESCRIPTION OF SYMBOLS 1 Film-shaped insulator 2 Holes 3, 12 Conductive paste 4 Heat-fusible film for interlayer connection 5 Conductive circuit 6, 7 Film-shaped wiring board 11 Preparatory hole 13 Circuit pattern 14 Double-sided wiring board 15, 18 Pre-preg 16, 19 Copper foil 17 4-layer board

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E346 AA06 AA12 AA15 AA26 AA43 BB01 CC08 CC31 DD02 DD12 DD32 EE02 EE06 EE08 EE19 FF18 FF35 GG02 GG15 GG27 GG28 HH11 HH18  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5E346 AA06 AA12 AA15 AA26 AA43 BB01 CC08 CC31 DD02 DD12 DD32 EE02 EE06 EE08 EE19 FF18 FF35 GG02 GG15 GG27 GG28 HH11 HH18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シンジオタクチック構造を有するスチレ
ン系樹脂組成物と、該スチレン系樹脂組成物と相溶性の
ある熱可塑性樹脂を主成分とし、上記スチレン系樹脂組
成物の含有率が35重量%以上のフィルム状絶縁体であ
って、このフィルム状絶縁体に両面貫通孔を形成すると
共に貫通孔内に導電性ペーストを充填して積層電気回路
の層間接続用熱融着性フィルムを形成し、この層間接続
用熱融着性フィルムの片面または両面に導体箔を熱融着
しかつ回路形成してフィルム状配線基板を設け、このフ
ィルム状配線基板および前記層間接続用熱融着性フィル
ムからなる積層材料を交互に複数枚重ねて熱融着により
一体化してなる多層プリント配線板。
1. A styrenic resin composition having a syndiotactic structure, and a thermoplastic resin compatible with the styrenic resin composition as a main component, wherein the content of the styrenic resin composition is 35% by weight. The above-mentioned film-shaped insulator, a heat-fusible film for interlayer connection of a laminated electric circuit is formed by forming a double-sided through hole in the film-shaped insulator and filling a conductive paste in the through-hole, A film-like wiring board is provided by heat-sealing a conductor foil on one or both surfaces of the interlayer-bonding heat-fusible film and forming a circuit, and comprises the film-like wiring board and the interlayer-bonding heat-fusible film. A multilayer printed wiring board in which a plurality of laminated materials are alternately stacked and integrated by heat fusion.
【請求項2】 導体箔が、表面粗化されている導体箔で
ある請求項1記載の多層プリント配線板。
2. The multilayer printed wiring board according to claim 1, wherein the conductor foil is a surface-roughened conductor foil.
【請求項3】 フィルム状絶縁体を形成する熱可塑性樹
脂が、示差走査熱量測定で昇温した時に測定される結晶
融解ピーク温度が260℃以上であり、かつ結晶融解熱
量ΔHmと昇温中の結晶化により発生する結晶化熱量Δ
Hcとの関係が下記の式(I)で示される関係を満たす
熱可塑性樹脂組成物である請求項1〜2のいずれかに記
載の多層プリント配線板。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.4
3. The thermoplastic resin forming the film-like insulator has a crystal melting peak temperature measured at 260 ° C. or higher when heated by differential scanning calorimetry, and has a crystal melting heat amount ΔHm and Heat of crystallization Δ generated by crystallization
The multilayer printed wiring board according to any one of claims 1 to 2, wherein the thermoplastic resin composition has a relationship with Hc satisfying a relationship represented by the following formula (I). Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.4
【請求項4】 フィルム状配線基板を形成する熱可塑性
樹脂が、結晶融解熱量ΔHmと昇温中の結晶化により発
生する結晶化熱量ΔHcとの関係が下記の式(II)で
示される関係を満たす熱可塑性樹脂組成物である請求項
1〜2のいずれかに記載の多層プリント配線板。 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6
4. The relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature rise of the thermoplastic resin forming the film-like wiring board is represented by the following formula (II). The multilayer printed wiring board according to claim 1, which is a thermoplastic resin composition that satisfies the conditions. Formula (II): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6
【請求項5】 多層プリント配線板を形成する熱可塑性
樹脂が、結晶融解熱量ΔHmと昇温中の結晶化により発
生する結晶化熱量ΔHcとの関係が下記の式(III)
で示される関係を満たす熱可塑性樹脂組成物である請求
項1〜2のいずれかに記載の多層プリント配線板。 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
5. The relationship between the heat of crystal fusion ΔHm of the thermoplastic resin forming the multilayer printed wiring board and the heat of crystallization ΔHc generated by crystallization during heating is represented by the following formula (III).
The multilayer printed wiring board according to any one of claims 1 to 2, wherein the thermoplastic resin composition satisfies the following relationship. Formula (III): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
【請求項6】 シンジオタクチック構造を有するスチレ
ン系樹脂組成物と、該スチレン系樹脂組成物と相溶性の
ある熱可塑性樹脂を主成分とし、上記スチレン系樹脂組
成物の含有率が35重量%以上のフィルム状絶縁体であ
って、示差走査熱量測定で昇温した時に測定される結晶
融解ピーク温度が260℃以上であり、かつ結晶融解熱
量ΔHmと昇温中の結晶化により発生する結晶化熱量Δ
Hcとの関係が下記の式(I)で示される関係を満たす
熱可塑性樹脂組成物でフィルム状絶縁体を形成し、この
フィルム状絶縁体に両面貫通孔を形成すると共に貫通孔
内に導電性ペーストを充填して積層電気回路の層間接続
用熱融着性フィルムを形成し、この層間接続用熱融着性
フィルムの片面または両面に導体箔を重ねて熱可塑性樹
脂組成物が下記の式(II)で示される関係を満たすよ
うに熱融着した後、この導体箔に回路を形成してフィル
ム状配線基板を設け、このフィルム状配線基板および前
記層間接続用熱融着性フィルムからなる積層材料を交互
に複数枚重ね、各層を構成する熱可塑性樹脂組成物が下
記の式(III)で示される関係を満たすように熱融着
することからなる多層プリント配線板の製造方法。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.4 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≦0.6 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
6. A styrenic resin composition having a syndiotactic structure, and a thermoplastic resin compatible with the styrenic resin composition as a main component, wherein the content of the styrenic resin composition is 35% by weight. The above film insulator, having a crystal melting peak temperature of 260 ° C. or more measured when the temperature is raised by differential scanning calorimetry, and a crystal melting heat ΔHm and crystallization caused by crystallization during the temperature rise. Calorie Δ
A film-like insulator is formed from a thermoplastic resin composition whose relationship with Hc satisfies the relationship represented by the following formula (I), a double-sided through-hole is formed in the film-like insulator, and a conductive material is formed in the through-hole. The paste is filled to form a heat-fusible film for interlayer connection of a laminated electric circuit, and a conductive foil is laminated on one or both surfaces of the heat-fusible film for interlayer connection. After heat-sealing so as to satisfy the relationship shown in II), a circuit is formed on the conductive foil to provide a film-like wiring board, and a laminate comprising the film-like wiring board and the heat-fusible film for interlayer connection is provided. A method of manufacturing a multilayer printed wiring board, comprising a plurality of materials alternately stacked and heat-sealed so that a thermoplastic resin composition constituting each layer satisfies a relationship represented by the following formula (III). Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.4 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≦ 0.6 Formula (III): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
【請求項7】 層間接続用熱融着性フィルムの片面また
は両面に重ねる導体箔が、表面粗化されている導体箔で
ある請求項6記載の多層プリント配線板の製造方法。
7. The method for producing a multilayer printed wiring board according to claim 6, wherein the conductor foil to be laminated on one or both surfaces of the heat-fusible film for interlayer connection is a conductor foil having a roughened surface.
JP20878599A 1999-07-23 1999-07-23 Multilayer printed wiring board and manufacturing method thereof Expired - Fee Related JP4126582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20878599A JP4126582B2 (en) 1999-07-23 1999-07-23 Multilayer printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20878599A JP4126582B2 (en) 1999-07-23 1999-07-23 Multilayer printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001036252A true JP2001036252A (en) 2001-02-09
JP4126582B2 JP4126582B2 (en) 2008-07-30

Family

ID=16562077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20878599A Expired - Fee Related JP4126582B2 (en) 1999-07-23 1999-07-23 Multilayer printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4126582B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271028A (en) * 2001-03-13 2002-09-20 Denso Corp Coil-incorporated multi-layer substrate and its manufacturing method, and manufacturing method for laminated coil
JP2002324952A (en) * 2001-04-24 2002-11-08 Denso Corp Printed circuit board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733391U (en) * 1993-11-25 1995-06-20 中東産業株式会社 Pachinko machine locking device
KR101047482B1 (en) * 2009-09-14 2011-07-08 삼성전기주식회사 Printed circuit board and camera module including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209098A (en) * 1992-01-30 1993-08-20 Idemitsu Kosan Co Ltd Thermoplastic resin composition
JPH07142830A (en) * 1993-11-18 1995-06-02 Idemitsu Kosan Co Ltd Printed wiring board laminate material
JPH07263867A (en) * 1994-03-18 1995-10-13 Fujitsu General Ltd Multilayer interconnection board
JPH09298361A (en) * 1996-05-09 1997-11-18 Shoei Chem Ind Co Manufacture of multilayer wiring board
JPH10265592A (en) * 1997-03-25 1998-10-06 Shin Etsu Polymer Co Ltd Production of prepreg for printed wiring board
JPH11186677A (en) * 1997-12-25 1999-07-09 Shin Etsu Polymer Co Ltd Lamination board for printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209098A (en) * 1992-01-30 1993-08-20 Idemitsu Kosan Co Ltd Thermoplastic resin composition
JPH07142830A (en) * 1993-11-18 1995-06-02 Idemitsu Kosan Co Ltd Printed wiring board laminate material
JPH07263867A (en) * 1994-03-18 1995-10-13 Fujitsu General Ltd Multilayer interconnection board
JPH09298361A (en) * 1996-05-09 1997-11-18 Shoei Chem Ind Co Manufacture of multilayer wiring board
JPH10265592A (en) * 1997-03-25 1998-10-06 Shin Etsu Polymer Co Ltd Production of prepreg for printed wiring board
JPH11186677A (en) * 1997-12-25 1999-07-09 Shin Etsu Polymer Co Ltd Lamination board for printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271028A (en) * 2001-03-13 2002-09-20 Denso Corp Coil-incorporated multi-layer substrate and its manufacturing method, and manufacturing method for laminated coil
JP2002324952A (en) * 2001-04-24 2002-11-08 Denso Corp Printed circuit board

Also Published As

Publication number Publication date
JP4126582B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
JP3514647B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP4934334B2 (en) Double-sided copper-clad board
WO2007013330A1 (en) Process for producing wiring board covered with thermoplastic liquid crystal polymer film
WO2000059274A1 (en) Method for manufacturing three-dimensional printed wiring board
JP4787195B2 (en) Conductive paste composition for via hole filling and multilayer wiring board using the same
JP3514646B2 (en) Flexible printed wiring board and method of manufacturing the same
JP3514667B2 (en) Heat fusible insulating sheet
JP4126582B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JP7313736B2 (en) Films for adhesive layers, multilayer wiring boards, and semiconductor devices
JP4582938B2 (en) Insulating sheet manufacturing method and wiring board manufacturing method
JP3543521B2 (en) Manufacturing method of multilayer printed wiring board
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JPH03239390A (en) Metal cored board and manufacture thereof
JP4422555B2 (en) Conductive paste composition for multilayer wiring board
JP4248697B2 (en) Heat sealable insulation sheet
JP3995836B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and manufacturing method thereof
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP4965102B2 (en) Conductive paste composition for via hole filling
JP2001036203A (en) Flexible printed wiring board and its manufacture
JP3990513B2 (en) Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board
JP2010205809A (en) Multilayer printed wiring board and method of manufacturing the same
JP4481733B2 (en) Conductive paste composition for multilayer wiring board
JP2776202B2 (en) Manufacturing method of super multilayer laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees