JP2001025459A - Ophthalmic measuring device - Google Patents

Ophthalmic measuring device

Info

Publication number
JP2001025459A
JP2001025459A JP11199580A JP19958099A JP2001025459A JP 2001025459 A JP2001025459 A JP 2001025459A JP 11199580 A JP11199580 A JP 11199580A JP 19958099 A JP19958099 A JP 19958099A JP 2001025459 A JP2001025459 A JP 2001025459A
Authority
JP
Japan
Prior art keywords
eye
light
unit
examined
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11199580A
Other languages
Japanese (ja)
Other versions
JP2001025459A5 (en
JP4164199B2 (en
Inventor
Tomoyuki Iwanaga
知行 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19958099A priority Critical patent/JP4164199B2/en
Publication of JP2001025459A publication Critical patent/JP2001025459A/en
Publication of JP2001025459A5 publication Critical patent/JP2001025459A5/ja
Application granted granted Critical
Publication of JP4164199B2 publication Critical patent/JP4164199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform an alignment at a high precision from an initial positioning to a fine adjustment between an eye to be examined examining means and an eye to be examined without requiring the skill of an operator. SOLUTION: An index image 16a' moves upward when a distance between an eye E to be examined and an eye to be examined examining means is small, and moves downward when the distance is large. On the contrary, an index image 16b' moves downward when a distance between the eye E to be examined and the eye to be examined examining means is small, and moves upward when the distance is large. The location of an index 16c' hardly changes. Thus, after a rough positioning for the eye E to be examined and the eye to be examined examining means is completed, when the light of a light source for the measurement is emitted, if at least one index image from among the index images 16a', 16b' and 16c' is detected, the distance between the eye to be examined and the examining means is changed by controlling an alignment means by an operation processing section, and which index image has been detected is specified first. By this action, the moving direction of the eye to be examined examining means to the eye to be examined is determined. Then, the eye to be examined examining means is moved in that direction, and at least two index images from among the index images 16a', 16b' and 16c' are detected, and the alignment is performed by controlling the alignment means in such a manner that the two index images may be horizontally lined up.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検眼固有の例え
ば眼屈折力等の眼科特性を測定する眼科測定装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ophthalmologic measuring apparatus for measuring an ophthalmologic characteristic such as an eye refractive power inherent to an eye to be examined.

【0002】[0002]

【従来の技術】従来から眼科測定装置は、被検眼を観察
しながら検査測定手段と被検眼との位置合わせを行っ
て、眼屈折力や眼圧、眼底像、眼底血流量等の被検眼の
固有情報を得ている。これらの眼科測定装置では、検査
測定手段と被検眼との位置合わせを行う際に、検者はテ
レビモニタに映し出された被検眼の前眼部像を観察しな
がら、操作手段を操作して検査測定手段と被検眼との位
置の粗調整を行った後で、被検眼の角膜に投影された指
標光束の角膜反射像を頼りに精密な位置合わせを行って
いるが、このような操作は非常に煩雑であり、熟練を要
する作業となる。
2. Description of the Related Art Conventionally, an ophthalmologic measuring apparatus adjusts the position of an examination / measuring unit and an eye while observing the eye to be inspected, and measures the eye refractive power, intraocular pressure, fundus image, fundus blood flow and the like. Obtain unique information. In these ophthalmic measurement apparatuses, when aligning the inspection and measurement means with the eye to be inspected, the examiner operates the operation means while observing the anterior eye image of the eye to be inspected displayed on the television monitor. After the coarse adjustment of the position between the measuring means and the eye to be examined, precise positioning is performed by relying on the corneal reflection image of the index light beam projected on the cornea of the eye to be examined. This is a complicated and labor-intensive operation.

【0003】このために最近では、操作者がテレビモニ
タ上の被検眼の前眼部像を観察しながら操作手段を操作
して、被検眼がほぼ観察視野の中心付近に入って装置と
被検眼との作動距離が所定範囲内になると、角膜反射像
を光電的に検知し電動架台を制御して検査手段を移動
し、自動的に精密な位置合わせを行う眼科測定装置が開
示されている。更に、光電的に得られた前眼部像から被
検眼の概略の位置を検出し、電動架台を制御して検査測
定手段と被検眼との初期位置の粗調整を自動的に行う眼
科測定装置も提案されている。
For this reason, recently, an operator operates operating means while observing an anterior eye image of an eye to be inspected on a television monitor, and the eye to be inspected is almost in the vicinity of the center of the observation field of view and the apparatus and the eye to be inspected. An ophthalmologic measurement apparatus is disclosed in which when the working distance between the camera and the camera falls within a predetermined range, the corneal reflection image is photoelectrically detected, the electric gantry is controlled, the inspection means is moved, and the precise positioning is automatically performed. Further, an ophthalmologic measuring apparatus which detects the approximate position of the eye to be inspected from the anterior eye image obtained photoelectrically and controls the motorized gantry to automatically coarsely adjust the initial positions of the inspection and measuring means and the eye to be inspected. Has also been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述の従
来例の眼科測定装置においては、検査測定手段と被検眼
との初期位置が大きくずれていると、被検眼の角膜から
の反射光を受光することができないという問題がある。
このような状態でも角膜反射光を受光できるように構成
するためには、明るい対物レンズを使用しなければなら
ないので、装置が大型化してコストが割高になる。ま
た、角膜反射光を利用せずに被検眼の前眼部像から瞳孔
位置を検出し、これを基に電動架台を制御して初期位置
合わせを行う装置では、瞳孔中心と角膜中心とが偏心し
ている被検眼の場合には、初期位置を瞳孔中心に合わせ
ても角膜からの反射光を受光できないという問題点があ
る。
However, in the above-mentioned conventional ophthalmologic measuring apparatus, if the initial position between the inspection and measuring means and the eye to be examined is largely shifted, reflected light from the cornea of the eye to be examined is received. There is a problem that can not be.
In order to make it possible to receive the corneal reflected light even in such a state, a bright objective lens must be used. Therefore, the size of the apparatus is increased and the cost is increased. Also, in a device that detects the pupil position from the anterior segment image of the eye to be examined without using corneal reflected light and controls the electric gantry based on the pupil position, the center of the pupil and the center of the cornea are deviated. In the case of the eye to be examined, there is a problem that the reflected light from the cornea cannot be received even if the initial position is set to the center of the pupil.

【0005】本発明の目的は、上述の問題点を解消し、
操作者の熟練を必要とせずに被検眼検査測定部と被検眼
との初期位置合わせから微調整までを行って精度良くア
ライメントすることができる眼科測定装置を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide an ophthalmologic measuring apparatus capable of performing accurate alignment from initial position adjustment to fine adjustment of an eye to be inspected / measured part and an eye to be inspected without requiring skill of an operator.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る眼科測定装置は、被検眼に測定光束を照
射し、その反射光を基にして被検眼状態を測定するため
の測定手段と、該測定手段を前記被検眼に対する位置合
わせのために駆動する駆動手段と、被検眼の角膜に位置
合わせ用の光束を投影する投影手段と、角膜から反射さ
れた前記投影手段の光束を受光する受光手段と、被検眼
が左目か右目かを検知する左右眼検知手段と、前記受光
手段により前記投影手段の光束の角膜反射光が検出され
なかった場合に、前記左右眼検知手段で検知した検知情
報に応じた方向に前記駆動手段を駆動する駆動制御手段
とを有することを特徴とする。
An ophthalmological measuring apparatus according to the present invention for achieving the above object irradiates a measuring light beam to a subject's eye and measures the condition of the subject's eye based on the reflected light. Means, driving means for driving the measuring means for positioning with respect to the eye to be examined, projection means for projecting a light beam for positioning onto the cornea of the eye to be examined, and light flux of the projection means reflected from the cornea. Light receiving means for receiving light, left and right eye detecting means for detecting whether the subject's eye is the left eye or right eye, and detecting by the left and right eye detecting means when the corneal reflected light of the light beam of the projection means is not detected by the light receiving means Drive control means for driving the drive means in a direction corresponding to the detected information.

【0007】また、本発明に係る眼科測定装置は、被検
眼に測定光束を照射し、その反射光を基にして被検眼状
態を測定するための測定手段と、被検眼の瞳孔部を含む
前眼部像を撮像する撮像手段と、前記測定手段と前記撮
像手段とを前記被検眼に対する位置合わせのために駆動
する駆動手段と、被検眼の角膜に位置合わせ用の光束を
投影する投影手段と、角膜から反射された前記投影手段
の光束を分割すると共にそれぞれ異なる方向に偏向させ
て前記撮像手段に導く光偏向手段とを有し、前記撮像手
段により検出された瞳孔情報或いは前記投影手段によっ
て反射された角膜反射光に基づいて前記駆動手段を駆動
する眼科測定装置であって、被検眼が左目か右目かを検
知する左右眼検知手段と、前記撮像手段により前記投影
手段の光束の角膜反射光が検出されなかった場合に、前
記左右眼検知手段で検知した検知情報に応じた方向に前
記駆動手段とを駆動する駆動制御手段を有することを特
徴とする。
Further, the ophthalmologic measuring apparatus according to the present invention irradiates a measuring light beam to the eye to be inspected, and measures the state of the eye based on the reflected light. Imaging means for capturing an eye image, driving means for driving the measurement means and the imaging means for alignment with the eye to be examined, and projection means for projecting a light beam for alignment onto the cornea of the eye to be examined Light deflecting means for dividing the light flux of the projection means reflected from the cornea and deflecting the luminous flux in different directions to guide the light to the imaging means, wherein pupil information detected by the imaging means or reflected by the projection means An ophthalmologic measurement device that drives the driving unit based on the reflected corneal reflected light, a left and right eye detection unit that detects whether the subject's eye is a left eye or a right eye, and a cornea of the light flux of the projection unit that is obtained by the imaging unit. If the Shako is not detected, characterized by having a drive control means for driving said drive means in a direction corresponding to the detection information detected by the left and right eyes detecting means.

【0008】[0008]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は第1の実施例の眼科測定装置の
構成図を示し、被検眼Eに対向してダイクロイックミラ
ー1が傾斜して配置され、被検眼Eとダイクロイックミ
ラー1の間の光軸外位置に、被検眼Eの前眼部を照明す
るための近赤外光を発するLED等の前眼部照明用光源
2が配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 shows a configuration diagram of an ophthalmologic measuring apparatus according to a first embodiment, in which a dichroic mirror 1 is arranged obliquely so as to face an eye E to be examined, and at a position off the optical axis between the eye E and the dichroic mirror 1. An anterior segment illumination light source 2 such as an LED that emits near-infrared light for illuminating the anterior segment of the eye E is disposed.

【0009】ダイクッロックミラー1の透過方向の光路
O1上には眼屈折力測定用対物レンズ3、孔あきミラー
4、投影絞り5、投影レンズ6、指標板7、前眼部照明
用光源2よりも波長が数10nm長い近赤外光を発する
測定用光源8が順次に配列されている。ダイクロイック
ミラー1は測定用光源8が発する波長光の大部分を透過
してその一部分を反射し、照明用光源2が発する波長光
を反射する特性を有している。そして、測定用対物レン
ズ3から測定用光源8までの部材により、被検眼に測定
光束を照射する眼屈折力測定光投影光学系が構成されて
いる。なお、後述するが本実施例では、この測定光投影
光学系が被検眼角膜に位置合わせのための光束を投影す
る手段にも兼用されている。
On the optical path O1 in the transmission direction of the dichroic mirror 1, an objective lens 3 for measuring an eye refractive power, a perforated mirror 4, a projection stop 5, a projection lens 6, an index plate 7, and a light source 2 for anterior segment illumination. The measurement light sources 8 that emit near-infrared light whose wavelength is longer by several tens of nanometers are sequentially arranged. The dichroic mirror 1 has a characteristic of transmitting most of the wavelength light emitted from the measurement light source 8 and reflecting a part of the wavelength light, and reflecting the wavelength light emitted from the illumination light source 2. The components from the measurement objective lens 3 to the measurement light source 8 constitute an eye refractive power measurement light projection optical system that irradiates the eye to be measured with a measurement light beam. In this embodiment, as will be described later, the measuring light projection optical system is also used as a unit for projecting a light beam for positioning on the cornea of the eye to be examined.

【0010】また、孔あきミラー4の反射方向には、光
軸外に6個の開口を有する6孔絞り9が配置され、その
後方に6分割プリズム10、リレーレンズ11、CCD
カメラなどの撮像素子12が順次に配列されている。そ
して、測定用対物レンズ3から撮像素子12により、眼
屈折力測定受光光学系が構成されている。そして、先の
測定光投影光学系とこの測定受光光学系とにより被検眼
状態を測定するための測定手段が構成されている。
In the direction of reflection of the perforated mirror 4, a six-hole stop 9 having six apertures outside the optical axis is arranged, and a six-segment prism 10, a relay lens 11, a CCD
An image sensor 12 such as a camera is sequentially arranged. The measuring objective lens 3 and the imaging element 12 constitute an optical system for measuring eye refractive power. The measuring light projecting optical system and the measuring light receiving optical system constitute measuring means for measuring the state of the eye to be inspected.

【0011】ダイクロイックミラー1の反射方向には、
前眼部観察用対物レンズ13、可視光を透過し近赤外光
を反射する特性を有するダイクロイックミラー14が配
置され、このダイクロイックミラー14の反射方向の光
路O2上には、楔プリズム15a、15bが接着された
3つの開口部16a、16b、16cを有する3孔絞り
板16が、図2に示すように光路O2に挿脱自在に配置
され、その背後には結像レンズ17、被検眼Eの前眼部
付近と略共役で瞳孔部を含む前眼部を撮像するCCDカ
メラ等の受光素子或いは撮像手段である撮像素子18が
配置されている。そして、観察用対物レンズ13から撮
像素子18までの部材により前眼部観察光学系が構成さ
れている。
In the direction of reflection of the dichroic mirror 1,
An anterior ocular segment observation objective lens 13 and a dichroic mirror 14 having a characteristic of transmitting visible light and reflecting near-infrared light are arranged. On an optical path O2 in a reflection direction of the dichroic mirror 14, wedge prisms 15a and 15b are provided. A three-hole stop plate 16 having three openings 16a, 16b, 16c to which are adhered is disposed so as to be freely inserted into and removed from the optical path O2 as shown in FIG. A light receiving element such as a CCD camera or an image pickup element 18 as an image pickup means for picking up an image of the anterior eye including the pupil in substantially conjugate with the vicinity of the anterior eye is arranged. The members from the observation objective lens 13 to the image sensor 18 constitute an anterior ocular segment observation optical system.

【0012】ここで、楔プリズム15a、15bには測
定用光源8が発する波長光を透過して、照明用光源2が
発する波長光を反射する特性の多層膜が蒸着されてお
り、楔プリズム15aは3孔絞り板16の開口部16a
を通過する光束を紙面に対して奥方向に、楔プリズム1
5bは3孔絞り板16の開口部16bを通過する光束を
紙面に対して手前方向へ偏向する機能を有している。こ
のように、測定用光源8による角膜反射光は、異なる方
向に偏向されて撮像素子18へ至ることになる。
The wedge prisms 15a and 15b are coated with a multilayer film having a property of transmitting wavelength light emitted from the measurement light source 8 and reflecting wavelength light emitted from the illumination light source 2. Denotes an opening 16a of the three-hole aperture plate 16.
The light beam passing through the wedge prism 1
Reference numeral 5b has a function of deflecting a light beam passing through the opening 16b of the three-hole aperture plate 16 toward the front of the drawing. As described above, the corneal reflection light from the measurement light source 8 is deflected in different directions and reaches the image sensor 18.

【0013】また、ダイクロイックミラー14の透過方
向の光路03上には、ミラー19、被検眼Eが固視する
ための公知の固視標投影光学系20が配置されている。
そして、前眼部観察光学系、固視標投影光学系20、測
定光投影光学系、測定受光光学系等により被検眼検査手
段が構成されており、この被検眼検査手段は図示しない
駆動手段である電動モータ等によって、3軸方向に移動
可能な電動架台の上に載置されている。
On the optical path 03 in the transmission direction of the dichroic mirror 14, a mirror 19 and a known fixation target projection optical system 20 for the subject E to fixate are arranged.
The anterior eye observation optical system, the fixation target projection optical system 20, the measuring light projecting optical system, the measuring light receiving optical system, and the like constitute an eye inspection unit. The eye inspection unit is a driving unit (not shown). It is mounted on an electric gantry movable in three axial directions by an electric motor or the like.

【0014】撮像素子12及び撮像素子18の出力は、
それぞれA/D変換器21及びA/D変換器22に接続
され、A/D変換器21及びA/D変換器22の出力
は、それぞれ記憶手段23及び記憶手段24に接続され
ると共に、装置全体の制御を行う演算処理部25に接続
されている。また、演算処理部25の出力は測定用光源
8、モータ等の駆動手段により電気的に被検眼検査手段
を電気的に3軸方向に移動するアライメント手段26、
電動架台に取り付けられアライメント手段26の位置を
検知することによって、被検眼Eの左右を検知するマイ
クロスイッチ等から成る左右眼検知手段27に接続され
ている。そして、測定開始やアライメント手段26を手
動で制御するための操作部28の出力が演算処理部25
に接続されており、演算処理部25の出力はD/A変換
器29を介してテレビモニタ30に接続されている。
The outputs of the image sensor 12 and the image sensor 18 are
The outputs of the A / D converter 21 and the A / D converter 22 are respectively connected to the A / D converter 21 and the A / D converter 22 and connected to the storage unit 23 and the storage unit 24, respectively. It is connected to an arithmetic processing unit 25 that performs overall control. The output of the arithmetic processing unit 25 is an alignment unit 26 that electrically moves the eye examination unit in three axial directions by a driving unit such as a light source 8 for measurement and a motor.
It is attached to a motorized gantry, and is connected to left and right eye detection means 27 including a microswitch for detecting the left and right of the eye E by detecting the position of the alignment means 26. The output of the operation unit 28 for starting measurement or manually controlling the alignment means 26 is output to the arithmetic processing unit 25.
The output of the arithmetic processing unit 25 is connected to a television monitor 30 via a D / A converter 29.

【0015】このような構成において、被検眼Eが照明
用光源2により照明されると、被検眼Eの前眼部周辺か
らの反射散乱光はダイクロイックミラー1で反射し、観
察用対物レンズ13により略平行光とされ、ダイクロイ
ックミラー14を反射し、3孔絞り板16の開口部16
cを通り、結像レンズ17によりCCDカメラ等の撮像
素子18上に結像する。撮像素子18の出力信号はA/
D変換器21によってデジタル信号に変換され、演算処
理部25、D/A変換器29を介して、テレビモニタ3
0上に前眼部像E’が映し出される。
In such a configuration, when the eye E is illuminated by the illumination light source 2, the reflected and scattered light from the periphery of the anterior segment of the eye E is reflected by the dichroic mirror 1 and is reflected by the observation objective lens 13. The light is converted into substantially parallel light, reflected by the dichroic mirror 14,
The light passes through c and is imaged on an imaging element 18 such as a CCD camera by an imaging lens 17. The output signal of the image sensor 18 is A /
The digital signal is converted into a digital signal by the D converter 21, and is transmitted to the television monitor 3 via the arithmetic processing unit 25 and the D / A converter 29.
An anterior ocular segment image E ′ is projected on 0.

【0016】検者はテレビモニタ30上の前眼部像E’
を見ながら、操作部28に設けた電動架台操作スイッチ
を用いて、被検眼検査手段を上下・左右・前後の3方向
に移動し、被検眼Eとの位置合わせを行う。
The examiner views the anterior eye image E ′ on the television monitor 30.
Using the electric gantry operation switch provided on the operation unit 28, the examiner moves the eye to be inspected in three directions of up, down, left, right, front and back, and aligns the eye with the eye E.

【0017】被検眼Eと被検眼検査手段との概略の位置
合わせが終了すると、測定用光源8から射出した光束が
指標板7を照明し、指標板7により制限された光束は投
影レンズ6、投影絞り5、孔あきミラー4の孔部を通っ
て、測定用対物レンズ3の焦点面に一度結像して平行光
とされ、その大部分がダイクロイックミラー1を透過し
て被検眼Eに達する。
When the approximate alignment between the eye E and the eye inspection means is completed, the light beam emitted from the measuring light source 8 illuminates the index plate 7, and the light beam restricted by the index plate 7 is The light passes through the projection stop 5 and the aperture of the perforated mirror 4 and once forms an image on the focal plane of the measurement objective lens 3 to become parallel light. Most of the light passes through the dichroic mirror 1 and reaches the eye E to be inspected. .

【0018】被検眼Eの角膜Ecにより反射された光束
は、その一部がダイクロイックミラー1で反射され、観
察用対物レンズ13により略平行光とされ、ダイクロイ
ックミラー14により光路O2へ偏向され、楔プリズム
15a、15bを通り、3孔絞り板16の3つの開口部
16a、16b、16cを通過して3つの光束La、L
b、Lcに分割され、結像レンズ17により撮像素子1
8上に結像して、それぞれ指標像16a’、16b’、
16c’としてテレビモニタ30上に映し出される。
A part of the light beam reflected by the cornea Ec of the eye E is reflected by the dichroic mirror 1, is made substantially parallel by the observation objective lens 13, is deflected to the optical path O2 by the dichroic mirror 14, and is wedge-shaped. The three light beams La and L pass through the prisms 15a and 15b and pass through the three openings 16a, 16b and 16c of the three-hole aperture plate 16, respectively.
b, Lc and the imaging device 1
8, the target images 16a ′, 16b ′,
16c 'is displayed on the television monitor 30.

【0019】図3〜図5に示すように、楔プリズム15
aは3孔絞り板16の開口部16aを通過する光束La
を紙面に対して奥方向に、楔プリズム15bは3孔絞り
板16の開口部16bを通過する光束Lbを紙面に対し
て手前方向に偏向する。
As shown in FIGS. 3 to 5, the wedge prism 15
a is a light beam La passing through the opening 16a of the three-hole stop plate 16.
And the wedge prism 15b deflects the light beam Lb passing through the opening 16b of the three-hole aperture plate 16 toward the front with respect to the paper.

【0020】従って、図3(a) に示すように被検眼Eと
被検眼検査手段の作動距離が正しい場合には、被検眼E
の角膜Ecで反射された指標板7からの光束は、観察用
対物レンズ13により略平行光とされているので、テレ
ビモニタ30上に映し出された指標像16a’、16
b’、16c’は、図3(b) に示すように水平方向に直
線状に並ぶ。このとき、指標像16c’は角膜頂点位置
を示している。
Therefore, when the working distance between the eye E and the eye inspection means is correct as shown in FIG.
Since the luminous flux from the index plate 7 reflected by the cornea Ec is converted into substantially parallel light by the observation objective lens 13, the index images 16a 'and 16 projected on the television monitor 30 are displayed.
b 'and 16c' are linearly arranged in the horizontal direction as shown in FIG. At this time, the index image 16c 'indicates the corneal vertex position.

【0021】また、図4(a) に示すように、被検眼Eと
被検眼検査手段との距離が正しい作動距離よりも近い場
合には、角膜Ecで反射された指標板7からの光束は観
察用対物レンズ13によって拡散光となるので、図4
(b) に示すようにテレビモニタ30上に映し出された指
標像16a’、16b’、16c’は、指標像16a’
が指標像16c’よりも上方に、指標像16b’が指標
像16c’よりも下方に直線状に並び、指標像16c’
は角膜頂点位置に現われる。
As shown in FIG. 4 (a), when the distance between the eye E and the eye inspection means is shorter than the correct working distance, the luminous flux from the index plate 7 reflected by the cornea Ec is Since the light is diffused by the observation objective lens 13, FIG.
The index images 16a ', 16b' and 16c 'projected on the television monitor 30 as shown in FIG.
Are linearly arranged above the index image 16c ', and the index image 16b' is linearly arranged below the index image 16c '.
Appears at the corneal vertex.

【0022】更に、図5(a) に示すように、被検眼Eと
被検眼検査手段との距離が正しい作動距離よりも遠い場
合には、角膜Ecで反射された指標板7からの光束は観
察用対物レンズ13によって収束光となるので、図5
(b) に示すようにテレビモニタ30上に映し出された指
標像16a’、16b’、16c’は、指標像16a’
が指標像16c’よりも下方に、指標像16b’が指標
像16c’よりも上方に直線状に並び、指標像16c’
は角膜頂点位置に現われる。
Further, as shown in FIG. 5 (a), when the distance between the eye E and the eye inspection means is longer than the correct working distance, the luminous flux from the index plate 7 reflected by the cornea Ec is Since the light is converged by the observation objective lens 13, FIG.
The index images 16a ', 16b' and 16c 'projected on the television monitor 30 as shown in FIG.
Are linearly arranged below the index image 16c 'and the index image 16b' is linearly arranged above the index image 16c '.
Appears at the corneal vertex.

【0023】これによって、検者はテレビモニタ30上
に映し出された指標像16a’、16b’、16c’の
位置関係から、被検眼Eと被検眼検査手段との相対的な
位置を検知して精密な位置合わせを行うことができる。
Thus, the examiner detects the relative position between the eye E and the eye inspection means from the positional relationship between the index images 16a ', 16b' and 16c 'displayed on the television monitor 30. Precise positioning can be performed.

【0024】位置合わせの終了後に、検者が操作部28
の測定開始スイッチを押すと、演算処理部25は測定用
光源8を発光する。測定用光源8から射出した光束は、
指標板7、投影レンズ6、投影絞り5、孔あきミラー4
の孔部、測定用対物レンズ3、ダイクロイックミラー1
を通って被検眼Eに達し、眼底Eaに指標像7’を結像
する。この指標像7’を二次光源として反射・散乱した
光束はその大部分がダイクロイックミラー1を透過し、
測定用対物レンズ3を介して孔あきミラー4で反射し、
6孔絞り9により6つの光束に分割された後に、6分割
プリズム10、リレーレンズ11を介して撮像素子12
上に6つのスポット像を形成する。
After the positioning is completed, the examiner operates the operation unit 28.
Is pressed, the arithmetic processing unit 25 emits the light source 8 for measurement. The luminous flux emitted from the measurement light source 8 is
Index plate 7, Projection lens 6, Projection stop 5, Perforated mirror 4
Hole, measurement objective lens 3, dichroic mirror 1
And reaches the eye E to be examined, and forms an index image 7 'on the fundus oculi Ea. Most of the light flux reflected and scattered using this index image 7 ′ as a secondary light source passes through the dichroic mirror 1,
Reflected by a perforated mirror 4 via a measuring objective lens 3,
After being divided into six light beams by the six-hole aperture 9, the image pickup device 12
Six spot images are formed on the top.

【0025】この映像信号はA/D変換器22において
デジタル信号化され、記憶手段24に記憶される。演算
処理部25は記憶手段24に記憶された情報から被検眼
Eの眼屈折力を算出し、光路O3上の固視標投影光学系
20を制御して被検者に雲霧を促す。この操作を数回行
うことによって、調節のない雲霧状態の被検眼Eの眼屈
折力を測定することができる。
This video signal is converted into a digital signal by the A / D converter 22 and stored in the storage means 24. The arithmetic processing unit 25 calculates the eye refractive power of the eye E from the information stored in the storage unit 24, controls the fixation target projection optical system 20 on the optical path O3, and prompts the subject to fog. By performing this operation several times, it is possible to measure the eye refractive power of the eye E to be examined in the cloudy state without adjustment.

【0026】人間の眼は個人差や病的要因によっても異
なるが、殆どの被検眼Eにおいて瞳孔中心に対して角膜
頂点が偏心しており、特に左右眼共に角膜頂点が瞳孔中
心に対して耳側に偏心している傾向があることが知られ
ている。即ち、人の眼の瞳孔中心と角膜頂点とは必ずし
も一致せず、瞳孔中心に対して角膜頂点が耳側に偏心し
ている。従って、瞳孔中心に対する角膜頂点の偏心が大
きい被検眼Eの場合には、瞳孔中心を基準に概略の位置
合わせを行っても、指標板7を通過した光束の角膜Ec
による反射光束は観察用対物レンズ13の有効径内に入
らず、撮像素子18まで達することができない。
Although the human eye varies depending on individual differences and pathological factors, the corneal apex is eccentric with respect to the center of the pupil in almost all of the eyes E to be examined. Is known to tend to be eccentric. That is, the pupil center of the human eye does not always coincide with the corneal vertex, and the corneal vertex is eccentric to the ear side with respect to the pupil center. Therefore, in the case of the eye E having a large eccentricity of the apex of the cornea with respect to the center of the pupil, the cornea Ec of the luminous flux passing through the index plate 7 can be obtained even if the rough alignment is performed with reference to the center of the pupil.
Is not within the effective diameter of the observation objective lens 13 and cannot reach the image sensor 18.

【0027】このために、本実施例では被検眼Eと被検
眼検査手段との概略の位置合わせの終了後に測定用光源
8を発光しても、撮像素子18によって指標像16
a’、16b’、16c’が検出できない場合がある。
このような場合には、演算処理部25は左右眼検知手段
27で検知した左右眼情報を基に、瞳孔中心から耳側へ
被検眼Eと被検眼検査手段との相対位置をずらすように
モータを駆動制御して、指標像16a’、16b’、1
6c’を検出する。このようにして、瞳孔中心に対して
角膜頂点の偏心量が大きい被検眼Eにおいても、検者は
容易に角膜Ecの反射による指標像16a’、16
b’、16c’を認識することができ、精度の良い位置
合わせを迅速に行うことが可能となる。
For this reason, in the present embodiment, even if the measuring light source 8 emits light after the approximate alignment of the eye E and the eye inspection means, the index image 16
In some cases, a ', 16b', and 16c 'cannot be detected.
In such a case, the arithmetic processing unit 25 sets the motor so as to shift the relative position between the eye E and the eye inspection unit from the center of the pupil to the ear side based on the left and right eye information detected by the left and right eye detection unit 27. Are driven to control the index images 16a ', 16b', 1
6c 'is detected. In this manner, even in the subject's eye E in which the amount of eccentricity of the corneal vertex is large with respect to the center of the pupil, the examiner can easily recognize the index images 16a ', 16a by reflection of the cornea Ec.
b ′ and 16c ′ can be recognized, and accurate positioning can be quickly performed.

【0028】また、指標像16a’は被検眼Eと被検眼
検査手段との距離が近い場合には上方に、遠い場合には
下方に移動し、逆に指標像16b’は被検眼Eと被検眼
検査手段との距離が近い場合には下方に、遠い場合には
上方に移動し、指標16c’の位置は殆ど変化すること
はない。このために、被検眼Eと被検眼検査手段との概
略の位置合わせの終了後に測定用光源8を発光したとき
に、指標像16a’、16b’、16c’の内の少なく
とも1つの指標像が検出されると、演算処理部25によ
り電動架台を含むアライメント手段26を制御して、被
検眼Eと被検眼検査手段との距離を変更し、先ず検出さ
れた指標像が何れかを特定する。
The index image 16a 'moves upward when the distance between the eye E and the eye inspection means is short, and moves downward when the distance is long. Conversely, the index image 16b' moves with the eye E. When the distance from the optometry examination unit is short, it moves downward, and when it is far, it moves upward, and the position of the index 16c 'hardly changes. For this reason, when the measuring light source 8 emits light after the approximate alignment between the eye E and the eye inspection means, at least one of the index images 16a ', 16b', and 16c 'is displayed. When it is detected, the arithmetic processing unit 25 controls the alignment unit 26 including the motorized gantry to change the distance between the eye E and the eye inspection unit, and first specifies any of the detected index images.

【0029】これによって、被検眼Eに対する被検眼検
査手段の移動方向が決定するので、その方向に被検眼検
査手段を移動して、指標像16a’、16b’、16
c’の内の少なくとも2つの指標像を検出し、この2つ
の指標像が図3(b) に示すように水平に並ぶように、ア
ライメント手段26を制御して前後方向に移動させる。
このようにして、被検眼Eと被検眼検査手段との作動距
離合わせを正確にかつ簡便に行うことが可能となる。
With this, the moving direction of the eye inspecting means with respect to the eye E is determined, so that the eye inspecting means is moved in that direction and the index images 16a ', 16b', 16
At least two index images out of c ′ are detected, and the alignment means 26 is controlled to move in the front-back direction so that the two index images are horizontally arranged as shown in FIG.
In this way, the working distance between the eye E and the eye inspection means can be accurately and simply adjusted.

【0030】検者は被検眼Eの瞳孔中心と被検眼検査手
段の光軸が一致するように、テレビモニタ30を見なが
ら操作部28を操作して位置合わせを行い、この位置合
わせが終了すると検者は操作部28に設けた測定開始ス
イッチを押す。これによって、演算処理部25は測定用
光源8を発光して、被検眼Eの眼屈折力を測定する。な
お、本実施例においては眼屈折力測定検査用光源8と指
標投影用光源を共用し、また前眼部観察光学系と固指標
受光光学系を共用しているために、構成を簡素化するこ
とができ、小型化及びコストの削減を達成することが可
能となる。
The examiner operates the operation unit 28 while watching the television monitor 30 so that the center of the pupil of the eye E and the optical axis of the eye examination means coincide with each other. The examiner presses a measurement start switch provided on the operation unit 28. Accordingly, the arithmetic processing unit 25 emits light from the measurement light source 8 and measures the eye refractive power of the eye E to be examined. In this embodiment, since the light source 8 for the eye refractive power measurement inspection and the light source for the index projection are shared, and the anterior ocular segment observation optical system and the fixed index light receiving optical system are shared, the configuration is simplified. Therefore, miniaturization and cost reduction can be achieved.

【0031】第1の実施例では、検者がテレビモニタ3
0上に映し出された被検眼Eの前眼部付近の像を見なが
ら、操作部28の電動架台操作スイッチを使用して、被
検眼検査手段を上下・左右・前後の3方向に移動し、被
検眼Eとの位置合わせを行っているが、第2の実施例と
して同様の構成で、検者が操作部28の測定開始スイッ
チを押すことにより、被検眼Eと被検眼検査手段との位
置合わせを自動的に行い、位置合わせが終了すると自動
的に測定を行うようにしてもよい。
In the first embodiment, the examiner operates the TV monitor 3
Using the electric gantry operation switch of the operation unit 28, the examiner moves the eye to be inspected in three directions of up, down, left, right, front and back while watching the image of the vicinity of the anterior eye of the eye E to be projected on 0. The position of the eye E and the eye inspection means are adjusted by the examiner pressing the measurement start switch of the operation unit 28 in the same configuration as the second embodiment. The alignment may be performed automatically, and the measurement may be automatically performed when the positioning is completed.

【0032】先ず、被検者が図示しない顔支持部材に顎
を乗せ、顔が固定されると検者は操作部28の測定開始
スイッチを押す。このとき、被検眼検査手段は左右眼の
内の予め決められた被検眼Eの基準位置に配置されてい
る。演算処理部25は照明用光源2を点灯して被検眼E
の前眼部周辺を照明する。前眼部周辺からの反射散乱光
はダイクロイックミラー1で反射し、観察用対物レンズ
13、ダイクロイックミラー14、3孔絞り16の開口
部16c、結像レンズ17を介して、撮像素子18上に
結像する。
First, the subject places his / her chin on a face support member (not shown), and when the face is fixed, the examiner presses the measurement start switch of the operation unit 28. At this time, the eye to be inspected is arranged at a predetermined reference position of the eye to be inspected E of the left and right eyes. The arithmetic processing unit 25 turns on the illumination light source 2 and turns the eye E to be inspected.
Around the anterior segment of the eye. The reflected and scattered light from the periphery of the anterior segment is reflected by the dichroic mirror 1 and forms an image on the image sensor 18 via the observation objective lens 13, the dichroic mirror 14, the opening 16 c of the aperture 16, and the imaging lens 17. Image.

【0033】撮像素子18からの映像信号はA/D変換
器21でデジタル信号化され、記憶手段23及び演算処
理部25に伝達され、演算処理部25はデジタル信号か
ら被検眼Eの瞳孔中心を抽出して、瞳孔中心が被検眼検
査手段の光軸と一致するようにアライメント手段26を
制御する。本実施例では、被検眼Eの周辺は照明用光源
2により照明され、二次光源となって反射散乱光を発す
るが、照明用光源2からの瞳孔を照明する光束は瞳孔か
ら被検眼Eの内部に入って行くために、瞳孔からの反射
散乱光は撮像素子18まで達することはない。従って、
映像信号を2値化することによって瞳孔中心を抽出して
いる。
The video signal from the image sensor 18 is converted into a digital signal by the A / D converter 21 and transmitted to the storage means 23 and the arithmetic processing unit 25. The arithmetic processing unit 25 calculates the pupil center of the eye E from the digital signal. Then, the alignment unit 26 is controlled so that the center of the pupil coincides with the optical axis of the eye examination unit. In the present embodiment, the periphery of the eye E is illuminated by the illumination light source 2 and becomes a secondary light source and emits reflected and scattered light. Since the light enters the inside, the reflected scattered light from the pupil does not reach the image sensor 18. Therefore,
The pupil center is extracted by binarizing the video signal.

【0034】被検眼Eと被検眼検査手段との概略の位置
合わせが終了すると、演算処理部25は測定用光源8を
僅かに点灯する。測定用光源8を射出した光束は指標板
7を照明し、指標板7からの光束は投影レンズ6、投影
絞り5、孔あきミラー4の孔部、眼屈折測定用対物レン
ズ3を介して略平行光とされた後に、大部分の光束がダ
イクロイックミラー1を透過して、被検眼Eの角膜Ec
に反射像を形成する。角膜Ecで反射された光束はダイ
クロイックミラー1で一部が反射され、観察用対物レン
ズ13により集光し、ダイクロイックミラー14で反射
して楔プリズム15a、15bを通り、3孔絞り板16
の3つの開口部16a、16b、16cを通過して3つ
の光束La、Lb、Lcに分割され、結像レンズ17に
より撮像素子18上に達し、それぞれ指標像16a’、
16b’、16c’を形成する。
When the approximate alignment between the eye E and the eye inspection means is completed, the arithmetic processing unit 25 slightly turns on the measuring light source 8. The luminous flux emitted from the measuring light source 8 illuminates the index plate 7, and the luminous flux from the index plate 7 passes through the projection lens 6, the projection stop 5, the hole of the perforated mirror 4, and the objective lens 3 for eye refraction measurement. After being converted into the parallel light, most of the light flux passes through the dichroic mirror 1 and the cornea Ec of the eye E to be examined.
To form a reflected image. The light beam reflected by the cornea Ec is partially reflected by the dichroic mirror 1, condensed by the observation objective lens 13, reflected by the dichroic mirror 14, passed through the wedge prisms 15a and 15b, and passed through the three-hole aperture plate 16
Are divided into three light beams La, Lb, and Lc through the three openings 16a, 16b, and 16c, and reach the image sensor 18 by the imaging lens 17, and each of the target images 16a ',
16b 'and 16c' are formed.

【0035】瞳孔中心と角膜頂点とが偏心している被検
眼Eの場合には、被検眼Eの瞳孔中心と被検眼検査手段
の光軸との位置合わせが終了しているにも拘らず、指標
像16a’、16b’、16c’の少なくとも1つを検
出できない場合がある。このとき、例えば2つの指標像
が見えている場合には、演算処理部25は検出されてい
る2つの指標像が水平方向に並ぶように、被検眼Eと被
検眼検査手段との距離を変化させて作動距離合わせを行
う。
In the case of the eye E in which the center of the pupil and the apex of the cornea are eccentric, the index is determined even though the alignment between the center of the pupil of the eye E and the optical axis of the eye inspecting means has been completed. In some cases, at least one of the images 16a ', 16b', 16c 'cannot be detected. At this time, for example, when two index images are visible, the arithmetic processing unit 25 changes the distance between the eye E to be inspected and the eye inspection means so that the detected two index images are arranged in the horizontal direction. Then, the working distance is adjusted.

【0036】また、1つの指標像しか見えない場合に
は、被検眼Eと被検眼検査手段との距離を変更して、検
出されているのが指標像16a’であるか、或いは指標
像16b’であるかを判別し、残りの2つの指標像が検
出できる方向を特定し、アライメント手段26を制御し
てその方向に被検眼検査手段を移動する。このようにし
て、少なくとも2つ以上の指標像を簡単に検出すること
ができるので、それらの指標像が水平方向に並ぶよう
に、アライメント手段26を制御して正しい作動距離に
合わせる。そして、作動距離合わせが終了すると再び瞳
孔中心を抽出して、瞳孔中心と被検眼検査手段の光軸と
の位置合わせを行う。
When only one index image can be seen, the distance between the eye E and the eye inspection means is changed to detect the index image 16a 'or 16b. Is determined, the direction in which the remaining two index images can be detected is specified, and the alignment unit 26 is controlled to move the eye examination unit in that direction. In this manner, at least two or more index images can be easily detected, and the alignment means 26 is controlled so that the index images are aligned with the correct working distance so that the index images are arranged in the horizontal direction. When the adjustment of the working distance is completed, the center of the pupil is extracted again, and the center of the pupil is aligned with the optical axis of the eye examination unit.

【0037】また、1つも指標像が検出できていない場
合には、左眼を検査中のときは被検眼Eに向かって右側
に、つまり左眼の耳側に被検眼検査手段を所定量だけ移
動するようにモータを駆動させる。前述したように、多
くの被検眼Eは瞳孔中心に対して角膜頂点が耳側に偏心
しているので、このようにすることにより指標像を検出
することができ、検出された指標像の数に応じて、上述
と同様の方法によって被検眼Eと被検眼検査手段との位
置合わせを行う。なお、右眼を検査中のときは被検眼E
に向かって左側に、つまり右眼の耳側に被検眼検査手段
を所定量だけ移動すれば、同様にして指標像を検出する
ことができる。
When no index image has been detected, when the left eye is being inspected, the eye inspection means is moved by a predetermined amount to the right side toward the eye E, ie, to the left ear side. Drive the motor to move. As described above, in many eyes E, the corneal apex is eccentric to the ear side with respect to the center of the pupil, so that the index images can be detected in this manner, and the number of the detected index images is reduced. Accordingly, the eye E and the eye inspection means are aligned with each other by the same method as described above. When the right eye is being examined, the eye E
If the eye examination means is moved by a predetermined amount toward the left side, that is, toward the ear of the right eye, the index image can be similarly detected.

【0038】被検眼Eと被検眼検査手段との位置合わせ
が終了すると、演算処理部25は測定用光源8を発光さ
せ、被検眼Eの眼底Eaからの反射光を撮像素子12で
受光し、また図示しない固視標投影手段を制御して被検
眼Eを雲霧状態にして、被検眼Eの眼屈折力を測定す
る。
When the positioning of the eye to be inspected E and the eye to be inspected has been completed, the arithmetic processing unit 25 causes the measuring light source 8 to emit light, and the reflected light from the fundus oculi Ea of the eye to be inspected E is received by the image sensor 12. Further, the eye E to be examined is controlled to be in a cloudy state by controlling a fixation target projecting means (not shown), and the eye refractive power of the eye E is measured.

【0039】[0039]

【発明の効果】以上説明したように本発明に係る眼科測
定装置は、位置合わせ用の受光光学系により角膜反射光
が検出されない場合には、左右眼検知手段で検知した情
報に応じた方向へ測定手段を移動するように駆動手段を
制御することによって、容易に角膜反射を検出すること
ができるので、精度の良い位置合わせを迅速に行うこと
ができる。
As described above, the ophthalmologic measuring apparatus according to the present invention is arranged such that when the corneal reflected light is not detected by the light receiving optical system for positioning, the ophthalmologic measuring apparatus moves in the direction corresponding to the information detected by the left and right eye detecting means. By controlling the driving means so as to move the measuring means, corneal reflection can be easily detected, so that accurate positioning can be quickly performed.

【0040】また、本発明に係る眼科測定装置は、前眼
部を撮像する撮像素子の出力を基に抽出した被検眼の瞳
孔中心位置、或いは左右眼検知手段で検知した情報、或
いは指標受光光学系で検出した角膜反射光を基に、測定
手段と撮像手段を所定方向に移動するように駆動手段を
駆動することにより、精度の良い位置合わせができる。
Further, the ophthalmologic measuring apparatus according to the present invention is characterized in that the center position of the pupil of the eye to be extracted, which is extracted based on the output of the image sensor for imaging the anterior eye part, the information detected by the left and right eye detecting means, or the index receiving optical system By driving the driving means so as to move the measuring means and the imaging means in a predetermined direction based on the corneal reflected light detected by the system, accurate positioning can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例の眼科測定装置の構成図である。FIG. 1 is a configuration diagram of an ophthalmologic measurement apparatus according to a first embodiment.

【図2】楔プリズム及び3孔絞り板の正面図である。FIG. 2 is a front view of a wedge prism and a three-hole stop plate.

【図3】正しい作動距離のときの指標光束の説明図であ
る。
FIG. 3 is an explanatory diagram of an index light beam at a correct working distance.

【図4】作動距離が近いときの指標光束の説明図であ
る。
FIG. 4 is an explanatory diagram of an index light beam when the working distance is short.

【図5】作動距離が遠いときの指標光束の説明図であ
る。
FIG. 5 is an explanatory diagram of an index light beam when the working distance is long.

【符号の説明】[Explanation of symbols]

1、14 ダイクロイックミラー 2 前眼部照明用光源 7 指標板 8 眼屈折力測定光源 9 6分割絞り 10 6分割プリズム 12、18 撮像素子 15a、15b 楔プリズム 16 3孔絞り板 23、24 記憶手段 25 演算処理部 26 アライメント手段 27 左右眼検知手段 28 操作部 30 テレビモニタ DESCRIPTION OF SYMBOLS 1, 14 Dichroic mirror 2 Light source for anterior segment illumination 7 Indicator plate 8 Eye refractive power measurement light source 9 6-segment diaphragm 10 6-segment prism 12, 18 Image sensor 15a, 15b Wedge prism 16 3-hole diaphragm plate 23, 24 Storage means 25 Arithmetic processing unit 26 Alignment unit 27 Left and right eye detection unit 28 Operation unit 30 TV monitor

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 被検眼に測定光束を照射し、その反射光
を基にして被検眼状態を測定するための測定手段と、該
測定手段を前記被検眼に対する位置合わせのために駆動
する駆動手段と、被検眼の角膜に位置合わせ用の光束を
投影する投影手段と、角膜から反射された前記投影手段
の光束を受光する受光手段と、被検眼が左目か右目かを
検知する左右眼検知手段と、前記受光手段により前記投
影手段の光束の角膜反射光が検出されなかった場合に、
前記左右眼検知手段で検知した検知情報に応じた方向に
前記駆動手段を駆動する駆動制御手段とを有することを
特徴とする眼科測定装置。
1. A measuring means for irradiating an eye to be inspected with a measuring light beam and measuring a state of the eye based on the reflected light, and a driving means for driving the measuring means for positioning with respect to the eye to be inspected. Projection means for projecting a light beam for alignment onto the cornea of the eye to be examined, light receiving means for receiving the light beam of the projection means reflected from the cornea, and left and right eye detecting means for detecting whether the eye to be examined is a left eye or a right eye And, when the corneal reflected light of the light beam of the projection means is not detected by the light receiving means,
An ophthalmologic measuring apparatus, comprising: a drive control unit that drives the drive unit in a direction corresponding to detection information detected by the left and right eye detection units.
【請求項2】 前記測定光束の光源と前記位置合わせ用
の光束の光源とは同じとした請求項1に記載の眼科測定
装置。
2. The ophthalmologic measurement apparatus according to claim 1, wherein the light source of the measurement light beam and the light source of the positioning light beam are the same.
【請求項3】 被検眼の瞳孔部を含む前眼部像を撮像す
る撮像手段と、該撮像手段の撮像出力に基づいて被検眼
の瞳孔を検出する瞳孔検出手段とを有し、該瞳孔検出手
段の検出情報に基づいて前記駆動手段を駆動する請求項
1に記載の眼科測定装置。
3. An pupil detection device comprising: an imaging unit that captures an anterior eye image including a pupil of an eye to be inspected; and a pupil detection unit that detects a pupil of the eye to be inspected based on an imaging output of the imaging unit. The ophthalmologic measurement apparatus according to claim 1, wherein the driving unit is driven based on detection information of the unit.
【請求項4】 前記受光手段は被検眼の瞳孔部を含む前
眼部像を撮像する撮像手段であり、該撮像手段の撮像出
力を表示する表示手段を有する請求項1に記載の眼科測
定装置。
4. The ophthalmologic measurement apparatus according to claim 1, wherein the light receiving unit is an imaging unit that captures an anterior segment image including a pupil of the subject's eye, and further includes a display unit that displays an image output of the imaging unit. .
【請求項5】 前記駆動制御装置は前記測定手段を被検
眼の耳側に所定量駆動する請求項1に記載の眼科測定装
置。
5. The ophthalmologic measurement apparatus according to claim 1, wherein the drive control device drives the measurement unit toward the ear of the eye to be examined by a predetermined amount.
【請求項6】 被検眼に測定光束を照射し、その反射光
を基にして被検眼状態を測定するための測定手段と、被
検眼の瞳孔部を含む前眼部像を撮像する撮像手段と、前
記測定手段と前記撮像手段とを前記被検眼に対する位置
合わせのために駆動する駆動手段と、被検眼の角膜に位
置合わせ用の光束を投影する投影手段と、角膜から反射
された前記投影手段の光束を分割すると共にそれぞれ異
なる方向に偏向させて前記撮像手段に導く光偏向手段と
を有し、前記撮像手段により検出された瞳孔情報或いは
前記投影手段によって反射された角膜反射光に基づいて
前記駆動手段を駆動する眼科測定装置であって、被検眼
が左目か右目かを検知する左右眼検知手段と、前記撮像
手段により前記投影手段の光束の角膜反射光が検出され
なかった場合に、前記左右眼検知手段で検知した検知情
報に応じた方向に前記駆動手段とを駆動する駆動制御手
段を有することを特徴とする眼科測定装置。
6. A measuring means for irradiating a measurement light beam to an eye to be inspected and measuring a state of the eye to be inspected based on the reflected light, and an imaging means for imaging an anterior eye image including a pupil of the eye to be inspected. Driving means for driving the measurement means and the imaging means for positioning with respect to the eye to be examined, projection means for projecting a light beam for positioning onto the cornea of the eye to be examined, and projection means reflected from the cornea Light deflecting means for splitting the light flux and deflecting them in different directions and guiding the light flux to the imaging means, and based on pupil information detected by the imaging means or corneal reflection light reflected by the projection means. An ophthalmologic measurement device that drives a driving unit, wherein a left and right eye detecting unit that detects whether the subject's eye is a left eye or a right eye, and a corneal reflected light beam of the projection unit that is not detected by the imaging unit. An ophthalmologic measurement apparatus comprising: a drive control unit that drives the drive unit in a direction according to detection information detected by the left and right eye detection units.
【請求項7】 前記制御手段は被検眼の耳側に前記測定
手段を駆動制御する請求項6に記載の眼科測定装置。
7. The ophthalmologic measuring apparatus according to claim 6, wherein the control means drives and controls the measuring means on the ear side of the subject's eye.
【請求項8】 前記瞳孔情報を基にして前記測定手段の
光軸が瞳孔中心に一致するよう前記駆動手段を駆動さ
せ、前記角膜反射光に基づいて前記測定手段の被検眼に
対する作動距離調整を行うように前記駆動手段を駆動す
る請求項6に記載の眼科測定装置。
8. The driving means is driven based on the pupil information so that the optical axis of the measuring means coincides with the center of the pupil, and the working distance of the measuring means relative to the eye to be examined is adjusted based on the corneal reflected light. The ophthalmologic measurement apparatus according to claim 6, wherein the driving unit is driven so as to perform the operation.
【請求項9】 前記撮像手段の撮像出力を表示する表示
手段を有する請求項6に記載の眼科測定装置。
9. The ophthalmologic measurement apparatus according to claim 6, further comprising display means for displaying an image output of said image pickup means.
JP19958099A 1999-07-13 1999-07-13 Ophthalmic measuring device Expired - Fee Related JP4164199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19958099A JP4164199B2 (en) 1999-07-13 1999-07-13 Ophthalmic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19958099A JP4164199B2 (en) 1999-07-13 1999-07-13 Ophthalmic measuring device

Publications (3)

Publication Number Publication Date
JP2001025459A true JP2001025459A (en) 2001-01-30
JP2001025459A5 JP2001025459A5 (en) 2006-08-24
JP4164199B2 JP4164199B2 (en) 2008-10-08

Family

ID=16410218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19958099A Expired - Fee Related JP4164199B2 (en) 1999-07-13 1999-07-13 Ophthalmic measuring device

Country Status (1)

Country Link
JP (1) JP4164199B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291701A (en) * 2001-03-29 2002-10-08 Canon Inc Ophthalmologic device and autoalignment method therefor
JP2002336201A (en) * 2001-05-17 2002-11-26 Canon Inc Ophthalmologic instrument
JP2003024278A (en) * 2001-06-19 2003-01-28 Canon Inc Corneal shape measuring apparatus
JP2007532148A (en) * 2004-02-19 2007-11-15 ヴィズイクス・インコーポレーテッド Method and system for distinguishing left and right eye images
CN113349734A (en) * 2021-06-29 2021-09-07 北京鹰瞳科技发展股份有限公司 Fundus camera and working distance calibration method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291701A (en) * 2001-03-29 2002-10-08 Canon Inc Ophthalmologic device and autoalignment method therefor
JP2002336201A (en) * 2001-05-17 2002-11-26 Canon Inc Ophthalmologic instrument
JP2003024278A (en) * 2001-06-19 2003-01-28 Canon Inc Corneal shape measuring apparatus
JP2007532148A (en) * 2004-02-19 2007-11-15 ヴィズイクス・インコーポレーテッド Method and system for distinguishing left and right eye images
US8007106B2 (en) 2004-02-19 2011-08-30 Amo Manufacturing Usa, Llc Systems for differentiating left and right eye images
JP4802109B2 (en) * 2004-02-19 2011-10-26 ヴィズイクス・インコーポレーテッド Method and system for distinguishing left and right eye images
EP1729626B1 (en) * 2004-02-19 2016-05-18 AMO Manufacturing USA, LLC Methods and systems for differentiating left and right eye images
CN113349734A (en) * 2021-06-29 2021-09-07 北京鹰瞳科技发展股份有限公司 Fundus camera and working distance calibration method thereof
CN113349734B (en) * 2021-06-29 2023-11-14 北京鹰瞳科技发展股份有限公司 Fundus camera and working distance calibration method thereof

Also Published As

Publication number Publication date
JP4164199B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4537192B2 (en) Ophthalmic equipment
JP4492847B2 (en) Eye refractive power measuring device
JPH0496730A (en) Fine illumination image photographing device
US6494577B2 (en) Ophthalmologic apparatus
JPH0753151B2 (en) Ophthalmic measuring device
JP4850561B2 (en) Ophthalmic equipment
JP2013128648A (en) Ophthalmologic apparatus, and ophthalmologic control method, and program
JPH0966027A (en) Opthalmologic system
JPH09149884A (en) Ophthalmological device
JPH067298A (en) Ocular refractometer
JP4164199B2 (en) Ophthalmic measuring device
JP2000135200A (en) Optometric apparatus
JPH11313800A (en) Ophthalmological device
JP2005312501A (en) Refraction measuring instrument
JP5188534B2 (en) Ophthalmic equipment
JP4838428B2 (en) Ophthalmic equipment
JPH09103408A (en) Ophthalmometer
JPH08317905A (en) Eyeground camera
JP3332489B2 (en) Optometry device
JPH0654807A (en) Ophthalmic device
JPH08289874A (en) Fundus camera
JP4700785B2 (en) Ophthalmic equipment
JP2004024471A (en) Ophthalmic instrument
JP4481420B2 (en) Ophthalmic examination equipment
JP3636533B2 (en) Ophthalmic diagnostic equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees