JP2001030103A - Boring device for fluid transporting pipe - Google Patents
Boring device for fluid transporting pipeInfo
- Publication number
- JP2001030103A JP2001030103A JP11202832A JP20283299A JP2001030103A JP 2001030103 A JP2001030103 A JP 2001030103A JP 11202832 A JP11202832 A JP 11202832A JP 20283299 A JP20283299 A JP 20283299A JP 2001030103 A JP2001030103 A JP 2001030103A
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- passive
- main shaft
- fluid transport
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L41/00—Branching pipes; Joining pipes to walls
- F16L41/04—Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor
- F16L41/06—Tapping pipe walls, i.e. making connections through the walls of pipes while they are carrying fluids; Fittings therefor making use of attaching means embracing the pipe
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Drilling And Boring (AREA)
- Branch Pipes, Bends, And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水道管やガス管等
の流体輸送管の管壁に分岐孔等を形成する場合に用いら
れる穿孔装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drilling device used for forming a branch hole or the like in a pipe wall of a fluid transport pipe such as a water pipe or a gas pipe.
【0002】[0002]
【従来の技術】従来の流体輸送管用穿孔装置では、図1
8に示すように、ケーシング101に、流体輸送管の管
壁に貫通孔を形成するための穿孔用カッターが装着され
る主軸102を、相対回転並びにその回転軸芯方向に相
対摺動自在に支承し、この主軸102内に、当該主軸1
02の先端部(送込み側端部)に対して相対回転のみ自
在に連結された第1送り軸103と、該第1送り軸10
3の後端部(戻り側端部)の外周面に形成された雄ネジ
103aに螺合する雌ネジ104aを備えた第2送り軸
104とを同芯状態で配設するとともに、前記ケーシン
グ101から突出する第2送り軸104の後端部には手
動ハンドル105を止着してある。また、前記主軸10
2の後端部の外周面に対して回転軸芯方向に摺動自在に
スプライン嵌合された駆動筒軸106を、前記ケーシン
グ101に回転のみ自在に支承させ、この駆動筒軸10
6の先端部側近くには、図外の電動モータやエンジン等
の原動部に連動された駆動入力軸107のウォーム10
8に噛合するウォームホイール109を固着するととも
に、前記駆動筒軸106の後端部に外嵌固着された食違
い歯車110から第2送り軸104の後端側に外嵌固着
された平歯車111への動力伝達系の途中には、原動部
側の回転力を第2送り軸104に伝達する自動送り状態
と、手動ハンドル105による第2送り軸104の回転
操作を許容する手動送り状態とに切替え操作自在なクラ
ッチ112が設けられている(例えば、実開平7−24
507号公報参照)。そして、前記クラッチ112が自
動送り状態に操作されている状態で、前記原動部の回転
力が駆動筒軸106に伝達されると、この駆動筒軸10
6に対して摺動自在にスプライン嵌合されている主軸1
02が駆動回転されると同時に、前記駆動筒軸106に
クラッチ112を介して連動されている第2送り軸10
4が駆動回転され、この第2送り軸104に螺合連動さ
れている第1送り軸103が伸展作動し、主軸102が
駆動回転されながら送り出される。2. Description of the Related Art In a conventional drilling device for a fluid transport pipe, FIG.
As shown in FIG. 8, a main shaft 102 on which a drilling cutter for forming a through hole in a pipe wall of a fluid transport pipe is mounted on a casing 101 so as to be relatively slidable and relatively slidable in the direction of the axis of the rotation axis. The main spindle 102 is provided inside the main spindle 102.
02, a first feed shaft 103 connected only to a relative rotation with respect to a front end portion (feed side end portion) of the first feed shaft 10;
3 and a second feed shaft 104 having a female screw 104a screwed to a male screw 103a formed on the outer peripheral surface of the rear end (return end) of the casing 101. A manual handle 105 is fixed to the rear end of the second feed shaft 104 projecting from the second feed shaft 104. In addition, the spindle 10
The drive cylinder shaft 106, which is spline-fitted to the outer peripheral surface of the rear end portion of the drive cylinder shaft slidably in the direction of the axis of rotation, is supported on the casing 101 so as to be rotatable only.
6, a worm 10 of a drive input shaft 107 linked to a driving unit such as an electric motor or an engine (not shown).
8 and a spur gear 111 externally fixed to the rear end of the second feed shaft 104 from a staggered gear 110 externally fixed to the rear end of the drive cylinder shaft 106. In the middle of the power transmission system, an automatic feed state in which the rotational force on the driving unit side is transmitted to the second feed shaft 104 and a manual feed state in which the rotation operation of the second feed shaft 104 by the manual handle 105 is allowed. The clutch 112 which can be switched freely is provided (for example, an actual open flat 7-24).
507). When the rotational force of the driving unit is transmitted to the driving cylinder shaft 106 while the clutch 112 is being operated to the automatic feed state, the driving cylinder shaft 10
Spindle 1 which is slidably fitted with spline 6
02 is driven and rotated, and at the same time, the second feed shaft 10 which is interlocked with the drive cylinder shaft 106 via the clutch 112.
4 is driven and rotated, the first feed shaft 103 screwed and linked to the second feed shaft 104 is extended, and the main shaft 102 is fed while being driven and rotated.
【0003】[0003]
【発明が解決しようとする課題】従来の流体輸送管用穿
孔装置では、原動部に連動された駆動筒軸106から主
軸102への動力伝達系統が、主軸102に回転力を付
与する回転伝動系と主軸102に送り力を付与する送り
伝動系とに分岐構成されているとともに、送り伝動系を
構成する二本の送り軸103,104を、穿孔用カッタ
ーの最大作動ストロークに相当する長さ範囲に亘って伸
縮自在に嵌合させる必要があり、しかも、それらを主軸
102内に同芯状態で組付けなければならないため、装
置全体が複雑化、大型化し易い。更に、穿孔用カッター
に異常な切削抵抗が発生したとき、原動部に過負荷が作
用するばかりでなく、回転伝動系の構成部品や送り伝動
系の構成部品の変形、破損を招来し易い。In the conventional drilling device for a fluid transport pipe, the power transmission system from the drive cylinder shaft 106 to the main shaft 102, which is interlocked with the prime mover, includes a rotary transmission system for applying a rotational force to the main shaft 102. The two feed shafts 103 and 104 that are branched into a feed transmission system that applies a feed force to the main shaft 102 and that constitute the feed transmission system are set to a length range corresponding to the maximum operation stroke of the drilling cutter. It is necessary to fit them in a stretchable manner over the entire shaft, and they must be assembled in the main shaft 102 in a concentric state. Further, when an abnormal cutting resistance is generated in the drilling cutter, not only an overload acts on the driving part, but also deformation and breakage of the components of the rotary transmission system and the components of the feed transmission system are likely to occur.
【0004】本発明は、上述の実状に鑑みて為されたも
のであって、その主たる課題は、穿孔用カッターに異常
な切削抵抗が発生した場合でも、原動部や伝動系に過負
荷が作用することを抑制することができ、しかも、装置
全体の簡素化及び小型化を図ることができるとともに、
流体輸送管の管壁外面と穿孔装置の取付け部との間に作
業弁等を介在させる場合でも、穿孔装置の主要構成を変
更することなく容易にかつコスト面で有利に対応するこ
とのできる流体輸送管用穿孔装置を提供する点にある。The present invention has been made in view of the above situation, and its main problem is that even when abnormal cutting resistance occurs in the drilling cutter, an overload acts on the driving portion and the transmission system. Can be suppressed, and the entire apparatus can be simplified and downsized.
Even when a work valve or the like is interposed between the outer surface of the pipe wall of the fluid transport pipe and the mounting portion of the drilling device, a fluid that can be easily and advantageously reduced in cost without changing the main configuration of the drilling device. It is an object of the present invention to provide a perforation device for a transport pipe.
【0005】[0005]
【課題を解決するための手段】本発明の請求項1による
流体輸送管用穿孔装置の特徴構成は、ケーシングに対し
て回転並びにその回転軸芯方向に摺動自在に支承される
受動軸への動力伝達系に、受動軸の外周面に圧接させた
状態での駆動回転に連れて該受動軸に回転力と回転軸芯
方向の送り力とを付与する摩擦伝動手段を設けるととも
に、前記受動軸には、流体輸送管の管壁に貫通孔を形成
するための穿孔用カッターが装着される側の主軸を、相
対回転並びにカッター送込み方向である回転軸芯方向に
相対摺動自在に嵌合し、この主軸と受動軸との間には、
両者の相対回転及び相対摺動を阻止する一体状態と両者
の相対回転及び相対摺動を許容する自由状態とに切替え
自在なクランプ手段を設けた点にある。上記特徴構成に
よれば、受動軸への動力伝達系に設けた摩擦伝動手段に
よって、ケーシングに回転並びに摺動自在に支承された
受動軸に対して回転力と回転軸芯方向の送り力とを同時
に付与することができるから、従来の穿孔装置のよう
に、主軸への動力伝達系を回転伝動系と送り伝動系とに
分岐構成する必要がなく、その分だけ伝動構造の簡素化
と伝動部品点数の削減を図ることができる。しかも、こ
の摩擦伝動手段は、受動軸の外周面への圧接による摩擦
力を利用して伝動するが故に、穿孔用カッターに異常な
切削抵抗が発生したとき、その摩擦伝動部でスリップが
発生し、穿孔用カッターや動力伝達系に過負荷が作用す
ることを抑制することができる。更に、穿孔作業時に
は、主軸と受動軸との間に設けたクランプ手段を切替え
操作して、主軸と受動軸との相対回転及び相対摺動を阻
止する一体状態にすることにより、摩擦伝動手段によっ
て受動軸に付与された回転力と送り力とが、主軸を介し
て穿孔用カッターに伝達される。その結果、穿孔用カッ
ターが予め設定された所定の回転数で駆動回転しながら
所定の送り量で送込まれるため、手動送りの場合のよう
な不用意な切込み等に起因するカッターの破損を抑制し
ながら流体輸送管の管壁に貫通孔を確実に形成すること
ができる。また、穿孔作業開始前のセッティング時に
は、クランプ手段を自由状態に切替え操作することによ
り、受動軸に対して、穿孔用カッターの先端が流体輸送
管の管壁に接当又は近接する状態にまで主軸を自由に押
込み操作することができるから、受動軸に対する主軸の
摺動ストロークを大きく取りながらも、駆動力による送
り量が少なくなり、摩擦伝動手段を含めた受動軸への伝
動機構部を回転軸芯方向でコンパクトに構成し易い。例
え、流体輸送管の管壁外面と穿孔装置の取付け部との間
に作業弁を介在させる場合でも、駆動力による最大送り
量を変更する必要がなく、作業弁の全長に相当するスト
ローク分だけ、受動軸に対する主軸の手動操作用摺動ス
トロークとして確保するだけで済む。従って、穿孔用カ
ッターに異常な切削抵抗が発生した場合でも、原動部や
伝動系に過負荷が作用することを抑制することができ、
しかも、装置全体の簡素化及び小型化を図ることができ
るとともに、流体輸送管の管壁外面と穿孔装置の取付け
部との間に作業弁等を介在させる場合でも、穿孔装置の
主要構成を変更することなく容易にかつコスト面で有利
に対応することができる。SUMMARY OF THE INVENTION A feature of the drilling device for a fluid transport pipe according to the present invention resides in that a power is applied to a passive shaft which is slidably supported on a casing and slidably in the direction of the axis of the rotating shaft. The transmission system is provided with friction transmission means for applying a rotational force and a feed force in the direction of the axis of the rotating shaft to the driven shaft along with the driving rotation in a state of being pressed against the outer peripheral surface of the passive shaft. The main shaft on the side on which the drilling cutter for forming a through hole is formed in the pipe wall of the fluid transport tube is relatively slidably fitted in the direction of the rotation axis, which is the direction of relative rotation and cutter feeding. , Between the main axis and the passive axis,
The present invention is characterized in that clamping means is provided which can be switched between an integrated state in which the relative rotation and relative sliding of the two are prevented and a free state in which the relative rotation and relative sliding of the two are permitted. According to the characteristic configuration, the frictional transmission means provided in the power transmission system to the passive shaft allows the casing to rotate and slidably support the rotational force and the feed force in the direction of the rotational axis with respect to the passive shaft supported slidably. Since it can be provided at the same time, unlike the conventional drilling device, the power transmission system to the main shaft does not need to be branched into a rotary transmission system and a feed transmission system, which simplifies the transmission structure and reduces transmission components. The points can be reduced. Moreover, since this friction transmission means transmits by utilizing the frictional force generated by pressing against the outer peripheral surface of the passive shaft, when abnormal cutting resistance is generated in the drilling cutter, slip occurs in the friction transmission portion. In addition, it is possible to suppress the overload from acting on the drilling cutter and the power transmission system. Further, at the time of drilling work, by switching the clamping means provided between the main shaft and the passive shaft, the frictional transmission means is provided by integrating the main shaft and the passive shaft to prevent relative rotation and relative sliding. The rotational force and the feed force applied to the passive shaft are transmitted to the drilling cutter via the main shaft. As a result, the cutter for punching is fed at a predetermined feed amount while being driven and rotated at a predetermined rotation speed set in advance, thereby suppressing breakage of the cutter due to careless cutting or the like as in the case of manual feeding. The through hole can be reliably formed in the pipe wall of the fluid transport pipe. Further, at the time of setting before the start of the drilling operation, by switching the clamp means to the free state, the main spindle is moved until the tip of the drilling cutter comes into contact with or close to the pipe wall of the fluid transport pipe with respect to the passive shaft. Can be freely pushed in, the feed amount due to the driving force is reduced while the sliding stroke of the main shaft with respect to the passive shaft is large, and the transmission mechanism including the friction transmission means to the passive shaft is rotated. It is easy to configure compactly in the core direction. For example, even when a work valve is interposed between the outer surface of the pipe wall of the fluid transport pipe and the mounting portion of the drilling device, there is no need to change the maximum feed amount by the driving force, and only the stroke corresponding to the entire length of the work valve is required. It is only necessary to secure a sliding stroke for manual operation of the main shaft with respect to the passive shaft. Therefore, even when an abnormal cutting resistance occurs in the drilling cutter, it is possible to suppress the overload from acting on the driving unit and the transmission system,
In addition, the entire device can be simplified and downsized, and the main configuration of the drilling device is changed even when a work valve or the like is interposed between the outer wall surface of the fluid transport pipe and the mounting portion of the drilling device. Therefore, it is possible to easily and advantageously cope with the cost.
【0006】本発明の請求項2による流体輸送管用穿孔
装置の特徴構成は、前記摩擦伝動手段を伝動状態と受動
軸の外周面への圧接を解除した非伝動状態とに切替える
伝動状態切替手段が設けられている点にある。上記特徴
構成によれば、伝動状態切替手段を伝動状態から非伝動
状態に切替え操作すると、受動軸の駆動回転及び駆動送
りを停止させることができるとともに、ケーシングに対
して受動軸を自由に摺動操作することが可能となるか
ら、穿孔作業開始前のセッティング時における受動軸の
位置合わせ、或いは、穿孔作業終了後の受動軸の戻し操
作を迅速、容易に行うことができる。According to a second aspect of the present invention, there is provided a drilling device for a fluid transport pipe, wherein the transmission state switching means for switching the friction transmission means between a transmission state and a non-transmission state in which pressure contact with the outer peripheral surface of the passive shaft is released. It is in the point provided. According to the above configuration, when the transmission state switching means is switched from the transmission state to the non-transmission state, the drive rotation and the drive feed of the passive shaft can be stopped, and the passive shaft can slide freely on the casing. Since the operation can be performed, the positioning of the passive shaft at the time of setting before the start of the drilling operation, or the returning operation of the passive shaft after the end of the drilling operation can be performed quickly and easily.
【0007】本発明の請求項3による流体輸送管用穿孔
装置の特徴構成は、前記ケーシングに、主軸の戻り側へ
の移動を阻止するストッパー手段が、ストッパー解除操
作自在に設けられている点にある。上記特徴構成によれ
ば、流体の輸送を止めない不断流状態での穿孔作業時に
おいて、穿孔用カッターによって流体輸送管の管壁に貫
通孔が形成された直後に、流体輸送管内の流体圧が穿孔
用カッターに作用しても、受動軸の外周面に摩擦伝動手
段が圧接されているため、穿孔用カッターに連動する主
軸及びこれと一体状態にある受動軸が戻り側に摺動する
ことがない。この状態で、ストッパー手段をストッパー
状態に操作して主軸の戻り側への移動を阻止したのち、
クランプ手段を自由状態に操作し、その後、主軸の戻り
経路側に注意しながらストッパー手段をストッパー解除
操作し、主軸を元の待機位置に復帰摺動させる。それ故
に、流体輸送管内の流体圧に起因する意図しない状態で
の主軸の急激な戻り摺動を回避することができる。A feature of the drilling device for a fluid transport pipe according to a third aspect of the present invention is that a stopper means for preventing the main shaft from moving to the return side is provided on the casing so that the stopper can be released. . According to the above-mentioned characteristic configuration, at the time of drilling work in a non-disrupted flow state in which the transport of the fluid is not stopped, immediately after the through hole is formed in the pipe wall of the fluid transport pipe by the drill cutter, the fluid pressure in the fluid transport pipe is increased. Even when acting on the cutter for drilling, the friction transmission means is pressed against the outer peripheral surface of the passive shaft, so that the main shaft interlocked with the cutter for punching and the passive shaft integrated therewith may slide toward the return side. Absent. In this state, after operating the stopper means to the stopper state to prevent the main shaft from moving to the return side,
The clamp means is operated in a free state, and then the stopper means is operated to release the stopper while paying attention to the return path side of the spindle, and the spindle is returned to the original standby position and slid. Therefore, sudden return sliding of the main shaft in an unintended state due to the fluid pressure in the fluid transport pipe can be avoided.
【0008】本発明の請求項4による流体輸送管用穿孔
装置の特徴構成は、前記主軸又は受動軸側に、ケーシン
グとの接当によって主軸の最大送り量を設定送り量に規
制する送り量設定手段が備えられている点にある。上記
特徴構成によれば、穿孔作業開始前のセッティング時
に、クランプ手段を自由状態に操作し、受動軸に対し
て、穿孔用カッターの先端が流体輸送管の管壁に接当又
は近接する状態にまで主軸を押込み操作し、この押込み
状態を維持したまま、送り量設定手段によって主軸の最
大送り量を穿孔に必要な設定送り量に設定したのち、ク
ランプ手段を一体状態に切替え操作する。この状態で穿
孔作業を開始すると、主軸の最大送り量が送り量設定手
段で設定された設定送り量に到達した時点で、送り量設
定手段がケーシングに接当してそれ以上の主軸の送りを
阻止することができるから、穿孔作業の確実化、簡便化
を図ることができる。しかも、送り量設定手段とケーシ
ングとの接当に連れて主軸側の負荷が増大しても、この
負荷を摩擦伝動手段の摩擦伝動部でのスリップによって
吸収することができ、動力伝達系に過負荷が作用するこ
とを抑制することができる。According to a fourth aspect of the present invention, there is provided a drilling device for a fluid transport pipe, wherein a feed amount setting means for restricting a maximum feed amount of the main shaft to a set feed amount by contacting a casing with the main shaft or the passive shaft. Is provided. According to the above-mentioned characteristic configuration, at the time of setting before the start of the drilling operation, the clamp means is operated in a free state so that the tip of the drilling cutter abuts or approaches the pipe wall of the fluid transport pipe with respect to the passive shaft. After the spindle is pushed in, the feed amount setting means sets the maximum feed amount of the spindle to a set feed amount necessary for drilling while maintaining this pushed state, and then switches the clamp means to an integrated state. When the drilling operation is started in this state, when the maximum feed amount of the spindle reaches the set feed amount set by the feed amount setting unit, the feed amount setting unit contacts the casing to feed the spindle further. Since this can be prevented, the drilling operation can be made more reliable and simpler. In addition, even if the load on the main shaft increases due to the contact between the feed amount setting means and the casing, the load can be absorbed by the slip in the friction transmission portion of the friction transmission means, and the power transmission system can be overloaded. The operation of the load can be suppressed.
【0009】本発明の請求項5による流体輸送管用穿孔
装置の特徴構成は、前記主軸のうち、穿孔用カッターの
装着側とは反対側に位置する端部に、延長回転軸を脱着
自在に同芯状態で連結するための軸連結手段が設けられ
ている点にある。上記特徴構成によれば、流体輸送管の
直径、或いは、流体輸送管の管壁外面と穿孔装置の取付
け部との間に介在される作業弁の全長に応じて、受動軸
に対する主軸の摺動ストロークを増大する必要が生じて
も、主軸の端部に設けられた軸連結手段を介して延長回
転軸を装着するだけの簡単な作業で容易に対応すること
ができる。According to a fifth aspect of the present invention, there is provided a fluid transport pipe drilling apparatus wherein an extended rotary shaft is detachably attached to an end of the main shaft opposite to a side where a drilling cutter is mounted. The point is that a shaft connecting means for connecting in a core state is provided. According to the above feature, the sliding of the main shaft with respect to the passive shaft depends on the diameter of the fluid transport pipe or the total length of the working valve interposed between the outer surface of the pipe wall of the fluid transport pipe and the mounting portion of the drilling device. Even if it is necessary to increase the stroke, it can be easily dealt with by a simple operation of mounting the extended rotary shaft via the shaft connecting means provided at the end of the main shaft.
【0010】本発明の請求項6による流体輸送管用穿孔
装置の特徴構成は、前記摩擦伝動手段が、受動軸の外周
面を径方向外方側から挟み込む状態で、かつ、回転軸芯
に対する径方向での直交平面に対して一回転当りの単位
送り量に相当する角度を付けて配設される複数個のロー
ラーから構成されているとともに、そのうち、少なくと
も一つが駆動ローラーに構成されている点にある。上記
特徴構成によれば、一回転当りの単位送り量に相当する
角度を付けて配設される複数個のローラーを、受動軸の
外周面に径方向から挟み込む状態で圧接させてあるが故
に、受動軸に対して回転力と回転軸芯方向の送り力とを
同時に付与するためのローラーを利用して、穿孔作業時
に受動軸を強固に支承することができる。The fluid transmission pipe drilling device according to a sixth aspect of the present invention is characterized in that the friction transmission means sandwiches the outer peripheral surface of the passive shaft from a radially outer side and is arranged in a radial direction with respect to the rotation shaft core. And a plurality of rollers arranged at an angle corresponding to a unit feed amount per rotation with respect to an orthogonal plane at which at least one of the rollers is configured as a driving roller. is there. According to the above characteristic configuration, the plurality of rollers disposed at an angle corresponding to the unit feed amount per rotation are pressed against the outer peripheral surface of the passive shaft in a state of being sandwiched from the radial direction, The passive shaft can be firmly supported during the drilling operation by using a roller for simultaneously applying the rotation force and the feed force in the rotation axis center direction to the passive shaft.
【0011】本発明の請求項7による流体輸送管用穿孔
装置の特徴構成は、前記主軸が、ケーシングの軸受け部
と受動軸のボス部とに亘って挿通保持されている点にあ
る。上記特徴構成によれば、主軸と受動軸とが内外二重
構造となり、かつ、主軸の一部を、受動軸のボス部を利
用してケーシングに支承させることができるから、装置
全体のコンパクト化と軸受け構造の簡素化とを図ること
ができる。A feature of the drilling device for a fluid transport pipe according to claim 7 of the present invention is that the main shaft is inserted and held over a bearing portion of a casing and a boss portion of a passive shaft. According to the above characteristic configuration, the main shaft and the passive shaft have a dual inner / outer structure, and a part of the main shaft can be supported on the casing using the boss portion of the passive shaft. And simplification of the bearing structure.
【0012】本発明の請求項8による流体輸送管用穿孔
装置の特徴構成は、前記ケーシングに、最大戻し位置に
復帰している穿孔用カッターを格納可能な格納空間を備
え、かつ、流体輸送管の穿孔相当箇所に接続された分岐
用継手に対して開閉操作自在な作業弁を介して気密又は
液密状態で接続可能な連結筒体が取付けられている点に
ある。上記特徴構成によれば、穿孔作業を行う場合、ま
ず、流体輸送管の穿孔相当箇所に接続された分岐用継手
に作業弁を取付け、この作業弁に対して、穿孔装置のケ
ーシングに取付けられた連結筒体を気密又は液密状態で
接続する。次に、前記作業弁を開き操作するとともに、
主軸と受動軸との間に設けたクランプ手段を自由状態に
切替え操作して、受動軸に対して主軸を押込み操作し、
連結筒体の格納空間内に格納されている穿孔用カッター
を作業弁及び分岐用継手を通して流体輸送管の管壁に接
当又は近接する状態にまで移動させる。このようなセッ
ティングが終了した時点でクランプ手段を一体状態に切
替え操作し、摩擦伝動手段によって受動軸に回転力と送
り力とを付与すると、この回転力と送り力とが主軸を介
して穿孔用カッターに伝達され、流体輸送管の管壁のう
ち、分岐用継手で囲まれた穿孔相当箇所の管壁部分に所
定の貫通孔を形成することができる。このような穿孔行
程が終了すると、穿孔用カッターを連結筒体の格納空間
内に格納したのち、作業弁を閉止操作し、この作業弁か
ら穿孔装置の連結筒体を取り外して穿孔作業が終了す
る。従って、流体輸送管内での流体輸送を止めることな
く穿孔作業することができるとともに、作業弁に接続す
るための連結筒体を利用して穿孔用カッターを格納する
ことができる。According to a eighth aspect of the present invention, there is provided a fluid transport pipe piercing device, wherein the casing has a storage space capable of storing a piercing cutter that has returned to a maximum return position, and the fluid transport pipe has a storage space. The present invention is characterized in that a connection tubular body that can be connected in a gas-tight or liquid-tight state to a branch joint connected to a portion corresponding to a perforation through a work valve that can be freely opened and closed is attached. According to the above-mentioned characteristic configuration, when performing a drilling operation, first, a working valve is attached to a branch joint connected to a portion corresponding to the drilling of the fluid transport pipe, and the working valve is attached to a casing of a drilling device. The connecting cylinders are connected in an air-tight or liquid-tight state. Next, while opening and operating the working valve,
Switching the clamp means provided between the main shaft and the passive shaft to a free state, pushing the main shaft against the passive shaft,
The drilling cutter stored in the storage space of the connecting cylinder is moved to a state in which it comes into contact with or close to the pipe wall of the fluid transport pipe through the working valve and the branch joint. When such setting is completed, the clamp means is switched to an integrated state, and a rotational force and a feed force are applied to the passive shaft by the friction transmission means, and the rotational force and the feed force are used for drilling through the main shaft. The predetermined through-hole can be formed in a portion of the pipe wall of the fluid transport pipe that is transmitted to the cutter and that corresponds to the perforation surrounded by the branch joint. When such a piercing process is completed, after the piercing cutter is stored in the storage space of the connecting cylinder, the working valve is closed, and the connecting cylinder of the piercing device is removed from the working valve to complete the piercing operation. . Therefore, the drilling operation can be performed without stopping the fluid transport in the fluid transport pipe, and the drilling cutter can be stored using the connecting cylinder for connecting to the working valve.
【0013】本発明の請求項9による流体輸送管用穿孔
装置の特徴構成は、前記クランプ手段を構成す るに、
主軸に外嵌する状態で受動軸に固定された連動筒体又は
受動軸に、主軸に形成された受動面に対して径方向外方
から係合することにより、受動軸と主軸とを一体状態に
する伝動部材と、該伝動部材を主軸の受動面の最大回転
軌跡よりも径方向外方に離間させた係合解除位置に移動
付勢する弾性付勢体と、主軸の軸芯周りでの回転操作に
よって、伝動部材を弾性付勢体の弾性付勢力に抗して係
合位置に保持する一体状態と弾性付勢体の弾性付勢力に
よる伝動部材の係合解除位置への離間移動を許容する自
由状態とに切替える操作機構とを設けた点にある。上記
特徴構成によれば、前記操作機構を回転操作して自由状
態にすると、係合位置に保持されていた伝動部材が主軸
の受動面の最大回転軌跡よりも径方向外方に離間した係
合解除位置にまで弾性付勢体の弾性付勢力で移動し、受
動軸と主軸とが相対回転ならびに相対摺動自在となる。
また、前記操作機構を回転操作して一体状態に切替える
と、係合解除位置に保持されていた伝動部材が弾性付勢
体の弾性付勢力に抗して主軸の受動面の最大回転軌跡よ
りも径方向内方に入り込んだ係合位置にまで移動され、
受動軸と主軸とが一体的に回転及び摺動する。従って、
主軸に外嵌する状態で受動軸に固定された連動筒体又は
受動軸に、主軸の受動面に径方向外方から係合する伝動
部材と、伝動部材を係合解除位置に移動付勢する弾性付
勢体、及び、主軸の軸芯周りで回転操作自在な操作機構
とを組付けてあるが故に、自由状態と一体状態との切替
え操作の簡便化を図りつつクランプ手段全体をコンパク
トに構成し易い。According to a ninth aspect of the present invention, there is provided a boring device for a fluid transport pipe, wherein the clamping means comprises:
The passive shaft and the main shaft are integrated with each other by engaging the interlocking cylinder or the passive shaft fixed to the passive shaft in a state of being fitted to the main shaft from a radially outer side with respect to the passive surface formed on the main shaft. A transmission member, an elastic biasing body that moves and biases the transmission member to a disengagement position in which the transmission member is separated radially outward from the maximum rotation locus of the passive surface of the main shaft, and Rotational operation allows the transmission member to be held in the engaged position against the elastic urging force of the elastic urging member, and allows the transmission member to move to the disengaged position by the elastic urging force of the elastic urging member. And an operation mechanism for switching to a free state. According to the above configuration, when the operating mechanism is rotated to be in a free state, the transmission member held in the engagement position is separated from the maximum rotation locus of the passive surface of the main shaft in a radially outward direction. It moves to the release position by the elastic urging force of the elastic urging body, and the passive shaft and the main shaft are relatively rotatable and relatively slidable.
Further, when the operating mechanism is rotated to switch to the integrated state, the transmission member held at the disengaged position is more than the maximum rotation trajectory of the passive surface of the main shaft against the elastic urging force of the elastic urging body. It is moved to the engagement position that has entered radially inward,
The passive shaft and the main shaft rotate and slide integrally. Therefore,
A transmission member that engages the passive surface of the main shaft from outside in the radial direction with the interlocking cylinder or the passive shaft fixed to the passive shaft in a state of being fitted to the main shaft, and biases the transmission member to the disengagement position. Since the elastic biasing body and the operation mechanism that can rotate around the axis of the main shaft are assembled, the whole clamp means is compact while simplifying the switching operation between the free state and the integrated state. Easy to do.
【0014】本発明の請求項10による流体輸送管用穿
孔装置の特徴構成は、前記ローラーの外周面に環状のウ
レタンゴムが装着されている点にある。上記特徴構成に
よれば、ウレタンゴムのもつ優れた反発弾性、耐摩耗
性、耐油性を利用して、長期間に亘って受動軸に所定の
回転力と送り力とを確実に付与することができる。According to a tenth aspect of the present invention, there is provided a fluid transport pipe perforating apparatus characterized in that an annular urethane rubber is mounted on an outer peripheral surface of the roller. According to the above-mentioned characteristic configuration, it is possible to reliably apply a predetermined rotational force and feed force to the passive shaft over a long period of time by utilizing the excellent rebound resilience, wear resistance, and oil resistance of urethane rubber. it can.
【0015】本発明の請求項11による流体輸送管用穿
孔装置の特徴構成は、前記ローラーの外周面に、環状の
ウレタンゴムを保持する環状凹部が形成されているとと
もに、該環状凹部の幅方向で相対向する周壁面が、径方
向外方側ほど互いに離間する傾斜面に構成されている点
にある。上記特徴構成によれば、ローラーの環状凹部に
装着された環状のウレタンゴムを受動軸の外周面に圧接
させたとき、前記環状凹部の幅方向両側に位置する傾斜
姿勢の周壁面により、ウレタンゴムの幅方向外側(ロー
ラー回転軸芯方向外側)への膨出弾性変形を抑制するこ
とができ、ウレタンゴムと受動軸の外周面との間での面
圧を高めることができる。According to a eleventh aspect of the present invention, there is provided a fluid transport pipe piercing device, wherein an outer peripheral surface of the roller is formed with an annular concave portion for holding an annular urethane rubber, and is formed in a width direction of the annular concave portion. The point is that the peripheral wall surfaces facing each other are formed as inclined surfaces that are further apart from each other as they go radially outward. According to the characteristic configuration, when the annular urethane rubber attached to the annular concave portion of the roller is pressed against the outer peripheral surface of the passive shaft, the urethane rubber is formed by the peripheral wall surfaces in the inclined posture located on both sides in the width direction of the annular concave portion. Can be suppressed from expanding outward in the width direction (outward in the direction of the roller rotation axis), and the surface pressure between the urethane rubber and the outer peripheral surface of the passive shaft can be increased.
【0016】[0016]
【発明の実施の形態】〔第1実施形態〕図1(イ)〜
(ニ)、図2(ホ)〜(ト)は、水道管やガス管等の流
体輸送管Pの管壁1に、流体輸送管P内に流体を流動さ
せたままの不断流状態で分岐用の貫通孔2を形成する穿
孔工法の一例を示し、流体輸送管Pの穿孔相当箇所の外
周面に、当該流体輸送管Pの管軸芯Xに対して直交する
姿勢の分岐用継手3を、溶接やボルト等の適宜取付け手
段によって気密又は液密状態で取付け、この分岐用継手
3の連結フランジ部3Aに、開閉操作自在な弁体4Aを
備えた作業弁4の一方の連結フランジ部4Bを、ボルト
・ナットを介して気密又は液密 状態で固定連結し、更
に、この作業弁4の他方の連結フランジ部4Cに、穿孔
用カッター5を脱着自在に装着してある本発明の穿孔装
置Aの連結フランジ部69Aを、ボルト・ナット を介し
て気密又は液密状態で固定連結してある。そして、前記
穿孔装置Aの穿孔用カッター5を、開き操作された作業
弁4及び分岐用継手3内を通して流体輸送管Pの管壁1
に接当又は近接する穿孔開始位置にまで移動させたの
ち、穿孔装置Aの原動部である電動モータMを駆動し
て、穿孔用カッター5に駆動回転力と強制送り力を付与
し、流体輸送管Pの管壁1に分岐用の貫通孔2を形成す
る。この穿孔工程が終了すると、穿孔用カッター5を元
の待機位置である格納位置に復帰させたのち、作業弁4
の弁体4Aを閉止操作し、この作業弁4から穿孔装置A
を取外す。DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIGS.
(D), FIGS. 2 (e) to 2 (g) show a state in which the fluid flows in the fluid transport pipe P without interruption on the pipe wall 1 of the fluid transport pipe P such as a water pipe or a gas pipe. An example of a drilling method for forming a through hole 2 for use is shown, and a branch joint 3 having a posture orthogonal to the pipe axis X of the fluid transport pipe P is provided on an outer peripheral surface of a portion corresponding to the drilling of the fluid transport pipe P. One of the connecting flanges 4B of the working valve 4 having a valve body 4A that can be opened and closed on the connecting flange 3A of the joint 3 for branching, is mounted in an air-tight or liquid-tight state by appropriate mounting means such as welding or bolts. Is fixedly connected in a gas-tight or liquid-tight manner via bolts and nuts, and a drilling cutter 5 is detachably attached to the other connecting flange 4C of the working valve 4 according to the present invention. A connecting flange 69A is airtight or liquidtight through bolts and nuts. In it is fixedly connected. Then, the perforating cutter 5 of the perforating apparatus A is passed through the opened operation valve 4 and the branching joint 3 so that the pipe wall 1 of the fluid transport pipe P is opened.
After moving to the drilling start position in contact with or close to the drilling device, the electric motor M, which is the driving unit of the drilling device A, is driven to apply a driving rotational force and a forced feeding force to the drilling cutter 5 to transport the fluid. A through hole 2 for branching is formed in the pipe wall 1 of the pipe P. When the drilling process is completed, the drilling cutter 5 is returned to the storage position, which is the original standby position, and then the working valve 4 is returned.
The closing operation of the valve body 4A of the drilling device A
Remove.
【0017】このような穿孔工法に用いられる本発明の
穿孔装置Aは、図3〜図12に示すように、ケーシング
9に対して回転並びにその回転軸芯Y方向に摺動自在に
支承される筒軸状の受動軸10への動力伝達系に、受動
軸10の外周面に圧接させた状態での駆動回転に連れて
該受動軸10に回転力と回転軸芯Y方向の送り力とを付
与する摩擦伝動手段Bを設けるとともに、前記受動軸1
0内には、流体輸送管Pの管壁1に貫通孔2を形成する
ための穿孔用カッター5が装着される主軸11を、相対
回転並びにカッター送込み方向である回転軸芯Y方向に
相対摺動自在に嵌合し、この主軸11と受動軸10との
間には、両者10,11の相対回転及び相対摺動を阻止
する一体状態と両者10,11の相対回転及び相対摺動
を許容する自由状態とに切替え自在なクランプ手段Cを
設けてある。また、前記摩擦伝動手段Bを伝動状態と受
動軸10の外周面への圧接を解除した非伝動状態とに切
替える伝動状態切替手段Dを設けるとともに、前記ケー
シング9には、主軸11の戻り側への移動を阻止するス
トッパー手段Eを、ストッパー解除操作自在に設け、更
に、前記主軸11又は受動軸10側には、ケーシング9
との接当によって主軸11の最大送り量を設定送り量に
規制する送り量設定手段Fを設けてある。As shown in FIGS. 3 to 12, the drilling device A of the present invention used in such a drilling method is supported on the casing 9 so as to be rotatable and slidable in the rotation axis Y direction. The rotational force and the feed force in the Y-axis direction are applied to the power transmitting system to the cylindrical shaft-shaped passive shaft 10 with the driving rotation in a state of being pressed against the outer peripheral surface of the passive shaft 10. A friction transmission means B to be provided is provided.
0, the main shaft 11 on which the drilling cutter 5 for forming the through-hole 2 in the pipe wall 1 of the fluid transport pipe P is relatively rotated and rotated in the rotation axis Y direction which is the cutter feeding direction. The main shaft 11 and the passive shaft 10 are slidably fitted to each other, and an integral state for preventing the relative rotation and relative sliding of the two members 10 and 11 and the relative rotation and relative sliding of the two members 10 and 11 are provided. Clamping means C is provided which can be switched to an allowable free state. Further, a transmission state switching means D for switching the friction transmission means B between a transmission state and a non-transmission state in which the pressure contact with the outer peripheral surface of the passive shaft 10 is released is provided, and the casing 9 is provided on the return side of the main shaft 11. A stopper means E for preventing the movement of the shaft is provided so as to be capable of releasing the stopper, and a casing 9 is provided on the main shaft 11 or the passive shaft 10 side.
Feed amount setting means F for regulating the maximum feed amount of the main shaft 11 to a set feed amount by contact with the main shaft 11 is provided.
【0018】前記摩擦伝動手段Bは、図3〜図5に示す
ように、受動軸10の外周面を径方向外方側から挟み込
む状態で、かつ、回転軸芯Yに対する径方向での直交平
面に対して一回転当りの単位送り量に相当する角度(又
は主軸11の回転軸芯とローラー回転軸芯とがなすスキ
ュー角度θ)を付けて配設される三個のローラー12か
ら構成され、そのうち、上側部(流体輸送管Pに対する
穿孔装置Aの取付け姿勢によって上下方向が変化する
が、当該実施形態では、図1に示す穿孔装置Aの取付け
姿勢を基準にして説明する。)の二つが電動モータMの
駆動力で回転する駆動ローラー12に、かつ、下側部の
一つが遊動(遊転)自在な押えローラー12にそれぞれ
構成されている。また、前記受動軸10の外周面のう
ち、大径軸部の外周面である受動周面には、圧接される
各ローラー12との間での摩擦係数が適正な設定摩擦係
数となるように、ローレット加工等の粗面化処理が施さ
れている。As shown in FIGS. 3 to 5, the friction transmission means B is provided so as to sandwich the outer peripheral surface of the passive shaft 10 from the radially outward side and to extend in a plane orthogonal to the rotational axis Y in the radial direction. And three rollers 12 arranged at an angle corresponding to a unit feed amount per rotation (or a skew angle θ between the rotation axis of the main shaft 11 and the roller rotation axis). Two of the upper part (the vertical direction changes depending on the mounting posture of the drilling device A with respect to the fluid transport pipe P, but in this embodiment, the description will be made based on the mounting posture of the drilling device A shown in FIG. 1). The driving roller 12 is rotated by the driving force of the electric motor M, and one of the lower portions is configured as a holding roller 12 that can freely move (slope). Also, of the outer peripheral surface of the passive shaft 10, the passive peripheral surface that is the outer peripheral surface of the large-diameter shaft portion is set so that the friction coefficient between each of the rollers 12 to be pressed is an appropriate set friction coefficient. , A surface roughening treatment such as knurling.
【0019】前記両駆動ローラー12は、ケーシング9
内に沿って上下方向に摺動可能な第1保持体13に回転
自在に支承され、また、前記押えローラー12は、第1
保持体13の下端部に上下揺動自在に枢着された第2保
持体14に回転自在に支承されていて、前記受動軸10
を挟む状態で径方向でもある上下方向に相対遠近移動自
在に連係された第1保持体13と第2保持体14とによ
り、両駆動ローラー12と押えローラー12とが、受動
軸10の外周面に対して遠近方向でもある上下方向に移
動自在に構成されているとともに、前記押えローラー1
2の回転軸芯Y側への圧接操作に連動して、各ローラー
12を受動軸10の外周面に均等又はほぼ均等に圧接さ
せる均等圧接手段Gが設けられている。The two drive rollers 12 are provided on the casing 9.
Is rotatably supported by a first holding body 13 slidable up and down along the inside, and the pressing roller 12 is
The passive shaft 10 is rotatably supported by a second holder 14 pivotally attached to the lower end of the holder 13 so as to be vertically swingable.
The first drive body 13 and the second support body 14, which are linked to each other so as to be relatively movable in the vertical direction, which is also the radial direction, sandwiching the driving roller 12, the pressing roller 12 and the outer peripheral surface of the passive shaft 10. Is configured to be movable in a vertical direction, which is also a perspective direction, with respect to the pressing roller 1.
In association with the pressing operation of the second rotating shaft core Y, a uniform pressing means G for pressing the rollers 12 uniformly or almost uniformly to the outer peripheral surface of the passive shaft 10 is provided.
【0020】また、前記第1保持体13と第2保持体1
4とを、前記受動軸10を挟む状態で径方向に相対遠近
移動自在に連係することにより、前記均等圧接手段G及
び後述の減速機構22を含む摩擦伝動手段Bが一つのユ
ニットに構成されている。このユニット化された摩擦伝
動手段Bに装備されている各ローラー12は、一回転当
りの単位送り量が設定送り量に固定設定されているた
め、一回転当りの単位送り量を変更する場合には、ロー
ラー12の一回転当りでの単位送り量が互いに異なる複
数ユニットの摩擦伝動手段Bを製作し、穿孔作業条件に
応じて摩擦伝動手段Bをユニット単位で取替えることに
なる。The first holding member 13 and the second holding member 1
And the friction transmission means B including the uniform pressure contacting means G and the later-described speed reduction mechanism 22 are configured as one unit by linking the passive shaft 10 with the movable shaft 4 so as to be relatively movable in the radial direction. I have. Since the unit feed amount per rotation is fixedly set to the set feed amount for each roller 12 provided in the unitized friction transmission means B, when the unit feed amount per rotation is changed, Means that a plurality of units of friction transmission means B having different unit feed amounts per rotation of the roller 12 are manufactured, and the friction transmission means B is replaced in units of units according to the drilling operation conditions.
【0021】前記均等圧接手段Gは、受動軸10の外周
面の一部を囲む状態で上下方向に相対遠近移動自在に連
係された回転軸芯Y方向視ほぼ門の字状の前記第1保持
体13と回転軸芯Y方向視ほぼ偏平Uの字状の前記第2
保持体14とを備え、そのうち、第1保持体13とケー
シング9との間には、該第1保持体13をそれに支承さ
れた両駆動ローラー12が受動軸10から離間する上方
側に移動付勢する弾性付勢機構16を設けるとともに、
前記第2保持体14に支承された押えローラー12が受
動軸10の外周面へ圧接操作されるに連れて、第1保持
体13に支承された駆動ローラー12を弾性付勢機構1
6の弾性付勢力に抗して受動軸10の外周面に圧接移動
させる操作機構17を設け、更に、前記操作機構17に
は、第2保持体14を受動軸10側に弾性力で近接移動
付勢する弾性付勢体15を設けて構成されている。The uniform pressure-contacting means G is substantially gate-shaped when viewed in the direction of the rotation axis Y and is linked to the passive shaft 10 so as to be relatively movable in the vertical direction in such a manner as to surround a part of the outer peripheral surface of the passive shaft 10. The second body 13 is substantially flat U-shaped when viewed from the body 13 and the rotation axis Y direction.
A holding member 14 is provided. Between the first holding member 13 and the casing 9, the first holding member 13 is moved upward by the two drive rollers 12 supported by the first holding member 13 and separated from the passive shaft 10. The elastic biasing mechanism 16 for biasing is provided,
As the pressing roller 12 supported by the second holding member 14 is pressed against the outer peripheral surface of the passive shaft 10, the driving roller 12 supported by the first holding member 13 is pressed by the elastic urging mechanism 1.
6 is provided with an operating mechanism 17 that presses against the outer peripheral surface of the passive shaft 10 against the elastic biasing force of 6, and further moves the second holding body 14 toward the passive shaft 10 by the elastic force. An elastic biasing body 15 for biasing is provided.
【0022】前記第1保持体13は、駆動ローラー12
の取付けスペースに相当する間隔を隔てて回転軸芯Y方
向で対向配置された前部保持板13Aと後部保持板13
Bとから構成されていて、これら両保持板13A,13
Bとに亘って、前記各駆動ローラー12の駆動回転軸1
8がベアリング19を介して回転自在に架設されている
とともに、前部保持板13Aには、電動モータMの出力
軸20に一体回転状態で連結可能な入力軸21と、該入
力軸21の動力を駆動ローラー12の駆動回転軸18に
伝達する減速機構22とが組付けられている。The first holding member 13 includes a driving roller 12
The front holding plate 13A and the rear holding plate 13 which are arranged opposite to each other in the rotation axis Y direction at an interval corresponding to the mounting space of
B and these two holding plates 13A, 13A.
B, the driving rotation shaft 1 of each driving roller 12
8 is rotatably mounted via a bearing 19, an input shaft 21 that can be connected to the output shaft 20 of the electric motor M in an integrally rotating state, and a power of the input shaft 21 on the front holding plate 13 </ b> A. And a speed reduction mechanism 22 that transmits the driving force to the drive rotation shaft 18 of the drive roller 12.
【0023】前記減速機構22は、前部保持板13Aと
ケーシング9の内面との間に設けられた伝動ケース23
と、前記前部保持板13Aとに亘って、入力軸21及び
両駆動回転軸18と平行な二本の伝動軸24,25を、
それぞれベアリング19を介して回転自在に架設し、そ
のうち、上方側の第1伝動軸24には、入力軸21の入
力ギヤ26に噛合する大径の第1減速ギヤ27と、小径
の第2減速ギヤ28とを止着するとともに、下方側の第
2伝動軸25には、両駆動回転軸18の受動ギヤ29及
び第1伝動軸24の第2減速ギヤ28に噛合する第3減
速ギヤ30を止着して構成されている。そして、前記電
動モータMの出力軸20が駆動回転されると、その駆動
回転力が入力軸21、入力ギヤ26、第1減速ギヤ2
7、第1伝動軸24、第2減速ギヤ28、第3減速ギヤ
30、両受動ギヤ29を介して各駆動ローラー12の駆
動回転軸18に伝達される。The speed reduction mechanism 22 includes a transmission case 23 provided between the front holding plate 13A and the inner surface of the casing 9.
And two transmission shafts 24 and 25 parallel to the input shaft 21 and both drive rotation shafts 18 over the front holding plate 13A.
Each is rotatably mounted via a bearing 19, and a first reduction gear 27 having a large diameter meshing with an input gear 26 of an input shaft 21 and a second reduction gear having a small diameter are provided on an upper first transmission shaft 24. The second transmission shaft 25 on the lower side is provided with a third reduction gear 30 that meshes with the passive gear 29 of both drive rotation shafts 18 and the second reduction gear 28 of the first transmission shaft 24. It is configured to be fastened. When the output shaft 20 of the electric motor M is driven and rotated, the driving torque is applied to the input shaft 21, the input gear 26, and the first reduction gear 2.
7, the power is transmitted to the drive rotation shaft 18 of each drive roller 12 via the first transmission shaft 24, the second reduction gear 28, the third reduction gear 30, and both passive gears 29.
【0024】前記弾性付勢機構16は、図4に示すよう
に、両保持板13A,13Bの下端部の横幅方向両側に
それぞれ形成された合計4箇所のばね受け部13aと、
これに上下方向で相対向するケーシング9の底壁部9b
の4箇所に形成されたばね受け部9aとの間に各々装着
された圧縮コイルスプリングから構成されていて、第1
保持体13の上面がケーシング9の天井壁部9cの内面
に接当する状態にまで上方に移動付勢するように構成さ
れている。As shown in FIG. 4, the elastic biasing mechanism 16 includes a total of four spring receiving portions 13a formed on both sides in the width direction of the lower end portions of both holding plates 13A and 13B.
The bottom wall 9b of the casing 9 opposed to the upper and lower sides of the casing 9
And compression receiving springs 9a mounted between the four spring receiving portions 9a formed at four positions.
The upper surface of the holding body 13 is configured to move and bias upward to a state where the upper surface contacts the inner surface of the ceiling wall 9 c of the casing 9.
【0025】前記第2保持体14の長手方向一端部は、
図4に示すように、第1保持体13を構成する両保持板
13A,13Bのうち、横幅方向の一端側に位置する下
端部に亘って架設された回転軸芯Yと平行な支持軸32
を介して上下揺動自在に枢支されているとともに、前記
第2保持体14の長手方向他端部は、後述する操作機構
17の偏芯カム36上に載置されおり、更に、前記第2
保持体14の長手方向中央部に形成した上下方向で貫通
する取付け孔14aには、前記押えローラー12の回転
支軸33がベアリング19を介して回転自在に架設され
ている。One end of the second holding member 14 in the longitudinal direction is
As shown in FIG. 4, a support shaft 32 that is parallel to the rotation axis Y and spans a lower end of one of the holding plates 13 </ b> A and 13 </ b> B of the first holding body 13 that is located at one end in the lateral width direction.
And the other end in the longitudinal direction of the second holding member 14 is mounted on an eccentric cam 36 of an operation mechanism 17 described later. 2
A rotation support shaft 33 of the press roller 12 is rotatably mounted via a bearing 19 in a mounting hole 14 a formed in the center of the holding member 14 in the longitudinal direction and penetrating in the vertical direction.
【0026】前記操作機構17は、図3〜図4に示すよ
うに、ケーシング9の後側壁部9dに、回転軸芯Yと平
行な軸芯周りで回動自在な操作軸35を内外に貫通する
状態で架設し、この操作軸35の内側軸部うち、第2保
持体14の長手方向他端部の下面に対して上下方向で相
対向する部位には、前記押えローラー12を受動軸10
の外周面に圧接させる伝動状態からその圧接状態を解除
した非伝動状態、換言すれば、受動軸10の外周面から
下方に離間させた非伝動状態までの範囲に亘って、第2
保持体14を支持軸32周りで上下方向に揺動させる偏
芯カム36を固着するとともに、前記操作軸35の外側
軸部には操作具37を取付けて構成されている。As shown in FIGS. 3 and 4, the operating mechanism 17 penetrates through a rear side wall 9d of the casing 9 through an operation shaft 35 rotatable around an axis parallel to the rotation axis Y. The pressing roller 12 is mounted on the inner shaft of the operation shaft 35 at a position vertically opposed to the lower surface of the other end in the longitudinal direction of the second holding member 14.
Over a range from a transmission state in which the outer peripheral surface of the passive shaft 10 is pressed to a non-transmission state in which the pressed state is released, in other words, a non-transmission state in which the outer peripheral surface of the passive shaft 10 is separated downward.
An eccentric cam 36 for vertically swinging the holding body 14 around the support shaft 32 is fixed, and an operation tool 37 is attached to an outer shaft portion of the operation shaft 35.
【0027】この操作機構17では、操作具37を操作
して偏芯カム36を非伝動状態から伝動状態に回動させ
ていくと、その途中で押えローラー12が受動軸10の
外周面に圧接され、更に、それ以降の回動操作に連れ
て、第2保持体14が、押えローラー12と受動軸10
の外周面との接当箇所を支点として、図4に示すよう
に、支持軸32側が下方に変位する反時計方向に揺動す
る。この反時計方向への揺動に連れて、第1保持体13
全体が圧縮コイルスプリング16の弾性付勢力に抗して
ケーシング9の内面に摺動案内されながら回転軸芯Y側
でもある下方に移動し、第1保持体13に支承された駆
動ローラー12が受動軸10の外周面に圧接される。そ
して、前記操作具37による押えローラー12の受動軸
10側への圧接操作力と圧縮コイルスプリング16の弾
性復元力とがバランスするまで、第1保持体13に支承
された駆動ローラー12が回転軸芯Y側に移動して受動
軸10の外周面に圧接されるため、各ローラー12を受
動軸10の外周面に均等又はほぼ均等に圧接させること
ができるのである。In the operating mechanism 17, when the operating tool 37 is operated to rotate the eccentric cam 36 from the non-transmission state to the transmission state, the pressing roller 12 presses against the outer peripheral surface of the passive shaft 10 in the middle. Further, with the subsequent rotation operation, the second holding member 14 moves the pressing roller 12 and the passive shaft 10
As shown in FIG. 4, the support shaft 32 swings counterclockwise so that the support shaft 32 is displaced downward with the contact point with the outer peripheral surface of the support shaft as a fulcrum. With the swing in the counterclockwise direction, the first holding body 13
The whole is moved downward, which is also on the rotation axis Y side, while being slid and guided by the inner surface of the casing 9 against the elastic urging force of the compression coil spring 16, and the driving roller 12 supported by the first holding body 13 is driven passively. It is pressed against the outer peripheral surface of the shaft 10. The drive roller 12 supported by the first holding member 13 rotates the rotation shaft until the operation force of pressing the pressing roller 12 against the passive shaft 10 by the operation tool 37 and the elastic restoring force of the compression coil spring 16 are balanced. Since the roller 12 moves toward the core Y and is pressed against the outer peripheral surface of the passive shaft 10, each roller 12 can be uniformly or almost uniformly pressed against the outer peripheral surface of the passive shaft 10.
【0028】前記弾性付勢体15は、図4に示すよう
に、第2保持体14の長手方向他端部の下面に形成され
た凹部14bと操作機構17の偏芯カム36との間に介
在される圧縮コイルスプリングから構成されている。詳
しくは、前記偏芯カム36に接当する受圧片52にボル
ト53の一端部を固着するとともに、前記ボルト53に
は、これの他端側に螺合されたナット54の締付けによ
って凹部14b内に受止められる座板55を外嵌保持さ
せ、この座板55と受圧片52との間に前記圧縮コイル
スプリング15を装着してある。そして、前記操作機構
17の振動等に起因する戻りや操作ミス等が発生して、
第2保持体14に支承された押えローラー12の受動軸
10側への圧接力が弛んだ(圧接力が小さくなった)場
合でも、この操作機構17に設けられた圧縮コイルスプ
リング15の弾性力によって、第2保持体14側の押え
ローラー12が受動軸10の外周面に圧接移動させられ
るから、第2保持体14側の押えローラー12と第1保
持体13の駆動ローラー12とを、受動軸10の外周面
に対して伝動可能な圧接状態に維持することができ、受
動軸10に所定の回転力と送り力とを確実に付与するこ
とができるのである。As shown in FIG. 4, the elastic biasing member 15 is provided between a concave portion 14b formed on the lower surface of the other end of the second holding member 14 in the longitudinal direction and an eccentric cam 36 of the operating mechanism 17. It is composed of a compression coil spring interposed. More specifically, one end of a bolt 53 is fixed to the pressure receiving piece 52 abutting on the eccentric cam 36, and the bolt 53 is screwed into the recess 14b by a nut 54 screwed to the other end thereof. The compression coil spring 15 is mounted between the seat plate 55 and the pressure receiving piece 52. Then, a return, an operation error, or the like due to vibration or the like of the operation mechanism 17 occurs,
Even when the pressing force of the pressing roller 12 supported by the second holding member 14 against the passive shaft 10 is loosened (the pressing force is reduced), the elastic force of the compression coil spring 15 provided in the operating mechanism 17 is provided. As a result, the pressing roller 12 on the second holding body 14 is pressed against the outer peripheral surface of the passive shaft 10, so that the pressing roller 12 on the second holding body 14 and the driving roller 12 on the first holding body 13 are It is possible to maintain a pressure-contact state in which transmission is possible with respect to the outer peripheral surface of the shaft 10, and it is possible to reliably apply the predetermined rotational force and the feed force to the passive shaft 10.
【0029】また、前記均等圧接手段Gの操作機構17
をもって、摩擦伝動手段Bを伝動状態と非伝動状態とに
切替える前述の伝動状態切替手段Dが兼用構成されてい
るとともに、各ローラー12の外周面には、図3、図5
に示すように、環状のウレタンゴム40を保持する環状
凹部12aが形成され、更に、前記各ローラー12のう
ち、環状凹部12aの幅方向(ローラーの回転軸芯方
向)で相対向する周壁面12bが、径方向外方側ほど互
いに離間する傾斜面に構成されている。そして、ウレタ
ンゴム40のもつ優れた反発弾性、耐摩耗性、耐油性を
利用して、長期間に亘って受動軸10に所定の回転力と
送り力とを確実に付与することができるばかりでなく、
ローラー12の環状凹部12aに装着された環状のウレ
タンゴム40を受動軸10の外周面に圧接させたとき、
前記環状凹部12aの幅方向両側に位置する傾斜姿勢の
周壁面12bにより、ウレタンゴム40の幅方向外側へ
の膨出弾性変形を抑制することができ、ウレタンゴム4
0と受動軸10の外周面との間での面圧を高めることが
できるのである。The operating mechanism 17 of the uniform pressing means G
The above-mentioned transmission state switching means D for switching the friction transmission means B between the transmission state and the non-transmission state is also configured, and the outer peripheral surface of each roller 12 is provided on the outer peripheral surface of each roller 12 as shown in FIGS.
As shown in FIG. 3, an annular concave portion 12a for holding an annular urethane rubber 40 is formed, and, among the rollers 12, peripheral wall surfaces 12b opposed to each other in the width direction of the annular concave portion 12a (the direction of the axis of rotation of the roller). However, the inclined surfaces are configured such that they are separated from each other toward the radially outward side. In addition, by utilizing the excellent rebound resilience, wear resistance, and oil resistance of the urethane rubber 40, it is possible to reliably apply a predetermined rotational force and feed force to the passive shaft 10 for a long period of time. Not
When the annular urethane rubber 40 attached to the annular concave portion 12a of the roller 12 is pressed against the outer peripheral surface of the passive shaft 10,
The peripheral wall surfaces 12b in the inclined posture located on both sides in the width direction of the annular concave portion 12a can suppress elastic deformation of the urethane rubber 40 bulging outward in the width direction.
The surface pressure between the zero and the outer peripheral surface of the passive shaft 10 can be increased.
【0030】前記クランプ手段Cは、図6〜図8に示す
ように、主軸11の周方向二箇所に、偏平状の受動面1
1aをカット形成し、各受動面11aには、回転軸芯Y
方向に一定ピッチで多数のVの字状の係合溝11bを形
成するとともに、主軸11に外嵌する状態で受動軸10
に螺合してビス44等で抜止め固定された連動筒体45
には、主軸11の両受動面11aの係合溝11bに対し
てそれぞれ径方向外方から係合することにより、受動軸
10と主軸11とを一体状態にする一対の伝動部材46
と、該両伝動部材46を主軸11の受動面11aの最大
回転軌跡よりも径方向外方に離間させた係合解除位置に
移動付勢する弾性付勢体47と、主軸11の軸芯周りで
の回転操作によって、両伝動部材46を弾性付勢体47
の弾性付勢力に抗して係合位置に保持する一体状態と弾
性付勢体47の弾性付勢力による伝動部材46の係合解
除位置への離間移動を許容する自由状態とに切替える操
作機構48とを組付けて構成されている。As shown in FIGS. 6 to 8, the clamping means C is provided at two places in the circumferential direction of the
1a is cut and formed on each passive surface 11a.
A large number of V-shaped engaging grooves 11b are formed at a constant pitch in the direction, and the passive shaft 10 is externally fitted to the main shaft 11.
Interlocking cylinder 45 screwed into
A pair of transmission members 46 that engage the engaging grooves 11b of both the passive surfaces 11a of the main shaft 11 from the outside in the radial direction, thereby bringing the passive shaft 10 and the main shaft 11 into an integrated state.
An elastic urging body 47 for urging the two transmission members 46 to move to a disengaged position in which the two transmission members 46 are separated radially outward from the maximum rotation locus of the passive surface 11a of the main shaft 11; The two transmission members 46 are resiliently biased by
The operating mechanism 48 switches between an integrated state in which the elastic member 47 is held at the engagement position against the elastic urging force and a free state in which the transmission member 46 is allowed to move to the disengaged position by the elastic urging force of the elastic urging member 47. And is assembled.
【0031】前記弾性付勢体47は、一対の伝動部材4
6に亘って係合保持された一対の弧状のバネ線材から構
成されていて、両バネ線材47の弾性復元力により、一
対の伝動部材46を主軸11の受動面11aの最大回転
軌跡よりも径方向外方に離間した位置にまで移動付勢す
るように構成されている。The elastic urging member 47 includes a pair of transmission members 4.
6 is formed by a pair of arcuate spring wires engaged and held over the pair 6, and the pair of transmission members 46 are made to have a diameter larger than the maximum rotation locus of the passive surface 11a of the main shaft 11 by the elastic restoring force of the two spring wires 47. It is configured to bias the movement to a position separated outward in the direction.
【0032】前記操作機構48は、連動筒体45の内周
面に対して回転のみ自在に内嵌される操作筒体49A
と、該操作筒体49Aの一端部から連動筒体45の端面
に沿って延出される円環状の操作板49Bとからなる操
作部材49のうち、前記操作筒体49Aの円周方向二個
所の各々には、両伝動部材46を半径方向にのみ相対移
動自在に保持する凹状の保持部49aを形成するととも
に、前記連動筒体45の内周面で、かつ、円周方向に1
80度偏位した部位の各々には、両伝動部材46を両バ
ネ線材47の弾性付勢力に抗して係合位置(一体状態)
に保持する第1カム面45bと、両バネ線材47の弾性
復元力による両伝動部材46の係合解除位置(自由状
態)への移動を許容する第2カム面45cとを連続形成
するとともに、前記操作部材49の操作板49Bには、
連動筒体45の端面に形成された円弧状長孔45aに係
合して、操作部材49の回転軸芯周りでの回動操作範囲
を係合位置と係合解除位置との範囲に規制する規制ピン
50を設けて構成されている。The operating mechanism 48 includes an operating cylinder 49A which is rotatably fitted in the inner peripheral surface of the interlocking cylinder 45 so as to freely rotate.
And an annular operating plate 49B extending from one end of the operating cylinder 49A along the end surface of the interlocking cylinder 45, of two operating members 49A in the circumferential direction of the operating cylinder 49A. Each of them has a concave holding portion 49a for holding both transmission members 46 so as to be relatively movable only in the radial direction, and is formed on the inner peripheral surface of the interlocking cylinder 45 and in the circumferential direction.
At each of the portions deviated by 80 degrees, the two transmission members 46 are engaged at the engagement positions (in an integrated state) against the elastic urging force of the two spring wires 47.
And a second cam surface 45c that allows the transmission members 46 to move to the disengaged position (free state) due to the elastic restoring force of the spring wires 47, and that the first cam surface 45b is continuously formed. The operation plate 49B of the operation member 49 includes
The engagement with the arc-shaped long hole 45a formed on the end surface of the interlocking cylinder 45 restricts the rotation operation range of the operation member 49 around the rotation axis to the range between the engagement position and the disengagement position. The control pin 50 is provided.
【0033】そして、穿孔作業時には、主軸11と受動
軸10との間に設けたクランプ手段Cの操作部材49を
切替え操作して、主軸11と受動軸10との相対回転及
び相対摺動を阻止する一体状態にすることにより、摩擦
伝動手段Bによって受動軸10に付与された回転力と送
り力とが、主軸11を介して穿孔用カッター5に伝達さ
れる。その結果、穿孔用カッター5が予め設定された所
定の回転数で駆動回転しながら所定の送り量で送込まれ
るため、手動送りの場合のような不用意な切込み等に起
因するカッターチップの破損を抑制しながら流体輸送管
Pの管壁1に貫通孔2を確実に形成することができる。
また、穿孔作業開始前のセッティング時には、クランプ
手段Cの操作部材49を自由状態に切替え操作すること
により、受動軸10に対して、穿孔用カッター5の先端
が流体輸送管Pの管壁1に接当又は近接する穿孔開始位
置にまで主軸11を自由に押込み操作することができる
から、受動軸10に対する主軸11の摺動ストロークを
大きく取りながらも、駆動力による送り量が少なくな
り、摩擦伝動手段Bを含めた受動軸10への伝動機構部
を回転軸芯Y方向でコンパクトに構成し易い。また、当
該実施形態のように、流体輸送管Pの管壁1外面に取付
けた分岐用継手3と穿孔装置Aの連結フランジ部69A
との間に作業弁4を介在させる場合でも、摩擦伝動手段
Bによる最大送り量を変更する必要がなく、作業弁4の
全長と分岐用継手3内の流路長さとの和に相当するスト
ローク分だけ、受動軸10に対する主軸11の手動操作
用摺動ストロークとして確保するだけで済む。During the drilling operation, the operating member 49 of the clamping means C provided between the main shaft 11 and the passive shaft 10 is switched to prevent relative rotation and relative sliding between the main shaft 11 and the passive shaft 10. In this case, the rotational force and the feed force applied to the passive shaft 10 by the friction transmission means B are transmitted to the drilling cutter 5 via the main shaft 11. As a result, the punch 5 is fed at a predetermined feed amount while being driven and rotated at a predetermined rotation speed set in advance, so that the cutter tip is damaged due to an inadvertent cutting or the like as in the case of manual feed. The through hole 2 can be reliably formed in the pipe wall 1 of the fluid transport pipe P while suppressing the pressure.
At the time of setting before the start of the drilling operation, the operating member 49 of the clamping means C is switched to the free state so that the tip of the drilling cutter 5 is moved to the pipe wall 1 of the fluid transport pipe P with respect to the passive shaft 10. Since the spindle 11 can be freely pushed into the contacting or approaching drilling start position, the feed amount by the driving force is reduced while the sliding stroke of the spindle 11 with respect to the passive shaft 10 is increased, and the friction transmission is performed. The transmission mechanism including the means B to the passive shaft 10 can be easily made compact in the rotation axis Y direction. Further, as in the present embodiment, the branching joint 3 attached to the outer surface of the pipe wall 1 of the fluid transport pipe P and the connecting flange 69A of the drilling device A.
Even when the working valve 4 is interposed between the working valve 4 and the working valve 4, there is no need to change the maximum feed amount by the friction transmission means B, and the stroke corresponding to the sum of the total length of the working valve 4 and the flow path length in the branch joint 3 It is only necessary to secure a sliding stroke for manual operation of the main shaft 11 with respect to the passive shaft 10 by the amount.
【0034】そして、当該実施例では、受動軸10に対
する主軸11の手動操作用摺動ストロークを確保するた
めに、図3に示すように、前記主軸11のうち、穿孔用
カッター5の装着側とは反対側に位置する後端部に、延
長回転軸41を脱着自在に同芯状態で連結するための軸
連結手段42を設けてある。この軸連結手段42は、主
軸11の後端部に形成された雌ネジ42aと延長回転軸
41の先端部に形成された雄ネジ42bから構成されて
いる。また、必要に応じて、螺合連結された主軸11の
後端部と延長回転軸41の先端部とをピン等で抜止め固
定してもよい。In this embodiment, in order to secure a sliding stroke for manual operation of the main shaft 11 with respect to the passive shaft 10, as shown in FIG. Is provided at the rear end located on the opposite side with a shaft connecting means 42 for connecting the extended rotary shaft 41 in a detachable and concentric manner. The shaft connecting means 42 includes a female screw 42 a formed at the rear end of the main shaft 11 and a male screw 42 b formed at the front end of the extended rotary shaft 41. If necessary, the rear end of the main shaft 11 and the front end of the extended rotary shaft 41 may be secured by a pin or the like to prevent the rear end from being screwed.
【0035】前記ストッパー手段Eは、図3、図9、図
10に示すように、ケーシング9に固着されたアーム5
8の先端部に、主軸11が挿通可能な筒状で、かつ、そ
の円周方向の一ケ所が回転軸芯Y方向に沿ってスリット
状に切り欠き形成されたホルダー59を固着し、このホ
ルダー59の両開口端に一体形成された連結片59a,
59bに亘って、主軸11を摺動不能に挾持保持する状
態にまでホルダー59を縮径側に弾性変形させる操作レ
バー60付きの締付けネジ軸61を設けて構成されてい
る。前記締付けネジ軸61は、一方の連結片59a側か
ら挿通したのち、他方の連結片59bに形成された雌ネ
ジに螺合されている。As shown in FIGS. 3, 9, and 10, the stopper means E is provided with an arm 5 fixed to the casing 9.
8 is fixed to a distal end portion of a holder 59 having a cylindrical shape through which the main shaft 11 can be inserted, and a circumferential portion of which is cut out in a slit shape along the rotation axis Y direction. Connecting pieces 59a,
A tightening screw shaft 61 with an operating lever 60 for elastically deforming the holder 59 to the reduced-diameter side until the main shaft 11 is clamped and held non-slidably is provided over 59b. The fastening screw shaft 61 is inserted from one connecting piece 59a side, and then screwed into a female screw formed on the other connecting piece 59b.
【0036】そして、流体の輸送を止めない不断流状態
での穿孔作業時において、穿孔用カッター5によって流
体輸送管Pの管壁1に貫通孔2が形成された直後に、流
体輸送管P内の流体圧が穿孔用カッター5に作用して
も、受動軸10の外周面に摩擦伝動手段Bが圧接されて
いるため、穿孔用カッター5に連動する主軸11及びこ
れと一体状態にある受動軸10が戻り側に摺動すること
がない。この状態で、ストッパー手段Eをストッパー状
態に操作して主軸11の戻り側への移動を阻止したの
ち、クランプ手段Cを自由状態に操作し、その後、主軸
11の戻り経路側に注意しながら、主軸11の戻り速度
が適正な速度となるようにストッパー手段Eを徐々にス
トッパー解除操作し、主軸11を適正な戻り速度で元の
待機位置に復帰摺動させる。In the drilling operation in a non-disrupted flow state where the transportation of the fluid is not stopped, immediately after the through hole 2 is formed in the pipe wall 1 of the fluid transport pipe P by the drill cutter 5, the fluid transport pipe P Is applied to the cutter 5 for drilling, the main shaft 11 interlocked with the cutter 5 and the passive shaft integrated therewith because the friction transmission means B is pressed against the outer peripheral surface of the passive shaft 10. 10 does not slide to the return side. In this state, after the stopper means E is operated in the stopper state to prevent the movement of the main shaft 11 to the return side, the clamp means C is operated in the free state, and thereafter, while paying attention to the return path side of the main shaft 11, The stopper means E is gradually released from the stopper so that the return speed of the main shaft 11 becomes an appropriate speed, and the main shaft 11 is returned and slid to the original standby position at an appropriate return speed.
【0037】前記送り量設定手段Fは、図11、図12
に示すように、前記クランプ手段Cの連動筒体45の前
端面を、摩擦伝動手段Bによって主軸11が設定送り量
だけ移動されたとき、ケーシング9の後側壁部9dに回
転軸芯Y方向から接当するストッパー面65に兼用構成
するとともに、前記受動軸10のうち、ケーシング9か
ら外部に突出する軸部分の外周面には、最大送り量を設
定するための目盛66を形成して構成されている。そし
て、穿孔作業開始前のセッティング時に、クランプ手段
Cを自由状態に操作し、受動軸10に対して、穿孔用カ
ッター5の先端が流体輸送管Pの管壁1に接当又は近接
する状態にまで主軸11を押込み操作したのち、図11
に示すように、ケーシング9の後側壁部9dと連動筒体
45のストッパー面65との対向面間の間隔Lが、主軸
11の最大送り量となるように、主軸11を前記の押込
み終了位置に保持したまま、前記目盛66を見ながらケ
ーシング9に対して受動軸10を摺動調節する。この送
り量設定手段Fによる主軸11の最大送り量の設定が終
了したのち、クランプ手段Cを一体状態に切替え操作す
る。それ故に、図12に示すように、主軸11の最大送
り量が送り量設定手段Fで設定された設定送り量に到達
した時点で、クランプ手段Cの連動筒体45の前端面を
利用して構成されたストッパー面65が、ケーシング9
の後側壁部9dに接当してそれ以上の送りを阻止するこ
とができるから、穿孔作業の確実化、容易化を図ること
ができる。しかも、送り量設定手段Fのストッパー面6
とケーシング9の後側壁部9dとの接当に連れて受動軸
10及び主軸11側の負荷が増大しても、この負荷を摩
擦伝動手段Bの摩擦伝動部でのスリップによって吸収す
ることができ、動力伝達系に過負荷が作用することを抑
制することができる。The feed amount setting means F is provided in FIG. 11 and FIG.
When the main shaft 11 is moved by the set feed amount by the friction transmission means B, the front end face of the interlocking cylinder 45 of the clamp means C is moved from the rotation axis Y direction to the rear wall 9d of the casing 9 as shown in FIG. A scale 66 for setting the maximum feed amount is formed on the outer peripheral surface of a shaft portion of the passive shaft 10 that protrudes outside from the casing 9 while being configured to also serve as the stopper surface 65 that comes into contact with the stopper shaft 65. ing. Then, at the time of setting before the start of the drilling operation, the clamp means C is operated in a free state so that the tip of the drilling cutter 5 contacts or comes close to the pipe wall 1 of the fluid transport pipe P with respect to the passive shaft 10. After the spindle 11 has been pushed down to
As shown in the figure, the main shaft 11 is pushed into the pushing end position so that the distance L between the rear wall 9 d of the casing 9 and the surface facing the stopper surface 65 of the interlocking cylinder 45 becomes the maximum feed amount of the main shaft 11. The passive shaft 10 is slidably adjusted with respect to the casing 9 while looking at the graduation 66. After the setting of the maximum feed amount of the spindle 11 by the feed amount setting means F is completed, the clamp means C is switched to an integrated state. Therefore, as shown in FIG. 12, when the maximum feed amount of the spindle 11 reaches the set feed amount set by the feed amount setting means F, the front end face of the interlocking cylinder 45 of the clamp means C is used. The configured stopper surface 65 is
Since it can contact the rear side wall portion 9d to prevent further feeding, it is possible to ensure and facilitate the drilling operation. In addition, the stopper surface 6 of the feed amount setting means F
Even if the load on the passive shaft 10 and the main shaft 11 increases due to the contact between the casing 9 and the rear wall portion 9d, the load can be absorbed by the slip in the friction transmission portion of the friction transmission means B. In addition, it is possible to suppress an overload from acting on the power transmission system.
【0038】前記ケーシング9の後側壁部9dには、筒
軸状の受動軸10を回転並びに摺動自在に支承する軸受
け部9eが形成されているとともに、ケーシング9の前
側壁部9fには、受動軸10の小径側のボス部10aに
挿通保持された主軸11の前端側を回転並びに摺動自在
に支承する軸受け部9gが形成され、更に、前記ケーシ
ング9の前側壁部9fの前面には、最大戻し位置に復帰
している穿孔用カッター5を格納可能な格納空間68を
備え、かつ、作業弁4の連結フランジ部4Cにボルト等
を介して気密又は液密状態で接続可能な連結フランジ部
69Aを備えた連結筒体69が、ボルト等を介して気密
又は液密状態で取付けられている。A bearing portion 9e for rotatably and slidably supporting a cylindrical shaft 10 is formed on a rear wall portion 9d of the casing 9, and a front wall portion 9f of the casing 9 has a front wall portion 9f. A bearing 9g is formed to rotatably and slidably support the front end of the main shaft 11 inserted and held in the boss 10a on the small diameter side of the passive shaft 10. Further, on the front surface of the front side wall 9f of the casing 9, A connection space that can store the drilling cutter 5 that has returned to the maximum return position, and that can be connected to the connection flange portion 4C of the working valve 4 in a gas-tight or liquid-tight state via a bolt or the like. A connecting cylinder 69 having a portion 69A is attached in an airtight or liquid tight state via a bolt or the like.
【0039】また、前記ケーシング9は、図5に示すよ
うに、前後(回転軸芯Y方向)で二分割可能な分割ケー
シング9A,9Bから構成されていて、この両分割ケー
シング9A,9Bの回転軸芯Y方向での分離分解操作に
より、ユニット化された摩擦伝動手段Bの第1保持体1
3及び第2保持体14がケーシング9に対して脱着自在
に構成されている。そして、ユニット化された摩擦伝動
手段Bの第1保持体13及び第2保持体14をケーシン
グ9から一括して取外すことができるから、摩擦伝動手
段Bや均等圧接手段G等のメンテナンスを容易に行うこ
とができるばかりでなく、例えば、流体輸送管Pの管径
や材質等の各種穿孔条件に応じて一回転当りの単位送り
量を変更する場合でも、ケーシング9に対してユニット
化された摩擦伝動手段B単位で取替えることができ、ロ
ーラー12自体を取替える場合に比して単位送り量の変
更に伴う交換作業を能率良く容易に行うことができる。As shown in FIG. 5, the casing 9 is composed of divided casings 9A and 9B that can be divided into two parts in the front-rear direction (the direction of the rotational axis Y). The first holding member 1 of the unitized friction transmission means B is separated and disassembled in the axis Y direction.
The third and second holders 14 are configured to be detachable from the casing 9. Since the first holding body 13 and the second holding body 14 of the unitized friction transmission means B can be collectively removed from the casing 9, maintenance of the friction transmission means B and the uniform pressure contact means G can be easily performed. Not only can it be performed, but also, for example, when the unit feed amount per rotation is changed according to various perforation conditions such as the pipe diameter and the material of the fluid transport pipe P, the unitized friction with respect to the casing 9 is obtained. The replacement can be performed in units of the transmission means B, and the replacement work accompanying the change in the unit feed amount can be performed efficiently and easily as compared with the case where the roller 12 itself is replaced.
【0040】前記穿孔用カッター5は、センタードリル
5Aと円筒状カッター5Bとから構成されているととも
に、前記主軸11の先端部には、穿孔用カッター5を脱
着自在に装着するためのネジ式の装着部11Aが形成さ
れている。The drilling cutter 5 is composed of a center drill 5A and a cylindrical cutter 5B, and a screw type for detachably mounting the drilling cutter 5 on the tip of the main shaft 11. A mounting portion 11A is formed.
【0041】〔第2実施形態〕図13〜図15は、前記
主軸11と受動軸10との相対回転及び相対摺動を阻止
する一体状態と両者10,11の相対回転及び相対摺動
を許容する自由状態とに切替え自在なクランプ手段Cの
他の実施形態を示し、これは、主軸11の周方向二箇所
に、偏平状の受動面11aをカット形成し、各受動面1
1aには、回転軸芯Y方向に一定ピッチで多数のVの字
状の係合溝11bを形成するとともに、主軸11に外嵌
する状態で受動軸10に螺合してビス70等で抜止め固
定された連動筒体71には、主軸11の両受動面11a
の係合溝11bに対してそれぞれ径方向外方から係合す
ることにより、受動軸10と主軸11とを一体状態にす
る一対の伝動部材72と、該両伝動部材72を主軸11
の受動面11aの最大回転軌跡よりも径方向外方に離間
させた係合解除位置に移動付勢する弾性付勢体73と、
主軸11の軸芯周りでの回転操作によって、両伝動部材
72を弾性付勢体73の弾性付勢力に抗して係合位置に
保持する一体状態と弾性付勢体73の弾性付勢力による
伝動部材72の係合解除位置への離間移動を許容する自
由状態とに切替える操作機構74とを組付けて構成され
ている。前記弾性付勢体73は、一対の伝動部材72に
亘って係合保持された一対の弧状のバネ線材から構成さ
れていて、両バネ線材73の弾性復元力により、一対の
伝動部材72を主軸11の受動面11aの最大回転軌跡
よりも径方向外方に離間した位置にまで移動付勢するよ
うに構成されている。[Second Embodiment] FIGS. 13 to 15 show an integrated state in which the relative rotation and relative sliding of the main shaft 11 and the passive shaft 10 are prevented, and the relative rotation and relative sliding of both the main shaft 11 and the passive shaft 10 are permitted. Another embodiment of the clamping means C which can be switched to a free state in which a flat passive surface 11a is cut and formed at two locations in the circumferential direction of the main shaft 11, and each passive surface 1a is cut.
1a, a large number of V-shaped engaging grooves 11b are formed at a constant pitch in the direction of the rotation axis Y, and are screwed to the passive shaft 10 while being externally fitted to the main shaft 11 and pulled out with screws 70 or the like. On the interlocking cylinder 71 fixed and fixed, both passive surfaces 11a of the main shaft 11 are provided.
A pair of transmission members 72 for engaging the passive shaft 10 and the main shaft 11 in an integrated state by engaging with the engagement grooves 11b from the outside in the radial direction, respectively.
An elastic urging member 73 for moving and urging to a disengaged position radially outwardly separated from the maximum rotation locus of the passive surface 11a of
By the rotation operation of the main shaft 11 around the axis, the two transmission members 72 are held in the engagement position against the elastic urging force of the elastic urging member 73, and the transmission is performed by the elastic urging force of the elastic urging member 73. An operation mechanism 74 for switching to a free state in which the member 72 is allowed to move away from the disengagement position is assembled. The elastic biasing member 73 is constituted by a pair of arc-shaped spring wires engaged and held over the pair of transmission members 72, and the pair of transmission members 72 are rotated by the elastic restoring force of both spring wires 73. It is configured to move and bias to a position radially outwardly separated from the maximum rotation locus of the passive surface 11a of the eleventh passive surface 11a.
【0042】前記操作機構74は、前記連動筒体71の
うち、受動軸10の端面から突出する筒部の円周方向二
個所の各々に、両伝動部材72を半径方向にのみ相対移
動自在に保持する保持部71aを貫通形成するととも
に、前記連動筒体71に対して回転自在に外嵌された回
転操作リング75の内周面で、かつ、円周方向に180
度偏位した部位の各々には、両伝動部材72を両バネ線
材73の弾性付勢力に抗して係合位置(一体状態)に保
持する第1カム面75aと、両バネ線材73の弾性復元
力による両伝動部材72の係合解除位置(自由状態)へ
の移動を許容する第2カム面75bとを連続形成すると
ともに、前記回転操作リング75には、連動筒体71の
端面に螺合固定された抜止め兼用の規制ピン76との係
合により、回転操作リング75の回転軸芯Y周りでの回
動操作範囲を係合位置と係合解除位置との範囲に規制す
る円弧状長孔71bを形成して構成されている。尚、そ
の他の構成は、第1実施形態で説明した構成と同一であ
るから、同一の構成箇所には、第1実施形態と同一の番
号を付記してそれの説明は省略する。The operating mechanism 74 allows the two transmission members 72 to move relative to each other only in the radial direction at two circumferential positions of the cylindrical portion of the interlocking cylindrical body 71 protruding from the end surface of the passive shaft 10. The holding portion 71a for holding is formed to penetrate, and the inner circumferential surface of the rotary operation ring 75 rotatably fitted to the interlocking cylinder 71, and 180 ° in the circumferential direction.
The first cam surface 75a holding the two transmission members 72 in the engaged position (in an integrated state) against the elastic urging force of the two spring wires 73, and the elasticity of the two spring wires 73 A second cam surface 75b that allows the two transmission members 72 to move to the disengaged position (free state) by the restoring force is continuously formed, and the rotation operation ring 75 is screwed to the end surface of the interlocking cylinder 71. An arcuate shape that restricts the rotation operation range of the rotation operation ring 75 around the rotation axis Y to the range between the engagement position and the disengagement position by engagement with the fixed fixing pin 76 which is also used as a stopper. It is formed by forming a long hole 71b. Since other configurations are the same as those described in the first embodiment, the same components are denoted by the same reference numerals as those in the first embodiment, and description thereof will be omitted.
【0043】〔第3実施形態〕図16、図17は、前記
主軸11と受動軸10との相対回転及び相対摺動を阻止
する一体状態と両者10,11の相対回転及び相対摺動
を許容する自由状態とに切替え自在なクランプ手段Cの
他の実施形態を示し、これは、主軸11の円周方向二箇
所に、偏平状の受動面11aをカット形成し、各受動面
11aには、回転軸芯Y方向に一定ピッチで多数のVの
字状の係合溝11bを形成するとともに、前記受動軸1
0の円周方向二個所に貫通形成された保持部10bは、
主軸11の両受動面11aの係合溝11bに対してそれ
ぞれ径方向外方から係合することにより、受動軸10と
主軸11とを一体状態にする一対の伝動部材80を設
け、更に、前記両伝動部材80を主軸11の受動面11
aの最大回転軌跡よりも径方向外方に離間させた係合解
除位置に移動付勢する弾性付勢体81と、主軸11の軸
芯周りでの回転操作によって、両伝動部材80を弾性付
勢体81の弾性付勢力に抗して係合位置に保持する一体
状態と弾性付勢体81の弾性付勢力による伝動部材80
の係合解除位置への離間移動を許容する自由状態とに切
替える操作機構82とを組付けて構成されている。前記
弾性付勢体81は、一対の伝動部材80に亘って係合保
持された一対の弧状のバネ線材から構成されていて、両
バネ線材81の弾性復元力により、一対の伝動部材80
を主軸11の受動面11aの最大回転軌跡よりも径方向
外方に離間した位置にまで移動付勢するように構成され
ている。[Third Embodiment] FIGS. 16 and 17 show an integrated state in which the main shaft 11 and the passive shaft 10 prevent relative rotation and relative sliding, and allow relative rotation and relative sliding of both the main shaft 11 and the passive shaft 10. Another embodiment of the clamping means C which can be freely switched to a free state is shown, in which flat passive surfaces 11a are cut and formed at two circumferential positions of the main shaft 11, and each passive surface 11a has A large number of V-shaped engagement grooves 11b are formed at a constant pitch in the direction of the rotation axis Y, and the passive shaft 1
The holding portions 10b penetratingly formed at two locations in the circumferential direction of 0
A pair of transmission members 80 are provided for engaging the passive shaft 10 and the main shaft 11 with each other by engaging radially outward with the engagement grooves 11b of both the passive surfaces 11a of the main shaft 11, respectively. The two transmission members 80 are connected to the passive surface 11 of the main shaft 11.
The two transmission members 80 are elastically attached to each other by an elastic urging body 81 that moves and urges the engagement member to a disengaged position radially outwardly separated from the maximum rotation locus of a. An integrated state in which the urging member 81 is held in the engagement position against the elastic urging force of the urging member 81 and the transmission member 80 by the elastic urging force of the elastic urging member 81
And an operation mechanism 82 for switching to a free state in which a separation movement to a disengagement position is permitted. The elastic biasing member 81 is composed of a pair of arc-shaped spring wires engaged and held over a pair of transmission members 80, and the pair of transmission members 80 are elastically restored by the elastic restoring force of both spring wires 81.
To a position radially outwardly away from the maximum rotation locus of the passive surface 11 a of the main shaft 11.
【0044】前記操作機構82は、主軸11に外嵌する
状態で受動軸10に螺合してビス87等で抜止め固定さ
れた連動筒体83に、主軸11の軸芯周りで回転操作自
在な回転操作リング84を取付け、この回転操作リング
84の内周面で、かつ、円周方向に180度偏位した部
位の各々には、両伝動部材80を両バネ線材81の弾性
付勢力に抗して係合位置(一体状態)に保持する第1カ
ム面84aと、両バネ線材81の弾性復元力による両伝
動部材80の係合解除位置(自由状態)への移動を許容
する第2カム面84bとを連続形成して構成されてい
る。前記回転操作リング84は、第1カム面84a及び
第2カム面84bを備えた第1回転操作体84Aと、該
第1回転操作体84Aの外周面に対して螺合連結可能
で、かつ、その螺合連結時に、第1回転操作体84Aを
連動筒体83の連結フランジ部83aに相対回転自在に
抜止め保持するための係合フランジ部84cを備えた第
2回転操作体84Bとから構成されているとともに、前
記第1回転操作体84Aには、連動筒体83の端面に形
成された円弧状長孔83bに係合して、回転操作リング
84の回転軸芯周りでの回動操作範囲を係合位置と係合
解除位置との範囲に規制する規制ピン85を設け、更
に、前記第2回転操作体84Bの係合フランジ部84c
には、回転操作リング84を係合位置と係合解除位置と
に操作したとき、連動筒体83の連結フランジ部83a
に形成された係止凹部83cに対して択一的に係合する
位置決めボール86aと、該位置決めボール86aを係合
方向に移動付勢する弾性付勢体の一例である圧縮コイル
スプリング86bとからなる位置決め手段86を設けて
ある。つまり、この位置決め手段86は、操作機構82
を一体状態となる係合操作位置と自由状態となる係合解
除位置とに仮保持するためのものである。尚、その他の
構成は、第1実施形態で説明した構成と同一であるか
ら、同一の構成箇所には、第1実施形態と同一の番号を
付記してそれの説明は省略する。The operating mechanism 82 is rotatable around the axis of the main shaft 11 on an interlocking cylinder 83 screwed to the passive shaft 10 in a state of being externally fitted to the main shaft 11 and secured by a screw 87 or the like. The rotation transmission ring 84 is attached to each of the portions on the inner peripheral surface of the rotation rotation ring 84 that are deviated by 180 degrees in the circumferential direction. The first cam surface 84a, which is held against the engagement position (integrated state), and the second transmission member 80, which allows the two transmission members 80 to move to the disengagement position (free state) due to the elastic restoring force of both spring wires 81. It is configured by continuously forming the cam surface 84b. The rotation operation ring 84 can be screw-connected to a first rotation operation body 84A having a first cam surface 84a and a second cam surface 84b, and to an outer peripheral surface of the first rotation operation body 84A. A second rotary operating body 84B having an engaging flange 84c for retaining the first rotary operating body 84A in a rotatable manner relative to the connecting flange 83a of the interlocking cylinder 83 during the screw connection. In addition, the first rotation operating body 84A is engaged with an arc-shaped long hole 83b formed on the end surface of the interlocking cylindrical body 83 to rotate the rotation operation ring 84 about the rotation axis. A restriction pin 85 for restricting the range to a range between the engagement position and the disengagement position is provided, and furthermore, an engagement flange portion 84c of the second rotary operation body 84B is provided.
When the rotation operation ring 84 is operated to the engagement position and the disengagement position, the connection flange 83 a
And a compression coil spring 86b which is an example of an elastic urging member for urging the positioning ball 86a to move in the engagement direction. Positioning means 86 is provided. That is, the positioning means 86 is
Are temporarily held at an engagement operation position where they are integrated and a disengagement position where they are free. Since other configurations are the same as those described in the first embodiment, the same components are denoted by the same reference numerals as those in the first embodiment, and description thereof will be omitted.
【0045】〔その他の実施形態〕 (1) 上述の実施形態では、前記摩擦伝動手段Bを、
受動軸10の外周面を径方向外方側から挟み込む状態で
配設される複数個のローラー12から構成したが、受動
軸10の外周面を径方向外方側から挟み込む状態で配設
される複数個のベルトから構成してもよい。要するに、
前記摩擦伝動手段Bとしては、受動軸10の外周面に圧
接させた状態での駆動回転に連れて該受動軸10に回転
力と回転軸芯Y方向の送り力とを同時に付与することの
できるものであれば、如何なる構造のものを用いて実施
してもよい。 (2) 前記主軸11と受動軸10との間に設けられる
クランプ手段Cとしては、両者10,11の相対回転及
び相対摺動を阻止する一体状態と両者10,11の相対
回転及び相対摺動を許容する自由状態とに切替えること
のできるものであれば、如何なる構造のものを用いて実
施してもよい。 (3) 上述の実施形態では、前記摩擦伝動手段Bを伝
動状態と非伝動状態とに切替える伝動状態切替手段D
を、前記均等圧接手段Gの操作機構17をもって兼用構
成したが、前記均等圧接手段Gの操作機構17には、摩
擦伝動手段Bを非伝動状態に切替える機能を持たせず、
摩擦伝動手段Bを伝動状態と非伝動状態とに切替える専
用の伝動状態切替手段Dを別途設けて実施してもよい。 (4) 上述の実施形態では、前記第1保持体13に、
電動モータMの出力軸20に一体回転状態で連結可能な
穿孔装置Aと、該入力軸21の動力を駆動ローラー12
の駆動回転軸18に伝達する減速機構22とを組付けて
構成したが、この減速機構22を、ケーシング9等の第
1保持体13以外の部位に配置して実施してもよい。 (5) 上述の実施形態では、穿孔装置Aに電動モータ
等の原動部Mを装備させたが、穿孔装置A側には、前記
駆動ローラー12に動力を伝達する入力軸21のみを設
けて、穿孔作業時に、前記入力軸21に対して携帯式電
動具の出力軸を連結するように構成してもよい。 (6) 上述の実施形態では、主軸11の先端部に装着
部11Aを形成して、該主軸11に穿孔用カッター5を
直接装着するように構成したが、前記主軸11に、穿孔
用カッター5を脱着自在に装着するための装着部を備え
たカッタ取付け軸を脱着自在に固定連結して実施しても
よい。 (7) 上述の実施形態では、前記摩擦伝動手段Bを構
成する3個(複数個)のローラー12のうち、上側部の
2個を駆動回転させるように構成したが、3個(複数
個)のローラー12の全てを駆動回転させるように構成
してもよい。 (8) 上述の実施形態では、前記ケーシング9との接
当によって主軸11の最大送り量を設定送り量に規制す
る送り量設定手段Fを、受動軸10側に設けたが、この
送り量設定手段Fを主軸11側に設けて実施してもよ
い。 (9) 上述の実施形態では、前記ケーシング9との接
当によって主軸11の最大送り量を設定送り量に規制す
る送り量設定手段Fを設けたが、例えば、ケーシング9
に対する主軸11の位置を検出する位置検出センサと、
主軸11の最大送り量を設定する送り量設定手段と、位
置検出センサの位置検出情報及び送り量設定手段での設
定送り量に基づいて、主軸11の最大送り量が設定送り
量となったとき主軸11の駆動回転及び強制送りを停止
する送り制御手段とからなる送り量設定制御装置を設け
て実施してもよい。[Other Embodiments] (1) In the above embodiment, the friction transmission means B is
The passive shaft 10 is composed of a plurality of rollers 12 arranged so as to sandwich the outer peripheral surface from the radially outer side. However, the passive shaft 10 is arranged so as to sandwich the outer peripheral surface from the radially outer side. It may be composed of a plurality of belts. in short,
As the friction transmission means B, it is possible to simultaneously apply a rotational force and a feed force in the rotation axis Y direction to the passive shaft 10 with driving rotation in a state of being pressed against the outer peripheral surface of the passive shaft 10. Any structure may be used. (2) The clamping means C provided between the main shaft 11 and the passive shaft 10 includes an integrated state in which the relative rotation and relative sliding of the two members 10 and 11 are prevented, and the relative rotation and relative sliding of the two members 10 and 11. Any structure may be used as long as it can be switched to a free state in which the state is allowed. (3) In the above embodiment, the transmission state switching means D for switching the friction transmission means B between the transmission state and the non-transmission state.
Is shared by the operation mechanism 17 of the uniform pressure contact means G, but the operation mechanism 17 of the uniform pressure contact means G does not have a function of switching the friction transmission means B to the non-transmission state,
A dedicated transmission state switching unit D for switching the friction transmission unit B between the transmission state and the non-transmission state may be separately provided and implemented. (4) In the above-described embodiment, the first holding member 13
A punching device A that can be connected to the output shaft 20 of the electric motor M in an integrally rotating state;
Although the speed reduction mechanism 22 for transmitting to the drive rotation shaft 18 is assembled, the speed reduction mechanism 22 may be disposed at a portion other than the first holding body 13 such as the casing 9 and implemented. (5) In the above embodiment, the driving unit M such as an electric motor is provided in the punching device A, but only the input shaft 21 that transmits power to the driving roller 12 is provided on the punching device A side. An output shaft of the portable electric tool may be connected to the input shaft 21 during the drilling operation. (6) In the above embodiment, the mounting portion 11 </ b> A is formed at the tip of the main shaft 11, and the drill 5 is directly mounted on the main shaft 11. The cutter mounting shaft provided with a mounting portion for detachably mounting the cutter may be detachably fixedly connected. (7) In the above-described embodiment, of the three (plural) rollers 12 constituting the friction transmission means B, the upper two are driven to rotate, but the three (plural) rollers 12 are driven. May be configured to drive and rotate all of the rollers 12. (8) In the above-described embodiment, the feed amount setting unit F that regulates the maximum feed amount of the main shaft 11 to the set feed amount by contact with the casing 9 is provided on the passive shaft 10 side. The means F may be provided on the main shaft 11 side. (9) In the above embodiment, the feed amount setting means F for regulating the maximum feed amount of the main shaft 11 to the set feed amount by contact with the casing 9 is provided.
A position detection sensor for detecting the position of the main shaft 11 with respect to
When the maximum feed amount of the main spindle 11 becomes the set feed amount based on the feed amount setting means for setting the maximum feed amount of the main spindle 11 and the position detection information of the position detection sensor and the feed amount set by the feed amount setting means. A feed amount setting control device including feed control means for stopping the drive rotation of the main shaft 11 and the forced feed may be provided.
【0046】[0046]
【図1】(イ)〜(ニ)は、本発明の穿孔装置を用いた
穿孔工法の工程図FIGS. 1A to 1D are process diagrams of a drilling method using a drilling device of the present invention.
【図2】(ホ)〜(ト)は、本発明の穿孔装置を用いた
穿孔工法の工程図FIGS. 2 (e) to (g) are process diagrams of a drilling method using the drilling device of the present invention.
【図3】本発明の穿孔装置の第1実施形態を示す縦断面
図FIG. 3 is a longitudinal sectional view showing a first embodiment of the punching device of the present invention.
【図4】穿孔装置の各部の横断面図FIG. 4 is a cross-sectional view of each part of the punching device.
【図5】ケーシングの分解断面図FIG. 5 is an exploded sectional view of a casing.
【図6】クランプ手段の分解斜視図FIG. 6 is an exploded perspective view of a clamp unit.
【図7】クランプ手段の縦断面図FIG. 7 is a longitudinal sectional view of a clamping unit.
【図8】(イ)、(ロ)はクランプ手段の一体状態と自
由状態を示す横断面図8 (a) and 8 (b) are cross-sectional views showing an integrated state and a free state of the clamp means.
【図9】ストッパー手段の横断面図FIG. 9 is a cross-sectional view of the stopper means.
【図10】ストッパー手段の側面図FIG. 10 is a side view of the stopper means.
【図11】送り量設定手段を示す穿孔開始時の平面図FIG. 11 is a plan view showing the feed amount setting means at the start of drilling.
【図12】送り量設定手段を示す穿孔終了時の平面図FIG. 12 is a plan view showing the feed amount setting means at the end of drilling.
【図13】本発明の第2実施形態を示すクランプ手段の
分解斜視図FIG. 13 is an exploded perspective view of a clamping unit according to a second embodiment of the present invention.
【図14】クランプ手段の縦断面図FIG. 14 is a longitudinal sectional view of a clamping unit.
【図15】(イ)、(ロ)はクランプ手段の一体状態と
自由状態を示す横断面図15 (a) and (b) are cross-sectional views showing an integrated state and a free state of the clamp means.
【図16】本発明の第3実施形態を示すクランプ手段の
縦断面図FIG. 16 is a longitudinal sectional view of a clamping means showing a third embodiment of the present invention.
【図17】(イ)、(ロ)はクランプ手段の一体状態と
自由状態を示す横断面図17A and 17B are cross-sectional views showing an integrated state and a free state of the clamp means.
【図18】従来の穿孔装置を示す縦断面図FIG. 18 is a longitudinal sectional view showing a conventional punching device.
B 摩擦伝動手段 C クランプ手段 D 伝動状態切替手段 E ストッパー手段 F 送り量設定手段 P 流体輸送管 Y 回転軸芯 1 ケーシング 2 貫通孔 3 分岐用継手 4 作業弁 5 穿孔用カッター 9 ケーシング 9g 軸受け部 10 受動軸 10a ボス部 11 主軸 11a 受動面 12 ローラー 12a 環状凹部 12b 周壁面 40 ウレタンゴム 41 延長回転軸 42 軸連結手段 45 連動筒体 46 伝動部材 47 弾性付勢体 48 操作機構 68 格納空間 69 連結筒体 B Friction transmission means C Clamping means D Transmission state switching means E Stopper means F Feed amount setting means P Fluid transport pipe Y Rotating shaft core 1 Casing 2 Through hole 3 Branching joint 4 Working valve 5 Drilling cutter 9 Casing 9g Bearing 10 Passive shaft 10a Boss portion 11 Main shaft 11a Passive surface 12 Roller 12a Annular concave portion 12b Peripheral wall surface 40 Urethane rubber 41 Extended rotating shaft 42 Shaft connecting means 45 Interlocking cylinder 46 Transmission member 47 Elastic biasing body 48 Operating mechanism 68 Storage space 69 Connecting cylinder body
Claims (11)
軸芯方向に摺動自在に支承される受動軸への動力伝達系
に、受動軸の外周面に圧接させた状態での駆動回転に連
れて該受動軸に回転力と回転軸芯方向の送り力とを付与
する摩擦伝動手段を設けるとともに、前記受動軸には、
流体輸送管の管壁に貫通孔を形成するための穿孔用カッ
ターが装着される側の主軸を、相対回転並びにカッター
送込み方向である回転軸芯方向に相対摺動自在に嵌合
し、この主軸と受動軸との間には、両者の相対回転及び
相対摺動を阻止する一体状態と両者の相対回転及び相対
摺動を許容する自由状態とに切替え自在なクランプ手段
を設けてある流体輸送管用穿孔装置。1. A power transmission system for a passive shaft, which is rotatably supported on a casing and slidable in the direction of the axis of rotation of the casing, is driven by a drive rotation while being pressed against an outer peripheral surface of the passive shaft. Along with providing the passive shaft with friction transmission means for applying a rotational force and a feed force in the direction of the axis of the rotating shaft, the passive shaft includes:
The main shaft on the side on which the drilling cutter for forming the through hole for forming the through hole in the pipe wall of the fluid transport tube is relatively slidably fitted in the direction of the rotation axis which is the relative rotation and cutter feeding direction. A fluid transport device is provided between the main shaft and the passive shaft, which is capable of switching between an integrated state for preventing relative rotation and relative sliding of the two and a free state for allowing relative rotation and relative sliding of the two. Pipe piercing device.
外周面への圧接を解除した非伝動状態とに切替える伝動
状態切替手段が設けられている請求項1記載の流体輸送
管用穿孔装置。2. The drilling device for a fluid transport pipe according to claim 1, further comprising a transmission state switching unit that switches the friction transmission unit between a transmission state and a non-transmission state in which the pressure contact with the outer peripheral surface of the passive shaft is released.
移動を阻止するストッパー手段が、ストッパー解除操作
自在に設けられている請求項1又は2記載の流体輸送管
用穿孔装置。3. The perforation device for a fluid transport pipe according to claim 1, wherein the casing is provided with stopper means for preventing movement of the main shaft to the return side so that the stopper can be released.
との接当によって主軸の最大送り量を設定送り量に規制
する送り量設定手段が備えられている請求項1、2又は
3記載の流体輸送管用穿孔装置。4. A feed amount setting means for restricting a maximum feed amount of a main spindle to a set feed amount by contacting a casing with the main shaft or the passive shaft side, according to claim 1, 2, or 3. Perforator for fluid transport pipe.
側とは反対側に位置する端部には、延長回転軸を脱着自
在に同芯状態で連結するための軸連結手段が設けられて
いる請求項1〜4のいずれか1項に記載の流体輸送管用
穿孔装置。5. An end of the main shaft, which is located on the side opposite to the side where the drilling cutter is mounted, is provided with shaft connecting means for connecting the extended rotary shaft in a detachable and concentric manner. The perforation device for a fluid transport pipe according to any one of claims 1 to 4.
径方向外方側から挟み込む状態で、かつ、回転軸芯に対
する径方向での直交平面に対して一回転当りの単位送り
量に相当する角度を付けて配設される複数個のローラー
から構成されているとともに、そのうち、少なくとも一
つが駆動ローラーに構成されている請求項1〜5のいず
れか1項に記載の流体輸送管用穿孔装置。6. A unit feed amount per rotation with respect to a radially orthogonal plane with respect to a rotation shaft center in a state where the friction transmission means sandwiches the outer peripheral surface of the passive shaft from a radially outer side. The perforation for a fluid transport pipe according to any one of claims 1 to 5, comprising a plurality of rollers disposed at a corresponding angle, and at least one of the rollers being a drive roller. apparatus.
動軸のボス部とに亘って挿通保持されている請求項1〜
6のいずれか1項に記載の流体輸送管用穿孔装置。7. The main shaft is inserted and held between a bearing of a casing and a boss of a passive shaft.
7. The perforation device for a fluid transport pipe according to any one of 6.
帰している穿孔用カッターを格納可能な格納空間を備
え、かつ、流体輸送管の穿孔相当箇所に接続された分岐
用継手に対して開閉操作自在な作業弁を介して気密又は
液密状態で接続可能な連結筒体が取付けられている請求
項1〜7のいずれか1項に記載の流体輸送管用穿孔装置8. The casing has a storage space capable of storing a drilling cutter that has returned to a maximum return position, and opens and closes a branch joint connected to a location corresponding to the drilling of the fluid transport pipe. The drilling device for a fluid transport pipe according to any one of claims 1 to 7, wherein a connecting cylinder body that can be connected in an airtight or liquid tight state via an operable work valve is attached.
外嵌する状態で受動軸に固定された連動筒体又は受動軸
に、主軸に形成された受動面に対して径方向外方から係
合することにより、受動軸と主軸とを一体状態にする伝
動部材と、該伝動部材を主軸の受動面の最大回転軌跡よ
りも径方向外方に離間させた係合解除位置に移動付勢す
る弾性付勢体と、主軸の軸芯周りでの回転操作によっ
て、伝動部材を弾性付勢体の弾性付勢力に抗して係合位
置に保持する一体状態と弾性付勢体の弾性付勢力による
伝動部材の係合解除位置への離間移動を許容する自由状
態とに切替える操作機構とを設けてある請求項1〜8の
いずれか1項に記載の流体輸送管用穿孔装置。9. The clamping means is configured such that the clamping means is engaged with an interlocking cylinder or a passive shaft fixed to the passive shaft in a state of being fitted to the main shaft from a radially outer side with respect to a passive surface formed on the main shaft. By the combination, a transmission member that brings the passive shaft and the main shaft into an integrated state, and the transmission member is biased to move to an engagement release position that is radially outwardly separated from the maximum rotation locus of the passive surface of the main shaft. The elastic urging body and the integral operation of holding the transmission member in the engagement position against the elastic urging force of the elastic urging body by the rotation operation about the axis of the main shaft, and the elastic urging force of the elastic urging body The drilling device for a fluid transport pipe according to any one of claims 1 to 8, further comprising: an operation mechanism configured to switch to a free state in which the transmission member is allowed to move away from the engagement position.
タンゴムが装着されている請求項6記載の流体輸送管用
穿孔装置。10. The perforation device for a fluid transport pipe according to claim 6, wherein an annular urethane rubber is mounted on an outer peripheral surface of the roller.
レタンゴムを保持する環状凹部が形成されているととも
に、該環状凹部の幅方向で相対向する周壁面が、径方向
外方側ほど互いに離間する傾斜面に構成されている請求
項10記載の流体輸送管用穿孔装置11. An outer peripheral surface of the roller is provided with an annular concave portion for holding an annular urethane rubber, and peripheral wall surfaces of the annular concave portion facing each other in the width direction are arranged closer to each other in a radially outward direction. The drilling device for a fluid transport pipe according to claim 10, wherein the drilling device is formed on a separated inclined surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11202832A JP2001030103A (en) | 1999-07-16 | 1999-07-16 | Boring device for fluid transporting pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11202832A JP2001030103A (en) | 1999-07-16 | 1999-07-16 | Boring device for fluid transporting pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001030103A true JP2001030103A (en) | 2001-02-06 |
Family
ID=16463941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11202832A Pending JP2001030103A (en) | 1999-07-16 | 1999-07-16 | Boring device for fluid transporting pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001030103A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013108594A (en) * | 2011-11-22 | 2013-06-06 | Cosmo Koki Co Ltd | Method for introducing work implement |
JP2013221613A (en) * | 2012-04-19 | 2013-10-28 | Cosmo Koki Co Ltd | Fluid pipe cutting device |
CN108555026A (en) * | 2018-05-15 | 2018-09-21 | 浙江辛子精工机械股份有限公司 | A kind of mandril pre-rotation high-precision punch |
JP2019190575A (en) * | 2018-04-25 | 2019-10-31 | 株式会社ノーリツ | Joint for synthetic resin pipe |
-
1999
- 1999-07-16 JP JP11202832A patent/JP2001030103A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013108594A (en) * | 2011-11-22 | 2013-06-06 | Cosmo Koki Co Ltd | Method for introducing work implement |
JP2013221613A (en) * | 2012-04-19 | 2013-10-28 | Cosmo Koki Co Ltd | Fluid pipe cutting device |
JP2019190575A (en) * | 2018-04-25 | 2019-10-31 | 株式会社ノーリツ | Joint for synthetic resin pipe |
JP7115016B2 (en) | 2018-04-25 | 2022-08-09 | 株式会社ノーリツ | Fittings for synthetic resin pipes |
CN108555026A (en) * | 2018-05-15 | 2018-09-21 | 浙江辛子精工机械股份有限公司 | A kind of mandril pre-rotation high-precision punch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9636818B2 (en) | Multi-speed cycloidal transmission | |
US5568849A (en) | Clutch mechanism in power driven screwdriver | |
KR960007588B1 (en) | Two speed transmission for power driven threading machine | |
JP2014080848A (en) | Changeover mechanism | |
KR100858910B1 (en) | Continuously variable transmission | |
JPWO2021125274A1 (en) | Reverse input cutoff clutch | |
JP2001030103A (en) | Boring device for fluid transporting pipe | |
JP2001030104A (en) | Drilling device for fluid transporting pipe | |
CN102673185A (en) | Driving force transmitting device for cutting mechanism of printing device | |
JPH039576Y2 (en) | ||
JP5620338B2 (en) | Power tools | |
US2731844A (en) | washburn | |
US4210048A (en) | Automatic punch | |
JP6852808B2 (en) | Power tools | |
JP2000227076A (en) | Tube pump | |
US6840148B2 (en) | Scroll sawing machine with a speed ratio varying device | |
WO2016043144A1 (en) | Power transmission roller | |
JPS5833043B2 (en) | Turret device | |
JP4816467B2 (en) | Clutch device | |
KR100461433B1 (en) | clutch utilized planetary gear | |
KR101347380B1 (en) | Active clutch | |
JPS6238041Y2 (en) | ||
KR101347378B1 (en) | Active clutch | |
KR101347379B1 (en) | Active clutch | |
JPS5816364Y2 (en) | composite cooker |