JP2001031958A - Method for using heat transport medium - Google Patents

Method for using heat transport medium

Info

Publication number
JP2001031958A
JP2001031958A JP11208902A JP20890299A JP2001031958A JP 2001031958 A JP2001031958 A JP 2001031958A JP 11208902 A JP11208902 A JP 11208902A JP 20890299 A JP20890299 A JP 20890299A JP 2001031958 A JP2001031958 A JP 2001031958A
Authority
JP
Japan
Prior art keywords
trimethylolethane
melting point
heat transport
transport medium
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11208902A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kakiuchi
博行 垣内
Masanori Yamazaki
正典 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11208902A priority Critical patent/JP2001031958A/en
Publication of JP2001031958A publication Critical patent/JP2001031958A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable an aqueous solution of trimethyloletbane in the form of a slurry to be used as a latent-heat preservation material without causing the corrosion of a pipeline by using an aqueous solution containing trimethylolethane in a specified concentration as a heat transport medium at a specified temperature. SOLUTION: An aqueous solution containing 13 to 29 wt.% trimethylolethane is used as a heat transport medium at 0 to 20 deg.C. Depending on the concentration of trimethylolethane, this aqueous solution has a melting point peak 1 due to a component mainly comprising trimethylolethane tetrahydrate at higher than 0 deg.C and a melting point peak 2 due to a component mainly comprising water at 0 deg.C or lower. When the aqueous solution is cooled to 5 deg.C, the component corresponding to the melting point peak 1 solidifies and reserves the latent heat. On the other hand, since the component corresponding to the melting point peak 2 is liquid at 5 deg.C, heat transport using this component as the medium is made possible. Thus, a component which solidifies at a certain temperature and a component which is liquid at that temperature can be simultaneously used according to their functions, respectively. If necessary, 1 to 30 wt.% urea is incorporated into the solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱輸送媒体の使用
方法に関する。詳しくは、特定量のトリメチロールエタ
ン(以下、TMEと略記することがある)を含有する水
溶液を熱輸送媒体として使用する方法に関する。本発明
の方法は、ビル等の空調用として水やブラインよりも効
率的に用いることができる。
[0001] The present invention relates to a method of using a heat transport medium. Specifically, the present invention relates to a method of using an aqueous solution containing a specific amount of trimethylolethane (hereinafter, may be abbreviated as TME) as a heat transport medium. The method of the present invention can be used more efficiently than water or brine for air conditioning of buildings and the like.

【0002】[0002]

【従来の技術】氷蓄熱システムや地域熱供給システムに
ついては、経費削減の一環として、熱媒体を輸送するポ
ンプ動力の低減が求められている。このため、例えば空
調側で利用する温度差を大きくするとか、或いは熱媒体
中に界面活性剤を添加して流動抵抗を低減させる方法等
が検討されている。
2. Description of the Related Art For an ice heat storage system and a district heat supply system, a reduction in pump power for transporting a heat medium is required as part of cost reduction. For this reason, for example, a method of increasing the temperature difference used on the air-conditioning side, or adding a surfactant to the heat medium to reduce the flow resistance has been studied.

【0003】一方、熱媒体については、水に低温潜熱蓄
冷物質を分散混合した潜熱蓄冷材を用いる方法が検討さ
れている。例えば、パラフィンをo/w型エマルジョン
にしてスラリーとして用いる方法やパラフィンをマイク
ロカプセルにして用いる方法、或いは低価格の無機水和
物を潜熱蓄冷材として利用する方法等が提案されてい
る。また、融点21〜35℃、35cal/g以上の蓄
熱量を有するトリメチロールエタン水和物の蓄熱材も提
案されている(特開昭63−101473号公報)。
On the other hand, as a heat medium, a method of using a latent heat storage material in which a low-temperature latent heat storage material is dispersed and mixed in water is being studied. For example, a method of using paraffin as an o / w type emulsion and using it as a slurry, a method of using paraffin as microcapsules, and a method of using a low-cost inorganic hydrate as a latent heat storage material have been proposed. Further, a heat storage material of trimethylolethane hydrate having a melting point of 21 to 35 ° C. and a heat storage amount of 35 cal / g or more has also been proposed (JP-A-63-101473).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、パラフ
ィンを用いる方法については、パラフィンの価格が高
く、又、マイクロカプセルの作製コストも高いため、実
用化が難しく、また、無機水和物を用いる場合、配管へ
の腐食の問題があり、実現が難しい。一方、金属に対す
る腐食性は小さいと思われるトリメチロールエタン水和
物系の蓄熱材については、冷媒としての具体的な使用方
法がこれ迄知られていない。本発明は、エマルジョン化
又はマイクロカプセル化する必要がなく、配管への腐食
もなく、且つ融点が0〜20℃の範囲のトリメチロール
メタン系潜熱蓄冷材の使用方法を提供することを目的と
する。
However, the method using paraffin is difficult to put into practical use because the price of paraffin is high and the production cost of microcapsules is high, and when an inorganic hydrate is used, There is a problem of corrosion on the piping, which is difficult to realize. On the other hand, a specific method of using a trimethylolethane hydrate-based heat storage material, which is considered to be less corrosive to metals, as a refrigerant has not been known. An object of the present invention is to provide a method for using a trimethylolmethane-based latent heat storage material having no necessity of emulsification or microencapsulation, corrosion of piping, and a melting point of 0 to 20 ° C. .

【0005】[0005]

【課題を解決するための手段】本発明者らは、かかる事
情に鑑み鋭意検討した結果、トリメチロールエタン及び
水、又はトリメチロールエタン、尿素及び水を特定の割
合で配合した潜熱蓄冷材は、融点が0〜20℃近辺であ
り、配管への腐食も小さく、且つスラリー状であるため
搬送可能であることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of such circumstances, and as a result, a latent heat storage material containing trimethylolethane and water, or trimethylolethane, urea and water in a specific ratio, It has been found that the melting point is around 0 to 20 ° C., the corrosion to the pipe is small, and the slurry is in a state of being transportable, and the present invention has been completed.

【0006】即ち、本発明の要旨は、トリメチロールエ
タン13〜29重量%を含有する水溶液を0℃以上、2
0℃以下で熱輸送媒体として使用することを特徴とする
熱輸送媒体の使用方法、にある。
That is, the gist of the present invention is to provide an aqueous solution containing 13 to 29% by weight of trimethylolethane at 0 ° C. or higher,
A method for using the heat transport medium, wherein the heat transport medium is used at a temperature of 0 ° C. or lower.

【0007】[0007]

【発明の実施の形態】本発明の方法は、特定割合のトリ
メチロールエタン含有水溶液又は特定割合のトリメチロ
ールエタン及び尿素含有水溶液をスラリー状の熱輸送媒
体として使用することを特徴とする。次に、トリメチロ
ールエタンと水との相図(図−1)に基づき、本発明の
概念を説明する。なお、この相図は、本発明者らが初め
て作成したものであり、トリメチロールエタンの含有量
と融点との関係は今迄知られていなかったものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention is characterized in that a specific proportion of an aqueous solution containing trimethylolethane or a specific proportion of an aqueous solution containing trimethylolethane and urea is used as a heat transport medium in the form of a slurry. Next, the concept of the present invention will be described based on a phase diagram of trimethylolethane and water (FIG. 1). This phase diagram was created by the present inventors for the first time, and the relationship between the content of trimethylolethane and the melting point was not known until now.

【0008】相図からトリメチロールエタンの割合によ
って、TME四水和物を主たる成分とする0℃より高い
融点ピーク1と水を主成分とする0℃以下の融点ピーク
2が存在することが分る。熱媒体を5℃まで冷却した場
合、融点ピーク1の成分は凝固し潜熱を蓄える。一方、
5℃では融点ピーク2は液体であるので、融点ピーク2
の成分を媒体とした熱搬送が可能となる。即ち、本発明
のポイントは、このように所定の温度で凝固する成分と
液体である成分を機能別に利用することにある。
From the phase diagram, it can be seen that, depending on the proportion of trimethylolethane, a melting point peak 1 higher than 0 ° C. mainly containing TME tetrahydrate and a melting point peak 2 lower than 0 ° C. mainly containing water exist. You. When the heating medium is cooled to 5 ° C., the component having the melting point peak 1 solidifies and stores latent heat. on the other hand,
At 5 ° C., melting point peak 2 is a liquid, so melting point peak 2
The heat transfer using the component as a medium becomes possible. That is, the point of the present invention resides in utilizing the components that solidify at a predetermined temperature and the components that are liquids according to their functions.

【0009】トリメチロールエタンの配合割合は、熱輸
送媒体主成分のトリメチロールエタンと水との合計量に
対して、13〜29重量%、好ましくは15〜23重量
%である。トリメチロールエタンの含有量が13重量%
より少ないと融点ピーク1が0℃以下に低下し、29重
量%より多いと融点ピーク1が20℃を超え、融点ピー
ク2及び/又は3の成分が少なくなり搬送できなくなる
ので好ましくない。
The mixing ratio of trimethylolethane is 13 to 29% by weight, preferably 15 to 23% by weight, based on the total amount of trimethylolethane, which is the main component of the heat transport medium, and water. Trimethylolethane content of 13% by weight
If the amount is less than this, the melting point peak 1 drops to 0 ° C. or less, and if it is more than 29% by weight, the melting point peak 1 exceeds 20 ° C., and the components of the melting point peaks 2 and / or 3 become undesirably unconveyable.

【0010】更に、トリメチロールエタンと水の組成物
に尿素を配合するとトリメチロールエタンの融点は低下
する。尿素を配合すると−12℃付近に融点ピーク3が
現れる。トリメチロールエタン四水和物に尿素を加えて
いくと融点が低下する。また、トリメチロールエタン4
0重量%、尿素30重量%、水30重量%の組成物は1
3℃に共晶点を有する。
Further, when urea is added to the composition of trimethylolethane and water, the melting point of trimethylolethane decreases. When urea is added, a melting point peak 3 appears around -12 ° C. As urea is added to trimethylolethane tetrahydrate, the melting point decreases. Also, trimethylolethane 4
The composition of 0% by weight, 30% by weight of urea and 30% by weight of water is 1%.
It has a eutectic point at 3 ° C.

【0011】なお、尿素の配合量は、この場合の熱輸送
媒体主成分であるトリメチロールエタンと尿素と水との
合計量に対して、1〜30重量%、好ましくは1〜25
重量%である。尿素の配合量が1重量%より少ないと融
点ピーク1の融点降下の効果が得られず、30重量%よ
り多いと融点ピーク1が0℃以下に低下するので好まし
くない。
The amount of urea is from 1 to 30% by weight, preferably from 1 to 25% by weight, based on the total amount of trimethylolethane, urea and water, which are the main components of the heat transport medium.
% By weight. If the blending amount of urea is less than 1% by weight, the effect of lowering the melting point of melting point peak 1 cannot be obtained.

【0012】本発明に用いられる熱輸送媒体には、必要
に応じて上記成分以外の添加剤を使用することができ
る。例えば、増粘剤を配合してもよい。使用できる増粘
剤の種類としては、水不溶性吸水性ポリマー、ポリアク
リル酸ナトリウム、ポリアクリルアミド、ポリグリセリ
ン、カルボキシメチルセルロース、ヒドロキシエチルセ
ルロース、ポリビニルアルコール、アルギン酸塩、キサ
ンタンガム、カラーギナン、ゼラチン、寒天等が挙げら
れるがこれに限定されることはない。これら増粘剤の配
合量はトリメチロールエタンと水、又はトリメチロール
エタンと水と尿素からなる蓄熱材主成分100重量部に
対して0.01〜1重量部である。また、フェノール
類、アミン類、ヒドロキシアミン類等の酸化防止剤、ク
ロム酸塩、ポリリン酸塩、亜硝酸ナトリウム等の金属腐
食防止剤、安息香酸ナトリウムや2,6−ジ−t−ブチ
ルヒドロキシトルエン等の防腐剤、流動抵抗を軽減する
ための界面活性剤を使用することができる。
In the heat transport medium used in the present invention, additives other than the above components can be used, if necessary. For example, a thickener may be blended. Examples of thickeners that can be used include water-insoluble water-absorbing polymers, sodium polyacrylate, polyacrylamide, polyglycerin, carboxymethylcellulose, hydroxyethylcellulose, polyvinyl alcohol, alginate, xanthan gum, carrageenan, gelatin, agar, and the like. However, it is not limited to this. The compounding amount of these thickeners is 0.01 to 1 part by weight based on 100 parts by weight of the main component of the heat storage material composed of trimethylolethane and water, or trimethylolethane, water and urea. Also, antioxidants such as phenols, amines and hydroxyamines, metal corrosion inhibitors such as chromates, polyphosphates and sodium nitrite, sodium benzoate and 2,6-di-t-butylhydroxytoluene Preservatives such as the above, and a surfactant for reducing flow resistance can be used.

【0013】更に、過冷却を防止するために、過冷却防
止剤を添加してもよい。過冷却防止剤としては、例えば
硫酸カルシウム、硫酸カルシウム半水塩、硫酸カルシウ
ム二水塩、炭酸ナトリウム、炭酸ナトリウム一水塩、ピ
ロリン酸ナトリウム、ピロリン酸ナトリウム十水塩、硫
酸ナトリウム、硫酸ナトリウム十水塩及び第三リン酸カ
ルシウム等が挙げられる。これらの中、硫酸カルシウム
二水塩、炭酸ナトリウムが好ましい。なお、過冷却防止
剤の配合量は、熱輸送媒体主成分100重量部に対し
て、通常、0.1〜10重量部、好ましくは0.5〜5
重量部である。
Further, in order to prevent supercooling, a supercooling inhibitor may be added. Examples of the supercooling inhibitor include calcium sulfate, calcium sulfate hemihydrate, calcium sulfate dihydrate, sodium carbonate, sodium carbonate monohydrate, sodium pyrophosphate, sodium pyrophosphate decahydrate, sodium sulfate, and sodium sulfate decahydrate. Salts and tribasic calcium phosphate. Of these, calcium sulfate dihydrate and sodium carbonate are preferred. The amount of the supercooling inhibitor is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the heat transport medium main component.
Parts by weight.

【0014】本発明に用いられる熱輸送媒体組成物の調
合方法は、特に限定されないが、トリメチロールエタン
と水又はトリメチロールエタンと水と尿素とその他の添
加剤を混合して均一に分散させればよい。より均一に分
散させるためには、熱輸送媒体組成物を通常40〜50
℃まで加熱し、撹拌混合する方法が挙げられる。
The method for preparing the heat transport medium composition used in the present invention is not particularly limited, but trimethylolethane and water or trimethylolethane, water, urea and other additives are mixed and uniformly dispersed. I just need. In order to disperse more uniformly, the heat transport medium composition is usually 40 to 50.
And stirring and mixing.

【0015】[0015]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明はその要旨を超えない限り、以下の実施
例に限定されるものではない。 実施例1〜5、比較例1〜2 トリメチロールエタン(東京化成工業社製試薬)と水
(純水)を表−1に示す重量で配合し熱輸送媒体を得
た。得られた熱輸送媒体を示差走査熱量計(セイコー電
子工業社製DSC220C)にて、2℃/分で−50℃
まで冷却し、2℃/分で40℃まで昇温させたときの融
解温度を測定した。測定結果を表−1に示す。トリメチ
ロールエタンの配合量が15〜25重量%では融点ピー
ク1は6.5〜18.2℃であった。トリメチロールエ
タンの配合量が10重量%では融点ピーク1が−2.0
℃、30重量%では22℃となり目標を外れることが分
かる。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited to the following Examples without departing from the scope of the invention. Examples 1 to 5 and Comparative Examples 1 and 2 Trimethylolethane (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) and water (pure water) were blended at the weights shown in Table 1 to obtain a heat transport medium. The obtained heat transport medium was measured at 2 ° C./min at −50 ° C. using a differential scanning calorimeter (DSC220C manufactured by Seiko Instruments Inc.).
And the melting temperature was measured when the temperature was raised to 40 ° C. at 2 ° C./min. Table 1 shows the measurement results. When the blending amount of trimethylolethane was 15 to 25% by weight, the melting point peak 1 was 6.5 to 18.2 ° C. When the blending amount of trimethylolethane is 10% by weight, the melting point peak 1 is -2.0.
At 30 ° C. and 30% by weight, the temperature was 22 ° C., deviating from the target.

【0016】実施例6〜12、比較例3 トリメチロールエタン、尿素(東京化成工業社製試薬)
と水(純水)を表−2に示す重量で配合した以外は実施
例1と同様に行った。表−2から、実施例6〜12は何
れも融点ピーク1が7.8〜19.5℃であり、融点ピ
ーク2と融点ピーク3の成分により5℃以上で液体成分
が存在し、熱搬送が可能であることが分かる。比較例3
は融点ピーク1及び2が存在せず、融点ピーク3の−1
2.3℃だけであった。
Examples 6 to 12, Comparative Example 3 Trimethylolethane, urea (reagents manufactured by Tokyo Chemical Industry Co., Ltd.)
And water (pure water) were blended in the weights shown in Table 2 in the same manner as in Example 1. From Table-2, in all of Examples 6 to 12, the melting point peak 1 is 7.8 to 19.5 ° C, and the liquid component exists at 5 ° C or more due to the components of the melting point peak 2 and the melting point peak 3; It turns out that is possible. Comparative Example 3
Indicates that the melting point peaks 1 and 2 are absent and that the melting point peak 3 is -1.
2.3 ° C only.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明によれば、融点が0〜20℃の範
囲にあり、配管への腐食もなく、且つスラリー状で搬送
可能であるトリメチロールエタン系潜熱蓄熱材組成物を
熱輸送媒体として使用する方法が得られる。
According to the present invention, a trimethylolethane-based latent heat storage material composition which has a melting point in the range of 0 to 20 ° C., does not corrode pipes, and can be transported in a slurry state is used as a heat transport medium. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】トリメチロールエタンと水との相図。FIG. 1 is a phase diagram of trimethylolethane and water.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トリメチロールエタン13〜29重量%
を含有する水溶液を0℃以上、20℃以下で熱輸送媒体
として使用することを特徴とする熱輸送媒体の使用方
法。
1 to 13% by weight of trimethylolethane
A method for using a heat transport medium, characterized in that an aqueous solution containing is used as a heat transport medium at 0 ° C or more and 20 ° C or less.
【請求項2】 水溶液がトリメチロールエタン13〜2
9重量%の外に、尿素1〜30重量%を含有することを
特徴とする請求項1に記載の熱輸送媒体の使用方法。
2. An aqueous solution comprising trimethylolethane 13-2.
The method for using a heat transport medium according to claim 1, wherein urea is contained in an amount of 1 to 30% by weight in addition to 9% by weight.
JP11208902A 1999-07-23 1999-07-23 Method for using heat transport medium Pending JP2001031958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11208902A JP2001031958A (en) 1999-07-23 1999-07-23 Method for using heat transport medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11208902A JP2001031958A (en) 1999-07-23 1999-07-23 Method for using heat transport medium

Publications (1)

Publication Number Publication Date
JP2001031958A true JP2001031958A (en) 2001-02-06

Family

ID=16564027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11208902A Pending JP2001031958A (en) 1999-07-23 1999-07-23 Method for using heat transport medium

Country Status (1)

Country Link
JP (1) JP2001031958A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263470A (en) * 2001-03-09 2002-09-17 Nkk Corp Apparatus for manufacturing slurry of hydrate
JP2008238169A (en) * 2001-05-30 2008-10-09 Jfe Engineering Kk Method of adjusting concentration of solution containing hydrate slurry producing agent, and method of supplying hydrate slurry producing agent
JP2017036350A (en) * 2015-08-06 2017-02-16 パナソニックIpマネジメント株式会社 Latent heat cold storage material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263470A (en) * 2001-03-09 2002-09-17 Nkk Corp Apparatus for manufacturing slurry of hydrate
JP4599733B2 (en) * 2001-03-09 2010-12-15 Jfeエンジニアリング株式会社 Hydrate slurry production equipment
JP2008238169A (en) * 2001-05-30 2008-10-09 Jfe Engineering Kk Method of adjusting concentration of solution containing hydrate slurry producing agent, and method of supplying hydrate slurry producing agent
JP2009106937A (en) * 2001-05-30 2009-05-21 Jfe Engineering Corp Supply method of hydrate slurry forming agent
JP2017036350A (en) * 2015-08-06 2017-02-16 パナソニックIpマネジメント株式会社 Latent heat cold storage material

Similar Documents

Publication Publication Date Title
CN101171318B (en) Heat storable substance, heat storage agent, heat storage material, heat transfer medium, cold insulation agent, cold insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling for use in heat storage agent, heat storage agent, heat transfer medium and process for manufacturing any one of main agent of cool keeping agents
EP2210928A1 (en) Aqueous solution for clathrate hydrate formation, heat-storage agent, process for producing clathrate hydrate or slurry thereof, method of storing/radiating heat, and process for preparing aqueous solution for forming latent-heat-storage agent or major component thereof
JP2002501110A (en) Frost heating / cooling fluid
AU2001253572B2 (en) Heat transfer fluid for secondary refrigeration systems comprising a formate salt
JPH11513723A (en) Heat transfer liquid
JP4853851B2 (en) High-temperature cooling device using latent heat transport inorganic hydrate slurry
JP2001031958A (en) Method for using heat transport medium
JPH07126614A (en) Latent heat type heat storage material
JP5691861B2 (en) Heat storage agent
JP2005029591A (en) Method for reducing flow resistance of hydrate slurry for latent heat transportation, hydrate slurry for reduced latent heat transportation and heating and cooling system using the same slurry
JPH1135933A (en) Cold storage material utilizing latent heat
JPH09194817A (en) Heat transfer medium and circulating system thereof
JP2006176674A (en) Cold heat transportation medium
EP0830437A1 (en) A method for performing heat exchange by using a heat transfer medium, a heat transfer medium and a heat exchange apparatus
JP5104160B2 (en) Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP3897330B2 (en) Heat transfer medium
JP5028808B2 (en) Heat storage device using fluid heat storage material, heat pump system and solar system using the same
JP3475901B2 (en) Hydrate slurry generator with different hydration numbers
WO2012169549A1 (en) Heat storage agent
JPH1036824A (en) Heat storage material composition
JPH0726252A (en) Cold storage material
JP5706728B2 (en) Heat transfer medium and heat transfer system using the same
JP2005306968A (en) Latent heat storage agent composition
JPS5925034B2 (en) Corrosion inhibitor for copper
WO2019013636A1 (en) Thermal accumulator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129