JP2001021607A - Device for detecting partial discharge generating position - Google Patents

Device for detecting partial discharge generating position

Info

Publication number
JP2001021607A
JP2001021607A JP11197695A JP19769599A JP2001021607A JP 2001021607 A JP2001021607 A JP 2001021607A JP 11197695 A JP11197695 A JP 11197695A JP 19769599 A JP19769599 A JP 19769599A JP 2001021607 A JP2001021607 A JP 2001021607A
Authority
JP
Japan
Prior art keywords
signal
partial discharge
wave
sensor
longitudinal wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11197695A
Other languages
Japanese (ja)
Inventor
Yoshihisa Asao
芳久 浅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11197695A priority Critical patent/JP2001021607A/en
Publication of JP2001021607A publication Critical patent/JP2001021607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect only either vertical waves or horizontal waves included in an acoustic signal, and to accurately calculate a partial discharge position based on the detection signal in detecting the partial discharge position due to a defect of power cable connecting part or the like with an ultrasonic sensor. SOLUTION: In this partial discharge generating position detecting device, a pair of ultrasonic sensors 10a and 10b are arranged with a prescribed interval at arbitrary positions from the partial discharge position of an object, and either vertical wave or horizontal wave components are eliminated from each sensor signal by a signal processing part 11, and a distance until the discharge generating point is accurately calculated by an arithmetic part 12 based on any wave component signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力ケーブル、
電力ケーブル接続部等で発生する部分放電を検出する部
分放電発生位置検出装置に関する。
TECHNICAL FIELD The present invention relates to a power cable,
The present invention relates to a partial discharge occurrence position detecting device that detects a partial discharge generated at a power cable connection portion or the like.

【0002】[0002]

【従来の技術】電力ケーブル、電力ケーブル接続部等の
部分的な欠陥に起因して部分放電が発生し、このため接
続部の劣化により絶縁破壊するような現象が広く知られ
ており、その対処方法として部分放電を電気的な位置検
出手段で検出して位置を特定する方法や、部分放電に伴
って生じる超音波を検出して位置を特定する方法、ある
いは上記2つの方法を併用する方法などがある。
2. Description of the Related Art It has been widely known that a partial discharge occurs due to a partial defect of a power cable, a power cable connection portion, and the like, and thus a dielectric breakdown occurs due to deterioration of the connection portion. As a method, a method of specifying a position by detecting a partial discharge with an electric position detecting means, a method of specifying a position by detecting an ultrasonic wave generated by the partial discharge, a method of using the above two methods together, or the like There is.

【0003】特に超音波による位置検出方法は、その伝
搬速度が電気信号に比べ非常に小さいため、特定精度が
高いという利点があり、種々の方法が既に提案されてい
る。その一例として特開平1−185458号公報によ
る部分放電位置標定方法が開示されている。この方法で
は複数個(少なくとも5つ)の超音波センサを部分放電
位置からそれぞれ任意の距離位置に配置し、最短位置の
超音波センサを決定してその距離、各センサの検出時間
差の算出により超音波速度を決定し、部分放電位置を特
定するようにしている。
In particular, the position detection method using ultrasonic waves has an advantage of high identification accuracy because its propagation speed is much smaller than that of electric signals, and various methods have already been proposed. As one example, Japanese Patent Application Laid-Open No. 1-185458 discloses a partial discharge position locating method. In this method, a plurality of (at least five) ultrasonic sensors are arranged at arbitrary distances from the partial discharge position, the ultrasonic sensor at the shortest position is determined, and the distance and the detection time difference between the sensors are calculated. The sound wave velocity is determined, and the partial discharge position is specified.

【0004】同様な複数個の超音波センサによる方法と
して、電気学会論文集112巻10号、平成4年に「A
EセンサによるCVケーブル用プレハブ接続箱の部分放
電検出」のタイトルで提案された検出方法がある。この
検出方法は、プレハブ接続箱に複数個(4個)の超音波
センサを取り付け、放電電気信号と各センサの部分放電
発生時の音響信号の検出時間差から部分放電位置を特定
するというものである。
[0004] A similar method using a plurality of ultrasonic sensors is described in IEEJ Transactions on Volumes 112, 10;
Detection of Partial Discharge of Prefabricated Connection Box for CV Cable by E Sensor ". In this detection method, a plurality of (four) ultrasonic sensors are attached to a prefabricated connection box, and a partial discharge position is specified based on a detection time difference between a discharge electric signal and an acoustic signal when a partial discharge occurs in each sensor. .

【0005】[0005]

【発明が解決しようとする課題】ところで、部分放電に
よる音響信号を超音波センサで検出して部分放電の位置
を特定する際に、固体中を伝わる音響信号には伝搬速度
の異なる縦波と横波が含まれている点に留意する必要が
ある。上述した音響信号を検出する方式の従来例では、
縦波か横波かの区別をせずそのいずれか、あるいはその
中間の伝搬速度を用い次式で位置標定を行っている。 L=V×Δt L :放電点からセンサまでの距離 V :伝搬速度 Δt:放電電気信号と音響信号との時間差 このため、位置標定誤差が発生する。その詳細な理由は
次の通りである。Δtは、図6に示すように、音響信号
の立上りで測定する。しかし、一般に縦波は横波に比べ
距離減衰が大きく、センサ位置によって検出される場合
と検出されない場合がある。このため、検出した音響信
号の立上りが縦波によるものか、横波によるものか判断
できない。一方、縦波と横波の伝搬速度は約2倍程度に
異なる(例えば銅の場合、縦波5010m/s、横波2
270m/s、理科年表による)ため、検出した立上り
の波の種類を誤ると距離誤差となるのである(平均化処
理すれば感度は上るが、波の種類の検出の点では効果は
ない)。
By the way, when an acoustic signal due to partial discharge is detected by an ultrasonic sensor to specify the position of partial discharge, acoustic signals transmitted through a solid include longitudinal waves and transverse waves having different propagation speeds. It must be noted that In the conventional example of the method of detecting the acoustic signal described above,
The position is determined by the following formula using either the longitudinal wave or the transverse wave, or the intermediate velocity between them, without distinguishing between the longitudinal wave and the transverse wave. L = V × Δt L: distance from discharge point to sensor V: propagation velocity Δt: time difference between electric discharge signal and acoustic signal For this reason, a location error occurs. The detailed reason is as follows. Δt is measured at the rising edge of the acoustic signal as shown in FIG. However, a longitudinal wave generally has a greater distance attenuation than a transverse wave, and may or may not be detected depending on the sensor position. For this reason, it cannot be determined whether the rise of the detected acoustic signal is due to a longitudinal wave or a transverse wave. On the other hand, the propagation velocities of the longitudinal wave and the shear wave are about twice as large (for example, in the case of copper, the longitudinal wave is 5010 m / s,
(270 m / s, according to the science chronological table), if the type of the detected rising wave is wrong, a distance error occurs (the sensitivity increases if the averaging process is performed, but there is no effect in detecting the type of the wave). .

【0006】この発明は、従来の超音波センサを用いて
部分放電位置を検出する方法又は装置の問題点に留意し
て、超音波センサで検出される音響信号に含まれる縦波
と横波のいずれかを消去して一方の波形に基づいて正確
に放電発生点までの距離を検出することができる検出装
置を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention is directed to a method and an apparatus for detecting a partial discharge position using a conventional ultrasonic sensor, and considers either a longitudinal wave or a transverse wave contained in an acoustic signal detected by an ultrasonic sensor. It is an object of the present invention to provide a detection device capable of accurately detecting a distance to a discharge occurrence point based on one of the waveforms.

【0007】[0007]

【課題を解決するための手段】この発明は、上記の課題
を解決する手段として、部分放電を測定すべき対象物に
互いに所定間隔で1対の音響センサを配設し、これらの
音響センサから送られるセンサ信号の一方の信号の縦波
及び横波成分からそのいずれか一方を他方の信号の縦波
又は横波成分を用いて消去し、横波又は縦波の信号成分
のみをうるように信号処理をする信号処理部と、この処
理部で得た上記いずれかの信号の伝搬速度から放電位置
を算出する演算部とを備えて成る部分放電発生位置検出
装置としたのである。
According to the present invention, as a means for solving the above-mentioned problems, a pair of acoustic sensors are arranged at predetermined intervals on an object to be measured for partial discharge. Either the longitudinal wave or the transverse wave component of one of the transmitted sensor signals is eliminated using the longitudinal wave or the transverse wave component of the other signal, and the signal processing is performed so that only the transverse wave or the longitudinal wave signal component is obtained. The partial discharge occurrence position detecting device includes a signal processing unit for calculating the discharge position from the propagation speed of any one of the signals obtained by the processing unit.

【0008】上記の構成としたこの発明の部分放電発生
位置を検出する検出装置は、部分放電発生位置から測定
対象物の固体内を伝導される超音波の音響信号を音響セ
ンサで検出して放電発生点までの距離を正確に検出する
ものである。上記音響信号には一般に縦波と横波の両方
が含まれるが、この検出装置ではそのいずれかを他方の
波成分で消去し、縦波又は横波のいずれかの成分のみを
検出することによって距離位置の標定を行う。
The detecting apparatus for detecting a partial discharge occurrence position according to the present invention having the above-described structure detects an acoustic signal of an ultrasonic wave transmitted through a solid object to be measured from the partial discharge occurrence position by an acoustic sensor. The distance to the point of occurrence is accurately detected. Although the above acoustic signal generally includes both longitudinal and transverse waves, this detection device eliminates either of them with the other wave component and detects only the longitudinal or transverse component to obtain the distance position. Perform orientation.

【0009】検出された音響信号から縦波又は横波のい
ずれかを消去する際に、例えば縦波を消去する場合は2
つの音響センサの相互間隔を基準となる周波数信号と縦
波及び横波の伝搬速度から所定の演算に基づいて求めら
れる距離とし、放電発生位置に近い側の音響センサの検
出信号を上記設定距離の縦波伝搬時間分、遅らせてその
信号から遠い側の音響センサの検出信号を差し引く処理
をする。
When erasing either a longitudinal wave or a transverse wave from a detected acoustic signal, for example, when erasing a longitudinal wave, 2
The distance between the two acoustic sensors is defined as a distance determined based on a predetermined calculation from the reference frequency signal and the propagation velocity of the longitudinal wave and the transverse wave, and the detection signal of the acoustic sensor near the discharge occurrence position is defined as the vertical distance of the set distance. A process of subtracting the detection signal of the acoustic sensor on the far side from the signal delayed by the wave propagation time is performed.

【0010】このような処理をすると、縦波を基準とし
て両センサの検出信号のうち縦波成分が一致するように
処理をして差し引かれるため縦波成分が消去されるので
ある。一方、横波成分はその伝搬速度が縦波と異なるた
め両センサにおいて同一時間での波形変化が異なること
により不一致のため差し引き処理をしても消去されず、
横波成分のみが正確に検出される。縦波成分のみを得よ
うとする場合は上記と逆の処理をすればよい。
[0010] With this processing, the longitudinal wave components are eliminated because the longitudinal wave components are processed and subtracted from the detection signals of the two sensors based on the longitudinal waves. On the other hand, the transverse wave component has a different propagation speed from the longitudinal wave, so the waveform change at the same time in both sensors is different, so that it does not disappear even if a subtraction process is performed because of mismatch.
Only the transverse wave component is accurately detected. When only the longitudinal wave component is to be obtained, the reverse process may be performed.

【0011】[0011]

【実施の形態】以下、この発明の実施の形態について図
面を参照して説明する。図1は実施形態の部分放電発生
位置検出装置の概略ブロック図である。測定対象物は、
例えば電力ケーブルの接続部に用いられるプレハブ接続
箱などである。部分放電発生位置検出装置は、(a)図
に示す下記の部材を備えている。まず、対象物の任意の
位置に互いに所定間隔で1対の超音波センサ10a、1
0bが音響センサとして配設されている。これら超音波
センサ10a、10bの検出信号は信号処理部11へ送
られる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram of a partial discharge occurrence position detecting device according to an embodiment. The measurement object is
For example, it is a prefabricated connection box used for a connection portion of a power cable. The partial discharge occurrence position detecting device includes the following members shown in FIG. First, a pair of ultrasonic sensors 10a, 10a,
0b is provided as an acoustic sensor. The detection signals of these ultrasonic sensors 10a and 10b are sent to the signal processing unit 11.

【0012】信号処理部11は、上記超音波センサ10
a、10bの一方の信号の縦波及び横波成分からそのい
ずれか一方を他方のセンサ信号の縦波又は横波成分を用
いて消去し、横波又は縦波の信号成分のみを得るように
信号処理をする処理部である。得られた横波又は縦波成
分の合成信号は演算部12へ送られ、この演算部12で
その信号成分の立上り時間、及び波の伝搬速度に基づい
て放電位置までの距離を算出する。算出された放電位置
の距離は表示器13に表示される。又、信号処理部11
で処理された信号は波形計測器14へ送り1対のセンサ
信号と共にそれぞれの波形を計測できるようにしてもよ
い。
The signal processing unit 11 includes the ultrasonic sensor 10
a, 10b, one of the longitudinal and transverse wave components of one of the signals is erased using the longitudinal or transverse component of the other sensor signal, and the signal processing is performed so as to obtain only the transverse or longitudinal signal component. This is a processing unit. The obtained composite signal of the transverse wave or the longitudinal wave component is sent to the calculation unit 12, and the calculation unit 12 calculates the distance to the discharge position based on the rise time of the signal component and the propagation speed of the wave. The calculated distance of the discharge position is displayed on the display 13. Also, the signal processing unit 11
May be sent to the waveform measuring device 14 so that each waveform can be measured together with a pair of sensor signals.

【0013】信号処理部11は、この実施形態では、
(b)図に示すように、1対のアンプ(増幅器)21
a、21b、バンドパスフィルタ(BPF)22a、2
2b、遅延回路23、差動回路24を備えている。超音
波センサ10a、10bの検出信号は、アンプ21a、
21bで増幅後バンドパスフィルタ(BPF)22a、
22bで所要の周波数の信号を抽出する。周波数は測定
対象物によって感度のよい周波数を選択できるようにバ
ンドパスフィルタ22a、22bの中心周波数を設定す
る(例えば、電力ケーブル接続部の場合100kHz程
度あるいはそれ以下)。
In this embodiment, the signal processing unit 11
(B) As shown in the figure, a pair of amplifiers (amplifiers) 21
a, 21b, band pass filters (BPF) 22a, 2
2b, a delay circuit 23, and a differential circuit 24. The detection signals of the ultrasonic sensors 10a and 10b are supplied to the amplifier 21a,
21b, a band-pass filter (BPF) 22a after amplification,
At 22b, a signal of a required frequency is extracted. As the frequency, the center frequency of the band-pass filters 22a and 22b is set so that a frequency with good sensitivity can be selected depending on the object to be measured (for example, about 100 kHz or less in the case of a power cable connection part).

【0014】1対の超音波センサ10a、10bの間隔
ΔLは、(横波の速度は一般に縦波の1/2程度である
から、理解し易くするため単純化して想定すれば)簡易
的にBPF中心周波数と縦波伝搬速度から得られる1/
2波長λ(又はその倍数)の距離とする(横波伝搬速度
を用いる場合は横波の1/2λ)。具体的には次のよう
な演算に基づいて設定される。 BPF中心周波数:100kHz 対象物 :銅(縦波速度5010m/s、横波速度
2270m/s) 信号の周期T=1/100kHz=10μSec 信号の波長λ=5010m/s×10μSec =0.050 m λ/2 =0.050 m/2=0.025 m→ΔL 即ちセンサ間距離ΔLは25mmと設定する。但し、厳密に
はセンサ間距離ΔLを定める演算式が異なるため、厳密
解については後で説明する。
The distance .DELTA.L between the pair of ultrasonic sensors 10a and 10b is simply BPF (since the speed of the shear wave is generally about 1/2 of that of the longitudinal wave, and is assumed to be simplified for easy understanding). 1 / obtained from center frequency and longitudinal wave propagation velocity
The distance is two wavelengths λ (or a multiple thereof) (1 / λ of the shear wave when the shear wave propagation velocity is used). Specifically, it is set based on the following calculation. BPF center frequency: 100kHz Object: copper (longitudinal wave speed 5010m / s, horizontal wave speed
2270 m / s) Signal period T = 1/100 kHz = 10 μSec Signal wavelength λ = 5010 m / s × 10 μSec = 0.050 m λ / 2 = 0.050 m / 2 = 0.025 m → ΔL That is, the sensor distance ΔL is set to 25 mm. . However, since the calculation formula for determining the distance between sensors ΔL is strictly different, the exact solution will be described later.

【0015】上記1対の超音波センサ10a、10bの
検出信号のうち、放電発生点に近い側のセンサ信号は、
BPFを通過後遅延回路23によって1/2周期(上記
例では5μSec)遅延させ、この信号と遠い側のセン
サ信号との差を差動回路24により得るようになってい
る。そして差動回路24の信号は次の演算部12へ送ら
れる。演算部12では得られた縦波又は横波の伝搬速度
に基づいて前記発明の課題の欄で説明した従来と同じ計
算式により放電発生点までの距離Lが算出される。
Of the detection signals of the pair of ultrasonic sensors 10a and 10b, the sensor signal on the side closer to the discharge point is:
After passing through the BPF, the signal is delayed by 周期 cycle (5 μSec in the above example) by the delay circuit 23, and the difference between this signal and the sensor signal on the far side is obtained by the differential circuit 24. Then, the signal of the differential circuit 24 is sent to the next operation unit 12. The arithmetic unit 12 calculates the distance L to the discharge occurrence point based on the obtained propagation velocity of the longitudinal wave or the transverse wave, using the same formula as in the related art described in the section of the subject of the invention.

【0016】上記構成の検出装置の作用について図2、
図3を参照して説明する。この例では、簡易的にΔLを
BPF中心周波数と縦波伝搬速度から所定の演算で得ら
れる1/2波長λの距離としている。図3に示すよう
に、放電発生に伴って生じる超音波には縦波と横波が含
まれるが、各超音波センサ10a、10bで検出される
センサ信号は縦波と横波の合成波形として検出される。
一般に縦波は横波より伝搬速度が速いため、横波は図示
のように時間遅れが生じ、その時間遅れの横波に先行す
る縦波の減衰波形が重なって合成波形となる。
FIG. 2 shows the operation of the detection device having the above configuration.
This will be described with reference to FIG. In this example, ΔL is simply a distance of 波長 wavelength λ obtained by a predetermined calculation from the BPF center frequency and the longitudinal wave propagation velocity. As shown in FIG. 3, the ultrasonic waves generated by the discharge include longitudinal waves and transverse waves, and the sensor signals detected by the ultrasonic sensors 10 a and 10 b are detected as combined waveforms of the longitudinal waves and the transverse waves. You.
In general, a longitudinal wave has a higher propagation velocity than a transverse wave, so that the transverse wave has a time delay as shown in the figure, and the longitudinal wave attenuation waveform preceding the time-delayed transverse wave overlaps to form a composite waveform.

【0017】このような性質のセンサ信号が放電発生点
からの音響信号として各超音波センサ10a、10bで
検出されるとき、図2に示すように、音源に近い側のセ
ンサ信号の波形をa、遠い側の波形をbとすると、波形
bは同一音源の超音波であっても距離ΔLほど超音波セ
ンサ10bが離れている分だけ遅れて検出される。この
距離ΔLは縦波の伝搬速度での波長λの1/2に相当す
るように設定されているから、波形bの縦波成分の波形
がλ/2に相当する時間分遅れて検出される。
When a sensor signal having such a property is detected by each of the ultrasonic sensors 10a and 10b as an acoustic signal from the discharge generating point, as shown in FIG. Assuming that the waveform on the far side is b, even if the waveform b is an ultrasonic wave of the same sound source, it is detected with a delay of the distance ΔL as much as the distance of the ultrasonic sensor 10b. Since this distance ΔL is set to correspond to 1 / of the wavelength λ at the propagation speed of the longitudinal wave, the waveform of the longitudinal wave component of the waveform b is detected with a delay corresponding to λ / 2. .

【0018】一方、音源に近い側の超音波センサ10a
の検出波形は、波形aで示され、波形bよりλ/2だけ
先に検出されるが、そのセンサ信号は遅延回路23によ
り縦波伝搬速度による周期の1/2(5μSec)遅延
して差動回路24へ送られる。このため、波形aと波形
bの差動を取った波形cは、波形aとbの縦波成分の部
分が一致するため縦波成分が消去される。しかし、その
横波成分については、縦波と伝搬速度が異なるため、波
形aとbでは上記のように位置的にΔL=λ/2、回路
上で時間的にT/2ずらすような処理をしても、それぞ
れの波形は一致せず、このため差動を取った横波成分は
逆に波形a又はb単一のものより振幅の大きい合成波形
として得られる。即ち、波形cは横波成分のみの合成波
形として得られるのである。
On the other hand, the ultrasonic sensor 10a closer to the sound source
Is detected by λ / 2 before the waveform b, but the sensor signal is delayed by a delay circuit 23 by a half (5 μsec) of the period based on the longitudinal wave propagation velocity and the difference is detected. Sent to the motion circuit 24. Therefore, in the waveform c obtained by taking the difference between the waveform a and the waveform b, the longitudinal wave components of the waveforms a and b coincide with each other, so that the longitudinal wave component is eliminated. However, since the transverse wave component has a different propagation velocity from that of the longitudinal wave, the waveforms a and b are subjected to a process of shifting ΔL = λ / 2 in position and T / 2 in time on the circuit as described above. However, the respective waveforms do not coincide with each other, so that the transverse wave component obtained by taking a difference is conversely obtained as a composite waveform having a larger amplitude than the single waveform a or b. That is, the waveform c is obtained as a composite waveform including only the transverse wave component.

【0019】なお、ΔLは距離が短いため(数10mm
程度以下)その間に波形bが進行する際の減衰は無視で
きるものとする。但し、その減衰量が無視できないとき
は、波形aと同じ振幅となるよう差動回路24へ入力す
る手前で増幅器(図示せず)で増幅すればよい。
Note that ΔL is short (several tens mm)
During this time, the attenuation when the waveform b proceeds is negligible. However, if the amount of attenuation cannot be neglected, it may be amplified by an amplifier (not shown) before input to the differential circuit 24 so that the amplitude becomes the same as the waveform a.

【0020】以上のようにして横波成分のみの合成波形
cが得られると、演算部12においてその波形cの立上
り時間、及び横波伝搬速度から従来と同じ計算式で放電
位置までの距離Lが算出されて表示器13に表示され
る。なお、距離Lを算出する際に放電電気信号と音響信
号の立上り点までの時間差Δtを算出するために、図示
していないが、放電電気信号が演算部12へ入力されて
いるものとする。
When the composite waveform c consisting only of the transverse wave component is obtained as described above, the arithmetic unit 12 calculates the distance L to the discharge position from the rise time of the waveform c and the transverse wave propagation velocity using the same formula as in the prior art. The result is displayed on the display 13. In order to calculate the time difference Δt between the electric discharge signal and the rising point of the acoustic signal when calculating the distance L, it is assumed that the electric discharge signal has been input to the calculation unit 12 (not shown).

【0021】又、上記説明では波形cに縦波成分を含ま
ないように消去する手順を前提として説明したが、反対
に横波成分を消去し、縦波成分で放電位置までの距離L
を求めるようにしてもよい。この場合は、超音波センサ
10aと10bの間隔ΔL、遅延回路23での遅延時間
T/2は横波伝搬速度に基づいて設定すればよい。
In the above description, the procedure for erasing the waveform c so as not to include the longitudinal wave component has been described. On the contrary, the transverse wave component is eliminated, and the distance L to the discharge position is determined by the longitudinal wave component.
May be obtained. In this case, the interval ΔL between the ultrasonic sensors 10a and 10b and the delay time T / 2 in the delay circuit 23 may be set based on the shear wave propagation velocity.

【0022】次に、上述した1対の超音波センサ10
a、10bの間隔ΔLを厳密解に基づいて設定する場合
について説明する。まず、前提条件として次の記号を定
める。
Next, the above-mentioned pair of ultrasonic sensors 10
A case where the interval ΔL between a and 10b is set based on an exact solution will be described. First, the following symbols are defined as preconditions.

【0023】・X=Vs/Vp:横波と縦波の速度比
(Vs:横波伝搬速度、Vp:縦波伝搬速度) ・f(周期T=1/f):BPF中心周波数 ・ΔL:2個のセンサ間隔(放電点に近い側をa、遠い
側をbとする) 最適なΔLの決定方法は、センサ10aの遅延信号とセ
ンサ10bの信号の差動をとり、縦波を消去し横波を最
も大きくできる距離ΔLを選定するようにする。この場
合、上記2つのセンサ信号において、a、bの縦波の位
相が一致、a、bの横波の位相が(C/2)・T(C:
奇数)ずれるとする(偶数倍であると横波も消える)。
以上のように想定して最適なΔLを演算する手順は次の
通りである。
X = Vs / Vp: velocity ratio between shear wave and longitudinal wave (Vs: shear wave propagation velocity, Vp: longitudinal wave propagation velocity) f (period T = 1 / f): BPF center frequency ΔL: 2 pieces (A is closer to the discharge point and b is farther from the discharge point.) An optimal method for determining ΔL is to take the differential between the delay signal of the sensor 10a and the signal of the sensor 10b, eliminate longitudinal waves, and reduce transverse waves. The distance ΔL that can be maximized is selected. In this case, in the two sensor signals, the phases of the longitudinal waves a and b match, and the phases of the transverse waves a and b are (C / 2) · T (C:
(Odd number) It is assumed that it is shifted (if it is an even number, the transverse wave also disappears).
The procedure for calculating the optimum ΔL on the assumption as described above is as follows.

【0024】まず、センサ10a、10b間の検出時間
差を次式により求める。 Δtp=L/Vp:センサ10a、10b間の縦波の検
出時間差 Δts=L/Vs:センサ10a、10b間の横波の検
出時間差 上式からVp・Δtp=Vs・Δts→Δts=Δtp
/x(x=Vs/Vpより)となる。センサ10aの信
号をΔtp遅延させ(位相を一致させ)、縦波を消去す
る。そのとき、横波の位相ずれφは次のようになる。
First, a detection time difference between the sensors 10a and 10b is obtained by the following equation. Δtp = L / Vp: detection time difference of longitudinal wave between sensors 10a and 10b Δts = L / Vs: detection time difference of transverse wave between sensors 10a and 10b From the above equation, Vp · Δtp = Vs · Δts → Δts = Δtp
/ X (from x = Vs / Vp). The signal of the sensor 10a is delayed by Δtp (matched in phase) to eliminate longitudinal waves. At that time, the phase shift φ of the transverse wave is as follows.

【0025】φ=Δts−Δtp=Δtp/x−Δtp
={(1−x)/x}・Δtp この横波が最も強調されるのは、位相φ=(C/2)・
T(C:奇数)のときである。従って、 {(1−x)/x}・Δtp=(c/2)・T よって、Δtp=(C/2)・T・{x/(1−x)} 以上から最適センサ間隔ΔLは次式で計算される。
Φ = Δts−Δtp = Δtp / x−Δtp
= {(1-x) / x} .Δtp This transverse wave is most emphasized by the phase φ = (C / 2).
This is at the time of T (C: odd number). Therefore, {(1−x) / x} · Δtp = (c / 2) · T Therefore, Δtp = (C / 2) · T · {x / (1-x)} From the above, the optimal sensor interval ΔL is It is calculated by the formula.

【0026】 ΔL=Vp・Δtp=Vp・(C/2)・T・{x/(1−x)}……(1) 上式から分かるように、ΔLは縦波及び横波の伝搬速
度、BPF中心周波数から求められる。上式において、
横波と縦波の速度比x=1/2の場合、ΔLは次の通り
となる。 ΔL=Vp・(c/2)・T (C:奇数) 又、C=1の場合、ΔL=Vp・(1/2)・Tより
「縦波の1/2波長」となる。
ΔL = Vp · Δtp = Vp · (C / 2) · T · {x / (1-x)} (1) As can be seen from the above equation, ΔL is the propagation velocity of the longitudinal wave and the transverse wave, It is determined from the BPF center frequency. In the above formula,
When the speed ratio x of the transverse wave and the longitudinal wave is x = 1 /, ΔL is as follows. ΔL = Vp · (c / 2) · T (C: odd number) Further, when C = 1, ΔL = Vp · (1/2) · T is “half wavelength of longitudinal wave”.

【0027】以上は厳密解によるセンサ間距離ΔLを設
定する手順であるが、上記厳密解によりセンサ間距離を
設定した場合は遅延回路23による遅延時間の設定など
も1/2波長に設定したときと同様にして行なう。
The above is the procedure for setting the inter-sensor distance ΔL based on the exact solution. However, when the inter-sensor distance is set based on the exact solution, the setting of the delay time by the delay circuit 23 and the like are performed at a half wavelength. Perform in the same manner as described above.

【0028】図4は第2実施形態の超音波センサ10
a、10bの配置構成について示している。なお、図示
以外の構成は第1実施形態と同一であるから、図示省略
する。対象物が複雑な構造の場合、(b)図に示すよう
に、同一放電発生点からの音響信号の伝搬経路が2つの
超音波センサ10a、10bに対して異なるため、同一
音響信号を簡易式又は厳密解によるセンサ間距離ΔLで
検出する配置が困難な場合がある。
FIG. 4 shows an ultrasonic sensor 10 according to the second embodiment.
The arrangement configuration of a and 10b is shown. The configuration other than the illustration is the same as that of the first embodiment, and is not shown. When the object has a complicated structure, the propagation path of the acoustic signal from the same discharge occurrence point is different for the two ultrasonic sensors 10a and 10b as shown in FIG. Alternatively, there is a case where it is difficult to perform the arrangement for detecting the distance between sensors ΔL based on the exact solution.

【0029】このような現実的な困難に対処するため、
(a)図に示すように、対象物に伝導部材10xを突出
させて取り付け、この伝導部材10xに所定の距離ΔL
を置いて1対の超音波センサ10a、10bを取り付け
る。伝導部材10xによって伝搬経路の異なる信号が超
音波センサ10a、10bに伝達されるのが制限され、
上記所定距離の確保ができる。
In order to deal with such practical difficulties,
(A) As shown in the drawing, a conductive member 10x is attached to an object by protruding, and a predetermined distance ΔL is attached to the conductive member 10x.
And a pair of ultrasonic sensors 10a and 10b are attached. Transmission of signals having different propagation paths to the ultrasonic sensors 10a and 10b by the conductive member 10x is restricted,
The predetermined distance can be secured.

【0030】図5は第3実施形態の超音波センサの配置
構成について示す。この実施形態も第1実施形態と異な
る部分を中心に図示、説明する。この実施形態では、伝
導部材10xを平板とし、互いに上記所定距離ΔL離れ
た位置の両面に2つずつの超音波センサ10a、10b
を設ける。信号処理部11’にはその両面のセンサ信号
の加算回路25a、25bをアンプ21a〜BPF22
a、アンプ21b〜BPF22bのそれぞれの回路途中
に挿入する。
FIG. 5 shows an arrangement of an ultrasonic sensor according to the third embodiment. This embodiment is also illustrated and described with a focus on differences from the first embodiment. In this embodiment, the conductive member 10x is a flat plate, and two ultrasonic sensors 10a and 10b are provided on both surfaces at a position apart from each other by the predetermined distance ΔL.
Is provided. The signal processing unit 11 ′ includes the addition circuits 25 a and 25 b of the sensor signals on both sides of the signal processing unit 11 ′.
a, It is inserted in the middle of each of the amplifiers 21b to BPF 22b.

【0031】上記平板両面に設けたセンサの信号は位相
が互いに反対であるため加算回路25a、25bで加算
されることによって信号強度は2倍となり、一方ランダ
ムノイズは打ち消されるため検出感度が向上する。
Since the signals of the sensors provided on both sides of the flat plate are opposite in phase, they are added by the adding circuits 25a and 25b, so that the signal strength is doubled. On the other hand, the random noise is canceled and the detection sensitivity is improved. .

【0032】[0032]

【発明の効果】以上、詳細に説明したように、この発明
の部分放電発生位置検出装置は、音響センサで対象物の
部分放電の音響信号を検出し、その検出信号の一方の縦
波及び横波成分からそのいずれか一方を他方の信号成分
を用いて消去する信号処理部と、その処理信号に基づい
て放電位置を算出する演算部とを備えたものとしたか
ら、縦波あるいは横波を選択して計測することによりそ
の伝搬速度を用いてより高精度の放電発生位置の標定が
できる。
As described above in detail, the partial discharge occurrence position detecting apparatus of the present invention detects an acoustic signal of a partial discharge of an object by an acoustic sensor, and detects one of a longitudinal wave and a transverse wave of the detected signal. A signal processing unit for erasing one of the components using the other signal component, and a calculation unit for calculating the discharge position based on the processed signal are provided. With this measurement, the position of the discharge occurrence can be located with higher accuracy using the propagation speed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の部分放電発生位置検出装置の概略ブ
ロック図
FIG. 1 is a schematic block diagram of a partial discharge occurrence position detecting device according to an embodiment.

【図2】作用の説明図FIG. 2 is an explanatory diagram of an operation.

【図3】作用の説明図FIG. 3 is an explanatory diagram of an operation.

【図4】第2実施形態の超音波センサ配置構成図FIG. 4 is a configuration diagram of an ultrasonic sensor according to a second embodiment.

【図5】第3実施形態の超音波センサ配置構成図FIG. 5 is a configuration diagram of an ultrasonic sensor according to a third embodiment.

【図6】従来の放電位置算出方法の説明図FIG. 6 is an explanatory diagram of a conventional discharge position calculation method.

【符号の説明】[Explanation of symbols]

10、10a、10b 超音波センサ 11 信号処理部 12 演算部 13 表示器 14 波形計測器 23 遅延回路 24 差動回路 10, 10a, 10b Ultrasonic sensor 11 Signal processing unit 12 Operation unit 13 Display unit 14 Waveform measuring device 23 Delay circuit 24 Differential circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 部分放電を測定すべき対象物に互いに所
定間隔で1対の音響センサを配設し、これらの音響セン
サから送られるセンサ信号の一方の信号の縦波及び横波
成分からそのいずれか一方を他方の信号の縦波又は横波
成分を用いて消去し、横波又は縦波の信号成分のみをう
るように信号処理をする信号処理部と、この処理部で得
た上記いずれかの信号の伝搬速度から放電位置を算出す
る演算部とを備えて成る部分放電発生位置検出装置。
A pair of acoustic sensors are disposed at predetermined intervals on an object to be measured for partial discharge, and a longitudinal wave and a transverse wave component of one of the sensor signals sent from these acoustic sensors are used to determine which of them. A signal processing unit for eliminating one of the signals using the longitudinal wave or the transverse wave component of the other signal and performing signal processing so as to obtain only the signal component of the transverse wave or the longitudinal wave, and any one of the signals obtained by the processing unit A partial discharge occurrence position detection device, comprising: a calculation unit that calculates a discharge position from the propagation speed of the partial discharge.
【請求項2】 前記信号処理部に音響センサの検出信号
から所定の周波数信号を抽出する帯域通過フィルタと、
放電発生点に近い側の音響センサの上記フィルタを通過
した信号を遅らせる遅延回路と、この遅延回路からの信
号と放電発生点から遠い側のセンサのフィルタ通過信号
との差を得る差動回路とを設け、フィルタの中心周波数
と縦波及び横波の伝搬速度から所定の演算に基づいて求
められる距離に音響センサの間隔を設定し、遅延回路は
消去する縦波又は横波が上記設定距離を伝搬する時間
分、遅延させるようにしたことを特徴とする請求項1に
記載の部分放電発生位置検出装置。
2. A band-pass filter for extracting a predetermined frequency signal from a detection signal of an acoustic sensor in the signal processing unit,
A delay circuit that delays a signal that has passed through the filter of the acoustic sensor closer to the discharge point, and a differential circuit that obtains a difference between a signal from the delay circuit and a filter pass signal of the sensor farther from the discharge point. Is provided, and the distance between the acoustic sensors is set to a distance obtained based on a predetermined calculation from the center frequency of the filter and the propagation speed of the longitudinal wave and the transverse wave. The delay circuit propagates the longitudinal wave or the transverse wave to be erased over the set distance. 2. The partial discharge occurrence position detecting device according to claim 1, wherein the partial discharge occurrence position detecting device is delayed by a time.
【請求項3】 前記対象物に伝導部材を設け、この伝導
部材に前記間隔で音響センサを配設したことを特徴とす
る請求項2に記載の部分放電発生位置検出装置。
3. The partial discharge occurrence position detecting device according to claim 2, wherein a conductive member is provided on the object, and acoustic sensors are provided at the intervals on the conductive member.
【請求項4】 前記伝導部材を平板状とし、その両面に
前記音響センサの複数対を設け、その両面のセンサ信号
を加算する加算回路を前記信号処理部に設けたことを特
徴とする請求項3に記載の部分放電発生位置検出装置。
4. The signal processing unit according to claim 1, wherein the conductive member is formed in a flat plate shape, a plurality of pairs of the acoustic sensors are provided on both surfaces thereof, and an addition circuit for adding sensor signals on both surfaces is provided in the signal processing unit. 3. The partial discharge occurrence position detecting device according to 3.
JP11197695A 1999-07-12 1999-07-12 Device for detecting partial discharge generating position Pending JP2001021607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11197695A JP2001021607A (en) 1999-07-12 1999-07-12 Device for detecting partial discharge generating position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11197695A JP2001021607A (en) 1999-07-12 1999-07-12 Device for detecting partial discharge generating position

Publications (1)

Publication Number Publication Date
JP2001021607A true JP2001021607A (en) 2001-01-26

Family

ID=16378829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11197695A Pending JP2001021607A (en) 1999-07-12 1999-07-12 Device for detecting partial discharge generating position

Country Status (1)

Country Link
JP (1) JP2001021607A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782136A (en) * 2018-12-27 2019-05-21 刘中生 A method of contact net defective locations are determined based on longitudinal wave shear wave velocity difference
EP3492934A1 (en) * 2017-12-01 2019-06-05 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for detecting a fault occurring in a cable
CN112014693A (en) * 2020-08-18 2020-12-01 江苏方天电力技术有限公司 Cable partial discharge positioning method and system based on wave velocity uncertainty
CN112505580A (en) * 2020-11-03 2021-03-16 深圳供电局有限公司 Electric leakage detection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492934A1 (en) * 2017-12-01 2019-06-05 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for detecting a fault occurring in a cable
FR3074583A1 (en) * 2017-12-01 2019-06-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR DETECTING A FAULT IN A CABLE
US10852342B2 (en) 2017-12-01 2020-12-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for detecting a fault occurring in a cable
CN109782136A (en) * 2018-12-27 2019-05-21 刘中生 A method of contact net defective locations are determined based on longitudinal wave shear wave velocity difference
CN109782136B (en) * 2018-12-27 2021-04-09 刘中生 Method for determining defect position of contact net based on longitudinal wave and transverse wave speed difference
CN112014693A (en) * 2020-08-18 2020-12-01 江苏方天电力技术有限公司 Cable partial discharge positioning method and system based on wave velocity uncertainty
CN112014693B (en) * 2020-08-18 2023-01-31 江苏方天电力技术有限公司 Cable partial discharge positioning method and system based on wave speed uncertainty
CN112505580A (en) * 2020-11-03 2021-03-16 深圳供电局有限公司 Electric leakage detection device

Similar Documents

Publication Publication Date Title
JP2011185921A (en) System and method for measuring damage length
JP2001021607A (en) Device for detecting partial discharge generating position
US11796361B2 (en) Flow rate measurement apparatus measuring flow rate of fluid inside pipe having predetermined cross-sectional area
US4353256A (en) Non-contact measurement of physical properties of continuously moving metal strip
JP2000241397A (en) Method and apparatus for detecting surface defect
JP5326697B2 (en) Ultrasonic measuring instrument
JP2002048836A (en) Method of detecting partial discharge in power cable
JPS6321135B2 (en)
JP4631615B2 (en) Surface acoustic wave propagation state measuring device, surface acoustic wave propagation state measuring method, environment change measuring device, environment change measuring method, and multi-round surface acoustic wave element
EP0028540B1 (en) Method and apparatus for non-contact acoustic measurement of physical properties of continuously moving metal strip
JP2001519035A (en) Inspection device for boundary area by ultrasonic wave
JP2001013118A (en) Electromagnetic ultrasonic probe
JP3844282B2 (en) Object identification apparatus and method
JP2626361B2 (en) Ultrasonic phase velocity curve determination method and apparatus
JP3207740B2 (en) Defect position estimation device
JP4617540B2 (en) Ultrasonic characteristic measuring method, acoustic anisotropy measuring method, and acoustic anisotropy measuring apparatus
JPH095310A (en) Ultrasonic inspection method
JPS5925182B2 (en) AE monitoring device
JPS61256255A (en) Ultrasonic flaw detection apparatus
JPH1038862A (en) Method and device for iron loss value evaluation
JPH01145585A (en) Locating method of position generating partial discharge
JPS6123920A (en) Flow velocity and flow rate measuring device
JP2001108508A (en) Frequency type liquid level detecting method with ultrasonic wave and its device
JP2005003446A (en) Ultrasonic measuring instrument
JP3079912B2 (en) Metal material inspection equipment