JP2001034314A - Numerical controller for parallel mechanism machine tool - Google Patents

Numerical controller for parallel mechanism machine tool

Info

Publication number
JP2001034314A
JP2001034314A JP11203176A JP20317699A JP2001034314A JP 2001034314 A JP2001034314 A JP 2001034314A JP 11203176 A JP11203176 A JP 11203176A JP 20317699 A JP20317699 A JP 20317699A JP 2001034314 A JP2001034314 A JP 2001034314A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration processing
leg
length
cartesian coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11203176A
Other languages
Japanese (ja)
Inventor
Takayuki Kato
隆幸 加藤
Masato Riyouki
正人 領木
Yasushi Fukaya
安司 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP11203176A priority Critical patent/JP2001034314A/en
Publication of JP2001034314A publication Critical patent/JP2001034314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a locus error and to improve the processing precision by converting Cartesian coordinates representing the position and posture of a movable member into the length of each leg after an acceleration and deceleration processing and making a blade edge position calculated back from the length of each leg after the acceleration and deceleration processing exist on a command value given by the Cartesian coordinates system all the time. SOLUTION: The interpolation coordinates (X, Y, Z, A, B and C) for every function generation period of a movable member outputted from a function generating part 2 is converted by an acceleration and deceleration processing part 3 so that the speed of each component of Cartesian coordinates can smoothly be changed and outputted as Cartesian coordinates (X', Y', Z', A', B' and C') after acceleration and deceleration processing. An inverse mechanism converting part 4 converts the Cartesian coordinates (X', Y', Z', A', B' and C') after acceleration and deceleration processing into the lengths (L1 to L6) of each leg after the acceleration and deceleration processing. Then, a driving device controlling part 5 drives and controls the driving device on the basis of the lengths (L1 to L6) of each leg after the acceleration and deceleration processing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パラレルメカニズ
ム工作機械を数値制御する数値制御装置に関する。
The present invention relates to a numerical control device for numerically controlling a parallel mechanism machine tool.

【0002】[0002]

【従来の技術】一般に、パラレルメカニズムを応用した
工作機械の数値制御装置では、直交座標系(以降、デカ
ルト座標系と記す)で与えられた指令に従って可動部材
に設けられた複数の支点を移動させ、可動部材の位置や
姿勢を制御する。以下、このような制御動作の一例を図
2に示すパラレルメカニズムを応用した工作機械につい
て説明する。
2. Description of the Related Art Generally, in a numerical control device for a machine tool to which a parallel mechanism is applied, a plurality of fulcrums provided on a movable member are moved in accordance with a command given in a rectangular coordinate system (hereinafter referred to as a Cartesian coordinate system). Control the position and orientation of the movable member. Hereinafter, an example of such a control operation will be described for a machine tool to which the parallel mechanism shown in FIG. 2 is applied.

【0003】図2に示すパラレルメカニズム工作機械で
は、固定部材21の周辺部に設けた6個の支点23と可
動部材22の周辺部に設けた6個の支点24とがそれぞ
れ脚25で接続され、脚25に取り付けられた駆動装置
26により支点23、24間の距離(以降、脚の長さと
記す)をそれぞれ長くしたり短くしたりして任意の長さ
に変更できるようになっている。
In the parallel mechanism machine tool shown in FIG. 2, six fulcrums 23 provided around a fixed member 21 and six fulcrums 24 provided around a movable member 22 are connected by legs 25, respectively. The distance between the fulcrums 23 and 24 (hereinafter, referred to as the length of the legs) can be changed to an arbitrary length by lengthening or shortening the distance between the fulcrums 23 and 24 by a driving device 26 attached to the legs 25.

【0004】可動部材22の位置や姿勢を制御するため
に、先ず可動部材22の所望の位置と姿勢に対応する可
動部材22の各支点24の座標を求める。固定部材21
の各支点23の座標は固定なので、可動部材22の各支
点24の座標から各脚の長さを求めることができる。し
たがって、ここで求めた脚の長さになるように各駆動装
置26を制御することにより、可動部材22を所望の位
置と姿勢に移動し、可動部材22の位置と姿勢を所望の
状態に制御できる。
In order to control the position and posture of the movable member 22, first, the coordinates of each fulcrum 24 of the movable member 22 corresponding to the desired position and posture of the movable member 22 are obtained. Fixing member 21
Since the coordinates of each fulcrum 23 are fixed, the length of each leg can be obtained from the coordinates of each fulcrum 24 of the movable member 22. Therefore, by controlling each driving device 26 so that the leg length obtained here is obtained, the movable member 22 is moved to a desired position and posture, and the position and posture of the movable member 22 are controlled to a desired state. it can.

【0005】図3は、上記のような制御を行う従来のパ
ラレルメカニズム工作機械の数値制御装置の構成を示す
ブロック図である。プログラム解釈部1は、予め与えら
れた加工プログラムを1ブロックずつ解釈し、ブロック
情報BIを生成する。関数発生部2は、このブロック情
報BIを入力して関数発生周期ごとの各時間における可
動部材22の位置と姿勢を示す補間座標(X、Y、Z、
A、B、C)を補間により求め、出力する。
FIG. 3 is a block diagram showing the configuration of a conventional numerical controller for a parallel mechanism machine tool that performs the above-described control. The program interpreter 1 interprets a given machining program block by block to generate block information BI. The function generation unit 2 receives the block information BI and inputs interpolation coordinates (X, Y, Z, and X) indicating the position and orientation of the movable member 22 at each time in each function generation cycle.
A, B, C) are obtained by interpolation and output.

【0006】次いで、逆機構変換部14において、該関
数発生周期ごとの補間座標(X、Y、Z、A、B、C)
について加減速処理を行わずに各脚の長さ(L1’、L
2’、L3’、L4’、L5’、L6’)に変換し出力
する。
Next, in the inverse mechanism conversion unit 14, the interpolation coordinates (X, Y, Z, A, B, C) for each function generation cycle are calculated.
Length of each leg (L1 ', L1
2 ′, L3 ′, L4 ′, L5 ′, L6 ′).

【0007】続く加減速処理部13では、加速・減速時
に駆動装置を無理なく動作させるため、各脚の長さの変
化速度が加減速時になめらかに変化するように、加減速
処理前の各脚の長さ(L1’、L2’、L3’、L
4’、L5’、L6’)を加減速処理により変換し、加
減速処理後の各脚の長さ(L1”、L2”、L3”、L
4”、L5”、L6”)を出力する。
In the following acceleration / deceleration processing section 13, each leg before acceleration / deceleration processing is controlled so that the speed of change of the length of each leg smoothly changes during acceleration / deceleration in order to operate the drive device smoothly during acceleration / deceleration. Length (L1 ′, L2 ′, L3 ′, L
4 ′, L5 ′, L6 ′) by the acceleration / deceleration processing, and the lengths (L1 ″, L2 ″, L3 ″, L) of the respective legs after the acceleration / deceleration processing.
4 ", L5", L6 ").

【0008】図4(a)、(b)は、それぞれ、加減速
処理前の各脚の長さの変化速度と、加減速処理後の各脚
の長さの変化速度の時間的推移関係の一例を示すもので
ある。駆動装置制御部15は、前記加減速処理部13か
ら出力される加減速処理後の各脚の長さ(L1”、L
2”、L3”、L4”、L5”、L6”)の情報に基づ
き、各脚の長さを所定値にするように駆動装置を駆動制
御する。
FIGS. 4 (a) and 4 (b) show, respectively, the temporal transition relation between the change speed of each leg length before the acceleration / deceleration process and the change speed of each leg length after the acceleration / deceleration process. An example is shown. The drive device control unit 15 determines the length (L1 ″, L1) of each leg after the acceleration / deceleration processing output from the acceleration / deceleration processing unit 13.
2 ", L3", L4 ", L5", L6 "), the drive of the driving device is controlled so that the length of each leg is set to a predetermined value.

【0009】[0009]

【発明が解決しようとする課題】上記従来技術における
加減速処理前の各脚の長さは、デカルト座標系で与えら
れた指令値に対して関数発生周期ごとに補間して求めた
補間座標を各脚の長さに変換したものであるから、加減
速処理前の各脚の長さから逆算される刃先位置は、デカ
ルト座標系で与えられた指令値上にある。しかし、前記
指令値を関数発生周期ごとに補間して求めた補間座標か
ら加減速処理前の各脚の長さへの変換は非線形変換であ
るため、加減速処理前の各脚の長さから加減速処理後の
各脚の長さへの変換が線形変換であっても、加減速処理
後の各脚の長さから逆算される刃先位置は、デカルト座
標系で与えられた指令値から外れ、軌跡誤差を生じる。
The length of each leg before the acceleration / deceleration processing in the above-mentioned prior art is calculated by interpolating coordinates obtained by interpolating a command value given in a Cartesian coordinate system for each function generation cycle. Since it is converted into the length of each leg, the cutting edge position calculated back from the length of each leg before the acceleration / deceleration processing is on the command value given in the Cartesian coordinate system. However, since the conversion from the interpolation coordinates obtained by interpolating the command value for each function generation cycle to the length of each leg before the acceleration / deceleration processing is a non-linear conversion, the conversion from the length of each leg before the acceleration / deceleration processing is performed. Even if the conversion to the length of each leg after acceleration / deceleration processing is a linear conversion, the cutting edge position calculated backward from the length of each leg after acceleration / deceleration processing deviates from the command value given in the Cartesian coordinate system. Causes a trajectory error.

【0010】図5は、デカルト座標系で与えられた指令
値と、加減速処理前の各脚の長さから逆算される刃先位
置と、加減速処理後の各脚の長さから逆算される刃先位
置との関係の一例を示す。線分ABは、デカルト座標系
で与えられた直線指令である。点P1〜P11は、加減
速処理前の各脚の長さから逆算される刃先位置である。
また、点Q1〜Q11は、加減速処理後の各脚の長さか
ら逆算される刃先位置であり、両者の間にはかなり大き
な軌跡誤差が生じるという問題点があった。
FIG. 5 shows a command value given in a Cartesian coordinate system, a cutting edge position calculated backward from the length of each leg before acceleration / deceleration processing, and a back calculation from the length of each leg after acceleration / deceleration processing. An example of the relationship with the position of the cutting edge is shown. The line segment AB is a straight line command given in the Cartesian coordinate system. Points P1 to P11 are cutting edge positions that are back calculated from the lengths of the respective legs before the acceleration / deceleration processing.
The points Q1 to Q11 are the cutting edge positions calculated backward from the lengths of the respective legs after the acceleration / deceleration processing, and there is a problem that a considerably large trajectory error occurs between the two.

【0011】本発明は上述のような事情によりなされた
ものであり、本発明の目的は、デカルト座標系で与えら
れる指令値と加減速処理後の各脚の長さから逆算される
刃先位置との間に上記軌跡誤差を生じないようにしたパ
ラレルメカニズム工作機械の数値制御装置を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cutting edge position calculated from a command value given in a Cartesian coordinate system and the length of each leg after acceleration / deceleration processing. It is another object of the present invention to provide a numerical controller for a parallel mechanism machine tool in which the above-mentioned trajectory error is prevented from occurring during the operation.

【0012】[0012]

【課題を解決するための手段】本発明の上記目的は、加
工プログラムを解釈するプログラム解釈手段と、該プロ
グラム解釈手段の出力に基づき可動部材のデカルト座標
について関数発生周期ごとの補間座標を出力する関数発
生手段と、前記デカルト座標の各成分の速度がなめらか
に変化するように前記関数発生周期ごとの補間座標を変
換する加減速処理手段と、該加減速処理手段による加減
速処理後のデカルト座標を各脚の長さに変換して出力す
る逆機構変換手段と、該逆機構変換手段の出力により駆
動装置を駆動制御する駆動装置制御手段とを具備するこ
とにより効果的に達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a program interpreting means for interpreting a machining program, and to output interpolation coordinates for each Cartesian coordinate of a movable member based on an output of the program interpreting means for each function generation cycle. Function generating means, acceleration / deceleration processing means for converting interpolation coordinates for each function generation cycle so that the speed of each component of the Cartesian coordinates changes smoothly, Cartesian coordinates after acceleration / deceleration processing by the acceleration / deceleration processing means This is effectively achieved by providing reverse mechanism converting means for converting the length of each leg into the length of each leg and outputting the result, and driving device control means for controlling the driving of the driving device based on the output of the reverse mechanism converting means.

【0013】[0013]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。図1は、本発明に係るパラレルメカ
ニズム工作機械の数値制御装置の構成を示すブロック図
である。プログラム解釈部1及び関数発生部2は、図3
に示す従来のパラレルメカニズム工作機械の数値制御装
置に用いられているものと同じものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a numerical control device for a parallel mechanism machine tool according to the present invention. The program interpreting unit 1 and the function generating unit 2
This is the same as that used in the conventional numerical controller for a parallel mechanism machine tool shown in FIG.

【0014】関数発生部2から出力される可動部材22
の関数発生周期ごとの補間座標(X、Y、Z、A、B、
C)は、加減速処理部3によりデカルト座標の各成分の
速度がなめらかに変化するように変換され、加減速処理
後のデカルト座標(X’、Y’、Z’、A’、B’、
C’)として出力される。
Movable member 22 output from function generator 2
Interpolation coordinates (X, Y, Z, A, B,
C) is converted by the acceleration / deceleration processing unit 3 so that the speed of each component of the Cartesian coordinates changes smoothly, and the Cartesian coordinates (X ′, Y ′, Z ′, A ′, B ′,
C ′).

【0015】逆機構変換部4は、該加減速処理後のデカ
ルト座標(X’、Y’、Z’、A’、B’、C’)を加
減速処理後の各脚の長さ(L1、L2、L3、L4、L
5、L6)に変換する。そして、駆動装置制御部5が、
この加減速処理後の各脚の長さ(L1、L2、L3、L
4、L5、L6)に基づき駆動装置を駆動制御する。
The inverse mechanism conversion unit 4 converts the Cartesian coordinates (X ', Y', Z ', A', B ', C') after the acceleration / deceleration processing into the lengths (L1) of the respective legs after the acceleration / deceleration processing. , L2, L3, L4, L
5, L6). Then, the driving device control unit 5
The length of each leg after this acceleration / deceleration processing (L1, L2, L3, L
4, L5, L6).

【0016】[0016]

【発明の効果】以上のように、本発明のパラレルメカニ
ズム工作機械の数値制御装置によれば、可動部材の位置
と姿勢を表すデカルト座標を加減速処理後に各脚の長さ
に変換する構成としたので、加減速処理後の各脚の長さ
から逆算される刃先位置は常にデカルト座標系で与えら
れた指令値上にある。したがって、軌跡誤差をなくし、
加工精度を向上できる。
As described above, according to the numerical controller for a parallel mechanism machine tool of the present invention, the Cartesian coordinates representing the position and posture of the movable member are converted into the length of each leg after the acceleration / deceleration processing. Therefore, the cutting edge position calculated backward from the length of each leg after the acceleration / deceleration processing is always on the command value given in the Cartesian coordinate system. Therefore, eliminating the trajectory error,
Processing accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る数値制御装置の構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing a configuration of a numerical control device according to the present invention.

【図2】 パラレルメカニズムを応用した工作機械の主
要部の一例を示す斜視図である。
FIG. 2 is a perspective view showing an example of a main part of a machine tool to which a parallel mechanism is applied.

【図3】 従来の数値制御装置の構成を示すブロック図
である。
FIG. 3 is a block diagram illustrating a configuration of a conventional numerical control device.

【図4】 従来の数値制御装置において、各脚の長さの
変化速度の時間に対する関係の一例を示す図であり、
(a)は加減速処理前の各脚の長さの変化速度、(b)
は加減速処理後の各脚の長さの変化速度との関係を示
す。
FIG. 4 is a diagram showing an example of a relationship between time and a change speed of the length of each leg in a conventional numerical control device;
(A) is the change speed of the length of each leg before the acceleration / deceleration processing, (b)
Shows the relationship with the change speed of the length of each leg after the acceleration / deceleration processing.

【図5】 従来の数値制御装置において、デカルト座標
系で与えられた指令値と、加減速処理前の各脚の長さか
ら逆算される刃先位置と、加減速処理後の各脚の長さか
ら逆算される刃先位置との関係の一例を示す図である。
FIG. 5 shows a conventional numerical control device, a command value given in a Cartesian coordinate system, a cutting edge position calculated back from each leg length before acceleration / deceleration processing, and a length of each leg after acceleration / deceleration processing. It is a figure which shows an example of the relationship with the cutting edge position calculated backward from FIG.

【符号の説明】[Explanation of symbols]

1 プログラム解釈部、2 関数発生部、3 加減速処
理部、4 逆機構変換部、5 駆動装置制御部、21
固定部材、22 可動部材、23 固定部材の支点、2
4 可動部材の支点、25 脚、26 駆動装置。
1. Program interpreting section, 2 function generating section, 3 acceleration / deceleration processing section, 4 reverse mechanism converting section, 5 drive control section, 21
Fixed member, 22 movable member, 23 fulcrum of fixed member, 2
4 fulcrum of movable member, 25 legs, 26 driving device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深谷 安司 愛知県丹羽郡大口町下小口5丁目25番地の 1 オークマ株式会社大口工場内 Fターム(参考) 5H269 AB01 AB33 BB03 CC10 RB11 RC04  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasushi Fukaya 5-25-25 Shimokoguchi, Oguchi-machi, Niwa-gun, Aichi Prefecture F-term in Okuma Plant Oguchi Plant (reference) 5H269 AB01 AB33 BB03 CC10 RB11 RC04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加工プログラムを解釈するプログラム解
釈手段と、該プログラム解釈手段の出力に基づき可動部
材のデカルト座標について関数発生周期ごとの補間座標
を出力する関数発生手段と、前記デカルト座標の各成分
の速度がなめらかに変化するように前記関数発生周期ご
との補間座標を変換する加減速処理手段と、該加減速処
理手段による加減速処理後のデカルト座標を各脚の長さ
に変換して出力する逆機構変換手段と、該逆機構変換手
段の出力により駆動装置を駆動制御する駆動装置制御手
段とを備えたことを特徴とするパラレルメカニズム工作
機械の数値制御装置。
1. A program interpreting means for interpreting a machining program, a function generating means for outputting interpolation coordinates for each function generating cycle for Cartesian coordinates of a movable member based on an output of the program interpreting means, and each component of the Cartesian coordinates Acceleration / deceleration processing means for converting the interpolation coordinates for each of the function generation cycles so that the speed changes smoothly, and the Cartesian coordinates after the acceleration / deceleration processing by the acceleration / deceleration processing means are converted into the length of each leg and output. A numerical controller for a parallel mechanism machine tool, comprising: a reverse mechanism converting means for performing a driving operation; and a drive control means for controlling the driving of the driving device based on an output of the reverse mechanism converting means.
JP11203176A 1999-07-16 1999-07-16 Numerical controller for parallel mechanism machine tool Pending JP2001034314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11203176A JP2001034314A (en) 1999-07-16 1999-07-16 Numerical controller for parallel mechanism machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11203176A JP2001034314A (en) 1999-07-16 1999-07-16 Numerical controller for parallel mechanism machine tool

Publications (1)

Publication Number Publication Date
JP2001034314A true JP2001034314A (en) 2001-02-09

Family

ID=16469726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11203176A Pending JP2001034314A (en) 1999-07-16 1999-07-16 Numerical controller for parallel mechanism machine tool

Country Status (1)

Country Link
JP (1) JP2001034314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039494B2 (en) 2003-08-05 2006-05-02 Fanuc Ltd Controller for machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039494B2 (en) 2003-08-05 2006-05-02 Fanuc Ltd Controller for machine

Similar Documents

Publication Publication Date Title
JP3830475B2 (en) Control device
CN102809945B (en) Movement planning method for numerical control processing, movement planner and application thereof
JP4044105B2 (en) Numerical control device having function of switching operation means for each system
JPH0580834A (en) Method and device for controlling motion of mechanical member
WO1989006066A1 (en) Method of speed control for servomotor
JP3795854B2 (en) Laser processing equipment
US6842651B1 (en) Programmable controller having plural speed pattern generators
JP5362146B1 (en) Numerical control apparatus and numerical control system
JP2007515003A (en) Method and apparatus for operating different devices operating in conjunction
JP2001034314A (en) Numerical controller for parallel mechanism machine tool
JPH0695294B2 (en) Trajectory interpolation method for industrial robot
JP2516589B2 (en) Control device for robot
JPH09198116A (en) Block data processing method for numerical controller
JP4560191B2 (en) Numerical controller
JP2001154719A (en) Method for interpolating free curve
JPH07111647B2 (en) Robot arm control method
JP7469462B2 (en) CONTROL DEVICE, DATA TRANSFER SYSTEM FOR CONTROL DEVICE, AND DATA TRANSFER METHOD
WO2002033815A1 (en) Method for controlling acceleration/deceleration of motor
JPH06182682A (en) Speed control method for robot
JPH06324730A (en) Controller for industrial robot
JPH09141581A (en) Robot control device
JP2001166807A (en) Method for commanding working by numerical controller
JPH07104712B2 (en) Manual control method for robot arm
JPH07303979A (en) Laser beam machine
JPH0561516A (en) Numerical controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040831