JP2001033641A - Variable wavelength optical filter element and its manufacture - Google Patents

Variable wavelength optical filter element and its manufacture

Info

Publication number
JP2001033641A
JP2001033641A JP20151499A JP20151499A JP2001033641A JP 2001033641 A JP2001033641 A JP 2001033641A JP 20151499 A JP20151499 A JP 20151499A JP 20151499 A JP20151499 A JP 20151499A JP 2001033641 A JP2001033641 A JP 2001033641A
Authority
JP
Japan
Prior art keywords
diffraction grating
optical filter
wavelength
filter element
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20151499A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
与志雄 鈴木
Shinji Nagaoka
新二 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20151499A priority Critical patent/JP2001033641A/en
Publication of JP2001033641A publication Critical patent/JP2001033641A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make obtainable a variable wavelength mechanism by external stress by integrating a variable wavelength mechanism with a diffraction grating type optical filter using a polymer material. SOLUTION: The diffraction grating type optical filter comprises a core 3' having a diffraction grating 4 formed thereon, which is nipped by clads 2, 5. As the filter material, fluorinated polyimide is used. An air-gap 9 is inserted from one side between the lower clad 2 and a substrate to lay the lower clad 2 in a cantilever-shaped floating state, so that an element is longitudinally expansible and contractible. A super-magnetostrictive alloy plating film 8 is integrally laminated on the upper clad 5 to function as a wavelength variable mechanism. An external magnetic field is applied to the super-magnetostrictive plating film 8 to impart the change in length by the magnetostrictive effect to the diffraction grating type optical filter, changing the period of the diffraction grating 4 of the core 3', thereby, Bragg wavelength can be changed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、波長可変光学フィ
ルタ素子及びその製造方法に関する。特に、小型化、低
価格化が期待できるポリイミド等の高分子材料を用いた
回折格子型光学フィルタ素子の高機能化に関するもので
ある。
The present invention relates to a tunable optical filter element and a method for manufacturing the same. In particular, the present invention relates to enhancement of the function of a diffraction grating optical filter element using a polymer material such as polyimide, which can be expected to be reduced in size and cost.

【0002】[0002]

【従来の技術】特定の波長(ブラッグ波長)の光を選択
的に反射する回折格子型フィルタは、高速、大容量を目
的とする波長多重通信システムに於ける波長選択フィル
タヘの適応をはじめとして広く期待されている。それら
光学フィルタの波長特性は回折格子のピッチ(周期)と
導波路の実効屈折率で決定され、それらを同時にあるい
はいずれか一方を何らかの手段で変化することで、フィ
ルタのブラッグ波長、即ち中心波長を変えることができ
る。
2. Description of the Related Art Diffraction grating filters that selectively reflect light of a specific wavelength (Bragg wavelength) are widely used, including adaptation to wavelength selection filters in wavelength division multiplexing communication systems for high speed and large capacity. Expected. The wavelength characteristics of these optical filters are determined by the pitch (period) of the diffraction grating and the effective refractive index of the waveguide, and by changing them simultaneously or one of them by some means, the Bragg wavelength of the filter, that is, the center wavelength, is changed. Can be changed.

【0003】通常は外部より機械的な応力を加えて回折
格子に伸縮を起こさせたり、あるいは素子の温度を変え
て導波路の屈折率を変える方法でフィルタ中心波長を変
えるのが一般的な方法として行われている。回折格子型
フィルタの代表としては、石英光ファイバのコア中に紫
外光を照射して回折格子を形成したファイバブラックグ
レーティング(FBG)がある。この材料は温度に対す
る屈折率変化が小さいため、温度制御による中心波長の
大きな変化は得られないが、引っ張り等の外部応力を与
えて波長可変効果を起こすことも可能である。
In general, the center wavelength of the filter is changed by applying mechanical stress from the outside to cause the diffraction grating to expand or contract, or by changing the temperature of the element to change the refractive index of the waveguide. It has been done as. A typical example of a diffraction grating filter is a fiber black grating (FBG) in which a core of a quartz optical fiber is irradiated with ultraviolet light to form a diffraction grating. Since this material has a small change in the refractive index with respect to temperature, a large change in the center wavelength due to temperature control cannot be obtained, but it is also possible to give an external stress such as tension to cause a wavelength tunable effect.

【0004】サマリウム、ジスプロシウム等のランタノ
イド元素を含んだ超磁歪合金棒の両端にファイバブラッ
クグレーティングを固定し、外部より磁界を印加して磁
歪効果による長さの変位を回折格子に起こさせて波長可
変効果を持たせることができる(鈴木他、97年春電子
情報通信学会C−3−149)。この方法では温度によ
る屈折率変化に比べてはるかに高速の波長可変が可能で
あり、印加磁界の強度により波長スイープ光源や高速波
長切り替えスイッチ等の応用への展開が期待される。一
方、ポリイミドやエポキシに代表される高分子材料を用
いた導波路型回折格子フィルタは、温度に対する屈折率
変化の大きさに起因する広範囲な波長可変特性と、比較
的簡単な方法で作製可能であるため、波長可変フィルタ
の小型化、低価格化等で注目されている。
[0004] A fiber black grating is fixed to both ends of a giant magnetostrictive alloy rod containing a lanthanoid element such as samarium or dysprosium, and a magnetic field is applied from the outside to cause a length displacement due to the magnetostriction effect on the diffraction grating to change the wavelength. An effect can be provided (Suzuki et al., Spring 1997, IEICE C-3-149). In this method, the wavelength can be changed much faster than the change in the refractive index due to temperature, and application to a wavelength sweep light source, a high-speed wavelength switch, or the like is expected depending on the intensity of the applied magnetic field. On the other hand, a waveguide-type diffraction grating filter using a polymer material represented by polyimide or epoxy can be manufactured by a wide range of wavelength tunable characteristics due to the magnitude of the refractive index change with temperature and a relatively simple method. For this reason, attention has been paid to miniaturization and cost reduction of the wavelength variable filter.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
高分子材料による導波路回折格子フィルタでは、素子全
体を加熱する波長可変法は可能であるが、引っ張り等の
外部応力による波長可変効果は構造上困難であり、従っ
て本方法の利点である高速な波長可変動作は不可能であ
った。以上説明したように従来の高分子材料による回折
格子型波長可変フィルタでは、構造上の制限から波長可
変手段が限定され、高速な波長可変動作は不可能であっ
た。本発明は、上述した従来の問題点を解決するため、
メッキ法による超磁歪合金膜の波長可変機構を回折格子
型フィルタ素子上に積層化し、従来不可能であった外部
応力による波長可変機構を実現することを目的とする。
However, in the conventional waveguide diffraction grating filter made of a polymer material, a wavelength tunable method for heating the entire device is possible, but the wavelength tunable effect due to external stress such as tension is structurally disadvantageous. It is difficult, and therefore, the high-speed tunable operation that is an advantage of the present method is not possible. As described above, in the conventional diffraction grating type wavelength tunable filter made of a polymer material, the wavelength variable means is limited due to structural limitations, and high-speed wavelength variable operation is impossible. The present invention solves the above-mentioned conventional problems,
A variable wavelength mechanism of a giant magnetostrictive alloy film by a plating method is laminated on a diffraction grating type filter element, thereby realizing a wavelength variable mechanism by an external stress which has been impossible in the past.

【0006】[0006]

【課題を解決するための手段】斯かる目的を達成する本
発明の請求項1に係る波長可変光学フィルタ素子は、ポ
リイミド等の高分子材料を用いた回折格子型光学フィル
タに波長可変機構を一体化したことを特徴とする。上記
目的を達成する本発明の請求項2に係る波長可変光学フ
ィルタ素子は、請求項1における前記回折格子型光学フ
ィルタの一部を基板から浮かすことで長さ方向の伸縮を
自由としたことを特徴とする。上記目的を達成する本発
明の請求項3に係る波長可変光学フィルタ素子は、請求
項1における前記波長可変機構として、磁歪効果により
回折格子の周期変化をもたらす超磁歪合金メッキ膜を使
用することを特徴とする。
According to a first aspect of the present invention, there is provided a wavelength tunable optical filter element for achieving the above object, wherein a wavelength tunable mechanism is integrated with a diffraction grating type optical filter using a polymer material such as polyimide. It is characterized by having A wavelength tunable optical filter element according to claim 2 of the present invention that achieves the above object has a structure in which a part of the diffraction grating optical filter according to claim 1 is floated from a substrate to freely expand and contract in a longitudinal direction. Features. A wavelength tunable optical filter element according to claim 3 of the present invention that achieves the above object uses a giant magnetostrictive alloy plating film that causes a period change of a diffraction grating due to a magnetostrictive effect as the wavelength tunable mechanism in claim 1. Features.

【0007】上記目的を達成する本発明の請求項4に係
る波長可変光学フィルタ素子の製造方法は、ポリイミド
等の高分子材料を用いた回折格子型光学フィルタに波長
可変機構を一体化して作製することを特徴とする。上記
目的を達成する本発明の請求項5に係る波長可変光学フ
ィルタ素子は、請求項4における前記回折格子型光学フ
ィルタを基板上に部分的に犠牲層を介在させて積層した
後、前記犠牲層を除去して前記フィルタの一部を前記基
板から浮かすように作製することを特徴とする。上記目
的を達成する本発明の請求項6に係る波長可変光学フィ
ルタ素子は、請求項4における前記波長可変機構とし
て、磁歪効果より回折格子に周期変化をもたらす超磁歪
合金メッキ膜を用いることを特徴とする。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a wavelength tunable optical filter element, wherein a wavelength tunable mechanism is integrated with a diffraction grating type optical filter using a polymer material such as polyimide. It is characterized by the following. A wavelength tunable optical filter element according to a fifth aspect of the present invention, which achieves the above object, has a structure in which the diffraction grating optical filter according to the fourth aspect is partially laminated on a substrate with a sacrificial layer interposed therebetween. And a part of the filter is made to float from the substrate. A wavelength tunable optical filter element according to claim 6 of the present invention that achieves the above object is characterized in that a giant magnetostrictive alloy plating film that causes a periodic change in a diffraction grating due to a magnetostrictive effect is used as the wavelength variable mechanism in claim 4. And

【0008】[0008]

【発明の実施の形態】本発明の一実施例に係るチューナ
ブルフィルタ素子を図1及び図2に示す。図1は、波長
可変光学フィルタ素子の全体斜視図、図2はその断面図
である。本実施例は、波長可変機構である超磁歪合金メ
ッキ膜を素子上に集積化したものである。フィルタ材料
にはフッ素化ポリイミド(FLUPI)を使用した。
1 and 2 show a tunable filter element according to an embodiment of the present invention. FIG. 1 is an overall perspective view of a tunable optical filter element, and FIG. 2 is a sectional view thereof. In this embodiment, a giant magnetostrictive alloy plating film, which is a wavelength variable mechanism, is integrated on an element. Fluorinated polyimide (FLUPI) was used as the filter material.

【0009】即ち、基板上には、回折格子4の形成され
たコア3’をクラッド2,5で挟み込んでなる回折格子
型光学フィルタが構成されると共に下部クラッド2と基
板との間は片側から空隙9が挿入されて片持状に浮いた
状態となっており、素子の長さ方向の伸縮が自由となっ
ている。更に、上部クラッド5上には超磁歪合金メッキ
膜8が波長可変機構として機能するように一体的に積層
されている。
That is, a diffraction grating optical filter comprising a core 3 'having a diffraction grating 4 sandwiched between claddings 2 and 5 is formed on a substrate, and a space between the lower cladding 2 and the substrate is formed from one side. The gap 9 is inserted and floats in a cantilever manner, and the element can freely expand and contract in the length direction. Further, a giant magnetostrictive alloy plating film 8 is integrally laminated on the upper clad 5 so as to function as a wavelength variable mechanism.

【0010】従って、超磁歪合金メッキ膜8に外部より
磁界を印加して磁歪効果による長さの変化を回折格子型
光学フィルタへ与え、コア3’の回折格子4の周期を変
化させることにより、ブラッグ波長を変えることができ
る。本実施例のように、磁歪効果による長さの変化を与
える方法では温度による屈折率変化に比べてはるかに高
速の波長可変が可能である。また、ポリイミドやエポキ
シに代表される高分子材料を用いた導波路型回折格子フ
ィルタは、温度に対する屈折率変化の大きさに起因する
広範囲な波長可変特性と、比較的簡単な方法で作製可能
である。
Therefore, by applying a magnetic field from the outside to the giant magnetostrictive alloy plating film 8 to give a change in length due to the magnetostrictive effect to the diffraction grating type optical filter and changing the period of the diffraction grating 4 of the core 3 ′, Bragg wavelength can be changed. In the method of giving the length change by the magnetostriction effect as in the present embodiment, the wavelength can be changed much faster than the refractive index change by temperature. In addition, a waveguide-type diffraction grating filter using a polymer material such as polyimide or epoxy can be manufactured using a wide range of wavelength tunable characteristics due to the magnitude of refractive index change with temperature and a relatively simple method. is there.

【0011】上記構成を有する本実施例のチューナブル
フィルタ素子は、図3〜図11に示す工程により作成さ
れる。まず、図3に示すように、シリコン基板上の一部
に犠牲層1となるTi等の金属をイオンビームスパッタ
法等により形成する。次に、図4に示すように、犠牲層
1上にフッ素化ポリイミド材料を20μmの厚みになる
ようにスピンコーティングで塗布し、その後最大370
℃程度のべーキング処理を行ってイミド化を図り、透明
ポリイミド膜による下部クラッド層2を作製する。
The tunable filter element according to the present embodiment having the above configuration is manufactured by the steps shown in FIGS. First, as shown in FIG. 3, a metal such as Ti serving as a sacrificial layer 1 is formed on a part of a silicon substrate by an ion beam sputtering method or the like. Next, as shown in FIG. 4, a fluorinated polyimide material is spin-coated on the sacrificial layer 1 so as to have a thickness of 20 μm.
By performing a baking treatment at about ° C to imidize, a lower clad layer 2 made of a transparent polyimide film is formed.

【0012】引き続き、図5に示すように、屈折率が2
より大きなコア用フッ素化ポリイミド材料を7μmの厚
さになるように同様にスピンコーティング、べーキング
処理を行いコア層3を作製する。このコア層3の表面に
シリコンフォトレジスト(SPP)等の紫外光用レジス
トを塗布し、電子ビームによる直接描画、あるいはエキ
シマレーザやSOR光等の紫外(X線)光と位相マスク
を用いて周期約500nmの回折格子パターンをレジス
ト上に露光する。
Subsequently, as shown in FIG.
A core layer 3 is similarly formed by spin coating and baking a larger fluorinated polyimide material for a core to a thickness of 7 μm. A resist for ultraviolet light such as silicon photoresist (SPP) is applied to the surface of the core layer 3 and is directly drawn by an electron beam, or is periodically formed using ultraviolet (X-ray) light such as excimer laser or SOR light and a phase mask. A diffraction grating pattern of about 500 nm is exposed on the resist.

【0013】現像処理後、さらにこのレジスト膜をマス
クとした酸素リアクティブイオンエッチング(O2−R
IE)等の手段を用いて、図6に示すように、回折格子
4をコア膜表面に転写形成する。その後、図6に示すよ
うに、再びシリコンフォトレジストをこの回折格子表面
に塗布した後、通常のフォトマスクを用いるフォト工程
と同様な酸素リアクティブイオンエッチング等の手段に
より、7μmの幅のリッジ型シングルモード導波路コア
3’を形成する。更に、図7に示すように、下部クラッ
ド層2と同じ材料をこの上に再び塗布して約15μmの
厚みの上部クラッド層5でコアストライプを埋め込み、
再度ベーキング処理を行って、3層構造埋め込み型導波
路回折格子フィルタ基板を得る。
After the development, oxygen reactive ion etching (O 2 -R
Using a means such as IE), the diffraction grating 4 is transferred and formed on the surface of the core film as shown in FIG. After that, as shown in FIG. 6, a silicon photoresist is applied again to the surface of the diffraction grating, and the ridge type having a width of 7 μm is formed by means such as oxygen reactive ion etching similar to the photo step using a normal photomask. A single mode waveguide core 3 'is formed. Further, as shown in FIG. 7, the same material as that of the lower cladding layer 2 is applied thereon again, and a core stripe is embedded with an upper cladding layer 5 having a thickness of about 15 μm.
The baking process is performed again to obtain a waveguide diffraction grating filter substrate with a buried three-layer structure.

【0014】そして、図8〜図11に示すように、この
フィルタ基板上に超磁歪合金メッキ膜を作製する。ま
ず、図8に示すように、フィルタ基板上全面にイオンビ
ームスパッタ法等で犠牲膜1とは異なるNi等の金属膜
を堆積しメッキ用下地層6を形成する。次に、図9に示
すように、フォトリソグラフィー技術により所望のパタ
ーンを有するフォトレジストによる鋳型7を作製する。
引き続き、図10に示すように、このフォトレジスト鋳
型7に電解メッキ析出法により超磁歪合金厚膜メッキ膜
8を析出する。
Then, as shown in FIGS. 8 to 11, a giant magnetostrictive alloy plating film is formed on the filter substrate. First, as shown in FIG. 8, a metal film such as Ni different from the sacrificial film 1 is deposited on the entire surface of the filter substrate by an ion beam sputtering method or the like to form a plating underlayer 6. Next, as shown in FIG. 9, a mold 7 made of a photoresist having a desired pattern is formed by a photolithography technique.
Subsequently, as shown in FIG. 10, a giant magnetostrictive alloy thick plating film 8 is deposited on the photoresist mold 7 by electrolytic plating.

【0015】アセトンでレジスト鋳型7を除去した後、
余分のメッキ下地層6をドライエッチング法、あるいは
塩酸等を用いたウェットエッチング法で除去し、その後
ダイアモンドカッター等で基板を切断分離して個々の素
子化を行う。最後に、図11に示すように、犠牲層1を
沸化水素酸等のエッチング液を用いたウェットエッチン
グ法で取り去ることで空隙9を形成し、フィルタの一部
を基板から浮かせる構造を作製し完成する。
After removing the resist mold 7 with acetone,
The excess plating base layer 6 is removed by a dry etching method or a wet etching method using hydrochloric acid or the like, and thereafter, the substrate is cut and separated by a diamond cutter or the like to form individual elements. Finally, as shown in FIG. 11, a void 9 is formed by removing the sacrifice layer 1 by a wet etching method using an etchant such as hydrofluoric acid, and a structure is created in which a part of the filter is floated from the substrate. Complete.

【0016】[0016]

【発明の効果】以上説明したように、本発明は、高分子
材料を用いた回折格子型光学フィルタに波長可変機構を
設けたため、低価格化が期待できるポリイミド等の高分
子材料を用いたフィルタ素子に、超磁歪合金メッキ膜の
外部応力付与機構を集積化することで、従来不可能であ
った回折格子の周期を変える波長可変特性を持たすこと
が可能となり、高速動作等のフィルタ素子の高機能化が
得られる。
As described above, the present invention provides a filter using a polymer material such as polyimide, which can be expected to be reduced in cost because a wavelength variable mechanism is provided in a diffraction grating type optical filter using a polymer material. By integrating the external stress applying mechanism of the giant magnetostrictive alloy plating film into the element, it becomes possible to have a wavelength tunable characteristic that changes the period of the diffraction grating, which was not possible in the past. Functionalization is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るチューナブルフィルタ
素子を示す全体斜視図である。
FIG. 1 is an overall perspective view showing a tunable filter element according to one embodiment of the present invention.

【図2】図2(a)(b)は、本発明の一実施例に係る
チューナブルフィルタ素子を示す縦断面図、横断面図で
ある。
FIGS. 2A and 2B are a longitudinal sectional view and a transverse sectional view showing a tunable filter element according to one embodiment of the present invention.

【図3】図3(a)(b)は、犠牲層用金属膜を堆積さ
せる工程を示す横断面図、縦断面図である。
FIGS. 3A and 3B are a cross-sectional view and a vertical cross-sectional view illustrating a step of depositing a metal film for a sacrificial layer.

【図4】図4(a)(b)は、下部クラッド層を形成さ
せる工程を示す横断面図、縦断面図である。
FIGS. 4A and 4B are a cross-sectional view and a vertical cross-sectional view showing a step of forming a lower cladding layer.

【図5】図5(a)(b)は、コア層を形成させる工程
を示す横断面図、縦断面図である。
FIGS. 5A and 5B are a cross-sectional view and a vertical cross-sectional view illustrating a step of forming a core layer.

【図6】図6(a)(b)は、回折格子、リッジ導波路
を作製する工程を示す横断面図、縦断面図である。
FIGS. 6A and 6B are a cross-sectional view and a vertical cross-sectional view illustrating a process of manufacturing a diffraction grating and a ridge waveguide.

【図7】図7(a)(b)は、上部クラッド層形成、3
層埋め込み導波路を完成させる工程を示す横断面図、縦
断面図である。
7 (a) and 7 (b) show the formation of an upper cladding layer and the formation of an upper cladding layer; FIG.
It is the cross-sectional view which shows the process of completing a layer buried waveguide, and a longitudinal cross-sectional view.

【図8】図8(a)(b)は、メッキ下地層を堆積させ
る工程を示す横断面図、縦断面図である。
FIGS. 8A and 8B are a cross-sectional view and a vertical cross-sectional view showing a step of depositing a plating underlayer.

【図9】図9(a)(b)は、メッキ用レジスト鋳型を
形成させる工程を示す横断面図、縦断面図である。
FIGS. 9A and 9B are a cross-sectional view and a vertical cross-sectional view showing a step of forming a plating resist template.

【図10】図10(a)(b)は、めっき膜を形成させ
る工程を示す横断面図、縦断面図である。
FIGS. 10A and 10B are a cross-sectional view and a vertical cross-sectional view illustrating a step of forming a plating film.

【図11】図11(a)(b)は、鋳型除去、下地層エ
ッチング、犠牲層エッチング工程を示す横断面図、縦断
面図である。
FIGS. 11 (a) and 11 (b) are a cross-sectional view and a vertical cross-sectional view showing steps of removing a template, etching a base layer, and etching a sacrifice layer.

【符号の説明】[Explanation of symbols]

1 犠牲層 2 下部クラッド層 3,3’ コア層 4 回折格子 5 下部クラッド層 6 メッキ下地層 7 レジスト鋳型 8 超磁歪合金メッキ層 9 空隙 DESCRIPTION OF SYMBOLS 1 Sacrificial layer 2 Lower clad layer 3, 3 'core layer 4 Diffraction grating 5 Lower clad layer 6 Plating underlayer 7 Resist mold 8 Giant magnetostrictive alloy plating layer 9 Void

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリイミド等の高分子材料を用いた回折
格子型光学フィルタに波長可変機構を一体化したことを
特徴とする波長可変光学フィルタ素子。
1. A wavelength tunable optical filter element, wherein a wavelength tunable mechanism is integrated with a diffraction grating type optical filter using a polymer material such as polyimide.
【請求項2】 前記回折格子型光学フィルタの一部を基
板から浮かすことで長さ方向の伸縮を自由としたことを
特徴とする請求項1記載の波長可変光学フィルタ素子。
2. The tunable optical filter element according to claim 1, wherein a part of the diffraction grating type optical filter is floated from a substrate to freely expand and contract in a longitudinal direction.
【請求項3】 前記波長可変機構は、磁歪効果により回
折格子の周期変化をもたらす超磁歪合金メッキ膜である
ことを特徴とする請求項1記載の波長可変光学フィルタ
素子。
3. The tunable optical filter element according to claim 1, wherein the tunable mechanism is a giant magnetostrictive alloy plating film that causes a change in the period of the diffraction grating by a magnetostrictive effect.
【請求項4】 ポリイミド等の高分子材料を用いた回折
格子型光学フィルタに波長可変機構を一体化して作製す
ることを特徴とする波長可変光学フィルタ素子の製造方
法。
4. A method for manufacturing a wavelength tunable optical filter element, wherein a wavelength tunable mechanism is integrated with a diffraction grating type optical filter using a polymer material such as polyimide.
【請求項5】 前記回折格子型光学フィルタを基板上に
部分的に犠牲層を介在させて積層した後、前記犠牲層を
除去して前記フィルタの一部を前記基板から浮かすよう
に作製することを特徴とする請求項4記載の波長可変光
学フィルタ素子の製造方法。
5. The method of manufacturing a diffraction grating optical filter according to claim 1, further comprising: laminating the diffraction grating optical filter on a substrate with a sacrifice layer interposed therebetween, removing the sacrifice layer, and floating a part of the filter from the substrate. The method for manufacturing a wavelength tunable optical filter element according to claim 4, wherein
【請求項6】 前記波長可変機構は、磁歪効果より回折
格子に周期変化をもたらす超磁歪合金メッキ膜であるこ
とを特徴とする請求項4記載の波長可変光学フィルタ素
子の製造方法。
6. The method according to claim 4, wherein the variable wavelength mechanism is a giant magnetostrictive alloy plating film that causes a periodic change in the diffraction grating due to a magnetostrictive effect.
JP20151499A 1999-07-15 1999-07-15 Variable wavelength optical filter element and its manufacture Withdrawn JP2001033641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20151499A JP2001033641A (en) 1999-07-15 1999-07-15 Variable wavelength optical filter element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20151499A JP2001033641A (en) 1999-07-15 1999-07-15 Variable wavelength optical filter element and its manufacture

Publications (1)

Publication Number Publication Date
JP2001033641A true JP2001033641A (en) 2001-02-09

Family

ID=16442317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20151499A Withdrawn JP2001033641A (en) 1999-07-15 1999-07-15 Variable wavelength optical filter element and its manufacture

Country Status (1)

Country Link
JP (1) JP2001033641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313309A (en) * 2005-05-04 2006-11-16 Korea Electronics Telecommun Base-station side light transmitter of passive optical subscriber network using wavelength division multiplexing method, and method for manufacturing the same
CN112130249A (en) * 2020-08-17 2020-12-25 桂林电子科技大学 Programmable fiber grating based on magnetofluid
CN113205899A (en) * 2021-04-25 2021-08-03 中国工程物理研究院激光聚变研究中心 X-ray refraction blazed grating and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313309A (en) * 2005-05-04 2006-11-16 Korea Electronics Telecommun Base-station side light transmitter of passive optical subscriber network using wavelength division multiplexing method, and method for manufacturing the same
CN112130249A (en) * 2020-08-17 2020-12-25 桂林电子科技大学 Programmable fiber grating based on magnetofluid
CN113205899A (en) * 2021-04-25 2021-08-03 中国工程物理研究院激光聚变研究中心 X-ray refraction blazed grating and preparation method thereof
CN113205899B (en) * 2021-04-25 2023-02-28 中国工程物理研究院激光聚变研究中心 X-ray refraction blazed grating and preparation method thereof

Similar Documents

Publication Publication Date Title
US7639911B2 (en) Optical device having optical waveguide including organic Bragg grating sheet
JPH1073722A (en) Polarizing optical element and its production
JP2004510182A (en) A method for changing the resonance characteristics of a waveguide microresonator
JP2006514751A (en) Method and system for providing polarization of a beam
JP4785194B2 (en) Method for manufacturing slab type two-dimensional photonic crystal structure
US20020074307A1 (en) Method for making an integrated optical circuit
WO2003087922A2 (en) Method and apparatus for homogenous heating of an optical waveguiding structure
KR100943561B1 (en) A method of making a wavelength filter
US20040120644A1 (en) Method of making subwavelength resonant grating filter
US20060072891A1 (en) Methods of manufacturing mold for patterning lower cladding layer of wavelength filter and of manufacturing waveguide-type wavelength filter using the mold
JP2001033641A (en) Variable wavelength optical filter element and its manufacture
JP3867848B2 (en) Optical waveguide
CN113064310B (en) All-optical switch
JP4999401B2 (en) Manufacturing method of optical element having fine irregularities on surface
JP2009042497A (en) Surface plasmon element
JP2005316019A (en) Wavelength filter
JPH041703A (en) Production of phase shift type diffraction grating
JPH10123341A (en) Optical waveguide and its production
JPH03296003A (en) Optical device and its manufacture
JP6437876B2 (en) Optical waveguide connection structure
JP2004295043A (en) Optical waveguide
JP4352373B2 (en) Fabry-Perot filter
JPH0720336A (en) Structure of optical waveguide and its production
KR100772509B1 (en) Optical device having optical waveguide of organic Bragg grating sheet
JP3147561B2 (en) Three-dimensional optical waveguide and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003