JP2001027226A - Conical hydrodynamic pressure bearing and spindle motor - Google Patents

Conical hydrodynamic pressure bearing and spindle motor

Info

Publication number
JP2001027226A
JP2001027226A JP11196968A JP19696899A JP2001027226A JP 2001027226 A JP2001027226 A JP 2001027226A JP 11196968 A JP11196968 A JP 11196968A JP 19696899 A JP19696899 A JP 19696899A JP 2001027226 A JP2001027226 A JP 2001027226A
Authority
JP
Japan
Prior art keywords
conical
sleeve member
shaft member
bearing
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11196968A
Other languages
Japanese (ja)
Inventor
Tadao Iwaki
岩城  忠雄
Yukito Hyobu
行遠 兵部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Miraial Co Ltd
Original Assignee
Seiko Instruments Inc
Kakizaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc, Kakizaki Manufacturing Co Ltd filed Critical Seiko Instruments Inc
Priority to JP11196968A priority Critical patent/JP2001027226A/en
Publication of JP2001027226A publication Critical patent/JP2001027226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To mass-produce conical hydrodynamic pressure bearings at a low cost, suppress the generation of precession, prevent a conical shaft member from resting in the state of being fitted into a sleeve member and to make bearing rigidity almost constant in a wide temperature range. SOLUTION: This conical hydrodynamic pressure bearing is formed into double structure with a resin layer 3 applied to a metal core material, and formed into the connected shape of a pair of cones holding the mutual bottom faces in common, that is, composed of a conical shaft member 1 of spindle shape, a lower resin sleeve member 4 and an upper resin sleeve member 5. The conical shaft member 1 is provided with an annular protruding part 3a. An annular stepped part provided at the lower sleeve member 4, and an annular stepped part provided at the upper sleeve member 5, form an annular recessed part, and the lower face of the annular protruding part 3a is seated on the upper face of the annular recessed part when brought to a stop. The conical shaft member 1, lower sleeve member 4 and upper sleeve member 5 are manufactured from liquid crystal polymeric material by molding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円錐型シャフト部
材とこの円錐型シャフト部材が回転自在にして嵌合する
スリーブ部材との2つを主要構成部材とする円錐型流体
動圧軸受及びこの円錐型流体動圧軸受を備えたスピンド
ルモータに関し、特に主要構成部材である円錐型シャフ
ト部材とその受け部となるスリーブ部材の構造に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conical fluid dynamic bearing having two main components, a conical shaft member and a sleeve member into which the conical shaft member is rotatably fitted. The present invention relates to a spindle motor having a fluid dynamic pressure bearing, and more particularly, to a structure of a conical shaft member as a main component and a sleeve member serving as a receiving portion thereof.

【0002】[0002]

【従来の技術】円錐型流体動圧軸受は、円錐体状の円錐
型シャフト部材とこれを受けるスリーブ部材を主要構成
部材とし、軸受隙間を形成する前記円錐型シャフト部材
のテーパ状外周面と前記スリーブ部材のテーパ状内周面
のいずれか一方にヘリングボーン溝の如き動圧発生溝が
形成されて構成されたものである。ラジアル動圧成分と
スラスト動圧成分が合成された動圧を発生する円錐型流
体動圧軸受は、言わば、ラジアル動圧軸受とスラスト動
圧軸受とを一つの軸受で兼ね合わさせたものであるの
で、小型モータの軸受に最適である。また、円錐型流体
動圧軸受は、その頂角および動圧発生溝パラメータを適
切に選ぶことによりラジアル負荷とアキシャル負荷とを
任意に設計できるという特長を有している。
2. Description of the Related Art A conical fluid dynamic pressure bearing mainly includes a conical conical shaft member and a sleeve member for receiving the conical shaft member, and a tapered outer peripheral surface of the conical shaft member forming a bearing gap. A dynamic pressure generating groove such as a herringbone groove is formed on one of the tapered inner peripheral surfaces of the sleeve member. A conical fluid dynamic bearing that generates a dynamic pressure in which a radial dynamic pressure component and a thrust dynamic pressure component are combined is, so to speak, a combination of a radial dynamic pressure bearing and a thrust dynamic pressure bearing in one bearing. Ideal for small motor bearings. In addition, the conical fluid dynamic pressure bearing has a feature that the radial load and the axial load can be arbitrarily designed by appropriately selecting the apex angle and the dynamic pressure generation groove parameter.

【0003】このような特長を有する円錐型流体動圧軸
受であるが、円錐型シャフト部材とスリーブ部材の製作
が難しいために、これを安く且つ大量に提供することが
困難であった。即ち、円錐型シャフト部材とスリーブ部
材は、円錐頂角を±1’以下、又は望ましくは±30”
以下の加工精度で加工しなければならない。このため、
円錐型シャフト部材とスリーブ部材を研削や切削加工で
大量に製作することが困難であるからである。、
[0003] Conical fluid dynamic pressure bearings having such features are difficult to manufacture in a low cost and in large quantities because it is difficult to manufacture conical shaft members and sleeve members. That is, the conical shaft member and the sleeve member have a cone apex angle of ± 1 ′ or less, or preferably ± 30 ″.
It must be processed with the following processing accuracy. For this reason,
This is because it is difficult to mass-produce the conical shaft member and the sleeve member by grinding or cutting. ,

【0004】また、円錐型流体動圧軸受において、停止
時には円錐型シャフト部材の円錐面全面即ちテーパ状外
周面がスリーブ部材の受け面即ちテーパ状内周面と接
し、円錐型シャフト部材はスリーブ部材に嵌めこみ状態
で静止する。このため、起動時も停止時も大きな負荷が
発生する。嵌めこみ状態によっては、起動不能になるこ
ともある。更に、従来の円錐型シャフト部材は円錐体状
の部材で構成されたもの、即ち1個の円錐体部材で構成
されたものであるから、回転時に才差運動を起こしやす
いという欠点もある。
In a conical fluid dynamic bearing, when stopped, the entire conical surface of the conical shaft member, that is, the tapered outer peripheral surface is in contact with the receiving surface of the sleeve member, that is, the tapered inner peripheral surface. Stand still in the state of being fitted in. For this reason, a large load is generated both at the time of starting and at the time of stopping. Depending on the fitted state, it may become impossible to start. Furthermore, since the conventional conical shaft member is constituted by a conical member, that is, constituted by a single conical member, there is a disadvantage that precession is likely to occur during rotation.

【0005】特開昭60−208629号公報に開示の
光偏向装置の駆動モータに採用された円錐型流体動圧軸
受は、図4に示す如く、円錐台状断面の円錐型シャフト
部材11とこれを回転自在にして嵌合するスリーブ部材
13を主要構成部材とし、軸受隙間を形成する円錐型シ
ャフト部材11のテーパ状外周面11aにヘリングボー
ン溝の如き動圧発生溝Gが形成されて構成されたもので
ある。円錐型シャフト部材11の上端には固定軸12が
一体に形成されており、固定軸12は上側基板19に固
着されている。スリーブ部材13は円錐型シャフト部材
11のテーパ状外周面11aと共に軸受隙間を形成する
テーパ状内周面13aを有する。スリーブ部材13は、
永久磁石14と15とからなる磁気軸受によって、スラ
スト方向に非接触で支持されている。スリーブ部材13
の下側に取り付けられたロータ磁石16と下側基板18
に取り付けられたステータコイル17とは、協動して回
転力を発生させる。
As shown in FIG. 4, a conical fluid dynamic pressure bearing employed in a drive motor of an optical deflecting device disclosed in Japanese Patent Application Laid-Open No. 60-208629 includes a conical shaft member 11 having a truncated conical cross section and a conical shaft member 11 having the same shape. The main body is a sleeve member 13 which is rotatably fitted with the sleeve member 13. A dynamic pressure generating groove G such as a herringbone groove is formed on a tapered outer peripheral surface 11a of a conical shaft member 11 forming a bearing gap. It is a thing. A fixed shaft 12 is integrally formed at the upper end of the conical shaft member 11, and the fixed shaft 12 is fixed to an upper substrate 19. The sleeve member 13 has a tapered inner peripheral surface 13a that forms a bearing gap with the tapered outer peripheral surface 11a of the conical shaft member 11. The sleeve member 13 is
It is supported in a non-contact manner in the thrust direction by a magnetic bearing composed of permanent magnets 14 and 15. Sleeve member 13
Rotor magnet 16 and lower substrate 18 mounted below
Generates a rotational force in cooperation with the stator coil 17 attached to the motor.

【0006】このように、特開昭60−208629号
公報に開示の円錐型流体動圧軸受は磁気軸受を併用する
ことによって、円錐型シャフト部材がスリーブ部材に嵌
めこみ状態で静止しないようにし、また回転時に才差運
動を起こさないようにしている。しかしながら、磁気軸
受を併用することは、その分だけ装置が大きくなり、組
み付け作業は容易でなく、動圧軸受構成部材は樹脂製で
はないので安く大量に製作することは困難である。従っ
て、この円錐型流体動圧軸受を小型スピンドルモータに
は採用することはできない。
As described above, the conical fluid dynamic pressure bearing disclosed in Japanese Patent Application Laid-Open No. 60-208629 uses a magnetic bearing in combination to prevent the conical shaft member from being stopped in a state of being fitted into the sleeve member. It also prevents precession during rotation. However, the combined use of the magnetic bearings increases the size of the device, making the assembling work difficult, and the components of the dynamic pressure bearing are not made of resin, so that it is difficult to manufacture them in large quantities at low cost. Therefore, this conical fluid dynamic bearing cannot be used for a small spindle motor.

【0007】[0007]

【発明が解決しようとする課題】本発明が解決しようと
する第1の課題は、円錐型シャフト部材とスリーブ部材
とを主要構成部材とする円錐型流体動圧軸受、及びこれ
を備えたスピンドルモータを安く大量に製作できるよう
にすることである。解決しようとする第2の課題は、前
記円錐型流体動圧軸受及びこれを備えたスピンドルモー
タにおいて、才差運動を生じ難くすることである。解決
しようとする第3の課題は、前記円錐型流体動圧軸受及
びこれを備えたスピンドルモータにおいて、円錐型シャ
フト部材がスリーブ部材に嵌めこみ状態で静止しないよ
うにすることである。解決しようとする第4の課題は、
前記円錐型流体動圧軸受及びこれを備えたスピンドルモ
ータにおいて、広い温度範囲にわたって、軸受剛性をほ
ぼ一定にすることである。
SUMMARY OF THE INVENTION A first object of the present invention is to provide a conical fluid dynamic pressure bearing having a conical shaft member and a sleeve member as main components, and a spindle motor having the same. Is to be able to produce in large quantities at low cost. A second problem to be solved is to make it difficult for precession to occur in the conical fluid dynamic bearing and the spindle motor having the same. A third problem to be solved is to prevent the conical shaft member from being stopped in the state of being fitted into the sleeve member in the conical fluid dynamic pressure bearing and the spindle motor including the same. The fourth problem to be solved is
In the conical fluid dynamic bearing and the spindle motor including the same, the bearing rigidity is made substantially constant over a wide temperature range.

【0008】[0008]

【課題を解決するための手段】上記第1及び第2の課題
を解決するために、円錐型シャフト部材とこのシャフト
部材が回転自在に嵌合するスリーブ部材を主要構成部材
とし、軸受隙間を形成する前記円錐型シャフト部材のテ
ーパ状外周面と前記スリーブ部材のテーパ状内周面のい
ずれか一方に動圧発生溝が形成された流体動圧軸受及び
これを備えたスピンドルモータにおいて、前記円錐型シ
ャフト部材を金属心材に樹脂層が施された二重構造とす
ると共に、その形状を一対の円錐体を互いの底面を共有
して結合した形状、即ち紡錘体状又は樽型の形状とし
た。
In order to solve the above first and second problems, a conical shaft member and a sleeve member into which the shaft member is rotatably fitted are used as main components to form a bearing gap. A fluid dynamic pressure bearing in which a dynamic pressure generating groove is formed on one of a tapered outer peripheral surface of the conical shaft member and a tapered inner peripheral surface of the sleeve member, and a spindle motor including the same. The shaft member has a double structure in which a resin layer is applied to a metal core material, and has a shape in which a pair of cones are connected to each other while sharing a bottom surface, that is, a spindle shape or a barrel shape.

【0009】上記第3の課題を解決するために、前記紡
錘体状の円錐型シャフト部材の最大径部近傍に環状凸部
を設け、且つこれに対向する前記スリーブ部材の部分に
環状凹部を設け、停止時には前記環状凸部の下面を前記
環状凹部の上面に着座させ、前記円錐型シャフト部材の
テーパ状外周面が前記スリーブ部材のテーパ状内周面に
接触しないようにした。
In order to solve the third problem, an annular convex portion is provided in the vicinity of a maximum diameter portion of the spindle-shaped conical shaft member, and an annular concave portion is provided in a portion of the sleeve member opposed thereto. When stopped, the lower surface of the annular projection is seated on the upper surface of the annular recess so that the tapered outer peripheral surface of the conical shaft member does not contact the tapered inner peripheral surface of the sleeve member.

【0010】上記第1の課題を解決するために、前記円
錐型シャフト部材と前記スリーブ部材は樹脂材料で成形
加工して製作した。また、前記樹脂材料には液晶高分子
材料を用いた。
In order to solve the first problem, the conical shaft member and the sleeve member are formed by molding a resin material. In addition, a liquid crystal polymer material was used as the resin material.

【0011】上記第4の課題を解決するために、前記円
錐型シャフト部材の樹脂層の樹脂材料と前記スリーブ部
材の樹脂材料は、その線膨張係数は等しいか又は前者が
後者より大きいにして選定した。
In order to solve the fourth problem, the resin material of the resin layer of the conical shaft member and the resin material of the sleeve member are selected such that their linear expansion coefficients are equal or the former is larger than the latter. did.

【0012】[0012]

【発明の実施の形態】本発明に係るスピンドルモータの
第1実施例の断面図である図1において、円錐型流体動
圧軸受は、円柱状金属心材2に樹脂層3が施された紡錘
体状の円錐型シャフト部材1と、この円錐型シャフト部
材1が回転自在に嵌合する下側スリーブ部材4並びに上
側スリーブ部材5によって構成されている。この円錐型
流体動圧軸受を備えたスピンドルモータは、円錐型シャ
フト部材1に取り付けられたカップ状ハブ6、カップ状
ハブ6の内周面に取り付けられたロータ磁石7、ロータ
磁石7に対向してスリーブ部材4の外周面に取り付けら
れたステータコイル8、及び下側スリーブ部材4が立設
されるモータ基板9を具備する。
FIG. 1 is a sectional view of a spindle motor according to a first embodiment of the present invention. In FIG. 1, a conical fluid dynamic pressure bearing is a spindle body in which a resin layer 3 is applied to a cylindrical metal core 2. A conical shaft member 1 is formed, and a lower sleeve member 4 and an upper sleeve member 5 into which the conical shaft member 1 is rotatably fitted. The spindle motor provided with the conical fluid dynamic bearing is a cup-shaped hub 6 attached to the conical shaft member 1, a rotor magnet 7 attached to the inner peripheral surface of the cup-shaped hub 6, and opposed to the rotor magnet 7. And a motor board 9 on which the lower sleeve member 4 is erected.

【0013】微小隙間と動圧発生溝を誇張して示した本
発明にかかる円錐型流体動圧軸受の第1実施例の断面図
である図2において、円錐型シャフト部材1は、円柱状
金属心材2に樹脂3を施して成形加工し、一対の円錐体
を互いの底面を共有して結合した形状、即ち紡錘体状に
成形した樹脂製シャフト部材である。下側スリーブ部材
4は、所定角度で傾斜したテーパ状内周面と底面を有す
る椀状の部材であり、その開口端には環状段部4aが形
成されている。上側スリーブ部材5は、下側スリーブ部
材4と同様の所定角度で傾斜したテーパ状内周面と頂面
を有する椀状の部材であるが、頂面には円柱状金属心材
2が貫通する貫通孔が形成され、更にその開口端には環
状段部5aが形成されている。前記所定角度は、円錐型
シャフト部材1の円錐体のテーパ状外周面の傾斜角と同
じである。
FIG. 2 is a sectional view of a first embodiment of a conical fluid dynamic pressure bearing according to the present invention, in which a minute gap and a dynamic pressure generating groove are exaggerated. In FIG. This is a resin shaft member formed by applying a resin 3 to the core material 2 and forming the same, and combining a pair of cones into a shape in which the bottom surfaces of the pair are shared with each other, that is, a spindle shape. The lower sleeve member 4 is a bowl-shaped member having a tapered inner peripheral surface inclined at a predetermined angle and a bottom surface, and an annular step portion 4a is formed at an open end thereof. The upper sleeve member 5 is a bowl-shaped member having a tapered inner peripheral surface inclined at a predetermined angle similar to the lower sleeve member 4 and a top surface, and a cylindrical metal core material 2 penetrates through the top surface. A hole is formed, and an annular step 5a is formed at the opening end. The predetermined angle is the same as the inclination angle of the tapered outer peripheral surface of the cone of the conical shaft member 1.

【0014】円錐型シャフト部材1には、下側スリーブ
部材4の環状段部4aと上側スリーブ部材5の環状段部
5aで形成された環状凹部に回転自在にして嵌合する環
状凸部3aが形成されている。環状凸部3aは、円錐型
シャフト部材1の中心部、従って紡錘体の最大径部近傍
に形成されている。図1及び図2において、環状凸部3
aは断面四角形の環状帯である。従って、動圧軸受の停
止時には、環状凸部3aの下面がスリーブ部材の環状凹
部を形成している下側スリーブ部材4の環状段部4aの
上面に着座することになる。これによって、停止時に円
錐型シャフト部材1の下側の円錐面全面が下側スリーブ
部材4の受け面と接し、嵌めこみ状態で静止することが
確実に防止された。
The conical shaft member 1 has an annular convex portion 3a rotatably fitted in an annular concave portion formed by the annular step portion 4a of the lower sleeve member 4 and the annular step portion 5a of the upper sleeve member 5. Is formed. The annular convex portion 3a is formed at the center of the conical shaft member 1, that is, near the maximum diameter portion of the spindle. 1 and 2, the annular convex portion 3
a is an annular band having a rectangular cross section. Therefore, when the dynamic pressure bearing is stopped, the lower surface of the annular convex portion 3a is seated on the upper surface of the annular step portion 4a of the lower sleeve member 4 forming the annular concave portion of the sleeve member. As a result, the entire lower conical surface of the conical shaft member 1 comes into contact with the receiving surface of the lower sleeve member 4 at the time of stoppage, and the stationary state in the fitted state is reliably prevented.

【0015】ヘリングボーン溝の如き動圧発生溝Gは、
円錐型シャフト部材1の樹脂製円錐体の外周面に形成さ
れている。円錐型シャフト部材1、下側スリーブ部材4
及び上側スリーブ部材5との間には、微小隙間R1〜R
4が形成されている。即ちR1は円錐型シャフト部材1
の上側円錐体の外周面と上側スリーブ部材5の内周面と
の間の微小隙間、R2は下側スリーブ部材4の環状段部
4aと上側スリーブ部材5の環状段部5aで形成された
環状凹部と環状凸部3aとの間の微小隙間、R3は円錐
型シャフト部材1の下側円錐体の外周面と下側スリーブ
部材4の内周面との間の微小隙間、そしてR4は円錐型
シャフト部材1の下端面と下側スリーブ部材4の底面4
bとの間の微小隙間である。
A dynamic pressure generating groove G such as a herringbone groove is
The conical shaft member 1 is formed on the outer peripheral surface of a resin cone. Conical shaft member 1, lower sleeve member 4
Small gaps R1 to R
4 are formed. That is, R1 is a conical shaft member 1.
A small gap between the outer peripheral surface of the upper conical body and the inner peripheral surface of the upper sleeve member 5, R2 is an annular shape formed by the annular step portion 4a of the lower sleeve member 4 and the annular step portion 5a of the upper sleeve member 5. A minute gap between the concave portion and the annular convex portion 3a, R3 is a minute gap between the outer peripheral surface of the lower conical body of the conical shaft member 1 and the inner peripheral surface of the lower sleeve member 4, and R4 is a conical shape. Lower end surface of shaft member 1 and bottom surface 4 of lower sleeve member 4
b is a minute gap.

【0016】これらの微小隙間は、流体動圧軸受のサイ
ズ、回転数及び潤滑油の粘性係数にもよるが、数μmか
ら数100μm程度である。Fは、これらの微小隙間に
充填された潤滑油である。また、これらの隙間の中でR
1とR3は軸受隙間として機能し、R2とR4は潤滑油
溜りとして機能する。更に、微小隙間R1と大気の間を
連通しているテーパ状微小隙間Sは、毛細管現象と表面
張力を利用して流体動圧軸受内に充填された潤滑油Fが
外部に漏出しないようにするキャピラリーシールとして
機能するものである。
These minute gaps are on the order of several μm to several hundred μm, depending on the size, rotation speed and viscosity coefficient of the lubricating oil of the fluid dynamic pressure bearing. F is the lubricating oil filled in these minute gaps. In addition, R
1 and R3 function as bearing clearances, and R2 and R4 function as lubricating oil sumps. Further, the tapered minute gap S communicating between the minute gap R1 and the atmosphere prevents the lubricating oil F filled in the fluid dynamic pressure bearing from leaking to the outside by utilizing the capillary phenomenon and the surface tension. It functions as a capillary seal.

【0017】ところで、潤滑油が充填された流体動圧軸
受においては、軸受剛性は温度が上昇すると軸受剛性が
低下する。これは、潤滑油の温度が上昇するとその粘性
係数が低下するためである。そこで、本発明において
は、円錐型シャフト部材1の樹脂層3の樹脂材料とスリ
ーブ部材4と5の樹脂材料を、その線膨張係数が等しい
か又は前者が後者より大きいものであるようにして選定
した。これによって、このような手段を採用していない
軸受隙間と比較して、高温域では軸受隙間R4の間隔の
狭まりかたが大きくなった。
In a fluid dynamic pressure bearing filled with lubricating oil, the bearing stiffness decreases as the temperature increases. This is because when the temperature of the lubricating oil increases, its viscosity coefficient decreases. Therefore, in the present invention, the resin material of the resin layer 3 of the conical shaft member 1 and the resin material of the sleeve members 4 and 5 are selected such that their linear expansion coefficients are equal or the former is larger than the latter. did. As a result, in the high-temperature region, the manner of narrowing the interval of the bearing gap R4 became larger as compared with the bearing gap that did not employ such means.

【0018】このようにして軸受隙間の間隔を従来装置
よりも大きく変化させることができるようになり、本発
明に係る液体動圧軸受においては温度により自動的に調
節できる幅が広がった。従って、この温度による軸受隙
間の間隔の自動的な調節の効果を利用して、軸受剛性を
よりダイナミックに自動的に調節することができる。即
ち高温域では、シャフト部材とスリーブ部材との間に形
成された軸受隙間はその間隔が狭くなり、軸受剛性は増
加する。この軸受剛性の増加は、粘性係数低下による軸
受剛性の減少を補償する大きさであり、従って高温域で
は所定の軸受剛性が保持される。一方、低温域では、シ
ャフト部材とスリーブ部材との間に形成された軸受隙間
はその間隔が広くなり、軸受剛性は低下する。この軸受
剛性の低下は、粘性係数上昇による軸受剛性の増加を補
償する大きさであり、従って低温域でも所定の軸受剛性
が保持される。即ち、広い温度範囲にわたって、潤滑油
の粘性係数による軸受剛性の変化を軸受隙間による軸受
剛性の変化で補償できるようになった。
As described above, the distance between the bearing gaps can be changed to be larger than that of the conventional apparatus, and the liquid dynamic pressure bearing according to the present invention has a wider range that can be automatically adjusted depending on the temperature. Therefore, by utilizing the effect of the automatic adjustment of the interval of the bearing gap by this temperature, the bearing stiffness can be more dynamically and automatically adjusted. That is, in a high temperature range, the gap between the bearing gap formed between the shaft member and the sleeve member becomes narrow, and the bearing rigidity increases. This increase in bearing stiffness compensates for a decrease in bearing stiffness due to a decrease in the viscosity coefficient, so that a predetermined bearing stiffness is maintained in a high temperature range. On the other hand, in a low temperature range, the gap between the bearing gap formed between the shaft member and the sleeve member is widened, and the bearing rigidity is reduced. This decrease in bearing stiffness is of a magnitude that compensates for an increase in bearing stiffness due to an increase in viscosity coefficient, and therefore, a predetermined bearing stiffness is maintained even in a low temperature range. That is, a change in bearing stiffness due to a viscosity coefficient of lubricating oil can be compensated for over a wide temperature range by a change in bearing stiffness due to a bearing gap.

【0019】本発明に係る第2実施例の円錐型流体動圧
軸受は、図3に断面図で示す如く、第1実施例の円錐型
流体動圧軸受と基本的には同じ構成のものである。両者
の違いは、環状凹部と環状凸部の形状にある。即ち、停
止時に円錐型シャフト部材1の支持部となる環状凸部3
aを、第1実施例においては断面四角形の環状帯とした
が、図3の第2実施例においては断面三角形の環状帯と
したものである。そして、これに対応する環状凹部も断
面三角形状のものとなり、これを形成する下側スリーブ
部材4の環状段部4aと上側スリーブ部材5の環状段部
5aも断面三角形状のものとなっている。このようにす
ることにより、動圧軸受の停止時には、環状凸部3aの
下面が第1実施例におけるよりも小さな接触面積で下側
スリーブ部材4の環状段部4aの上面に着座することに
なる。これによって、停止時に円錐型シャフト部材1の
下側の円錐面全面が下側スリーブ部材4の受け面と接
し、嵌めこみ状態で静止することが確実に防止された。
The conical fluid dynamic bearing of the second embodiment according to the present invention has basically the same configuration as the conical fluid dynamic bearing of the first embodiment, as shown in the sectional view of FIG. is there. The difference between the two is in the shape of the annular concave portion and the annular convex portion. That is, the annular convex portion 3 serving as the support portion of the conical shaft member 1 when stopped.
In the first embodiment, a is an annular band having a rectangular cross section, but in the second embodiment shown in FIG. 3, it is an annular band having a triangular cross section. The corresponding annular concave portion also has a triangular cross section, and the annular step portion 4a of the lower sleeve member 4 and the annular step portion 5a of the upper sleeve member 5 that form the concave portion also have a triangular cross section. . Thus, when the dynamic pressure bearing is stopped, the lower surface of the annular convex portion 3a is seated on the upper surface of the annular step portion 4a of the lower sleeve member 4 with a smaller contact area than in the first embodiment. . As a result, the entire lower conical surface of the conical shaft member 1 comes into contact with the receiving surface of the lower sleeve member 4 at the time of stoppage, and the stationary state in the fitted state is reliably prevented.

【0020】次に、円錐型シャフト部材1を樹脂成形加
工により製作する方法について説明する。製作に使用さ
れる金型は、スラスト動圧発生溝形成用凸条が形成され
た所定の内面形状の下型と、ラジアル動圧発生溝形成用
凸条が形成された所定の内面形状の上型である。先ず金
属心材2を下型に位置づけ且つ上型をその上に配置して
金型に装填した後、計量した液晶高分子材料を上型の充
填口から金型に充填する。次いで、この状態にした金型
をプレス機の上にセットして、加熱加圧して溶融した液
晶高分子材料の樹脂を金型と金属心材2との間隙にプラ
ンジャーにより流し込む。溶融した液晶高分子材料の樹
脂の流し込みが完了した後、上型を開き、製品を金型か
ら取り出す。上型には動圧発生溝形成用凸条が形成され
ているから、金型から取り出された製品は金属心材2に
所定の形状の樹脂部が形成され、且つ動圧発生溝Gとが
樹脂部の所定の場所に一体に形成された部材、即ち樹脂
製フランジ付シャフト部材である。スリーブ部材4と5
も、同様に樹脂成形加工により製作される。なお、本発
明に係る樹脂製軸受構成部材の樹脂成形加工は、コンプ
レッション成形に限られず、トランスファー成形、射出
成形、射出圧縮成形のいずれの方法も利用できる。
Next, a method of manufacturing the conical shaft member 1 by resin molding will be described. The mold used for the production has a lower mold having a predetermined inner surface shape on which a ridge for forming a thrust dynamic pressure generating groove is formed and a lower mold having a predetermined inner surface on which a ridge for forming a radial dynamic pressure generating groove is formed. Type. First, the metal core material 2 is positioned on the lower mold, and the upper mold is disposed thereon, and is charged into the mold. Then, the weighed liquid crystal polymer material is filled into the mold from the filling port of the upper mold. Next, the mold in this state is set on a press machine, and the resin of the liquid crystal polymer material melted by heating and pressing is poured into a gap between the mold and the metal core material 2 by a plunger. After the molten resin of the liquid crystal polymer material has been poured, the upper mold is opened and the product is taken out of the mold. Since the ridges for forming the dynamic pressure generating grooves are formed in the upper mold, the product taken out of the mold has a resin portion of a predetermined shape formed in the metal core material 2 and the dynamic pressure generating grooves G are formed of resin. A member integrally formed at a predetermined position of the portion, that is, a shaft member with a resin flange. Sleeve members 4 and 5
Is also manufactured by resin molding. In addition, the resin molding process of the resin bearing component according to the present invention is not limited to compression molding, and any method of transfer molding, injection molding, and injection compression molding can be used.

【0021】前記液晶高分子材料は、ポリヒドロキシ安
息香酸とビスフェノールとテレフタル酸との重合物を出
発原料とした重合物、ポリヒドロキシ安息香酸と6−ヒ
ドロキシナフトエ酸を出発原料とした重合物、或いはポ
リエチレンテレフタレートとポリヒドロキシ安息香酸を
出発原料とした重合物の中から選定した。これらの液晶
高分子材料の他に使える材料は、全芳香族ポリイミド樹
脂、ポリアミドイミド樹脂、ポリフタルアミド樹脂、ポ
リエーテルイミド樹脂、ポリイミド樹脂、PEEK樹
脂、ポリケトン樹脂、フッソ系樹脂等である。また、こ
れらの樹脂単体、又は樹脂マトリックスに、カーボン、
グラファイト、二酸化珪素等の無機フィラー類や、ウィ
スカー類、炭素繊維、ガラス繊維等の強化繊維を含めた
液晶高分子材料も利用可能である。
The liquid crystal polymer material is a polymer starting from a polymer of polyhydroxybenzoic acid, bisphenol and terephthalic acid, a polymer starting from polyhydroxybenzoic acid and 6-hydroxynaphthoic acid, or It was selected from polymers using polyethylene terephthalate and polyhydroxybenzoic acid as starting materials. Materials that can be used in addition to these liquid crystal polymer materials include wholly aromatic polyimide resins, polyamideimide resins, polyphthalamide resins, polyetherimide resins, polyimide resins, PEEK resins, polyketone resins, and fluorine-based resins. Also, these resins alone or resin matrix, carbon,
Liquid crystal polymer materials including inorganic fillers such as graphite and silicon dioxide, and reinforcing fibers such as whiskers, carbon fiber, and glass fiber can also be used.

【0022】以上詳述した本発明に係る円錐型流体動圧
軸受を3つのサンプルを製作し、その性能を調べたの
で、その結果を次に示す。第1サンプルは最大径部の直
径が7mmで円錐頂角が35度の円錐型流体動圧軸受、
第2サンプルは最大径部の直径が7mmで円錐頂角が4
5度の円錐型流体動圧軸受、そして第3サンプルは最大
径部の直径が7mmで円錐頂角が60度の円錐型流体動
圧軸受である。動圧発生溝は、溝角18度、溝深さ6μ
m、溝幅比0.5のヘリングボーン溝とした。片側クリ
アランス(側面に垂直方向)を3.5μmとした。円錐型
シャフト部材1はステンレス製の円柱の周りに液晶高分
子材料に直径5μmの石英ビーズを混合したものを射出
成形によって製作した。尚、潤滑油としてはエステル系
合成油を用いた。上記3つの液体動圧軸受を回転数50
00rpmで回転させたところ、アキシャル負荷とラジ
アル負荷は第1サンプルでは90gと80g、第2サン
プルでは95gと50g、そして第3サンプルは105
gと30gであった。このように、本発明によれば、ア
キシャル負荷とラジアル負荷を自由に選択して、様々な
流体動圧軸受を提供できる。
Three samples of the conical fluid dynamic bearing according to the present invention described in detail above were manufactured, and their performances were examined. The results are shown below. The first sample is a conical fluid dynamic bearing with a maximum diameter of 7 mm and a cone apex angle of 35 degrees.
The second sample has a maximum diameter of 7 mm and a cone apex of 4 mm.
The 5 degree conical fluid dynamic bearing, and the third sample is a conical fluid dynamic bearing having a maximum diameter of 7 mm and a cone apex angle of 60 degrees. The dynamic pressure generating groove has a groove angle of 18 degrees and a groove depth of 6μ.
m, a herringbone groove having a groove width ratio of 0.5. The clearance on one side (perpendicular to the side) was 3.5 μm. The conical shaft member 1 was manufactured by injection molding a mixture of a liquid crystal polymer material and quartz beads having a diameter of 5 μm around a stainless steel cylinder. Note that an ester-based synthetic oil was used as the lubricating oil. The above three liquid dynamic pressure bearings are rotated at 50 rpm.
When rotated at 00 rpm, the axial and radial loads were 90 g and 80 g for the first sample, 95 g and 50 g for the second sample, and 105 g for the third sample.
g and 30 g. As described above, according to the present invention, various fluid dynamic bearings can be provided by freely selecting the axial load and the radial load.

【0023】[0023]

【発明の効果】本発明に係る円錐型流体動圧軸受は、そ
の主要構成部材である円錐型シャフト部材及びそのスリ
ーブ部材は樹脂加工により容易に製作可能な構造である
ので、安く大量に製作することが可能となった。また、
本発明に係る円錐型流体動圧軸受は紡錘体状の円錐型シ
ャフト部材とこの円錐型シャフト部材を受けるスリーブ
部材とを主要構成部材とするものであるから、従来のも
のに比べて才差運動が生じ難くなった。
In the conical fluid dynamic bearing according to the present invention, the conical shaft member and the sleeve member, which are the main components thereof, have a structure that can be easily manufactured by resin processing. It became possible. Also,
The conical fluid dynamic bearing according to the present invention includes a spindle-shaped conical shaft member and a sleeve member for receiving the conical shaft member as main constituent members. Became difficult to occur.

【0024】上述の効果を奏するとともに、ラジアル負
荷及びアキシャル負荷の2つを支えることができるとい
う機能上の特徴を有する円錐型流体動圧軸受は小型スピ
ンドルモータの軸受に最適である。従って、本発明に係
る円錐型流体動圧軸受を備えたスピンドルモータは更な
る小型化と薄型化が可能となり、このスピンドルモータ
を回転体の駆動源とするハードディスクドライブ装置の
薄型化も可能となった。
A conical fluid dynamic bearing having the above-mentioned effects and a functional characteristic of being able to support two loads, a radial load and an axial load, is most suitable as a bearing for a small spindle motor. Therefore, the spindle motor provided with the conical fluid dynamic bearing according to the present invention can be further reduced in size and thickness, and the hard disk drive device using the spindle motor as a driving source of the rotating body can be reduced in thickness. Was.

【0025】また、本発明においては、停止中は円錐型
シャフト部材の最大径部近傍に設けた環状凸部の下面が
スリーブ部材の対向する部分に設けられた環状凹部の上
面に着座するようにしたので、円錐型シャフト部材がス
リーブ部材に嵌めこみ状態で静止することがなくなっ
た。従って、起動時も停止時も大きな負荷が発生するこ
とがなくなり、また起動不能に陥ることもなくなった。
それ故に、本発明に係る円錐型流体動圧軸受を備えたス
ピンドルモータは、モータの起動時もスムーズな回転を
開始し、且つ軸受の摩擦も抑制されたので、長寿命化が
実現できた。
In the present invention, the lower surface of the annular convex portion provided near the maximum diameter portion of the conical shaft member is seated on the upper surface of the annular concave portion provided at the opposing portion of the sleeve member during stop. As a result, the conical shaft member does not stop in a state of being fitted into the sleeve member. Therefore, a large load does not occur at the time of starting and stopping, and the starting cannot be prevented.
Therefore, the spindle motor provided with the conical fluid dynamic pressure bearing according to the present invention starts smooth rotation even when the motor is started, and the friction of the bearing is suppressed, so that a long life can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるスピンドルモータの一実施例の
断面図である。
FIG. 1 is a sectional view of an embodiment of a spindle motor according to the present invention.

【図2】隙間と動圧発生溝を誇張して示した本発明にか
かる円錐型流体動圧軸受の第1実施例の断面図である。
FIG. 2 is a sectional view of a first embodiment of a conical fluid dynamic pressure bearing according to the present invention, in which a gap and a dynamic pressure generating groove are exaggerated.

【図3】隙間と動圧発生溝を誇張して示した本発明にか
かる円錐型流体動圧軸受の第2実施例の断面図である。
FIG. 3 is a sectional view of a second embodiment of the conical fluid dynamic pressure bearing according to the present invention, in which a gap and a dynamic pressure generating groove are exaggerated.

【図4】従来の円錐型流体動圧軸受の断面図である。FIG. 4 is a sectional view of a conventional conical fluid dynamic pressure bearing.

【符号の説明】[Explanation of symbols]

1 円錐型シャフト部材 2 金属心材 3 樹脂層 3a 環状凸部 4 下側スリーブ部材 4a 下側環状段部 4b 底部 5 上側スリーブ部材 5a 上側環状段部 6 カップ状ハブ 7 ロータ磁石 8 ステータコイル 11 円錐型シャフト部材 11a テーパ状外周面 12 固定軸 13 スリーブ 13a テーパ状内周面 14、15 永久磁石 16 ロータ磁石 17 ステータコイル 18 下側基板 19 上側基板 F 潤滑油 G 動圧発生溝 R1、R2、R3、R4 微小隙間 S キャピラリーシール DESCRIPTION OF SYMBOLS 1 Conical shaft member 2 Metal core material 3 Resin layer 3a Annular convex part 4 Lower sleeve member 4a Lower annular step part 4b Bottom part 5 Upper sleeve member 5a Upper annular step part 6 Cup-shaped hub 7 Rotor magnet 8 Stator coil 11 Conical type Shaft member 11a Tapered outer peripheral surface 12 Fixed shaft 13 Sleeve 13a Tapered inner peripheral surface 14, 15 Permanent magnet 16 Rotor magnet 17 Stator coil 18 Lower substrate 19 Upper substrate F Lubricating oil G Dynamic pressure generating grooves R1, R2, R3, R4 Small gap S Capillary seal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兵部 行遠 東京都豊島区西池袋1丁目18番2号 株式 会社柿崎製作所内 Fターム(参考) 3J011 AA04 BA11 CA02 SC01 5H607 AA03 BB01 BB17 BB25 DD03 EE10 GG12 KK07  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yukien Hyobu 1-18-2 Nishiikebukuro, Toshima-ku, Tokyo F-term in Kakizaki Manufacturing Co., Ltd. (reference) 3J011 AA04 BA11 CA02 SC01 5H607 AA03 BB01 BB17 BB25 DD03 EE10 GG12 KK07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】金属心材に樹脂層が施された紡錘体状の円
錐型シャフト部材とこの円錐型シャフト部材が回転自在
に嵌合するスリーブ部材によって構成され、且つ軸受隙
間を形成する前記円錐型シャフト部材のテーパ状外周面
と前記スリーブ部材のテーパ状内周面のいずれか一方に
動圧発生溝が形成された円錐型流体動圧軸受。
1. A conical shaft member having a spindle shape in which a resin layer is applied to a metal core material and a sleeve member in which the conical shaft member is rotatably fitted, and wherein the conical member forms a bearing gap. A conical fluid dynamic bearing in which a dynamic pressure generating groove is formed on one of a tapered outer peripheral surface of a shaft member and a tapered inner peripheral surface of the sleeve member.
【請求項2】前記紡錘体状の円錐型シャフト部材の最大
径部近傍に環状凸部を設け、且つこれに対向する前記ス
リーブ部材の部分に環状凹部を設け、停止時には前記環
状凸部の下面を前記環状凹部の上面に着座させるように
したことを特徴とする請求項1の円錐型流体動圧軸受。
2. An annular convex portion is provided in the vicinity of a maximum diameter portion of the spindle-shaped conical shaft member, and an annular concave portion is provided in a portion of the sleeve member opposed to the annular convex portion. 2. A conical fluid dynamic bearing according to claim 1, wherein said bearing is seated on an upper surface of said annular recess.
【請求項3】前記円錐型シャフト部材と前記スリーブ部
材は樹脂材料で成形加工して製作されたものであること
を特徴とする請求項1の円錐型流体動圧軸受。
3. The conical fluid dynamic bearing according to claim 1, wherein said conical shaft member and said sleeve member are manufactured by molding a resin material.
【請求項4】前記円錐型シャフト部材の樹脂層の樹脂材
料と前記スリーブ部材の樹脂材料は、その線膨張係数は
等しいか又は前者が後者より大きいことを特徴とする請
求項1の円錐型流体動圧軸受。
4. The conical fluid according to claim 1, wherein the resin material of the resin layer of the conical shaft member and the resin material of the sleeve member have the same linear expansion coefficient or the former is larger than the latter. Dynamic pressure bearing.
【請求項5】前記樹脂層の樹脂材料は液晶高分子材料で
あることを特徴とする請求項1の円錐型流体動圧軸受。
5. The conical fluid dynamic pressure bearing according to claim 1, wherein the resin material of said resin layer is a liquid crystal polymer material.
【請求項6】請求項1の円錐型流体動圧軸受によってロ
ータをステータに回転自在に支持したスピンドルモー
タ。
6. A spindle motor wherein a rotor is rotatably supported on a stator by the conical fluid dynamic bearing of claim 1.
JP11196968A 1999-07-12 1999-07-12 Conical hydrodynamic pressure bearing and spindle motor Pending JP2001027226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11196968A JP2001027226A (en) 1999-07-12 1999-07-12 Conical hydrodynamic pressure bearing and spindle motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11196968A JP2001027226A (en) 1999-07-12 1999-07-12 Conical hydrodynamic pressure bearing and spindle motor

Publications (1)

Publication Number Publication Date
JP2001027226A true JP2001027226A (en) 2001-01-30

Family

ID=16366654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11196968A Pending JP2001027226A (en) 1999-07-12 1999-07-12 Conical hydrodynamic pressure bearing and spindle motor

Country Status (1)

Country Link
JP (1) JP2001027226A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036113A1 (en) * 2001-10-26 2003-05-01 Seagate Technology, Llc Fluid dynamic bearing thermal compensation
WO2004001740A2 (en) * 2002-06-21 2003-12-31 Seagate Technology Llc Fluid dynamic bearing secondary capillary seal reservoir
WO2005036001A1 (en) * 2003-10-14 2005-04-21 Ntn Corporation Dynamic pressure bearing device
DE102005061853A1 (en) * 2005-12-23 2007-07-05 Minebea Co., Ltd. spindle motor
CN100345359C (en) * 2004-01-14 2007-10-24 三星电子株式会社 Spindle motor for disk drive
JP2010216639A (en) * 2009-03-19 2010-09-30 Daido Metal Co Ltd Bearing device of compressor for refrigerator
US20100277831A1 (en) * 2009-05-02 2010-11-04 Efinger Wolfgang Fluid dynamic bearing system
DE102016003666A1 (en) * 2016-03-30 2017-10-05 Minebea Co., Ltd. Fluid dynamic storage system
CN113339404A (en) * 2021-05-26 2021-09-03 河南科技大学 Grease lubrication one-way thrust conical sliding bearing
CN113339405A (en) * 2021-05-26 2021-09-03 河南科技大学 Thin oil lubrication one-way thrust conical sliding bearing

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2397103A (en) * 2001-10-26 2004-07-14 Seagate Technology Llc Fluid dynamic bearing thermal compensation
KR100933826B1 (en) 2001-10-26 2009-12-24 시게이트 테크놀로지 엘엘씨 Thermally compensated hydrodynamic bearings
WO2003036113A1 (en) * 2001-10-26 2003-05-01 Seagate Technology, Llc Fluid dynamic bearing thermal compensation
GB2397103B (en) * 2001-10-26 2005-06-01 Seagate Technology Llc Fluid dynamic bearing thermal compensation
CN100358033C (en) * 2002-06-21 2007-12-26 希捷科技有限公司 Fluid dynamic bearing secondary capillary seal reservoir
WO2004001740A2 (en) * 2002-06-21 2003-12-31 Seagate Technology Llc Fluid dynamic bearing secondary capillary seal reservoir
WO2004001740A3 (en) * 2002-06-21 2004-02-12 Seagate Technology Llc Fluid dynamic bearing secondary capillary seal reservoir
CN100458197C (en) * 2003-10-14 2009-02-04 Ntn株式会社 Dynamic pressure bearing device
JP4583745B2 (en) * 2003-10-14 2010-11-17 Ntn株式会社 Hydrodynamic bearing device
JP2005121052A (en) * 2003-10-14 2005-05-12 Ntn Corp Dynamic pressure bearing device
US7591591B2 (en) 2003-10-14 2009-09-22 Ntn Corporation Dynamic bearing device
WO2005036001A1 (en) * 2003-10-14 2005-04-21 Ntn Corporation Dynamic pressure bearing device
US7529063B2 (en) 2004-01-14 2009-05-05 Samsung Electronics Co., Ltd. Bearing support for a spindle motor of a disk drive
CN100345359C (en) * 2004-01-14 2007-10-24 三星电子株式会社 Spindle motor for disk drive
DE102005061853A1 (en) * 2005-12-23 2007-07-05 Minebea Co., Ltd. spindle motor
JP2010216639A (en) * 2009-03-19 2010-09-30 Daido Metal Co Ltd Bearing device of compressor for refrigerator
US20100277831A1 (en) * 2009-05-02 2010-11-04 Efinger Wolfgang Fluid dynamic bearing system
US8562220B2 (en) * 2009-05-02 2013-10-22 Minebea Co., Ltd. Fluid dynamic bearing system
DE102016003666A1 (en) * 2016-03-30 2017-10-05 Minebea Co., Ltd. Fluid dynamic storage system
CN113339404A (en) * 2021-05-26 2021-09-03 河南科技大学 Grease lubrication one-way thrust conical sliding bearing
CN113339405A (en) * 2021-05-26 2021-09-03 河南科技大学 Thin oil lubrication one-way thrust conical sliding bearing
CN113339405B (en) * 2021-05-26 2023-03-14 河南科技大学 Thin oil lubrication one-way thrust conical sliding bearing
CN113339404B (en) * 2021-05-26 2023-03-14 河南科技大学 Grease lubrication one-way thrust conical sliding bearing

Similar Documents

Publication Publication Date Title
US8267588B2 (en) Fluid lubrication bearing device and method of manufacturing the same
US7576947B2 (en) Fluid dynamic pressure bearing device, spindle motor provided with fluid dynamic pressure bearing device, and recording disk drive device
KR940002802B1 (en) Oil impregnated sintered bearing
JP2001187920A (en) Spindle motor
JPH01120418A (en) Dynamic pressure type fluid bearing device
JP2000004557A (en) Spindle motor providing aerodynamic pressure bearing and rotating device using the motor as drive source
JP2001027226A (en) Conical hydrodynamic pressure bearing and spindle motor
JP2003035312A (en) Motor equipped with single and conical dynamic pressure fluid bearing balanced with magnetic attraction on end of shaft
JP2007024146A (en) Dynamic pressure bearing device
KR20040064097A (en) Kinetic Pressure Bearing Motor
JPH07332353A (en) Dynamic pressurizing bearing
US20050220378A1 (en) Bearing unit and rotation and drive device
WO2005098250A1 (en) Dynamic pressure bearing device
JP2001027225A (en) Hydrodynamic pressure bearing made of resin, and spindle motor
JP2009108877A (en) Fluid bearing device and its manufacturing method
JPH07310733A (en) Dynamic pressure bearing device
US20060147133A1 (en) Fluid Dynamic Bearing, Spindle Motor, Recording Disk Driving Device, and Method of Manufacturing Fluid Dynamic Bearing
JPS6194215A (en) Tape guide drum device
JP2008032081A (en) Fluid bearing device
JP3782918B2 (en) Hydrodynamic bearing unit
KR100687573B1 (en) Fluid dynamic motor and fabricating method therefof
JPH03181612A (en) Bearing device
JP2008133965A (en) Fluid dynamic pressure bearing and spindle motor
JP2000179541A (en) Liquid dynamic pressure bearing, and spindle motor
JP2002174226A (en) Fluid dynamic pressure bearing motor