JP2001033018A - Method and apparatus for controlling combustion of burning furnace - Google Patents
Method and apparatus for controlling combustion of burning furnaceInfo
- Publication number
- JP2001033018A JP2001033018A JP11204694A JP20469499A JP2001033018A JP 2001033018 A JP2001033018 A JP 2001033018A JP 11204694 A JP11204694 A JP 11204694A JP 20469499 A JP20469499 A JP 20469499A JP 2001033018 A JP2001033018 A JP 2001033018A
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- gas
- furnace
- laser
- combustion control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Incineration Of Waste (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、供給熱エネルギに
バラツキがある燃焼物の燃焼を行なうボイラー、ストー
カ炉、流動床炉を含む各種燃焼炉の燃焼制御方法とその
制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control method for various combustion furnaces including a boiler, a stoker furnace, and a fluidized-bed furnace for burning combustion products having a variation in supplied heat energy, and a control apparatus therefor.
【0002】[0002]
【従来の技術】都市ごみ焼却炉等の廃棄物焼却炉のよう
に、定量供給が困難であり燃料性状等の供給熱エネルギ
にバラツキがある燃焼物を燃焼炉において燃焼させた場
合、燃料の供給量/質と燃焼空気量の変化により、ガス
濃度や燃焼温度が変化する。そしてこのガス濃度や燃焼
温度の変化は、一酸化炭素、窒素酸化物濃度の増大、更
にはダイオキシンの発生につながる。このため従来よ
り、前記燃料の供給量/質の変動の大きいごみ焼却炉の
燃焼制御装置が種々提案されている。2. Description of the Related Art In the case of burning incinerators such as municipal solid waste incinerators, which are difficult to supply quantitatively and whose supply heat energy such as fuel properties varies, the fuel is supplied. Gas concentration and combustion temperature change due to changes in the amount / quality and the amount of combustion air. The change in the gas concentration or the combustion temperature leads to an increase in the concentration of carbon monoxide and nitrogen oxides, and further, to the generation of dioxin. For this reason, conventionally, various combustion control devices for refuse incinerators with large fluctuations in the supply amount / quality of the fuel have been proposed.
【0003】図7は、従来のごみ焼却炉に適用されるス
トーカ炉における制御構成図である。図中、1はごみ焼
却炉としてのストーカ炉で、底部にごみ層を堆積するス
トーカ3が配設されている。前記ごみ層の下流側には燃
焼物を燃焼した後の灰を所定の位置に搬送する灰シュー
ト14が配置されている。FIG. 7 is a control block diagram of a stoker furnace applied to a conventional refuse incinerator. In the figure, reference numeral 1 denotes a stoker furnace as a refuse incinerator, and a stoker 3 for depositing a refuse layer is disposed at the bottom. An ash chute 14 that conveys the ash after burning the combustion material to a predetermined position is disposed downstream of the refuse layer.
【0004】前記ストーカ3の上流側には都市ごみ等の
燃焼物をストーカ3上に投入する燃焼物供給ホッパ2が
設けられている。このホッパ2の下部側には、油圧によ
り駆動して燃焼物をストーカ3上のごみ層15に押し出
すフィーダ17が設けられている。該フィーダ17によ
り送られてきた燃焼物は、ストーカ3上を移動しながら
その下方の一次空気供給弁7により流量制御された一次
空気によりごみ層15内でガス化、一次燃焼され、一次
燃焼室11上部の二次燃焼部12で完全燃焼する。二次
燃焼部12入口には、二次空気供給口18が設けられ、
二次空気供給弁8により流量制御された二次空気によ
り、一次燃焼室11でガス化した熱分解ガスの完全燃焼
を図る。[0004] A combustion material supply hopper 2 is provided upstream of the stoker 3 for supplying a combustion material such as municipal waste to the stoker 3. A feeder 17 is provided below the hopper 2 to be driven by hydraulic pressure and to extrude the combusted material to the dust layer 15 on the stoker 3. The combustion material sent by the feeder 17 is gasified and primary-combusted in the refuse layer 15 by the primary air whose flow rate is controlled by the primary air supply valve 7 below the stoker 3 while moving on the stoker 3, and the primary combustion chamber The fuel is completely burned in the secondary combustion part 12 at the upper part of the fuel cell 11. A secondary air supply port 18 is provided at an inlet of the secondary combustion unit 12,
With the secondary air whose flow rate is controlled by the secondary air supply valve 8, complete combustion of the pyrolysis gas gasified in the primary combustion chamber 11 is achieved.
【0005】28は制御装置で、炉壁に設置した熱電対
109、サクションパイロメータ110、炉上部に炉頂
カメラ112、炉出口に設置した赤外線カメラ113、
炉出口あるいは更に後部に設置したガス濃度計111、
等よりの検出信号に基づいて、二次空気供給弁8の開閉
制御を行なう。Reference numeral 28 denotes a control device, which includes a thermocouple 109 installed on a furnace wall, a suction pyrometer 110, a furnace top camera 112 at an upper part of the furnace, an infrared camera 113 installed at a furnace outlet,
Gas concentration meter 111 installed at the furnace outlet or further behind,
The opening / closing control of the secondary air supply valve 8 is performed based on the detection signal from the above.
【0006】[0006]
【発明が解決しようとする課題】しかしながらかかる従
来技術によれば、夫々次のような課題がある。 (1)温度計測から燃焼状態を判断する方法における課
題 イ.炉壁に設置した熱電対109による温度計測がある
が、応答性が悪く時間遅れが大きい。また、炉壁に近い
場所の温度を計測するのみであり、炉の中央部の温度計
測は出来ず、精度良い燃焼状態の把握が困難である。 ロ.又、サクションパイロメータ110などの様に、炉
内からガスを吸引して温度を計測するものもあるが、応
答性は悪く、また炉の中央部の温度計測は出来ず、同様
に精度良い燃焼状態の把握が困難である。 ハ.炉出口に赤外線カメラ113を設置して温度計測す
る方法もあるが、炉外部であり、時間遅れ及び最高温度
のみの計測である。 従って、これらの温度計測では、いずれも炉内の燃焼状
態をリアルタイムでかつ炉中央部の温度を知ることはで
きない。However, according to such prior art, there are the following problems, respectively. (1) Issues in determining the combustion state from temperature measurement a. Although there is temperature measurement by the thermocouple 109 installed on the furnace wall, the response is poor and the time delay is large. In addition, it only measures the temperature near the furnace wall, and cannot measure the temperature at the center of the furnace, making it difficult to accurately grasp the combustion state. B. Also, there is a device such as a suction pyrometer 110 that measures the temperature by sucking gas from the furnace, but the response is poor, and the temperature cannot be measured at the center of the furnace. It is difficult to grasp the state. C. There is also a method of installing an infrared camera 113 at the furnace outlet to measure the temperature, but it is outside the furnace and measures only the time delay and the maximum temperature. Therefore, none of these temperature measurements can know the combustion state in the furnace in real time and the temperature at the center of the furnace.
【0007】(2)有害ガスの発生量により燃焼状態を
判断する方法における課題 更に炉出口、あるいは更に後部でガス濃度計111を用
いて排ガス濃度を計測してその発生量の増減により燃焼
状態を判断する方法もあるが、時間遅れの問題を解決す
るものではなかった。(2) Problems in the method of judging the combustion state based on the generation amount of harmful gas Further, the exhaust gas concentration is measured using a gas concentration meter 111 at the furnace outlet or further at the rear, and the combustion state is determined by increasing or decreasing the generation amount. There was a way to judge, but it did not solve the problem of time delay.
【0008】(3)カメラ画像により燃焼状態を判断す
る方法における課題 炉上部に炉頂カメラ112を設置し、その映像の輝度や
色合いにより燃焼状態を判断する方法があるが、一次燃
焼と二次燃焼の区別がつかない等の不具合がある。(3) Problems in Method of Determining Combustion State from Camera Image There is a method of installing a furnace top camera 112 at the upper part of the furnace and judging the combustion state based on the brightness and color of the image. There is a problem that combustion cannot be distinguished.
【0009】(4)蒸気量変動によって燃焼状態を把握
する方法における課題 ボイラでの蒸気量の変動が少ないことを安定燃焼として
燃焼制御を行なっているため、蒸気量変動が燃焼状態に
一致する考え方であるが、やはり時間遅れが大きい。(4) Problems in the method of grasping the combustion state by the fluctuation of the steam amount Since the combustion control is performed as the stable combustion in which the fluctuation of the steam amount in the boiler is small, the concept that the fluctuation of the steam amount coincides with the combustion state. However, the time delay is still large.
【0010】従って、従来の前記した各制御方法におい
ては、前記検知信号により燃焼状態を推定してさまざま
な手法(PI制御、ファジイ制御等)により操作端であ
る二次空気供給弁8、一次空気供給弁7を単独または両
方を操作して燃焼制御を行なってきているが、燃焼状態
の急激な変化に追随することは出来ていない。Therefore, in each of the conventional control methods described above, the combustion state is estimated based on the detection signal, and the secondary air supply valve 8 and the primary air, which are the operation terminals, are operated by various methods (PI control, fuzzy control, etc.). Although the combustion control is performed by operating the supply valve 7 alone or both, it is not possible to follow a rapid change in the combustion state.
【0011】しかし最近は、排ガス規制の強化とダイオ
キシン抑制などにより、燃焼状態に応じたリアルタイム
燃焼制御の必要性が増大しており、従来の計測手段を用
いた燃焼制御の改善が、必要・不可欠であり、また早期
解決が望まれている。However, recently, the necessity of real-time combustion control according to the combustion state has been increasing due to stricter exhaust gas regulations and dioxin control, and it is necessary and indispensable to improve the combustion control using conventional measuring means. And an early solution is desired.
【0012】しかしながら、前記したようにごみ焼却炉
は、燃料がごみであり、その発熱量・成分が不定であ
り、燃焼後にその発熱量と排ガスの成分・濃度が判明
し、かつその燃焼状態の変動が他の燃焼炉とくらべて著
しい。このため、燃焼場を直接計測してその結果を制御
に反映することが望ましいが、これまでは、炉の雰囲気
の高温・腐食ガスなど悪条件から実施する計測手段がな
かった。However, as described above, in the refuse incinerator, the fuel is refuse, and its calorific value and component are undefined. After combustion, its calorific value and the component and concentration of exhaust gas are determined, and The fluctuation is more remarkable than other furnaces. For this reason, it is desirable to directly measure the combustion field and reflect the result in the control. However, there has been no measurement means for performing the measurement under adverse conditions such as high temperature and corrosive gas in the furnace atmosphere.
【0013】本発明は、かかる課題に鑑み、燃焼炉内の
ガス温度・各種ガス濃度に基づいて、その燃焼むらを定
量的に且つ精度良く把握することが出来る燃焼炉の燃焼
制御方法とその制御装置を提供することを目的とする。
本発明の他の目的は、前記炉内における燃焼ムラを精度
良く且つ速やかに解消し安定した燃焼状態を保持し、燃
焼炉内を均一化することで一定以上の高温を維持し、排
ガス濃度を最低限に安定させることが可能となる燃焼炉
の燃焼制御方法とその制御装置を提供することを目的と
する。In view of the above problems, the present invention provides a combustion furnace combustion control method and a combustion furnace control method capable of quantitatively and accurately grasping the unevenness of combustion based on the gas temperature and various gas concentrations in the combustion furnace. It is intended to provide a device.
Another object of the present invention is to precisely and promptly eliminate combustion unevenness in the furnace, maintain a stable combustion state, maintain a uniform high temperature by maintaining uniformity in the combustion furnace, and reduce the exhaust gas concentration. It is an object of the present invention to provide a combustion control method and a control device for a combustion furnace that can be stabilized to a minimum.
【0014】[0014]
【課題を解決するための手段】本発明はかかる課題を解
決するために、熱エネルギにバラツキがある燃焼物の燃
焼を行なうボイラー、ストーカ炉、流動床炉を含む燃焼
炉の燃焼制御方法において、特定波長光を炉内燃焼域の
複数方向に照射して該燃焼域のガス濃度若しくはガス温
度の断面分布を求めるとともに、該ガス濃度若しくはガ
ス温度の断面分布に基づいて少なくとも前記燃焼域へ供
給される空気量の制御を行なうことを特徴とする燃焼炉
の燃焼制御方法を提案する。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a combustion control method for a combustion furnace including a boiler, a stoker furnace, and a fluidized-bed furnace for burning a combustion material having a variation in thermal energy. A specific wavelength light is irradiated in a plurality of directions of the in-furnace combustion region to determine a gas concentration or gas temperature cross-sectional distribution in the combustion region, and is supplied to at least the combustion region based on the gas concentration or gas temperature cross-sectional distribution. The present invention proposes a combustion control method for a combustion furnace, characterized in that the air amount is controlled.
【0015】ここで特定波長光とはパルスレーザ等のレ
ーザ光を指し、該レーザ光の波長とその受光強度によ
り、ガス濃度若しくはガス温度の計測が可能である、即
ちより具体的には計測対象となるガスの吸収波長と対応
する波長のレーザを用いることにより、請求項4に記載
のように、レーザ分光吸収法に基づく前記ガス濃度若し
くはガス温度の計測が可能であり、又、レーザレーダに
より対応するガスの共鳴波長と非共鳴波長の2つのレー
ザを発振/受光して両者の受光強度の差に基づく差分吸
収法により前記ガス濃度を求めことが出来る。Here, the specific wavelength light refers to a laser light such as a pulse laser, and the gas concentration or the gas temperature can be measured by the wavelength of the laser light and the intensity of the received light. By using a laser having a wavelength corresponding to the absorption wavelength of the gas to be obtained, the gas concentration or the gas temperature can be measured based on the laser spectral absorption method as described in claim 4, and the laser radar The two lasers having the resonance wavelength and the non-resonance wavelength of the corresponding gas are oscillated / received, and the gas concentration can be obtained by the difference absorption method based on the difference between the received light intensities.
【0016】尚、レーザレーダを水平方向のみならず垂
直方向に、X−Y−Zの三軸方向に旋回させることによ
り、炉全体の立体的な分布を計測することも可能とな
る。これにより燃焼炉内のガス温度・各種ガス濃度に対
応する、炉内の燃焼状態を燃焼ムラとして定量的に把握
することが可能となった。By rotating the laser radar not only in the horizontal direction but also in the vertical direction in the three axes of XYZ, it is possible to measure the three-dimensional distribution of the entire furnace. As a result, it became possible to quantitatively grasp the combustion state in the furnace corresponding to the gas temperature and various gas concentrations in the combustion furnace as uneven combustion.
【0017】又、レーザ分光吸収法のガス濃度は、温度
変化によりその吸収量が変化するが、O2およびH2Oが
存在し、又請求項5記載のように、燃焼炉内のガス温度
計測に関して、特定ガス種の検出波長帯のうち隣接する
2波長の吸収量の比率からガス温度を算出することで、
炎の温度を含めた計測を行なう場合はH2O等の様に、
炎内に存在するガスを用いてガス温度計測を行なう点
と、炎の温度を含めずに温度計測する場合は、O2等の
様に炎内にほとんど存在しないガスを用いてガス温度計
測を行なう点の2つの温度計測を組み合わせることによ
り、炎によるノイズ温度を除去した精度良い測定が可能
であるとともに、二次燃焼部へ供給される熱分解ガス量
等の判断も可能であり、これにより例えば二次空気供給
弁および一次空気供給弁との夫々の開閉制御を精度良く
行なうことが出来る。In the gas concentration of the laser spectroscopic absorption method, the absorption amount changes with the temperature change, but O 2 and H 2 O are present. Regarding the measurement, by calculating the gas temperature from the ratio of the absorption amounts of two adjacent wavelengths in the detection wavelength band of the specific gas type,
When measuring including the temperature of the flame, like H 2 O,
When measuring the gas temperature using the gas present in the flame, and when measuring the temperature without including the temperature of the flame, measure the gas temperature using a gas such as O 2 that hardly exists in the flame. By combining the two temperature measurements of the points to be performed, it is possible to accurately measure the temperature by removing the noise temperature due to the flame, and it is also possible to determine the amount of the pyrolysis gas supplied to the secondary combustion part, and the like. For example, the opening and closing control of each of the secondary air supply valve and the primary air supply valve can be accurately performed.
【0018】又、燃焼制御するために、CO,NOx,
HCl,O2,H2Oなどの炉内に含まれ、かつ制御対象
とするガス濃度を計測する。In order to control combustion, CO, NOx,
The concentration of a gas such as HCl, O 2 , H 2 O contained in a furnace and controlled is measured.
【0019】この場合、好ましくは、請求項2に記載の
ように、前記燃焼域を複数の燃焼制御域に分割し、該複
数の燃焼制御域毎に供給空気量の制御を行なうのがよ
く、より具体的には請求項3に記載のように、前記特定
波長光が、一又は複数の燃焼制御域を挟んで得られる複
数の検知信号を演算して、対応する燃焼制御域のガス濃
度若しくはガス温度を求めるのがよい。In this case, preferably, the combustion zone is divided into a plurality of combustion control zones, and the supply air amount is controlled for each of the plurality of combustion control zones. More specifically, as described in claim 3, the specific wavelength light calculates a plurality of detection signals obtained by sandwiching one or a plurality of combustion control regions, and determines a gas concentration or a gas concentration in a corresponding combustion control region. It is better to determine the gas temperature.
【0020】これにより、本発明は、炉内を複数の燃焼
制御区域に分割し、それぞれの燃焼制御区域を個別に制
御可能な操作端として、例えば二次空気供給弁および一
次空気供給弁を開閉制御することにより、定量的な分布
計測に基いて、該当する燃焼区域の操作端を制御するこ
とにより、燃焼ムラの無い安定した燃焼状態を保持し、
燃焼炉内を均一化することで一定以上の高温を維持し、
排ガス濃度を最低限に安定させることが可能となる。Thus, the present invention divides the inside of the furnace into a plurality of combustion control sections, and opens and closes, for example, the secondary air supply valve and the primary air supply valve as operating ends which can be individually controlled. By controlling, based on quantitative distribution measurement, by controlling the operating end of the corresponding combustion zone, a stable combustion state without combustion unevenness is maintained,
By maintaining a uniform high temperature inside the combustion furnace,
It is possible to stabilize the exhaust gas concentration to the minimum.
【0021】請求項6記載の発明は、レーザ発振部ある
いはレーザ受光部に光ファイバを用いたことを特徴とす
る。According to a sixth aspect of the present invention, an optical fiber is used for a laser oscillation section or a laser receiving section.
【0022】これにより、レーザ発振部あるいはレーザ
受光部を炉からはなすことが出来るため、レーザ発振部
あるいはレーザ受光部の温度・振動対策などの取扱いが
楽になる等の利点がある。さらに、光ファイバにより、
発振部あるいは受光部を分岐することが可能となり装置
のコストダウンと複数使用時にレーザ光強度の均一化が
可能となる。Thus, since the laser oscillating unit or the laser receiving unit can be separated from the furnace, there is an advantage that handling of the laser oscillating unit or the laser receiving unit such as measures against temperature and vibration becomes easy. Furthermore, with optical fiber,
The oscillation unit or the light receiving unit can be branched, so that the cost of the device can be reduced and the intensity of the laser beam can be made uniform when a plurality of devices are used.
【0023】請求項7記載の発明は、前記した発明を効
果的に実施するための装置に関する発明で、一次燃焼部
の上方に二次燃焼部を具え、夫々の燃焼部に一次空気と
二次空気を供給して燃焼制御を行なう廃棄物燃焼炉の燃
焼制御装置において、炉内燃焼域の複数方向に特定波長
光を照射する一又は複数のレーザ発振/受信手段と、該
受信手段よりの検知信号により対応する燃焼制御域のガ
ス濃度若しくはガス温度の断面を演算する手段と、該演
算手段により求めたガス濃度若しくはガス温度に基づい
て、少なくとも対応する燃焼制御域へ供給される一次空
気若しくは二次空気の空気量の制御を行なうことを特徴
とする。According to a seventh aspect of the present invention, there is provided an apparatus for effectively carrying out the above-mentioned invention, wherein a secondary combustion section is provided above the primary combustion section, and each of the combustion sections has primary air and secondary air. In a combustion control apparatus of a waste combustion furnace for performing combustion control by supplying air, one or more laser oscillation / reception means for irradiating light of a specific wavelength in a plurality of directions of a combustion area in the furnace, and detection by the reception means Means for calculating a cross section of the gas concentration or gas temperature of the corresponding combustion control area by a signal; and, based on the gas concentration or gas temperature obtained by the calculation means, at least primary air or secondary air supplied to the corresponding combustion control area. It is characterized in that the amount of secondary air is controlled.
【0024】そして請求項8記載の発明に示すように、
前記燃焼域を複数の燃焼制御域に分割し、該複数の燃焼
制御域毎に空気量供給手段と、前記ガス濃度若しくはガ
ス温度に基づいて夫々の空気量供給手段の供給制御を行
なう制御手段を具えることにより、請求項2記載の発明
を効果的に達成できる。And, as shown in the invention of claim 8,
The combustion area is divided into a plurality of combustion control areas, and an air amount supply means for each of the plurality of combustion control areas and a control means for performing supply control of each air amount supply means based on the gas concentration or the gas temperature. With this arrangement, the invention described in claim 2 can be effectively achieved.
【0025】更に請求項9記載の発明において、前記レ
ーザ発振手段より受信手段に到達するまでの特定波長光
の光路長が、一又は複数の燃焼制御域を透過するように
設定し、該透過光を受信して得られる複数の検知信号を
演算して、対応する燃焼制御域のガス濃度若しくはガス
温度を求めることことにより、請求項3記載の発明を効
果的に達成できる。Further, according to the ninth aspect of the present invention, the optical path length of the specific wavelength light from the laser oscillation means to the reception means is set so as to pass through one or a plurality of combustion control areas, and the transmitted light The invention according to claim 3 can be effectively achieved by calculating a plurality of detection signals obtained by receiving the above and calculating the gas concentration or the gas temperature in the corresponding combustion control region.
【0026】又、前記ガス濃度若しくはガス温度の計測
が、レーザ分光吸収法により行なわれる燃焼制御装置に
おいては、請求項10に記載のように、前記レーザ発振
部より発振されるレーザ光は、ガス温度を計測するガス
種の2つの隣接した吸収波長および燃焼制御を行なう複
数種のレーザ光とする。In a combustion control apparatus in which the measurement of the gas concentration or the gas temperature is performed by a laser spectral absorption method, the laser light oscillated by the laser oscillation section is a gas light. A plurality of types of laser light for controlling two adjacent absorption wavelengths and combustion control of the gas type for measuring the temperature.
【0027】又、請求項11記載の発明において、前記
レーザ発振部より発振されるレーザ光が、対応するガス
の共鳴波長と非共鳴波長の複数種のレーザ光であること
を特徴とする。更に、請求項12記載の発明において、
レーザ発振部あるいはレーザ受光部に光ファイバを用い
たことを特徴としている。In the eleventh aspect of the present invention, the laser light oscillated from the laser oscillating unit is a plurality of types of laser light having a resonance wavelength and a non-resonance wavelength of a corresponding gas. Further, in the invention according to claim 12,
An optical fiber is used for a laser oscillation section or a laser receiving section.
【0028】[0028]
【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、材質、形状、その相対配置などは特
に特定的な記載が無い限り、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。尚、
後記夫々の実施例において、計測点数や分布計測の平面
数について、説明をわかりやすくするために最低限のも
のを記載した、燃焼炉の装置、計測点数、燃焼制御域の
分割数に特定されるものではない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not merely intended to limit the scope of the present invention, but are merely illustrative examples unless otherwise specified. Absent. still,
In each of the embodiments described below, the number of measurement points and the number of planes of distribution measurement are specified as the minimum number of units for the combustion furnace, the number of measurement points, and the number of divisions of the combustion control area in order to make the description easy to understand. Not something.
【0029】[第1実施例]図1は、ごみ焼却炉と制御
装置全体を説明するために、本発明をストーカ炉に適用
した実施形態の全体構成図、図2は、図1のA−A断面
図で、図7の同一機能部品は同一符号を付け、その詳細
な説明は省略している。[First Embodiment] FIG. 1 is an overall configuration diagram of an embodiment in which the present invention is applied to a stoker furnace in order to explain a whole refuse incinerator and a control device, and FIG. In the A sectional view, the same functional components in FIG. 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
【0030】本実施形態においては、前記従来技術と同
様に、ごみ焼却炉1は、ホッパ2より供給されたごみを
下方より供給される一次空気によりストーカ3上で燃焼
ガス化させる。この一次空気側の制御手段として、ホッ
パ2やフィーダ17よりのごみの供給量の増減、ストー
カ3の送り速度の変更、一次空気供給弁7によるストー
カ3下部からの一次空気の操作端毎供給量の変更があ
る。次に、一次燃焼部11でガス化した燃焼ガスは、二
次燃焼部12内に送られ、二次空気により完全燃焼が行
なわれる。In the present embodiment, as in the prior art, the refuse incinerator 1 gasifies the refuse supplied from the hopper 2 on the stoker 3 by the primary air supplied from below. As the control means on the primary air side, the supply amount of dust from the hopper 2 and the feeder 17 is increased / decreased, the feed speed of the stoker 3 is changed, and the primary air supply valve 7 supplies the primary air from the lower portion of the stoker 3 at each operation end. There are changes. Next, the combustion gas gasified in the primary combustion unit 11 is sent into the secondary combustion unit 12, where complete combustion is performed by the secondary air.
【0031】二次燃焼部12では、二次空気供給弁8に
よる二次空気の操作端18(二次空気供給部)毎に、二
次空気供給量の変更が出来るように設定し、そして図2
に示すように炉内の二次空気供給部18は、方形の炉内
をほぼ4つの燃焼制御区域A〜Dに区切る如く、各角隅
部のL字枠19A〜19Dに対面する位置に複数の供給
口18A〜18Dが夫々配設され、燃焼制御域を本実施
形態の場合は縦横4つに分割させている。そして、前記
複数の供給口が配設されたL字枠19に挟まれる位置
に、レーザ発振部24a〜24dとレーザ受光部25a
〜25dを夫々配置する。The secondary combustion section 12 is set so that the secondary air supply amount can be changed for each secondary air operation end 18 (secondary air supply section) by the secondary air supply valve 8. 2
As shown in the figure, a plurality of secondary air supply units 18 in the furnace are provided at positions facing the L-shaped frames 19A to 19D at each corner so as to divide the inside of the rectangular furnace into approximately four combustion control zones A to D. Supply ports 18A to 18D are provided respectively, and the combustion control area is divided into four in the vertical and horizontal directions in the present embodiment. The laser oscillating units 24a to 24d and the laser receiving unit 25a are positioned between the L-shaped frames 19 in which the plurality of supply ports are provided.
To 25d are arranged respectively.
【0032】レーザ発振部24a…とレーザ受光部25
a…は、各辺と平行にレーザ光が透過するように対辺間
に対称に配設した4対のレーザ発振部24a〜24dと
レーザ受光部25a〜25dと、更に、対角線と平行な
方向にレーザ光が透過するように隣接する各辺の対応す
る位置に配設したレーザ発振部24eとレーザ受光部2
5eとを配置している。そして、夫々の受光部24a…
よりの検出信号は夫々信号処理部で対応するガス濃度や
ガス温度への演算を行なった後、該ガス濃度やガス温度
に基づく操作信号を制御装置28に送り、次のような燃
焼制御が行なわれる。The laser oscillators 24a... And the laser receiver 25
a ... are four pairs of laser oscillating parts 24a to 24d and laser light receiving parts 25a to 25d symmetrically arranged between opposite sides so that laser light is transmitted in parallel with each side, and further in a direction parallel to the diagonal line. A laser oscillating unit 24e and a laser light receiving unit 2 disposed at corresponding positions on adjacent sides so that laser light is transmitted;
5e. The respective light receiving sections 24a ...
After the detected signals are calculated by the signal processing unit to the corresponding gas concentration and gas temperature, an operation signal based on the gas concentration and gas temperature is sent to the control device 28, and the following combustion control is performed. It is.
【0033】即ち、ごみの燃焼状態は、前記レーザ発振
部24a…およびレーザ受光部25a…によりの検出信
号に基づいて炉内部のガス温度・ガス濃度が信号処理部
37内で演算され、その演算結果に基づく操作信号を制
御装置28にリアルタイムに送られる。That is, the combustion state of the refuse is calculated based on the detection signals from the laser oscillating sections 24a and the laser receiving sections 25a and the gas temperature and gas concentration inside the furnace are calculated in a signal processing section 37, and the calculation is performed. An operation signal based on the result is sent to the control device 28 in real time.
【0034】この計測方法は、図2に示すように、ガス
温度・濃度計測装置の計測端24a〜25eをほぼ4つ
の燃焼制御区域A〜D毎に複数の検出結果が出るように
適宜個数設置することにより、炉内部のほぼ4つの燃焼
制御区域A〜D毎に断面分布状態を精度良くリアルタイ
ムに計測演算することが可能である。In this measuring method, as shown in FIG. 2, the number of measuring ends 24a to 25e of the gas temperature / concentration measuring device is appropriately set so that a plurality of detection results are obtained in almost every four combustion control zones A to D. By doing so, it is possible to accurately and in real time measure and calculate the cross-sectional distribution state for each of approximately four combustion control zones A to D inside the furnace.
【0035】例えば制御区域Aでは、90°変位した位
置より受信される受光部25aと受光部25bとよりの
検出信号を、制御区域Bでは、受光部25bと受光部2
5cとよりの検出信号を、制御区域Cでは、受光部25
cと受光部25dとよりの検出信号を夫々入力信号とし
て、更に制御区域Dでは90°変位した位置より受信さ
れる受光部25dと受光部25aに加え、対角線方向の
45°変位した位置よりの対角線信号の受光部25eの
3つの信号を入力信号として設定する。For example, in the control area A, the detection signals from the light receiving sections 25a and 25b received from the position displaced by 90 ° are used. In the control area B, the light receiving sections 25b and 2b are received.
In the control area C, the detection signal from the light receiving section 25
c and the detection signal from the light receiving unit 25d as input signals, respectively, and in addition to the light receiving unit 25d and the light receiving unit 25a received from the position displaced by 90 ° in the control area D, the detection signal from the position displaced 45 ° in the diagonal direction is added. Three signals of the light receiving section 25e of the diagonal signal are set as input signals.
【0036】そして制御装置28は、前記夫々の検出信
号より信号処理部37にて各制御区域のガス温度・濃度
の分布状態を演算し、その演算結果に基づいて各制御区
域A〜D毎に、ガス温度・濃度の分布状態が均一になる
ように一次空気供給弁7あるいは二次空気供給弁8を単
独または両方を操作して燃焼状態を制御する。尚、レー
ザ受光部25a…は、図1あるいは図2のようにレーザ
発振部24a…の反対側にのみ設置されるものではな
く、鏡などを使用することにより同じ側に設置すること
により各燃焼制御区域A〜D毎の入力信号の増大及び検
出域の増大が可能である。The control device 28 calculates the distribution of gas temperature and concentration in each control area by the signal processing section 37 from the respective detection signals, and for each of the control areas A to D based on the calculation result. The combustion state is controlled by operating the primary air supply valve 7 or the secondary air supply valve 8 alone or both so that the distribution state of the gas temperature and concentration becomes uniform. The laser receiving sections 25a are not installed only on the opposite side of the laser oscillation sections 24a as shown in FIG. 1 or FIG. It is possible to increase the input signal and the detection area in each of the control areas A to D.
【0037】次に、前記レーザ光によるガス温度・濃度
計測の原理について説明する。レーザの発振部24a…
より炉内に照射したレーザ光は特定波長であり、従って
その分光・吸収作用によりガス温度と濃度の計測が可能
である。即ち、本実施形態のストーカ式ごみ燃焼炉は、
炉内温度、特に二次燃焼部12の温度は800〜120
0℃と高温で、かつ炉断面積が大きいために、前記した
ようにこれまで計測する手段が限定され、かつ計測内容
も壁際しか測定できず、又時間遅れが生じる等限定され
ていた。一方、レーザ光の場合は、半導体レーザ発振部
24a…と受光部25a…を対面する二辺、若しくは隣
接する二辺間に斜めに配置することで、高温の炉内部を
リアルタイムかつ炉中心を含めて任意の位置の計測が可
能となる。Next, the principle of measuring the gas temperature and concentration by the laser light will be described. Laser oscillation part 24a ...
Since the laser light irradiated into the furnace has a specific wavelength, the gas temperature and concentration can be measured by its spectral and absorption functions. That is, the stoker-type refuse combustion furnace of the present embodiment is:
The furnace temperature, particularly the temperature of the secondary combustion section 12, is 800 to 120.
Since the temperature is as high as 0 ° C. and the furnace cross-sectional area is large, as described above, the means for measuring up to now has been limited, and the measurement content has been limited only to the side of a wall, and a time delay has occurred. On the other hand, in the case of laser light, the inside of the high-temperature furnace is included in real time and including the furnace center by arranging the semiconductor laser oscillating portions 24a and the light receiving portions 25a diagonally between two facing sides or between two adjacent sides. Measurement at any position is possible.
【0038】尚、レーザ光を用いた温度計測の原理は、
例えばO2またはH2O等の炉内に存在する特定ガスを計
測し、該計測で得られた吸収線形状と最も良く一致する
理論吸収線形状を与えた温度を計測温度とするもので、
公知であるのでその詳細な説明は省略するが、吸収線の
理論形状算出には、HITRANスペクトルデータベー
スを用いた。The principle of temperature measurement using laser light is as follows.
For example, a specific gas existing in a furnace such as O 2 or H 2 O is measured, and a temperature at which a theoretical absorption line shape that best matches the absorption line shape obtained by the measurement is given as a measurement temperature,
Although a detailed description thereof is omitted because it is publicly known, a HITRAN spectrum database was used for calculating the theoretical shape of the absorption line.
【0039】かかる実施形態によれば燃焼炉1内のガス
温度計測において、レーザ光軸上に炎が存在する場合、
O2を用いて温度計測すると炎内にO2は存在しないた
め、炎温度を除いたガス温度を計測することが可能であ
る。一方、H2Oなど炎内に存在するガスを用いて温度
計測した場合は、炎温度を加味したガス温度の測定が可
能である。According to this embodiment, when measuring the gas temperature in the combustion furnace 1, if a flame exists on the laser optical axis,
Since using O 2 absent O 2 in the flame in the temperature measurement, it is possible to measure the gas temperature, except for the flame temperature. On the other hand, when the temperature is measured using a gas such as H 2 O present in the flame, the gas temperature can be measured in consideration of the flame temperature.
【0040】次にレーザ光を用いたガス濃度計測の原理
は、特定ガスを対象とする吸収線のピークの計測値を前
述の炉内温度よりHITRANスペクトルデータベース
から換算することで、この値をガス濃度とする。ガス濃
度についても高温(800〜1200℃)での計測が可
能となる。Next, the principle of gas concentration measurement using laser light is that the measured value of the peak of the absorption line for a specific gas is converted from the above-mentioned furnace temperature from the HITRAN spectrum database, and this value is converted to the gas concentration. Concentration. The gas concentration can be measured at a high temperature (800 to 1200 ° C.).
【0041】従って、前記レーザ光の入力信号により各
燃焼制御区域毎のガス温度あるいは各種ガス濃度が及び
その分布状態が測定され、これらをそれぞれ個別にある
いは組み合わせて制御パラメータとして、操作端である
一次空気供給弁7あるいは二次空気供給弁8をそれぞれ
単独あるいは組み合わせて制御することで燃焼状態の改
善・安定燃焼を制御する。このときの制御法は、公知の
PID制御、ファジイ制御など最適なものを使用する。Accordingly, the gas temperature or the various gas concentrations in each combustion control zone and the distribution state thereof are measured by the input signal of the laser beam, and these are individually or combined as control parameters to be used as primary parameters at the operating end. By controlling the air supply valve 7 or the secondary air supply valve 8 individually or in combination, the improvement of the combustion state and the stable combustion are controlled. At this time, an optimal control method such as well-known PID control and fuzzy control is used.
【0042】例えば、前記測定方法によれば、炎内には
存在しないO2を用いた温度計測による温度と、H2Oな
ど炎内に存在するガスを用いて温度計測した温度と、O
2濃度、及びCO2,NOx,H2O濃度の4つの制御パ
ラメータが得られ、該4つのパラメータに基づいて、二
次燃焼部12と一次燃焼部11の制御パラメータが得ら
れる。For example, according to the above-mentioned measuring method, the temperature measured by using the temperature of O 2 not present in the flame, the temperature measured by using the gas present in the flame such as H 2 O,
Four control parameters of the two concentrations and the CO 2 , NOx, and H 2 O concentrations are obtained, and control parameters of the secondary combustion unit 12 and the primary combustion unit 11 are obtained based on the four parameters.
【0043】しかしながら、一対のレーザ発振部24a
…/受光部25a…では、炉内の1光軸の平均ガス温度
・濃度しか測定できず、ごみ焼却炉の様に、炉内に燃焼
ムラが発生する場合などは、燃焼状態が不安定となるこ
とがあり、これが排ガス濃度の変動に大きな影響を与え
ることがある。この様な燃焼ムラに対処可能にするため
に複数の燃焼制御域A〜Dに区分けして制御している。However, the pair of laser oscillators 24a
... / light receiving unit 25a can measure only the average gas temperature and concentration of one optical axis in the furnace, and when the combustion unevenness occurs in the furnace like a garbage incinerator, the combustion state is unstable. This can have a significant effect on the fluctuations in the exhaust gas concentration. In order to be able to cope with such combustion unevenness, the control is divided into a plurality of combustion control areas A to D.
【0044】即ち、図2に示すように、ガス温度・濃度
の計測を行なうレーザ発振部24/受光部25の計測端
をほぼ4つの燃焼制御区域A〜Dに毎に複数の検出結果
が出るように適宜個数設置することにより、炉内部のほ
ぼ4つの燃焼制御区域A〜D毎に断面の分布状態を精度
良く計測することが可能である。図2は、例示のために
5組のガス温度・濃度計測装置を図示したものであり、
取付方法・設置台数・計測断面の数などは特に限定され
るものではない。That is, as shown in FIG. 2, a plurality of detection results are output from the measurement end of the laser oscillation section 24 / light receiving section 25 for measuring the gas temperature and concentration in each of approximately four combustion control zones A to D. By appropriately setting the number, it is possible to accurately measure the distribution state of the cross section in each of approximately four combustion control zones A to D inside the furnace. FIG. 2 illustrates five sets of gas temperature and concentration measuring devices for illustration.
The mounting method, the number of installations, the number of measurement cross sections, and the like are not particularly limited.
【0045】また、設置台数が直接コストに反映するた
め、光ファイバを利用して、1つのレーザ光源から複数
組のレーザ発振部に光ファイバで分配することも可能で
あり、さらには、光ファイバを利用することでレーザ光
源を熱・振動などの悪影響環境から離したり、さらには
光量のバラツキがなくなるなどの利点を得ることができ
る。また、レーザ受光部にも光ファイバの利用が可能で
ある。In addition, since the number of installations is directly reflected in the cost, it is possible to use an optical fiber to distribute the light from one laser light source to a plurality of sets of laser oscillation units. Utilizing the method described above, it is possible to obtain advantages such as separating the laser light source from an adverse environment such as heat and vibration, and further eliminating variations in the amount of light. Also, an optical fiber can be used for the laser receiving section.
【0046】以上のように本実施形態では、燃焼炉内を
複数の燃焼制御区域A〜Dに区分けしてガス温度・各種
ガス濃度の分布状態を夫々定量的に把握することで、各
燃焼制御区域A〜Dの燃焼状態を燃焼ムラとして定量的
に精度良く把握することが可能となり、緻密な燃焼制御
が可能となる。As described above, in the present embodiment, the combustion furnace is divided into a plurality of combustion control zones A to D, and the distribution of gas temperature and various gas concentrations is quantitatively grasped, whereby each combustion control is performed. The combustion state in the sections A to D can be quantitatively and accurately grasped as the combustion unevenness, and precise combustion control can be performed.
【0047】即ち、燃焼ムラを解消すべく、炉内を複数
区域A〜Dに分割し、それぞれの燃焼状態を変更可能な
操作端として、二次空気供給弁8および一次空気供給弁
7を個別制御可能な操作端として燃焼制御区域A〜Dに
区分けして設定・配置するとともに、前記のように、定
量的な分布計測に基いて、燃焼ムラを検出し該当する前
記操作端を制御することにより、燃焼ムラの無い安定し
た燃焼状態を保持し、燃焼炉1内を均一化することで一
定以上の高温を維持し、排ガス濃度を最低限に安定させ
ることが可能となる。That is, in order to eliminate combustion unevenness, the inside of the furnace is divided into a plurality of sections A to D, and the secondary air supply valve 8 and the primary air supply valve 7 are individually provided as operating ends capable of changing the respective combustion states. To set and arrange the operation control sections as controllable operation ends by dividing them into the combustion control areas A to D, and to detect the combustion unevenness based on the quantitative distribution measurement and to control the corresponding operation end as described above. Accordingly, it is possible to maintain a stable combustion state with no combustion unevenness, maintain a uniform high temperature by maintaining uniformity in the combustion furnace 1, and stabilize the exhaust gas concentration to a minimum.
【0048】[第2実施例]図3は、レーザ発振部24
a…/受光部25a…の計測端を、ほぼごみ焼却炉1の
複数段断面に設置した場合の本発明の第二の実施形態に
係る構成図である。本実施形態においては、ガス温度・
濃度計測装置、即ちレーザ発振部24a…およびレーザ
受光部25a…を前記のように同一平面ではなく、上下
の複数段断面に配置するもので、これにより、炉内部の
ガス温度・濃度の分布状態が、前記第1実施形態の場合
よりも、さらに立体的に判別される。[Second Embodiment] FIG.
FIG. 6 is a configuration diagram according to a second embodiment of the present invention in a case where measurement ends of a... / light receiving units 25a. In the present embodiment, the gas temperature
The concentration measuring device, that is, the laser oscillating unit 24a and the laser receiving unit 25a are arranged not in the same plane but in a plurality of upper and lower cross sections as described above. Are more three-dimensionally determined than in the first embodiment.
【0049】制御装置28は、信号処理部37で演算さ
れたガス温度・濃度のより立体的な分布状態から、前記
二次空気供給弁8および一次空気供給弁7の開閉制御パ
ラメータを変更してガス温度・濃度の分布状態が均一に
なるように一次空気供給弁7あるいは二次空気供給弁8
を単独または両方を操作して燃焼状態を制御することが
出来る。The control device 28 changes the control parameters for opening and closing the secondary air supply valve 8 and the primary air supply valve 7 from the three-dimensional distribution state of the gas temperature and concentration calculated by the signal processing section 37. Primary air supply valve 7 or secondary air supply valve 8 so that the distribution of gas temperature and concentration becomes uniform.
Can be operated alone or both to control the combustion state.
【0050】尚、複数段の設置は、二次燃焼部12に上
下に配置してもよく、又一次燃焼部11と二次燃焼部1
2夫々に上下に配置しても良い。又レーザ発振部24a
…およびレーザ受光部25a…を複数段設置した他は、
図1に示す第1実施形態と同様なので、本実施形態の詳
細な説明は省略する。The multiple stages may be installed vertically in the secondary combustion section 12, or the primary combustion section 11 and the secondary combustion section 1
Two of them may be arranged vertically. Laser oscillation section 24a
… And the laser receiving unit 25a…
Since this is the same as the first embodiment shown in FIG. 1, detailed description of this embodiment will be omitted.
【0051】本実施例によれば、複数段断面の分布計測
を行なうことで、前記第1実施形態よりも、さらに立体
的でより炉内の状態に近いガス温度・濃度の分布を知る
ことが可能となる。According to the present embodiment, by performing distribution measurement of a plurality of cross sections, it is possible to know the distribution of gas temperature and concentration that is more three-dimensional and closer to the state in the furnace than in the first embodiment. It becomes possible.
【0052】[第3実施例]図4及び図5は、ごみ焼却
炉にレーザレーダを設置した場合の他の実施形態を示
し、図4は全体構成図、図5は図4のB−B断面図であ
る。前記レーザレーダ(発振部)30及び(受光部)4
0は図6に示すように、パルスレーザ発振部30より時
間幅10ns程度の短パルスレーザを光学系32を介し
て、炉内の計測対象ガスや水蒸気、若しくは塵埃によっ
て反射される後方錯乱光を集光用望遠鏡33に集光し、
該集光した錯乱光を光学系34及びフィルタ35を介し
て光検知器36に検知させるものである。Third Embodiment FIGS. 4 and 5 show another embodiment in which a laser radar is installed in a refuse incinerator, FIG. 4 is an overall configuration diagram, and FIG. 5 is BB of FIG. It is sectional drawing. The laser radar (oscillating unit) 30 and (light receiving unit) 4
0, as shown in FIG. 6, a short pulse laser having a time width of about 10 ns from the pulse laser oscillating unit 30 through the optical system 32 to generate rearward scattered light reflected by the measurement target gas, water vapor, or dust in the furnace. Focusing on the focusing telescope 33,
The condensed confusion light is detected by the photodetector 36 via the optical system 34 and the filter 35.
【0053】その際、パルスレーザよりの発振波長を複
数に設定し、炉1内の監視対象ガスの吸収波長に共鳴さ
せる波長と、非共鳴の場合の複数の波長に設定する。そ
して前記複数の共鳴波長と非共鳴波長の両者に波長にお
ける錯乱光を光検出器36で検出し、その検出信号を信
号処理・表示部37に送る。該信号処理部37では検出
信号の各時間における減衰状態の違いから各錯乱位置に
おけるガス濃度を導出することが出来る。又、そのガス
濃度分布波形は温度によっても異なるために、前記濃度
分布波形の波高等を検出することにより、温度も測定で
きる点は前記したとおりである。At this time, a plurality of oscillation wavelengths from the pulse laser are set, and a plurality of wavelengths are set to resonate with the absorption wavelength of the monitored gas in the furnace 1 and a plurality of wavelengths in the case of non-resonance. Then, the photodetector 36 detects the confounding light at the wavelengths of both the plurality of resonance wavelengths and the non-resonance wavelengths, and sends the detection signal to the signal processing / display unit 37. The signal processing unit 37 can derive the gas concentration at each confusion position from the difference in the decay state of the detection signal at each time. Further, since the gas concentration distribution waveform varies depending on the temperature, the temperature can be measured by detecting the wave height of the concentration distribution waveform as described above.
【0054】即ち、より具体的に説明するに、レーザ発
振部30より炉内中に照射されたレーザ光は、ガス分子
や水分や塵埃等の炉内に存在する各種粒子42によって
散乱され、また、前記各粒子42によって吸収される。
この吸収される波長は粒子42の種類によって決まって
いるため、監視したい分子に共鳴する波長のレーザを照
射した場合は、非共鳴の場合と比べて、炉内中を伝播す
るにつれて分子による吸収で、その強度が弱くなってく
る。そのため、光検出器36によって、後方散乱により
検知される光の減衰量は、共鳴状態のレーザの場合の方
が、より大きくなる。More specifically, the laser beam emitted from the laser oscillating unit 30 into the furnace is scattered by various particles 42 existing in the furnace, such as gas molecules, moisture, and dust. , Are absorbed by the particles 42.
Since the wavelength of the absorbed light is determined by the type of the particle 42, when a laser having a wavelength that resonates with the molecule to be monitored is irradiated, compared with the case of non-resonance, the absorption by the molecule as it propagates in the furnace is performed. , Its strength becomes weaker. Therefore, the attenuation of the light detected by the backscattering by the photodetector 36 is larger in the case of the laser in the resonance state.
【0055】従って、炎内には存在しないO2分子に共
鳴する波長と、CO,H2Oなど炎内に存在するガス分
子に共鳴する波長を選択して使用することにより、O2
濃度、及びCO,H2O濃度の制御パラメータが得ら
れ、該パラメータに基づいて、二次燃焼部12と一次燃
焼部11の制御パラメータが得られる点は前記したとお
りである。Therefore, by selecting and using a wavelength that resonates with O 2 molecules that do not exist in the flame and a wavelength that resonates with gas molecules such as CO and H 2 O that exist in the flame, O 2 is obtained.
As described above, the control parameters of the concentration and the CO and H 2 O concentrations are obtained, and the control parameters of the secondary combustion unit 12 and the primary combustion unit 11 are obtained based on the parameters.
【0056】パルスレーザ光源(発振部)30及び光検
知器36から距離Rだけ離れた位置からの散乱光強度
は、次のレーザレーダ方程式(1)で与えられる。 P(R)={P0lKΥn(R)β(R)ArY(R)}/R2 …(1) 但し、P0;パルス光の出力(W)、τ;パルス時間幅
であり、P0τがパルス出力(J)となる。 l=cτ/2;レーザパルス空間長の半分(m) c;光速(m/s) K;送・受信光学系の全効率(−) T(R);対応するガス粒子の透過率(−) β(R);散乱体の体積後方散乱係数(sr-1・m-1) Ar;受信光学系の開口面積(m2) Y(R);送信光と受信視野の重なりを示すパラメータ
(レーザと受信光が同軸の場合は1)The intensity of scattered light from a position separated by a distance R from the pulse laser light source (oscillator) 30 and the photodetector 36 is given by the following laser radar equation (1). P (R) = {P 0 lK} n (R) β (R) A r Y (R)} / R 2 (1) where P 0 : pulse light output (W), τ: pulse time width Yes, P 0 τ becomes the pulse output (J). l = cτ / 2; half of the laser pulse space length (m) c; speed of light (m / s) K; total efficiency of transmitting / receiving optical system (−) T (R); transmittance of corresponding gas particles (−) Β (R); volume backscattering coefficient of the scatterer (sr -1 · m -1 ) Ar ; opening area of the receiving optical system (m 2 ) Y (R); parameter indicating the overlap between the transmitted light and the received field of view (1 when laser and receiving light are coaxial)
【0057】(1)式のうち、対応するガス粒子の透過
率T(R)以外の項は共鳴、非共鳴のレーザ光波長がほぼ
同じなので、非常に良い近似で等しいとみなせる。従っ
て共鳴、非共鳴の2つのレーザ光波長より対応するガス
粒子の濃度が求まり、又前記ガス粒子の濃度はガス粒子
の透過率T(R)と対応するために、これを1)式に代入
することにより、「l=cτ/2;レーザパルス空間長
の半分(m)」、言い換えれば前記測定粒子までの距離
が求まる。In the equation (1), the terms other than the transmittance T (R) of the corresponding gas particles have substantially the same resonant and non-resonant laser light wavelengths, and can be regarded as being equal with a very good approximation. Accordingly, the concentration of the corresponding gas particles is determined from the two laser light wavelengths of resonance and non-resonance, and the concentration of the gas particles corresponds to the transmittance T (R) of the gas particles. By doing so, “l = cτ / 2; half (m) of the laser pulse space length”, in other words, the distance to the measurement particle is obtained.
【0058】従って本実施形態は、短パルスレーザを発
振するレーザレーダ発振部30と、集光用望遠鏡等から
なるレーザレーダ受光器40を用意し、前記発振部30
によるレーザの発振方向を変更させることで、炉内部の
複数の燃焼制御区域毎の断面の分布状態を精度良く計測
することが可能となる。Therefore, in the present embodiment, a laser radar oscillating unit 30 for oscillating a short pulse laser and a laser radar receiver 40 including a converging telescope and the like are prepared.
By changing the laser oscillation direction, the distribution state of the cross section of each of the plurality of combustion control sections inside the furnace can be measured with high accuracy.
【0059】従って本実施形態によれば、ごみの燃焼状
態は、炉上部に設置されたガス濃度計測装置であるレー
ザレーダ30,40は1組でも、炉内部の複数の燃焼制
御域のガス濃度の分布が計測され、その結果は前記信号
処理・表示装置37を介して制御装置28にリアルタイ
ムに送られる。Therefore, according to the present embodiment, the combustion state of the refuse is determined by the gas concentration measurement device installed in the upper part of the furnace, even if one set of laser radars 30 and 40 is used. Is measured, and the result is sent to the control device 28 via the signal processing / display device 37 in real time.
【0060】即ち、図5に示すように、左右及び上下に
旋回させる旋回手段41に接続されたレーザレーダの発
振部30により共鳴波長と非共鳴波長の複数の波長を一
対として炉内の所定方向に照射されたレーザ光は、炉内
の酸素ガス分子や水蒸気などの粒子42によって散乱さ
れ、また吸収される。このレーザ光は、監視したい分子
に共鳴する波長のレーザは非共鳴の場合と比べて光検出
器36で検知される光の減衰量が大きくなるために、炉
内各燃焼制御域における一定距離でのガス濃度が計測さ
れることになる。That is, as shown in FIG. 5, a plurality of resonance wavelengths and non-resonance wavelengths are paired by a oscillating unit 30 of a laser radar connected to a turning means 41 for turning left and right and up and down in a predetermined direction in the furnace. Is scattered and absorbed by particles 42 such as oxygen gas molecules and water vapor in the furnace. Since the laser light having a wavelength that resonates with the molecule to be monitored has a larger attenuation of the light detected by the photodetector 36 than the non-resonant laser, the laser light has a certain distance in each combustion control area in the furnace. Will be measured.
【0061】このことから、レーザ光軸上の任意の地点
のガス濃度分布が信号処理・表示部37で計測される。
さらに、このレーザ光軸を旋回手段41で平面上に左右
に旋回させながら多数方向のレーザ光軸上のガス濃度分
布を計測することで、炉内の1断面のガス濃度分布を計
測することが可能であり、かつその旋回手段41の旋回
方向、上下方向も加えることでガス濃度の立体分布を計
測することが可能となる。From this, the gas concentration distribution at an arbitrary point on the laser optical axis is measured by the signal processing / display unit 37.
Further, by measuring the gas concentration distribution on the laser optical axis in many directions while rotating the laser optical axis right and left on the plane by the swirling means 41, it is possible to measure the gas concentration distribution of one section in the furnace. The three-dimensional distribution of the gas concentration can be measured by adding the turning direction and the vertical direction of the turning means 41.
【0062】従って、本実施形態によれば一対のレーザ
レーダ30,40を旋回手段41等で光軸を移動可能に
設置することにより炉内部の断面の分布状態を計測する
ことが可能である。制御装置28では、信号処理部37
側より得られるガス濃度の分布状態から、前述の制御手
段の各パラメータを変更してガス濃度の分布状態が均一
になるように一次空気供給弁7あるいは二次空気供給弁
8を単独または両方を操作して燃焼状態を制御すること
が出来る。Therefore, according to the present embodiment, the distribution state of the cross section inside the furnace can be measured by installing the pair of laser radars 30, 40 so that the optical axis is movable by the turning means 41 or the like. In the control device 28, the signal processing unit 37
The primary air supply valve 7 or the secondary air supply valve 8 is used alone or both so that the parameters of the control means are changed from the gas concentration distribution obtained from the side so that the gas concentration distribution is uniform. Operation can control the combustion state.
【0063】[0063]
【発明の効果】以上記載の如く本発明によれば、燃焼炉
内のガス温度・各種ガス濃度の分布状態に基づいて、炉
内の燃焼状態を燃焼ムラとして定量的に把握することが
可能とるとともに、前記燃焼ムラを解消すべく、炉内を
複数燃焼制御域に分割し、それぞれの燃焼区域毎を個別
制御可能な操作端を配置して、前記計測結果で得られ
た、定量的な分布計測に基いて該当する操作端を制御す
ることにより、燃焼ムラの無い安定した燃焼状態を保持
し、燃焼炉内を均一化することで一定以上の高温を維持
し、排ガス濃度を最低限に安定させることが可能とな
る。As described above, according to the present invention, the combustion state in the furnace can be quantitatively grasped as combustion unevenness based on the distribution state of the gas temperature and various gas concentrations in the combustion furnace. At the same time, in order to eliminate the combustion unevenness, the inside of the furnace is divided into a plurality of combustion control areas, and an operation end capable of individually controlling each combustion area is arranged, and a quantitative distribution obtained from the measurement results is obtained. By controlling the corresponding operating end based on the measurement, a stable combustion state without combustion unevenness is maintained, and the uniformity inside the combustion furnace maintains a high temperature above a certain level, and the exhaust gas concentration is stabilized to the minimum. It is possible to do.
【図1】 ごみ焼却炉と制御装置全体を説明するため
に、本発明をストーカ炉に適用した実施形態の全体構成
図である。FIG. 1 is an overall configuration diagram of an embodiment in which the present invention is applied to a stoker furnace in order to explain a refuse incinerator and an entire control device.
【図2】 図1のA―A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.
【図3】 レーザ発振部/受光部の計測端をほぼごみ焼
却炉の複数段断面に設置した場合の本発明の第二の実施
形態に係る構成図である。FIG. 3 is a configuration diagram according to a second embodiment of the present invention in a case where measurement ends of a laser oscillation unit / light receiving unit are installed in a plurality of sections of a refuse incinerator.
【図4】 図4及び図5は、ごみ焼却炉にレーザレーダ
を設置した場合の他の実施形態を示し、図4は全体構成
図、図5は、第2実施例にかかる燃焼制御装置の構成図
である。4 and 5 show another embodiment in which a laser radar is installed in a refuse incinerator, FIG. 4 is an overall configuration diagram, and FIG. 5 is a diagram of a combustion control device according to a second embodiment. It is a block diagram.
【図5】 図4のB−B断面図である。FIG. 5 is a sectional view taken along line BB of FIG. 4;
【図6】 共鳴波長と、非共鳴波長のレーザを照射した
場合のガス濃度分析装置を示す原理図である。FIG. 6 is a principle diagram showing a gas concentration analyzer when a laser having a resonance wavelength and a laser having a non-resonance wavelength are irradiated.
【図7】 従来のごみ焼却炉における燃焼状態の計測・
制御手段の構成図で、図1に対応する全体構成図であ
る。Fig. 7 Measurement of combustion state in conventional waste incinerator
FIG. 2 is a configuration diagram of a control unit, and is an overall configuration diagram corresponding to FIG. 1.
1 ごみ焼却炉 2 ホッパ 3 ストーカ 7 一次空気供給弁 8 二次空気供給弁 11 一次燃焼部 12 二次燃焼部 14 灰シュート 15 ごみ層 17 フィーダ 24 レーザ発振部 25 レーザ受光部 28 制御装置 30,40 レーザレーダ 36 光検出器 37 信号処理・表示装置 41 旋回手段 42 粒子 109 熱電対 110 サクションパイロメータ 111 ガス濃度計 112 炉外カメラ 113 赤外線カメラ DESCRIPTION OF SYMBOLS 1 Garbage incinerator 2 Hopper 3 Stalker 7 Primary air supply valve 8 Secondary air supply valve 11 Primary combustion part 12 Secondary combustion part 14 Ash chute 15 Garbage layer 17 Feeder 24 Laser oscillation part 25 Laser light receiving part 28 Controller 30,40 Laser radar 36 Photodetector 37 Signal processing / display device 41 Rotating means 42 Particle 109 Thermocouple 110 Suction pyrometer 111 Gas concentration meter 112 Out-of-pile camera 113 Infrared camera
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小久保 富永 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 Fターム(参考) 3K062 AA01 AA11 AA23 AB01 AC01 BA02 CA06 DA03 DA22 DA23 DA25 DA27 DB08 DB09 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tominaga Kokubo 12 Nishikicho, Naka-ku, Yokohama-shi F-term in Mitsubishi Heavy Industries, Ltd. Yokohama Works 3K062 AA01 AA11 AA23 AB01 AC01 BA02 CA06 DA03 DA22 DA23 DA25 DA27 DB08 DB09
Claims (12)
の燃焼を行なうボイラー、ストーカ炉、流動床炉を含む
燃焼炉の燃焼制御方法において、 特定波長光を炉内燃焼域の複数方向に照射して該燃焼域
のガス濃度若しくはガス温度の断面分布を求めるととも
に、該ガス濃度若しくはガス温度の断面分布に基づいて
少なくとも前記燃焼域へ供給される空気量の制御を行な
うことを特徴とする燃焼炉の燃焼制御方法。In a combustion control method for a combustion furnace including a boiler, a stoker furnace, and a fluidized-bed furnace for burning a combustion material having a variation in supplied heat energy, a specific wavelength light is irradiated to a plurality of directions of a combustion zone in the furnace. A gas distribution or a gas temperature cross-sectional distribution in the combustion zone, and controlling at least an amount of air supplied to the combustion zone based on the gas concentration or the gas temperature cross-sectional distribution. Combustion control method.
し、該複数の燃焼制御域毎に供給空気量の制御を行なう
ことを特徴とする請求項1記載の燃焼炉の燃焼制御方
法。2. The combustion control method for a combustion furnace according to claim 1, wherein the combustion zone is divided into a plurality of combustion control zones, and the amount of supplied air is controlled for each of the plurality of combustion control zones.
御域を挟んで得られる複数の検知信号を演算して、対応
する燃焼制御域のガス濃度若しくはガス温度を瞬時に求
めることを特徴とする請求項1記載の燃焼炉の燃焼制御
方法。3. The method according to claim 1, wherein the specific wavelength light calculates a plurality of detection signals obtained by sandwiching one or a plurality of combustion control regions, and instantaneously obtains a gas concentration or a gas temperature of a corresponding combustion control region. The combustion control method for a combustion furnace according to claim 1, wherein:
が、レーザ分光吸収法若しくは対応するガスの共鳴波長
と非共鳴波長の差に基づく差分吸収法により求めること
を特徴とする請求項1記載の燃焼炉の燃焼制御方法。4. The combustion according to claim 1, wherein the measurement of the gas concentration or the gas temperature is obtained by a laser spectral absorption method or a difference absorption method based on a difference between a resonance wavelength and a non-resonance wavelength of a corresponding gas. Furnace combustion control method.
種における隣接する2つの特定波長光の吸収比率の温度
依存性を、炎内に存在するガスと、炎内にほとんど存在
しないガスの2つのガス種を用いてガス温度計測を行な
うことを特徴とする請求項1記載の燃焼炉の燃焼制御方
法。5. A method for detecting the gas temperature, comprising determining a temperature dependence of an absorption ratio of two adjacent specific wavelength lights of a specific gas type to a gas existing in a flame and a gas hardly existing in a flame. 2. The combustion control method for a combustion furnace according to claim 1, wherein the gas temperature is measured using two gas types.
ファイバを用いたことを特徴とする請求項1記載の燃焼
炉の燃焼制御方法。6. The combustion control method for a combustion furnace according to claim 1, wherein an optical fiber is used for the laser oscillation section or the laser receiving section.
夫々の燃焼部に一次空気と二次空気を供給して燃焼制御
を行なう廃棄物燃焼炉の燃焼制御装置において、 炉内燃焼域の複数方向に特定波長光を照射する一又は複
数のレーザ発振/受信手段と、該受信手段よりの検知信
号により対応する燃焼制御域のガス濃度若しくはガス温
度の断面を演算する手段と、該演算手段により求めたガ
ス濃度若しくはガス温度に基づいて、少なくとも対応す
る燃焼制御域へ供給される一次空気若しくは二次空気の
空気量の制御を行なうことを特徴とする燃焼炉の燃焼制
御装置。7. A secondary combustion section above the primary combustion section,
In a combustion control device of a waste combustion furnace that controls combustion by supplying primary air and secondary air to each combustion section, one or more laser oscillation / irradiation systems that irradiate light of a specific wavelength in a plurality of directions in a combustion zone in the furnace. Receiving means, means for calculating a cross section of gas concentration or gas temperature in a corresponding combustion control area based on a detection signal from the receiving means, and at least corresponding combustion based on the gas concentration or gas temperature obtained by the calculating means. A combustion control apparatus for a combustion furnace, which controls an amount of primary air or secondary air supplied to a control area.
し、該複数の燃焼制御域毎に空気量供給手段と、前記ガ
ス濃度若しくはガス温度に基づいて夫々の空気量供給手
段の供給制御を行なう制御手段を具えたことを特徴とす
る請求項7記載の燃焼炉の燃焼制御方法。8. The combustion area is divided into a plurality of combustion control areas, and the air supply means is controlled for each of the plurality of combustion control areas, and the supply control of each air amount supply means is performed based on the gas concentration or the gas temperature. 8. The combustion control method for a combustion furnace according to claim 7, further comprising control means for performing the following.
するまでの特定波長光の光路長が、一又は複数の燃焼制
御域を透過するように設定し、該透過光を受信して得ら
れる複数の検知信号を演算して、対応する燃焼制御域の
ガス濃度若しくはガス温度を求めることを特徴とする請
求項8記載の燃焼炉の燃焼制御方法。9. An optical path length of light of a specific wavelength from the laser oscillation means to the reception means is set so as to pass through one or a plurality of combustion control areas, and a plurality of light path lengths obtained by receiving the transmitted light are obtained. 9. The combustion control method for a combustion furnace according to claim 8, wherein the detection signal is calculated to obtain a gas concentration or a gas temperature in a corresponding combustion control area.
が、レーザ分光吸収法により行なわれる請求項7記載の
燃焼炉の燃焼制御装置において、 前記レーザ発振部より発振されるレーザ光が、炉内に存
在するガスの単一または複数種の炎内に存在するガスの
吸収波長と、炎内にほとんど存在しないガスの2つのガ
スの吸収波長の複数種のレーザ光であることを特徴とす
る請求項7記載の燃焼炉の燃焼制御装置。10. The combustion control apparatus for a combustion furnace according to claim 7, wherein the measurement of the gas concentration or the gas temperature is performed by a laser spectral absorption method. A plurality of types of laser light having an absorption wavelength of a gas existing in a single or plural types of flames of an existing gas and an absorption wavelength of two gases of a gas hardly present in the flame. A combustion control device for a combustion furnace according to claim 7.
において、 前記レーザ発振部より発振されるレーザ光が、対応する
ガスの共鳴波長と非共鳴波長の複数種のレーザ光である
ことを特徴とする請求項7記載の燃焼炉の燃焼制御装
置。11. The combustion control device for a combustion furnace according to claim 7, wherein the laser light oscillated by the laser oscillating unit is a plurality of types of laser light having a resonance wavelength and a non-resonance wavelength of a corresponding gas. 8. The combustion control device for a combustion furnace according to claim 7, wherein:
光ファイバを用いたことを特徴とする請求項7記載の燃
焼炉の燃焼制御装置。12. The combustion control apparatus for a combustion furnace according to claim 7, wherein an optical fiber is used for a laser oscillation section or a laser receiving section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11204694A JP2001033018A (en) | 1999-07-19 | 1999-07-19 | Method and apparatus for controlling combustion of burning furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11204694A JP2001033018A (en) | 1999-07-19 | 1999-07-19 | Method and apparatus for controlling combustion of burning furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001033018A true JP2001033018A (en) | 2001-02-09 |
Family
ID=16494773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11204694A Withdrawn JP2001033018A (en) | 1999-07-19 | 1999-07-19 | Method and apparatus for controlling combustion of burning furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001033018A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004125331A (en) * | 2002-10-04 | 2004-04-22 | Mitsubishi Heavy Ind Ltd | Control method and control device for sludge combustion furnace |
JP2011137467A (en) * | 2009-12-31 | 2011-07-14 | General Electric Co <Ge> | System and device for monitoring and controlling selective catalytic reduction process |
JP2012002463A (en) * | 2010-06-18 | 2012-01-05 | Mitsubishi Heavy Ind Ltd | Combustion plant controller, and combustion plant control method |
EP2876430A1 (en) * | 2013-11-26 | 2015-05-27 | Valmet Technologies Oy | A method for measuring at least two of temperature, molecular number density, and pressure of a gaseous compound from a thermal device, and a thermal system |
JP2018004197A (en) * | 2016-07-05 | 2018-01-11 | 株式会社プランテック | Refuse incineration system |
CN108717193A (en) * | 2018-06-12 | 2018-10-30 | 武汉米字能源科技有限公司 | A kind of hearth combustion temp measuring system based on laser radar |
CN116839060A (en) * | 2023-09-01 | 2023-10-03 | 南京盛略科技有限公司 | Method and system for detecting combustion in furnace |
-
1999
- 1999-07-19 JP JP11204694A patent/JP2001033018A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004125331A (en) * | 2002-10-04 | 2004-04-22 | Mitsubishi Heavy Ind Ltd | Control method and control device for sludge combustion furnace |
JP2011137467A (en) * | 2009-12-31 | 2011-07-14 | General Electric Co <Ge> | System and device for monitoring and controlling selective catalytic reduction process |
JP2012002463A (en) * | 2010-06-18 | 2012-01-05 | Mitsubishi Heavy Ind Ltd | Combustion plant controller, and combustion plant control method |
EP2876430A1 (en) * | 2013-11-26 | 2015-05-27 | Valmet Technologies Oy | A method for measuring at least two of temperature, molecular number density, and pressure of a gaseous compound from a thermal device, and a thermal system |
US9857345B2 (en) | 2013-11-26 | 2018-01-02 | Valmet Technologies Oy | Method for measuring temperature, molecular number density, and/or pressure of a gaseous compound from a thermal device, and a thermal system |
JP2018004197A (en) * | 2016-07-05 | 2018-01-11 | 株式会社プランテック | Refuse incineration system |
CN108717193A (en) * | 2018-06-12 | 2018-10-30 | 武汉米字能源科技有限公司 | A kind of hearth combustion temp measuring system based on laser radar |
CN116839060A (en) * | 2023-09-01 | 2023-10-03 | 南京盛略科技有限公司 | Method and system for detecting combustion in furnace |
CN116839060B (en) * | 2023-09-01 | 2023-11-10 | 南京盛略科技有限公司 | Method and system for detecting combustion in furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4112043B2 (en) | Temperature measuring device | |
CN107152695B (en) | Heating furnace visualization combustion control system and control method based on many reference amounts detection | |
JP2777843B2 (en) | System, apparatus and method for controlling a combustion process, and detection devices and flue used therein | |
JP5336394B2 (en) | Combustion gas analysis | |
KR910006273B1 (en) | Furnace system | |
JP2003511692A (en) | Method and apparatus for measuring the concentration of toxic gases in flue gas in a heat production plant by spectrophotometry | |
US20110045420A1 (en) | Burner monitor and control | |
EP2683988B1 (en) | Method and system for gas measurements in a combustion chamber | |
WO2017085941A1 (en) | Waste incineration control method, and incineration control apparatus using same | |
CN101128698B (en) | Method for increasing the package throughput in rotary kiln plants | |
JP2001033018A (en) | Method and apparatus for controlling combustion of burning furnace | |
Wang et al. | Filter-free light absorption measurement of volcanic ashes and ambient particulate matter using multi-wavelength photoacoustic spectroscopy | |
JPS6036825A (en) | Control method for combustion flame and device thereof | |
CN101175988B (en) | Excess air control for cracker furnace burners | |
JP2017180964A (en) | Waste treatment furnace device | |
JP2014219113A (en) | System for measuring internal temperature of combustion furnace and system for controlling combustion in combustion furnace | |
JP2019178847A (en) | Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method | |
JP5179163B2 (en) | Combustion control system for combustion furnace and combustion control method thereof | |
JPH08166127A (en) | Method and apparatus for jodging burning condition and boiler furnace combustion unit | |
US20140221718A1 (en) | Excess air control for cracker furnace burners | |
JP2000018577A (en) | Combustion controller and combustion furnace with it | |
JPH05272732A (en) | Method of controlling combustion in waste incinerator | |
JP2001249074A (en) | Instrument for measuring concentration of gas in furnace, ash melting furnace equipped therewith and method of measuring concentration of gas in furnace | |
JP2012145050A (en) | Device for adjusting gas component in fuel gas, and gas engine system | |
JPH08270931A (en) | Combustion apparatus and method for pulverized coal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061003 |