JP2001020511A - Heat insulation material for floor heating and floor heater using it - Google Patents

Heat insulation material for floor heating and floor heater using it

Info

Publication number
JP2001020511A
JP2001020511A JP11198022A JP19802299A JP2001020511A JP 2001020511 A JP2001020511 A JP 2001020511A JP 11198022 A JP11198022 A JP 11198022A JP 19802299 A JP19802299 A JP 19802299A JP 2001020511 A JP2001020511 A JP 2001020511A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
floor heating
thermoplastic polyester
expanded particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11198022A
Other languages
Japanese (ja)
Other versions
JP3488400B2 (en
Inventor
Tatsuya Eguchi
達也 江口
Ichiro Horiyama
一郎 堀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP19802299A priority Critical patent/JP3488400B2/en
Publication of JP2001020511A publication Critical patent/JP2001020511A/en
Application granted granted Critical
Publication of JP3488400B2 publication Critical patent/JP3488400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure strength by specifying a ration of the minimum value to the maximum value of 5% compressive strength within a specified temperature range in a heat insulating material formed of synthetic resin foam body. SOLUTION: A heat insulating material 5 for floor heating is laid between a heat resisting flooring 4 and permanent plywood 2, and a hot water pipe 5 as a heating means is accommodated in a groove 51 of the upper surface of the heat insulating material 5 to constitute a floor heater. Secondary, the heat insulating material 5 is formed of synthetic resin foam body, and the ratio S2/S1 of the minimum value S1 to the maximum value S2 of compressive strength at an environment temperature of 0 to 70 deg.C is set to 2 or less. Subsequently, in the case of thermoplastic polyester resin, at least one kind of component selected from the group consisting of isophthalic acid and cyclohexandimethanol is contained by 0.5 to 10 wt.% in gross, and preliminary foam particles are foamed and formed in a mold to set the crystallinity to 20 to 40% and set the fusion rate to at least 40%. Thus, the strength can be secured substantially constant regardless of temperature, and under high temperature environment, local drop can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、床暖房装置に組み
込まれる床暖房用断熱材と、それを用いた床暖房装置と
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a floor heating insulation material incorporated in a floor heating device and a floor heating device using the same.

【0002】[0002]

【従来の技術】近年、とくに畳中心の生活から、いわゆ
るフローリングとイスとテーブル中心の生活へのライフ
スタイルの転換にともない、温水、電熱その他の加熱手
段によって床を直接に暖める床暖房装置が普及しつつあ
る。かかる床暖房装置においては、加熱手段から下方
(室外)へ熱が逃げるのを防止して、床面から上(室
内)を効率的に加熱するために、断熱材を組み込むこと
が行われる。
2. Description of the Related Art In recent years, floor heating devices that directly warm a floor with hot water, electric heating, or other heating means have become widespread as lifestyles have changed from living mainly in tatami to living in so-called flooring, chairs and tables. I am doing it. In such a floor heating device, a heat insulating material is incorporated in order to prevent heat from escaping downward (outdoor) from the heating means and to efficiently heat the floor from above (indoor).

【0003】断熱材としては従来、グラスウールなどが
用いられていたが、床暖房装置全体の軽量化による建築
への負担の軽減、ならびに施工作業の能率向上などを考
慮して近時、ポリプロピレンなどのオレフィン系樹脂の
発泡体を、上記断熱材として使用することが検討されて
いる(たとえば特開平11−132476号公報参
照)。
Conventionally, glass wool or the like has been used as a heat insulating material. However, recently, in consideration of reducing the burden on the building by reducing the weight of the entire floor heating device and improving the efficiency of construction work, polypropylene and the like have recently been used. Use of an olefin-based resin foam as the heat insulating material has been studied (see, for example, JP-A-11-132476).

【0004】[0004]

【発明が解決しようとする課題】ところが、発明者らが
検討したところによると上記オレフィン系樹脂の発泡体
は、軽量性、耐割れ性、断熱性、耐薬品性などにすぐれ
るものの、機械的強度、とくに圧縮強度の温度依存性が
大きく、およそ0〜+70℃の温度範囲で、温度上昇に
ともなって圧縮強度が大きく低下すること、そのためと
くに床暖房装置の運転開始時に、一時的に温度が上昇し
た環境下で、圧縮強度の低下が大きくなって、たとえば
家具を置いた個所の周辺の床面が局部的に落ち込むなど
のおそれのあることが明らかとなった。
According to studies made by the inventors, however, the above-mentioned olefin resin foam is excellent in light weight, crack resistance, heat insulation, chemical resistance, etc. The strength, especially the compressive strength, has a large temperature dependence, and the compressive strength greatly decreases with the temperature rise in the temperature range of about 0 to + 70 ° C. It has been clarified that, under an increased environment, the compression strength is greatly reduced, and for example, the floor around the place where the furniture is placed may be locally dropped.

【0005】また、上記オレフィン系樹脂の発泡体を使
用した床暖房装置は、上述した理由から、その上を歩い
た際の歩行感が悪くなるという問題もあった。本発明の
主たる目的は、温度に関係なくほぼ一定の強度を有する
ために、とくに高温環境下での局部的な落ち込みなどを
生じにくい、改良された床暖房用断熱材を提供すること
にある。また本発明の他の目的は、良好な歩行感を有す
る床暖房装置を提供することにある。
Further, the floor heating device using the above-mentioned olefin-based resin foam also has a problem that the walking sensation when walking on the floor is deteriorated for the above-mentioned reason. A main object of the present invention is to provide an improved heat insulating material for floor heating, which has a substantially constant strength irrespective of temperature and is therefore less likely to cause a local drop particularly in a high-temperature environment. Another object of the present invention is to provide a floor heating device having a good walking feeling.

【0006】[0006]

【課題を解決するための手段】発明者らは、前述した局
部的な床の落ち込みなどを防止するために、断熱材がど
のような温度−圧縮強度特性を有していればよいかを検
討した。その結果、前述した環境温度0〜+70℃の温
度範囲での、5%圧縮強度の最小値S1と最大値S2との
比S2/S1が2以下であれば、とくに高温環境下での局
部的な床の落ち込みを防止して、良好な歩行感が得られ
ることを見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors have studied what kind of temperature-compressive strength characteristics the heat insulating material needs to have in order to prevent the above-mentioned local fall of the floor. did. As a result, if the ratio S 2 / S 1 between the minimum value S 1 and the maximum value S 2 of the 5% compressive strength in the above-mentioned environmental temperature range of 0 to + 70 ° C. is 2 or less, especially in a high-temperature environment The present inventors have found that a good feeling of walking can be obtained by preventing a local fall of the floor in the above, and have completed the present invention.

【0007】したがって本発明の床暖房用断熱材は、環
境温度0〜+70℃の温度範囲での、5%圧縮強度の最
小値S1と最大値S2との比S2/S1が2以下である合成
樹脂の発泡体からなることを特徴とするものである。ま
た本発明の床暖房装置は、上記本発明の床暖房用断熱材
と、加熱手段とを備えることを特徴とするものである。
Therefore, the heat insulating material for floor heating according to the present invention has a ratio S 2 / S 1 between the minimum value S 1 and the maximum value S 2 of the 5% compressive strength in the temperature range of 0 to + 70 ° C. 2 It is characterized by being made of the following synthetic resin foam. Further, a floor heating device of the present invention includes the above-described heat insulating material for floor heating of the present invention, and heating means.

【0008】[0008]

【発明の実施の形態】以下に、本発明を説明する。 〈床暖房用断熱材〉本発明の床暖房用断熱材は、その全
体が合成樹脂の発泡体にて形成されたもので、かかる発
泡体の、環境温度0〜+70℃の温度範囲での、5%圧
縮強度の最小値S1と最大値S2との比S2/S1が、前記
のように2以下である必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below. <Heat insulation material for floor heating> The heat insulation material for floor heating of the present invention is formed entirely of a synthetic resin foam, and the temperature of the foam in an environmental temperature range of 0 to + 70 ° C. the minimum value of 5% compression strength S 1 and ratio S 2 / S 1 between the maximum value S 2 is the need of 2 or less as.

【0009】上記比S2/S1が2を超えるものは、前述
したように床暖房装置の運転開始時に、一時的に温度が
上昇した環境下で、圧縮強度の低下が大きくなり、床面
が局部的に落ち込んだり、その結果、歩行感が悪くなっ
たりするという問題を生じる。なお上記S2/S1は1.
5以下であるのが好ましく、1.1以下であるのがより
一層、好ましい。
In the case where the ratio S 2 / S 1 exceeds 2, as described above, the compressive strength is greatly reduced under the environment where the temperature is temporarily increased at the start of the operation of the floor heating device, and However, there is a problem that a person is locally depressed, and as a result, walking feeling is deteriorated. Note the S 2 / S 1 is 1.
It is preferably 5 or less, and more preferably 1.1 or less.

【0010】なお比S2/S1の下限値は、いうまでもな
く、上記最小値S1と最大値S2とが等しい場合の1であ
る。かかる温度−圧縮強度特性を満足する断熱材を形成
しうる合成樹脂の発泡体としては種々考えられるが、と
くに熱可塑性ポリエステル系樹脂の予備発泡粒子を型内
発泡成形した発泡成形体が好適に使用される。
The lower limit of the ratio S 2 / S 1 is, of course, 1 when the minimum value S 1 is equal to the maximum value S 2 . There are various types of synthetic resin foams that can form a heat insulating material that satisfies such temperature-compressive strength characteristics. In particular, foamed molded articles obtained by in-mold foaming of pre-expanded particles of a thermoplastic polyester resin are preferably used. Is done.

【0011】熱可塑性ポリエステル系樹脂の発泡成形体
は上記の温度−圧縮強度特性を満足する上、軽量で、か
つ衝撃吸収性、繰り返し圧縮永久歪み、耐薬品性などに
すぐれている。また、上記熱可塑性ポリエステル系樹脂
の発泡成形体は、とくに高温環境下での寸法安定性や、
長期に亘る寸法安定性にもすぐれており、熱収縮によっ
て床材などとの間に隙間を生じたりしにくい、長期の使
用に十分に耐えうる断熱材を形成できるという利点を有
している。 〈床暖房装置〉上記本発明の床暖房用断熱材が組み込ま
れる、本発明の床暖房装置は、当該床暖房用断熱材と加
熱手段とを備えること以外は、従来公知の種々の構成と
することができる。その一例を図1に示す。
The foamed molded article of the thermoplastic polyester resin satisfies the above-mentioned temperature-compression strength characteristics, is lightweight, and is excellent in shock absorption, repeated compression set, chemical resistance and the like. Further, the foamed molded article of the thermoplastic polyester-based resin has dimensional stability, particularly in a high-temperature environment,
It has excellent dimensional stability over a long period of time, has the advantage that it is difficult to form a gap with a floor material or the like due to heat shrinkage, and can form a heat insulating material that can sufficiently withstand long-term use. <Floor heating device> The floor heating device of the present invention, in which the above-described heat insulating material for floor heating of the present invention is incorporated, has various conventionally known configurations except that the heat insulating material for floor heating and the heating means are provided. be able to. One example is shown in FIG.

【0012】図の例の床暖房装置は、建築物の根太1上
に、捨て貼り合板2、および小根太3を介して支持され
た、床面を形成する耐熱性フローリング4の下の、上記
小根太3によって耐熱性フローリング4と捨て貼り合板
2との間に形成された隙間に、本発明の床暖房用断熱材
5を敷き詰めるとともに、当該断熱材5の上面側に形成
した溝51に、加熱手段としての、温水などの流体を循
環させるパイプ6を収容したものである。
The floor heating apparatus in the example shown in FIG. 1 is supported on a joist 1 of a building via a discarded plywood 2 and a small joist 3 under a heat-resistant flooring 4 forming a floor. In the gap formed between the heat-resistant flooring 4 and the discarded plywood 2 by the small joist 3, the heat insulating material 5 for floor heating of the present invention is spread, and in the groove 51 formed on the upper surface side of the heat insulating material 5, It houses a pipe 6 for circulating a fluid such as hot water as a heating means.

【0013】なお図において符号7は、金属箔などで形
成された均熱化板、符号8は、補助的な断熱材である。
かかる補助の断熱材8は捨て貼り合板2の下に配置さ
れ、強度などを必要としないので、経済性などを考慮し
てポリスチレン樹脂発泡体などの、通常の樹脂の発泡体
で形成するのが好ましい。上記例の床暖房装置は、耐熱
性フローリング4の下に敷き詰められた床暖房用断熱材
5が、前記のように温度に関係なくほぼ一定の強度を有
し、とくに高温環境下での局部的な落ち込みなどを生じ
にくいために、その上を歩いた際の歩行感にすぐれたも
のとなる。
In the drawings, reference numeral 7 denotes a soaking plate made of metal foil or the like, and reference numeral 8 denotes an auxiliary heat insulating material.
Since the auxiliary heat insulating material 8 is disposed below the discarded plywood 2 and does not require strength, it is preferable to form it with a normal resin foam such as a polystyrene resin foam in consideration of economy and the like. preferable. In the floor heating device of the above example, the heat insulating material 5 for floor heating spread under the heat-resistant flooring 4 has almost constant strength regardless of the temperature as described above, Since it does not easily cause a serious depression, the walking feeling when walking on it is excellent.

【0014】なお床暖房装置の構成は、図の例には限定
されず、先に述べたように床暖房用断熱材5と加熱手段
とを備えること以外は、従来公知の種々の構成を採用す
ることが可能である。また床暖房用断熱材5の形状は、
上記床暖房装置の構成に応じて適宜、変更することがで
きる。
The configuration of the floor heating device is not limited to the example shown in the figure, and various conventionally known configurations are adopted except that the floor heating insulating material 5 and the heating means are provided as described above. It is possible to Moreover, the shape of the heat insulating material 5 for floor heating is as follows.
It can be changed as appropriate according to the configuration of the floor heating device.

【0015】たとえば加熱手段として、電熱などの面状
の発熱体を使用する場合、断熱材5は、前記溝51など
を有しない、適度な厚みを有する単なる平板状に形成さ
れてもよい。また断熱材5には、床暖房装置を組み込む
建築物の小根太などを避けるための通孔などを形成して
もよい。その他、本発明の要旨を変更しない範囲で、適
宜の設計変更を施すことができる。 〈熱可塑性ポリエステル系樹脂〉本発明において断熱材
に好適に使用される発泡成形体を形成する熱可塑性ポリ
エステル系樹脂としては、たとえばテレフタル酸とエチ
レングリコールとを重縮合反応させるなどして合成され
るポリエチレンテレフタレート(PET)に代表され
る、従来公知の種々の熱可塑性ポリエステル系樹脂が、
いずれも使用可能である。
For example, when a planar heating element such as electric heating is used as the heating means, the heat insulating material 5 may be formed as a simple flat plate having an appropriate thickness without the grooves 51 and the like. Further, the heat insulating material 5 may be formed with a through hole or the like for avoiding a small joist of a building in which the floor heating device is incorporated. In addition, appropriate design changes can be made without changing the gist of the present invention. <Thermoplastic polyester-based resin> The thermoplastic polyester-based resin forming the foamed molded article preferably used for the heat insulating material in the present invention is synthesized, for example, by subjecting terephthalic acid and ethylene glycol to a polycondensation reaction. Conventionally known various thermoplastic polyester resins represented by polyethylene terephthalate (PET)
Both can be used.

【0016】ただし、上記PETなどの従来の熱可塑性
ポリエステル系樹脂は一般にガスバリヤー性が高く、発
泡剤を含浸するのに多大な時間を要するために、樹脂に
発泡剤を含浸させ〔含浸工程〕、ついで加熱して予備発
泡させるとともに、粒子化して予備発泡粒子を得たのち
〔予備発泡工程〕、この予備発泡粒子を型内に充てん
し、加熱膨張させて発泡成形〔型内発泡工程〕する従来
の発泡成形方法によって発泡成形体、すなわちこの場合
は床暖房用断熱材を製造したのでは時間、コストおよび
手間がかかるおそれがある。
However, conventional thermoplastic polyester resins such as PET described above generally have high gas barrier properties and require a great deal of time to impregnate a foaming agent. Therefore, the resin is impregnated with a foaming agent (impregnation step). Then, the pre-expanded particles are obtained by heating and pre-expanding the particles to obtain pre-expanded particles (pre-expansion step). The pre-expanded particles are filled in a mold, expanded by heating, and subjected to foam molding (in-mold expansion step). If a foam molded body, that is, a heat insulating material for floor heating in this case, is manufactured by a conventional foam molding method, time, cost, and labor may be required.

【0017】さらに上記従来の熱可塑性ポリエステル系
樹脂は加熱によって結晶化が進みやすい、すなわち結晶
化の速度が速いために、上記含浸時や予備発泡時の加熱
によって予備発泡粒子の結晶化度が過度に高くなって、
型内発泡成形時に発泡粒同士の発泡融着性の低下をまね
くという問題もある。このため、とくに汎用の発泡成形
機を使用して、たとえばスチームのゲージ圧が0.5M
Pa以下といった通常の成形条件で発泡成形したので
は、耐熱性にすぐれた発泡成形体が得られるものの、発
泡粒同士が高い融着率でもって良好に融着、一体化し
た、前記圧縮強度などの強度にすぐれた発泡成形体を製
造することはできない。
Further, the above-mentioned conventional thermoplastic polyester resin tends to be easily crystallized by heating, that is, since the crystallization speed is high, the crystallinity of the pre-expanded particles is excessively increased by the heating during the impregnation or pre-expansion. Become higher,
There is also a problem that during the in-mold foam molding, the foaming fusion property between the foamed particles is reduced. For this reason, using a general-purpose foam molding machine, for example, a gauge pressure of steam of 0.5M
By foam molding under ordinary molding conditions such as Pa or less, although a foam molded article excellent in heat resistance can be obtained, the foamed particles are fused well with a high fusion rate, integrated, the compressive strength, etc. It is not possible to produce a foam molded article having excellent strength.

【0018】したがってPETなどの従来の熱可塑性ポ
リエステル系樹脂を用いて、高い融着率を有する発泡成
形体を製造するには、たとえば多量のスチームを型内に
均一に供給できるなどの特殊な機能を付与した特殊な発
泡成形機を用いて、ゲージ圧が0.5MPaを超えるよ
うな特殊な成形条件で成形を行う必要を生じる。しかし
ながらこのような特殊な成形条件ゆえに、製造される発
泡成形体は、たとえば40%を超えるような、過度に結
晶化度の高いものとなってしまい、耐熱性にはすぐれる
ものの脆くなって、かえって必要とする強度が得られな
い。
Therefore, in order to produce a foamed molded article having a high fusion rate using a conventional thermoplastic polyester resin such as PET, a special function such as a large amount of steam can be uniformly supplied into a mold. It is necessary to carry out molding under special molding conditions such that the gauge pressure exceeds 0.5 MPa using a special foam molding machine provided with. However, due to such special molding conditions, the foam molded article produced has an excessively high degree of crystallinity, for example, exceeding 40%, and is excellent in heat resistance but brittle. On the contrary, the required strength cannot be obtained.

【0019】また、結晶化度が40%を超えた発泡成形
体は、とくに高温環境下での寸法安定性が低下して、熱
収縮によって床材などとの間に隙間を生じやすくなると
いう問題もある。それゆえ本発明においては、上記熱可
塑性ポリエステル系樹脂として、とくにその結晶化の速
度が抑制されたものを使用するのが好ましい。
Further, a foamed molded article having a degree of crystallinity exceeding 40% has a problem that the dimensional stability particularly in a high-temperature environment is reduced, and a gap is easily formed between the molded article and a floor material due to heat shrinkage. There is also. Therefore, in the present invention, it is preferable to use, as the above-mentioned thermoplastic polyester resin, a resin whose crystallization speed is particularly suppressed.

【0020】すなわち結晶化の速度が抑制された熱可塑
性ポリエステル系樹脂は、従来のPETなどと比べて、
たとえ加熱によって高温にさらされても、予備発泡粒子
の結晶化度が過度に高くなることが抑制され、型内発泡
成形時の発泡融着性が著しく低くなることが防止され
る。したがって型内発泡成形時の発泡融着性にすぐれ、
かつ機械的強度にもすぐれるとともに寸法安定性にもす
ぐれた発泡成形体を、特殊な発泡成形機を使用すること
なく、汎用の発泡成形機を使用した通常の成形条件によ
って、容易に製造することが可能となる。
That is, the thermoplastic polyester resin in which the rate of crystallization is suppressed is smaller than the conventional PET or the like.
Even if the pre-expanded particles are exposed to a high temperature due to heating, the crystallinity of the pre-expanded particles is prevented from becoming excessively high, and the foam fusion property during in-mold foam molding is prevented from being significantly reduced. Therefore, it has excellent foam fusion property during in-mold foam molding,
Easily produce foamed moldings with excellent mechanical strength and dimensional stability under ordinary molding conditions using a general-purpose foaming molding machine without using a special foaming molding machine. It becomes possible.

【0021】熱可塑性ポリエステル系樹脂の結晶化の速
度は、示差走査熱量計(DSC)を使用して、日本工業
規格JIS K7121所載の測定方法に準じて測定し
た樹脂の結晶化のピーク温度(昇温時に結晶化が起こる
ピークの温度)によって評価することができる。すなわ
ち結晶化のピーク温度が高いほど樹脂は、結晶化を促進
させるのに多量の熱を必要とする、つまり結晶化の速度
が遅いと言える。
The crystallization rate of the thermoplastic polyester-based resin is determined by using a differential scanning calorimeter (DSC) in accordance with the measurement method described in Japanese Industrial Standard JIS K7121. The temperature can be evaluated by the temperature at which crystallization occurs when the temperature is raised. That is, it can be said that the higher the crystallization peak temperature is, the more the resin requires a larger amount of heat to promote crystallization, that is, the lower the crystallization speed is.

【0022】具体的には、測定試料としての所定量の熱
可塑性ポリエステル系樹脂をDSCの測定容器に充てん
して、10℃/分の昇温速度で昇温しながら、上記結晶
化ピーク温度が測定される。このようにして測定された
熱可塑性ポリエステル系樹脂の結晶化ピーク温度の範囲
がおよそ130℃以上であれば、前記のように結晶化の
速度が抑制された、好適な熱可塑性ポリエステル系樹脂
であるといえる。
Specifically, a predetermined amount of a thermoplastic polyester resin as a measurement sample is filled in a DSC measurement container, and while the temperature is raised at a rate of 10 ° C./min, the crystallization peak temperature is reduced. Measured. If the range of the crystallization peak temperature of the thermoplastic polyester resin measured in this way is about 130 ° C. or higher, the crystallization rate is suppressed as described above, and the thermoplastic polyester resin is a suitable thermoplastic polyester resin. It can be said that.

【0023】なお結晶化ピーク温度は、上記の範囲内で
もとくに180℃以下であるのが好ましい。結晶化ピー
ク温度が180℃を超えた場合には、樹脂のガラス転移
点が高くなるために型内発泡成形の条件幅が狭くなって
却って成形が容易でなくなる上、型内発泡成形時に、成
形体の表面に収縮が発生しやすくなって外観の良好な発
泡成形体が得られないという問題を生じるおそれもあ
る。また、製造された発泡成形体が脆くなってしまうと
いう問題も生じうる。
It is preferable that the crystallization peak temperature is 180 ° C. or lower, especially within the above range. When the crystallization peak temperature exceeds 180 ° C., the glass transition point of the resin becomes high, so that the condition width of the in-mold foaming becomes narrow, so that the molding becomes rather difficult. There is also a possibility that the shrinkage is likely to occur on the surface of the body, and a problem that a foam molded article having a good appearance cannot be obtained. In addition, a problem that the manufactured foam molded article becomes brittle may occur.

【0024】なお上記各特性のバランスを考慮して、良
好な予備発泡粒子、ならびに良好な発泡成形体を製造す
ることを考慮すると、熱可塑性ポリエステル系樹脂のピ
ーク温度は、上記の範囲内でもとくに132〜175℃
程度であるのが好ましく、135〜170℃程度である
のがさらに好ましい。かかる特性を満足する熱可塑性ポ
リエステル系樹脂としては、これに限定されないがたと
えば、その全成分中に、イソフタル酸、およびシクロヘ
キサンジメタノールからなる群より選ばれた少なくとも
1種の成分を、総量で0.5〜10重量%の範囲で含有
するものがあげられる。
In consideration of the production of good pre-expanded particles and good foamed molded articles in consideration of the balance of the above properties, the peak temperature of the thermoplastic polyester resin should be within the above range. 132-175 ° C
The temperature is preferably about 135 to 170 ° C. The thermoplastic polyester-based resin satisfying such characteristics is not limited to the above-mentioned ones. For example, at least one component selected from the group consisting of isophthalic acid and cyclohexanedimethanol in all components is 0% in total. Those contained in the range of 0.5 to 10% by weight.

【0025】すなわち、ジカルボン酸として、式(1):That is, as a dicarboxylic acid, a compound represented by the formula (1):

【0026】[0026]

【化1】 Embedded image

【0027】で表されるイソフタル酸を使用するか、あ
るいはジオールとしてシクロヘキサンジメタノールを使
用するか、またはこの両者を併用するとともに、いずれ
か一方を単独で使用する場合はその単独での含有割合
を、また両者を併用する場合はその合計の含有割合を、
それぞれ全成分中の、0.5〜10重量%の範囲内とし
た上記の熱可塑性ポリエステル系樹脂は、イソフタル酸
および/またはシクロヘキサンジメタノールの持つ、樹
脂の結晶化を抑制する作用によって、結晶化ピーク温度
が130〜180℃の範囲内となるため、前記のような
種々の問題を生じない良好な発泡成形体を製造すること
が可能となる。
Either the isophthalic acid represented by the formula (1) or cyclohexane dimethanol as the diol is used, or both of them are used in combination, and when either one is used alone, the content ratio of the one alone is reduced. If both are used together, the total content of
The above-mentioned thermoplastic polyester-based resin in the range of 0.5 to 10% by weight in all components is crystallized by the action of isophthalic acid and / or cyclohexanedimethanol to suppress the crystallization of the resin. Since the peak temperature is in the range of 130 to 180 ° C., it is possible to manufacture a good foam molded article that does not cause the various problems described above.

【0028】なおイソフタル酸および/またはシクロヘ
キサンジメタノールの含有割合は、上記各特性のバラン
スを考慮して、良好な予備発泡粒子、ならびに良好な発
泡成形体を製造することを考慮すると、上記の範囲内で
もとくに0.6〜9.5重量%程度であるのが好まし
く、0.7〜9重量%程度であるのがさらに好ましい。
上記のうちシクロヘキサンジメタノールとしては、基本
的に、2つのメタノール部分がそれぞれシクロヘキサン
環の1位と4位に置換した、式(2):
The content of isophthalic acid and / or cyclohexanedimethanol is in the above range in consideration of the balance between the above properties and the production of good pre-expanded particles and good foamed molded articles. Especially, it is preferably about 0.6 to 9.5% by weight, more preferably about 0.7 to 9% by weight.
Among the above, as the cyclohexanedimethanol, basically, two methanol moieties are respectively substituted at the 1-position and 4-position of the cyclohexane ring, a formula (2):

【0029】[0029]

【化2】 Embedded image

【0030】で表される1,4−シクロヘキサンジメタ
ノールが使用されるが、2つのメタノール部分がシクロ
ヘキサン環の他の位置に置換した異性体も、少量であれ
ば併用可能である。上記イソフタル酸、およびシクロヘ
キサンジメタノールとともに熱可塑性ポリエステル系樹
脂を構成する他の成分のうちジカルボン酸としては、た
とえばテレフタル酸やフタル酸などがあげられる。
The 1,4-cyclohexanedimethanol represented by the formula (1) is used, but the isomer in which two methanol moieties are substituted at other positions of the cyclohexane ring can be used together in a small amount. Among the other components constituting the thermoplastic polyester resin together with isophthalic acid and cyclohexanedimethanol, examples of the dicarboxylic acid include terephthalic acid and phthalic acid.

【0031】またジオール成分としては、たとえばエチ
レングリコール、α−ブチレングリコール(1,2−ブ
タンジオール)、β−ブチレングリコール(1,3−ブ
タンジオール)、テトラメチレングリコール(1,4−
ブタンジオール)、2,3−ブチレングリコール(2,
3−ブタンジオール)、ネオペンチルグリコールなどが
あげられる。
Examples of the diol component include ethylene glycol, α-butylene glycol (1,2-butanediol), β-butylene glycol (1,3-butanediol), and tetramethylene glycol (1,4-butanediol).
Butanediol), 2,3-butylene glycol (2,
3-butanediol), neopentyl glycol and the like.

【0032】また熱可塑性ポリエステル系樹脂の原料に
は、上記の各成分に加えて、たとえば酸成分として、ト
リメリット酸などのトリカルボン酸、ピロメリット酸な
どのテトラカルボン酸などの、三価以上の多価カルボン
酸やその無水物、あるいはアルコール成分として、グリ
セリンなどのトリオール、ペンタエリスリトールなどの
テトラオールなどの、三価以上の多価アルコールなど
を、前述した、熱可塑性ポリエステル系樹脂の結晶性や
結晶化の速度などに影響を及ぼさない範囲で少量、含有
させてもよい。
In addition to the above-mentioned components, the raw materials of the thermoplastic polyester-based resin may include, for example, tricarboxylic acids such as tricarboxylic acids such as trimellitic acid and tetracarboxylic acids such as pyromellitic acid as acid components. Polyhydric carboxylic acids and their anhydrides, or alcohol components, such as triols such as glycerin, tetraols such as pentaerythritol, trihydric or higher polyhydric alcohols and the like, the crystallinity of the thermoplastic polyester resin and A small amount may be contained within a range that does not affect the crystallization speed and the like.

【0033】上記の熱可塑性ポリエステル系樹脂は、上
記の各成分を所定の割合、つまり前記のようにイソフタ
ル酸および/またはシクロヘキサンジメタノールを、総
量で0.5〜10重量%の範囲で含有した原料を、従来
同様に重縮合反応させることによって製造される。また
上記熱可塑性ポリエステル系樹脂は、イソフタル酸およ
び/またはシクロヘキサンジメタノールの含有割合の異
なる2種以上の熱可塑性ポリエステル系樹脂を、その全
成分中に占めるイソフタル酸および/またはシクロヘキ
サンジメタノールの含有割合が、総量で0.5〜10重
量%の範囲内となるように配合し、たとえば押出機など
を用いて、加熱下で溶融、混合することによっても製造
できる。
The above-mentioned thermoplastic polyester resin contains the above-mentioned components in a predetermined ratio, that is, as described above, isophthalic acid and / or cyclohexanedimethanol in a total amount of 0.5 to 10% by weight. It is produced by subjecting a raw material to a polycondensation reaction as in the conventional case. In addition, the thermoplastic polyester-based resin is obtained by mixing two or more kinds of thermoplastic polyester-based resins having different contents of isophthalic acid and / or cyclohexanedimethanol with respect to the content of isophthalic acid and / or cyclohexanedimethanol in all the components. Can be also produced by blending so that the total amount is in the range of 0.5 to 10% by weight, and melting and mixing under heating using, for example, an extruder.

【0034】この方法によれば、予備発泡粒子の製造段
階で、イソフタル酸および/またはシクロヘキサンジメ
タノールの含有割合の異なる2種以上の熱可塑性ポリエ
ステル系樹脂の配合割合を変更するだけで、製造された
予備発泡粒子における上記両成分の含有割合を調整でき
る。このため、樹脂の合成段階で両成分の含有割合を調
整する場合に比べて調整作業を簡略化でき、仕様の変更
などに柔軟に対応できるようになるという利点がある。
According to this method, at the stage of producing the pre-expanded particles, the pre-expanded particles can be produced only by changing the mixing ratio of two or more kinds of thermoplastic polyester resins having different contents of isophthalic acid and / or cyclohexane dimethanol. The content ratio of both components in the pre-expanded particles can be adjusted. For this reason, there is an advantage that the adjustment operation can be simplified as compared with the case where the content ratio of both components is adjusted in the resin synthesis stage, and the specification can be flexibly changed.

【0035】また、たとえば配合する熱可塑性ポリエス
テル系樹脂の1種として、使用済みのペットボトルなど
から回収、再生した材料などを使用することにより、資
源の有効な再利用化とゴミの減量化、ならびに予備発泡
粒子の低コスト化を図ることが可能となるという利点も
ある。なお上記の方法においては、2種以上の熱可塑性
ポリエステル系樹脂間でのエステル交換反応により各樹
脂がアロイ化して均一な熱可塑性ポリエステル系樹脂と
なるように、加熱下で十分に溶融、混合してやるのが好
ましい。
Further, for example, by using a material recovered and reclaimed from used PET bottles or the like as one kind of thermoplastic polyester resin to be blended, effective reuse of resources and reduction of garbage can be achieved. Another advantage is that the cost of the pre-expanded particles can be reduced. In the above method, the two resins are melted and mixed sufficiently under heating so that each resin is alloyed by a transesterification reaction between two or more kinds of thermoplastic polyester resins to form a uniform thermoplastic polyester resin. Is preferred.

【0036】なお予備発泡粒子を、後述するように押出
機などを用いて、高圧溶融下、発泡剤と混合したのち予
備発泡させ、ついで切断して製造する場合には、上記の
ように2種以上の樹脂の溶融、混合による均一な熱可塑
性ポリエステル系樹脂の作製を、発泡剤の混合に先だっ
て上記の押出機中で行い、ついで連続して、上記の製造
方法を実施するのが、効率的であり好ましい。
When the pre-expanded particles are mixed with a blowing agent under high-pressure melting using an extruder or the like as described later, pre-expanded, and then cut to produce, the two types of pre-expanded particles are used as described above. Melting of the above resins, production of a uniform thermoplastic polyester-based resin by mixing, is performed in the above-described extruder prior to mixing of the foaming agent, and then it is efficient to carry out the above-described production method continuously. Is preferable.

【0037】ただし、あらかじめ別の装置を用いて2種
以上の樹脂を溶融、混合して作製しておいた均一な熱可
塑性ポリエステル系樹脂を押出機に投入して、上記の製
造方法により予備発泡粒子を製造しても構わない。なお
本発明で使用する熱可塑性ポリエステル系樹脂は、予備
発泡粒子を製造する際の溶融、混合性や、製造された予
備発泡粒子を用いて、型内発泡成形によって発泡成形体
を製造する際の成形性などを考慮すると、その固有粘度
(測定温度:35℃、溶媒:オルソクロロフェノール)
が0.6〜1.5程度であるのが好ましい。 〈予備発泡粒子〉予備発泡粒子は、従来同様に、上記の
熱可塑性ポリエステル系樹脂に発泡剤を含浸させたの
ち、加熱して予備発泡させるとともに粒子化して製造し
てもよい。
However, a uniform thermoplastic polyester resin prepared by melting and mixing two or more kinds of resins in advance using another apparatus is charged into an extruder, and pre-foamed by the above-mentioned production method. Particles may be produced. The thermoplastic polyester resin used in the present invention is used for melting and mixing at the time of producing pre-expanded particles, and at the time of producing a foamed molded article by in-mold foam molding using the produced pre-expanded particles. Considering moldability, its intrinsic viscosity (measuring temperature: 35 ° C, solvent: orthochlorophenol)
Is preferably about 0.6 to 1.5. <Pre-expanded Particles> Pre-expanded particles may be produced by impregnating the above-mentioned thermoplastic polyester-based resin with a foaming agent and then heating and pre-expanding the particles as in the conventional case.

【0038】ただし、熱可塑性ポリエステル系樹脂に発
泡剤を含浸させる工程を省略して時間、コストおよび手
間を省くとともに、製造される予備発泡粒子の結晶化度
をさらに低くして、型内発泡成形時の発泡融着性の低下
をさらに抑制するためには、前述したように、上記熱可
塑性ポリエステル系樹脂を高圧溶融下、発泡剤と混合
し、予備発泡させて予備発泡体を得たのち、これを切断
して予備発泡粒子を製造するのが好ましい。
However, the step of impregnating the thermoplastic polyester resin with a foaming agent is omitted to save time, cost and labor, and the crystallinity of the pre-expanded particles to be produced is further reduced, so that in-mold foam molding is performed. In order to further suppress the decrease in the foam fusion property at the time, as described above, the thermoplastic polyester resin is mixed with a foaming agent under high-pressure melting and prefoamed to obtain a prefoamed body. This is preferably cut to produce pre-expanded particles.

【0039】熱可塑性ポリエステル系樹脂を高圧溶融
下、発泡剤と混合して予備発泡させる方法としては、押
出機を用いた押出発泡法が効率的であり、好適に採用さ
れる。使用できる押出機はとくに限定されず、通常この
種の押出発泡成形に使用される単軸押出機、二軸押出機
などであり、さらにはこれらを連結したタンデム型であ
っても良いが、十分な溶融、混合能力を有する押出機が
好ましい。
As a method for preliminarily foaming the thermoplastic polyester resin by mixing it with a foaming agent under high-pressure melting, an extrusion foaming method using an extruder is efficient and preferably employed. The extruder that can be used is not particularly limited, and is a single-screw extruder, a twin-screw extruder, or the like usually used for this type of extrusion foam molding, and may be a tandem type in which these are connected. An extruder having excellent melting and mixing capabilities is preferred.

【0040】押出機の口金としてはいろいろなものを使
用することができる。たとえば、円環状の口金、フラッ
ト口金、ノズル口金、さらには複数のノズルが配置され
たマルチノズル口金などがあげられる。これらの口金を
使用して、シート状、板状、ロッド状などの、種々の形
状の予備発泡体を作ることができる。予備発泡体を、上
述した所定の形状とするためには、いろいろな方法が採
用される。
Various extruders can be used. For example, there are an annular base, a flat base, a nozzle base, and a multi-nozzle base in which a plurality of nozzles are arranged. These bases can be used to make pre-foams of various shapes, such as sheet, plate and rod. Various methods are used to make the prefoamed body have the above-mentioned predetermined shape.

【0041】たとえばシート状の予備発泡体を得るに
は、円環状の口金から押し出された円筒状の予備発泡体
を、マンドレル上を進行させてシート状としたり、フラ
ット口金より押し出された厚みのある板状の予備発泡体
を、チルロールによりシート状としたりすればよい。ま
た厚みのある板状の予備発泡体を得るためには、一対の
金属板に密接させながら発泡を進行させて、所定の厚み
とする方法などが採用される。
For example, in order to obtain a sheet-shaped prefoamed body, a cylindrical prefoamed body extruded from an annular die is made into a sheet shape by being advanced on a mandrel, or a sheet having a thickness extruded from a flat die. A plate-shaped prefoam may be formed into a sheet by a chill roll. Further, in order to obtain a thick plate-shaped prefoamed body, a method in which foaming is advanced while being in close contact with a pair of metal plates to obtain a predetermined thickness is employed.

【0042】予備発泡体の冷却方法としては、空冷や水
冷のほか、温度調整された冷却装置に接触させるなど、
いろいろな方法を用いることができる。予備発泡体の冷
却はできる限り速やかに行い、結晶化が過度に進行する
のを抑制することが重要である。このようにして製造し
た各種形状の予備発泡体を適宜、切断して円柱状、角
状、チップ状などとすることで予備発泡粒子が完成す
る。
As a method for cooling the prefoamed body, in addition to air cooling or water cooling, the prefoamed body is brought into contact with a temperature-controlled cooling device.
Various methods can be used. It is important that the prefoam be cooled as quickly as possible to prevent excessive crystallization. The pre-expanded particles of various shapes produced in this way are appropriately cut into a columnar shape, a square shape, a chip shape, or the like to complete the pre-expanded particles.

【0043】上記予備発泡体の冷却と切断は、適宜のタ
イミングで行うことができる。たとえば、口金より押し
出された予備発泡体を、発泡中ないし発泡完了後の任意
の時点で水中に通すなどして冷却した後、ペレタイザ−
などを用いて所定の形状、大きさに切断してもよい。ま
た口金から押し出された、発泡完了直前もしくは発泡完
了直後でかつ冷却前の予備発泡体をすぐさま切断したの
ち、冷却してもよい。
The cooling and cutting of the prefoamed body can be performed at an appropriate timing. For example, the prefoamed material extruded from the die is cooled by passing it through water at any time during foaming or after foaming is completed, and then the pelletizer is cooled.
It may be cut into a predetermined shape and size using a method such as the above. Alternatively, the prefoamed body immediately before or immediately after the completion of foaming, which has been extruded from the die, and immediately before cooling, may be immediately cooled and then cooled.

【0044】さらに、シ−ト状に押し出された予備発泡
体は、一旦巻き取り機などによってロール状に巻き取っ
て保管した後、粉砕機や切断機にて切断してもよい。か
くして製造される予備発泡粒子の大きさは、平均粒径で
表しておよそ0.5〜5mm程度が好ましい。また予備
発泡粒子の結晶化度は、前記のように汎用の発泡成形機
を使用して、通常の成形条件で発泡成形した際に、粒子
同士の融着性にすぐれた、機械的強度の高い発泡成形体
を得ることを考慮するとおよそ8%以下程度であるのが
好ましい。
Further, the prefoamed material extruded in a sheet form may be once wound up in a roll shape by a winder or the like, stored, and then cut by a pulverizer or a cutter. The size of the pre-expanded particles thus produced is preferably about 0.5 to 5 mm as an average particle diameter. The degree of crystallinity of the pre-expanded particles is, as described above, using a general-purpose expansion molding machine, when foam molding is performed under ordinary molding conditions, excellent in the fusion property between particles, high mechanical strength. In consideration of obtaining a foamed molded product, the content is preferably about 8% or less.

【0045】また、予備発泡粒子をつくる際に、まだ余
熱をもっている予備発泡粒子同士が合着しやすくなるの
を防止するためには、上記結晶化度は、およそ1%以上
であるのが好ましい。なお予備発泡粒子の結晶化度は、
上記の範囲内でもとくに1〜7%程度であるのが好まし
く、1〜6%程度であるのがさらに好ましい。
In order to prevent the pre-expanded particles still having residual heat from being easily united when preparing the pre-expanded particles, the crystallinity is preferably about 1% or more. . The crystallinity of the pre-expanded particles is
Within the above range, it is particularly preferably about 1 to 7%, and more preferably about 1 to 6%.

【0046】結晶化度(%)は、先に述べた結晶化ピー
ク温度の測定と同様に、示差走査熱量計(DSC)を使
用して、日本工業規格JIS K7121所載の測定方
法に準じて測定した冷結晶化熱量と融解熱量とから、次
式によって求められる。
The degree of crystallinity (%) is measured by using a differential scanning calorimeter (DSC) according to the measurement method described in Japanese Industrial Standards JIS K7121 in the same manner as the above-mentioned measurement of the crystallization peak temperature. From the measured heat of crystallization and heat of fusion, it is determined by the following equation.

【0047】[0047]

【数1】 (Equation 1)

【0048】なお式中の、完全結晶PETのモルあたり
の融解熱量は、高分子データハンドブック〔培風館発
行〕の記載から26.9kJとする。具体的には、測定
試料としての所定量の予備発泡粒子をDSCの測定容器
に充てんして、10℃/分の昇温速度で昇温しながら冷
結晶化熱量と融解熱量とを測定し、その測定結果から、
上記式に基づいて予備発泡粒子の結晶化度が求められ
る。
In the formula, the heat of fusion per mole of perfect crystalline PET is 26.9 kJ from the description in the Polymer Data Handbook [published by Baifukan]. Specifically, a predetermined amount of the pre-expanded particles as a measurement sample is filled in a DSC measurement container, and the heat of cold crystallization and the heat of fusion are measured while heating at a rate of 10 ° C./min, From the measurement results,
The crystallinity of the pre-expanded particles is determined based on the above equation.

【0049】予備発泡粒子の嵩密度は、当該予備発泡粒
子を型内発泡成形して製造される発泡成形体の密度など
に応じて適宜、調整できるが、通常は、発泡成形体とほ
ぼ等しい嵩密度であるのが好ましい。予備発泡粒子に
は、いろいろな添加剤を添加してもよい。添加剤として
は、発泡剤の他に、たとえば気泡調整剤、難燃剤、帯電
防止剤、着色剤などがあげられる。また、熱可塑性ポリ
エステル系樹脂の溶融特性を改良するために、グリシジ
ルフタレートのようなエポキシ化合物、ピロメリット酸
二無水物のような酸無水物、炭酸ナトリウムのようなI
a、IIa族の金属化合物などを改質剤として単体、もし
くは二種以上混合して添加することができる。とくにこ
れらの改質剤は、予備発泡粒子の発泡性を改善するだけ
でなく、得られた発泡粒子の独立気泡率を向上するた
め、予備発泡粒子の膨張力を大きくできるので有効であ
る。
The bulk density of the pre-expanded particles can be appropriately adjusted according to the density of a foamed article produced by subjecting the pre-expanded particles to in-mold foam molding. The density is preferred. Various additives may be added to the pre-expanded particles. Examples of the additive include, in addition to the foaming agent, a bubble regulator, a flame retardant, an antistatic agent, a colorant, and the like. Further, in order to improve the melting properties of the thermoplastic polyester resin, epoxy compounds such as glycidyl phthalate, acid anhydrides such as pyromellitic dianhydride, and acid anhydrides such as sodium carbonate.
A metal compound of group a or IIa or the like can be added alone or as a mixture of two or more as a modifier. In particular, these modifiers are effective not only to improve the foaming properties of the pre-expanded particles, but also to increase the expansion force of the pre-expanded particles in order to increase the closed cell ratio of the obtained expanded particles.

【0050】本発明で使用できる発泡剤としては、大別
すると、熱可塑性ポリエステル系樹脂の軟化点以上の温
度で分解してガスを発生する固体化合物、加熱すると熱
可塑性ポリエステル系樹脂内で気化する液体、加圧下で
熱可塑性ポリエステル系樹脂に溶解させ得る不活性な気
体などに分類されるが、このいずれを用いてもよい。こ
のうち固体化合物としては、たとえばアゾジカルボンア
ミド、ジニトロソペンタメチレンテトラミン、ヒドラゾ
ルジカルボンアミド、重炭酸ナトリウムなどがあげられ
る。また気化する液体としては、たとえばプロパン、n
−ブタン、イソブタン、n−ぺンタン、イソペンタン、
へキサンのような飽和脂肪族炭化水素、べンゼン、キシ
レン、トルエンのような芳香族炭化水素、塩化メチル、
フレオン(登録商標)のようなハロゲン化炭化水素、ジ
メチルエーテル、メチル−tert−ブチルエーテルの
ようなエーテル化合物などがあげられる。さらに不活性
な気体としては、たとえば二酸化炭素、窒素などがあげ
られる。
The foaming agent that can be used in the present invention is roughly classified into a solid compound which decomposes at a temperature higher than the softening point of the thermoplastic polyester resin to generate gas, and which is vaporized in the thermoplastic polyester resin when heated. It is classified into a liquid, an inert gas which can be dissolved in a thermoplastic polyester resin under pressure, and the like, and any of these may be used. Among them, examples of the solid compound include azodicarbonamide, dinitrosopentamethylenetetramine, hydrazoldicarbonamide, and sodium bicarbonate. As the liquid to be vaporized, for example, propane, n
-Butane, isobutane, n-pentane, isopentane,
Saturated aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as benzene, xylene and toluene, methyl chloride,
Examples include halogenated hydrocarbons such as Freon (registered trademark), and ether compounds such as dimethyl ether and methyl-tert-butyl ether. Further, examples of the inert gas include carbon dioxide and nitrogen.

【0051】なお予備発泡粒子を、前述したように押出
機を用いて高圧溶融下、発泡剤と混合し、押し出して予
備発泡させたのち、切断して熱可塑性ポリエステル系樹
脂予備発泡粒子を製造する場合には、押出機の口金から
押し出された瞬間に気化して溶融樹脂を発泡させるとと
もに、当該溶融樹脂の熱を奪う発泡剤、たとえば飽和脂
肪族炭化水素、ハロゲン化炭化水素などを使用するのが
好ましい。これらの発泡剤は、溶融した熱可塑性ポリエ
ステル系樹脂を冷却する作用をし、予備発泡粒子の結晶
化度を低く抑える効果があるため好ましい。
The pre-expanded particles are mixed with a foaming agent under high-pressure melting using an extruder as described above, extruded and pre-expanded, and then cut to produce thermoplastic polyester resin pre-expanded particles. In such a case, a foaming agent which vaporizes and foams the molten resin at the moment when the molten resin is extruded from the die of the extruder and uses a blowing agent which takes away the heat of the molten resin, for example, a saturated aliphatic hydrocarbon, a halogenated hydrocarbon or the like is used. Is preferred. These foaming agents are preferable because they act to cool the molten thermoplastic polyester resin and have an effect of suppressing the crystallinity of the pre-expanded particles to be low.

【0052】また予備発泡粒子には、熱可塑性ポリエス
テル系樹脂の結晶性や結晶化の速度に大きな影響を及ぼ
さない範囲で、たとえばポリプロピレン系樹脂などのポ
リオレフィン系樹脂、ポリエステル系などの熱可塑性エ
ラストマー、ポリカーボネート、アイオノマーなどを添
加してもよい。予備発泡粒子を用いて、発泡成形体とし
ての床暖房用断熱材を製造する方法としては、閉鎖しう
るが密閉し得ない金型に予備発泡粒子を充てんし、さら
に加熱媒体としてスチームを導入して型内発泡成形する
方法が好ましい。
The pre-expanded particles include, for example, a polyolefin resin such as a polypropylene resin, a thermoplastic elastomer such as a polyester resin, and the like, as long as they do not significantly affect the crystallinity and crystallization speed of the thermoplastic polyester resin. Polycarbonate, ionomer, etc. may be added. As a method of manufacturing a floor heating insulating material as a foam molded article using the pre-expanded particles, a pre-expanded particle is filled in a mold that can be closed but cannot be closed, and steam is introduced as a heating medium. In-mold foam molding is preferred.

【0053】このときの加熱媒体としては、スチーム以
外にも熱風やオイルなどを使用することができるが、効
率的に成形を行う上ではスチームが最も有効である。成
形した発泡成形体は、冷却したのち金型から取り出せば
よい。スチームで型内発泡成形する場合には、前述した
ように汎用の発泡成形機を使用して、通常の成形条件で
発泡成形すればよい。すなわち予備発泡粒子を金型へ充
てんした後、まず低圧〔たとえばゲージ圧0.02MP
a程度〕で一定時間、スチームを金型内ヘ吹き込んで、
粒子間のエアーを外部ヘ排出する。ついで、吹き込むス
チームの圧を昇圧〔たとえば0.08MPa程度〕し
て、予備発泡粒子を型内発泡させるとともに粒子同士を
融着せしめて発泡成形体とすることができる。
As a heating medium at this time, hot air, oil, or the like can be used in addition to steam, but steam is most effective for efficient molding. The molded foam may be taken out of the mold after cooling. When performing in-mold foam molding with steam, foam molding may be performed under ordinary molding conditions using a general-purpose foam molding machine as described above. That is, after filling the pre-expanded particles in a mold, first, a low pressure [for example, a gauge pressure of 0.02MP.
a)] and blow steam into the mold for a certain time,
Discharge air between particles to the outside. Then, the pressure of the steam to be blown is increased (for example, about 0.08 MPa) to foam the pre-expanded particles in the mold and to fuse the particles together to obtain a foam molded article.

【0054】また予備発泡粒子を、あらかじめ密閉容器
に入れて、炭酸ガス、窒素、ヘリウム等の不活性ガスを
圧入した後、金型での型内発泡成形に使用する直前ま
で、圧入したガスの雰囲気下に保持することで、予備発
泡粒子の、金型での型内発泡成形時の膨張力をより大き
くして、良好な発泡成形体を得ることもできる。かくし
て得られた発泡成形体における、粒子同士の融着性の基
準となる融着率は40%以上、とくに50%以上、なか
んずく60%以上であるのが好ましく、融着率がこの範
囲で、格別に優れた融着性を示すといえる。
The pre-expanded particles are placed in a closed container in advance, and an inert gas such as carbon dioxide, nitrogen, or helium is injected thereinto. By maintaining in an atmosphere, the expansion force of the pre-expanded particles during in-mold foam molding in a mold can be further increased, and a good foam molded article can be obtained. In the foam molded article thus obtained, the fusion rate as a reference for the fusion property between the particles is preferably 40% or more, particularly preferably 50% or more, particularly preferably 60% or more, and the fusion rate is within this range. It can be said that it shows exceptionally excellent fusibility.

【0055】またその結晶化度は、とくに高温環境下で
の寸法安定性などを考慮すると、およそ20〜40%程
度であるのが好ましい。結晶化度が20%未満である
か、または40%を超えるものは、このいずれの場合に
も、温度変化による寸法変化量が大きくなるため、熱収
縮によって床材などとの間に隙間を生じやすくなる。ま
た結晶化度が40%を超えるものは脆くなって、前記の
ように必要とする強度が得られないという問題も生じ
る。
The degree of crystallinity is preferably about 20 to 40%, especially in consideration of dimensional stability in a high temperature environment. When the crystallinity is less than 20% or more than 40%, in any case, a dimensional change due to a temperature change becomes large, so that a gap is formed between the material and a floor material due to heat shrinkage. It will be easier. Further, those having a degree of crystallinity exceeding 40% become brittle, so that the required strength cannot be obtained as described above.

【0056】発泡成形体の結晶化度を上記範囲内の所定
の値に調整するには、種々の方法を採用することができ
る。たとえば、発泡成形後の発泡成形体の結晶化度が目
的とする値よりも低い場合には、発泡成形体を金型から
すぐに取り出さずにしばらくの間、金型内で保持して熱
処理することなどによって結晶化度を上昇させてやれば
よい。
To adjust the degree of crystallinity of the foam molded article to a predetermined value within the above range, various methods can be adopted. For example, if the crystallinity of the foamed molded article after foam molding is lower than the target value, the foamed molded article is not taken out of the mold immediately, but is held in the mold for a while and heat-treated. The degree of crystallinity may be increased by such means.

【0057】また、発泡成形直後の発泡成形体の結晶化
度が目的とする値と近い場合には、金型を急冷するなど
して結晶化度の上昇を抑制してやればよい。発泡体の結
晶化度は、先に述べた予備発泡粒子の結晶化度と同じ
く、日本工業規格JIS K7121所載の測定方法に
準じて測定した冷結晶化熱量と融解熱量とから求められ
る。
If the degree of crystallinity of the foam molded article immediately after foam molding is close to the target value, the rise in crystallinity may be suppressed by rapidly cooling the mold. The crystallinity of the foam is obtained from the heat of cold crystallization and the heat of fusion measured in accordance with the measurement method described in Japanese Industrial Standard JIS K7121, similarly to the crystallinity of the pre-expanded particles described above.

【0058】発泡成形体としての断熱材は、床暖房装置
に使用したのち分解、回収して、予備発泡粒子などとし
て再利用することが可能である。使用済みの発泡成形体
をこのように再利用することにより、資源の有効な再利
用化とゴミの減量化に貢献できるとともに、発泡成形体
の低コスト化を図ることもできる。
The heat insulating material as the foamed molded article can be decomposed and recovered after being used for the floor heating device, and reused as pre-expanded particles or the like. By reusing the used foamed article in this way, it is possible to contribute to the effective recycling of resources and the reduction of dust, and it is also possible to reduce the cost of the foamed article.

【0059】[0059]

【実施例】以下、実施例、比較例をあげて、この発明の
すぐれている点を具体的に説明する。なお、予備発泡粒
子とそれを用いて製造した発泡成形体の結晶化度は、前
述したように日本工業規格JIS K7121所載の測
定方法に準じて測定した結果より求めた。
EXAMPLES Hereinafter, the advantages of the present invention will be specifically described with reference to examples and comparative examples. In addition, the crystallinity of the pre-expanded particles and the foam molded article produced using the same were determined from the results of measurement according to the measurement method described in Japanese Industrial Standard JIS K7121 as described above.

【0060】また密度は、下記の方法で測定した。 密度の測定 日本工業規格JIS K6767に所載の方法に準拠し
て、次式により、予備発泡粒子の嵩密度(g/c
3)、および発泡成形体の密度(g/cm3)を求め
た。
The density was measured by the following method. Measurement of Density According to the method described in Japanese Industrial Standard JIS K6767, the bulk density (g / c) of the pre-expanded particles is calculated by the following equation.
m 3 ) and the density (g / cm 3 ) of the foamed molded article were determined.

【0061】[0061]

【数2】 (Equation 2)

【0062】また、以下の実施例、比較例で製造した断
熱材としての発泡成形体について、下記の試験を行っ
て、その特性を評価した。 5%圧縮強度の測定 日本工業規格JIS A9511に所載の方法に準拠し
て、各実施例、比較例の発泡成形体の、環境温度0〜+
70℃の温度範囲での、5%圧縮強度(kg/cm2
を測定するとともに、その最小値S1と最大値S2とか
ら、比S2/S1を求めた。
Further, the following tests were performed on the foam molded articles as heat insulating materials manufactured in the following Examples and Comparative Examples, and their characteristics were evaluated. Measurement of 5% Compressive Strength In accordance with the method described in Japanese Industrial Standard JIS A9511, environmental temperature of each of the foamed molded articles of Examples and Comparative Examples is 0 to +
5% compressive strength (kg / cm 2 ) in the temperature range of 70 ° C
And the ratio S 2 / S 1 was determined from the minimum value S 1 and the maximum value S 2 .

【0063】融着率の測定 各実施例、比較例の発泡成形体を折り曲げて厚み方向に
破断させたのち、破断面に存在する全ての発泡粒子の個
数と、そのうち粒子自体が材料破壊した発泡粒子の個数
とを計数した。そして次式により、粒子同士の融着性の
基準となる融着率(%)を求めた。
Measurement of fusion rate After the foamed molded articles of Examples and Comparative Examples were bent and broken in the thickness direction, the number of all foamed particles present in the fractured surface and the number of foamed particles of which the material itself was broken were The number of particles was counted. Then, a fusion rate (%), which is a reference of the fusion property between the particles, was determined by the following equation.

【0064】[0064]

【数3】 (Equation 3)

【0065】実施例1 回収ペットボトルを再生したポリエチレンテレフタレー
ト樹脂ペレット75重量部と、イソフタル酸成分を含有
する、結晶化のスピードが抑制された熱可塑性ポリエス
テル系樹脂〔イソフタル酸の含有割合:7.3重量%、
結晶化ピーク温度153.9℃、IV値0.72〕25
重量部と、ピロメリット酸二無水物0.3重量部と、炭
酸ソーダ0.03重量部とを押出機〔口径:65mm、
L/D比:35〕に供給し、スクリューの回転数50r
pm、バレル温度270〜290℃の条件で溶融、混合
ながら、バレルの途中に接続した圧入管から、発泡剤と
してのブタン(n−ブタン/イソブタン=7/3)を、
混合物に対して1.2重量%の割合で圧入した。
Example 1 A thermoplastic polyester resin containing 75 parts by weight of polyethylene terephthalate resin pellets obtained by recycling a collected PET bottle and containing an isophthalic acid component and having a suppressed crystallization speed [content ratio of isophthalic acid: 7. 3% by weight,
Crystallization peak temperature 153.9 ° C, IV value 0.72] 25
Parts by weight, 0.3 parts by weight of pyromellitic dianhydride, and 0.03 parts by weight of sodium carbonate were extruded (diameter: 65 mm,
L / D ratio: 35] and the screw rotation speed 50r
pm, butane (n-butane / isobutane = 7/3) as a blowing agent was melted and mixed under the condition of a barrel temperature of 270 to 290 ° C. from a press-fit tube connected in the middle of the barrel.
The mixture was pressed at a rate of 1.2% by weight.

【0066】つぎに、溶融状態の混合物を、バレルの先
端に接続したマルチノズル金型〔直線上に、直径0.8
mmのノズルが15個、配置されたもの〕の、各ノズル
を通して押し出して予備発泡させたのち、直ちに20℃
に保持した冷却水槽で冷却した。そして、冷却されたス
トランド状の発泡体に付着した水を十分に除去しながら
ペレットカッターによって切断して予備発泡粒子を製造
した。
Next, the mixture in the molten state was charged into a multi-nozzle mold (straight line, diameter 0.8 mm) connected to the tip of the barrel.
15 nozzles each having a diameter of 15 mm were arranged], but after being extruded through each nozzle and prefoamed, 20 ° C.
In a cooling water bath held at Then, the pellet was cut by a pellet cutter while sufficiently removing water adhering to the cooled strand-shaped foam to produce pre-expanded particles.

【0067】得られた予備発泡粒子は長径2.0mm、
短径1.5mm、長さ2.0mmの楕円柱状であり、嵩
密度は0.12g/cm3、結晶化度は4.9%であっ
た。つぎにこの予備発泡粒子を耐圧密閉容器に入れ、圧
縮空気を導入して容器内を0.5MPa(ゲージ圧)に
加圧して、常温で5時間保持したのち、密閉容器から取
り出した予備発泡粒子を直ちに、床暖房用断熱材として
の、およそ900mm×300mm×10mmの平板状
の発泡成形体を製造するための金型に充てんして型締め
し、この型内に、ゲージ圧0.02MPaのスチームを
10秒間、ついでゲージ圧0.08MPaのスチームを
15秒間、導入して予備発泡粒子を加熱膨張させると同
時に融着させた。
The pre-expanded particles obtained had a major axis of 2.0 mm,
It was an elliptical column having a short diameter of 1.5 mm and a length of 2.0 mm, a bulk density of 0.12 g / cm 3 and a crystallinity of 4.9%. Next, the pre-expanded particles are put into a pressure-resistant closed container, compressed air is introduced thereinto, the inside of the container is pressurized to 0.5 MPa (gauge pressure), kept at room temperature for 5 hours, and then taken out of the closed container. Is immediately filled into a mold for producing a flat foamed molded article of about 900 mm × 300 mm × 10 mm as a heat insulating material for floor heating, and the mold is clamped. In this mold, a gauge pressure of 0.02 MPa is applied. Steam was introduced for 10 seconds and then steam having a gauge pressure of 0.08 MPa for 15 seconds to heat-expand the pre-expanded particles and simultaneously fuse them.

【0068】スチーム導入終了直後の、発泡成形体に接
する金型の表面温度を測定したところ118℃であっ
た。そしてこの状態で90秒間、保持(金型の表面温度
は103℃まで低下)したのち水冷して、前記寸法、形
状を有する発泡成形体を製造した。得られた発泡成形体
の密度は0.12g/ml、結晶化度は表皮部で27.
5%、中心部で28.4%であった。また融着率は84
%と良好な融着性を示した。
Immediately after the introduction of steam was completed, the surface temperature of the mold in contact with the foamed molded product was 118 ° C. Then, after holding in this state for 90 seconds (the surface temperature of the mold was lowered to 103 ° C.), it was cooled with water to produce a foamed molded article having the above dimensions and shape. The density of the obtained foamed molded article was 0.12 g / ml, and the crystallinity was 27.
5% and 28.4% at the center. The fusion rate is 84
% And good fusion property.

【0069】また、発泡成形体の5%圧縮強度は下記の
とおりであり、その最小値S1と最大値S2とから求めた
比S2/S1は1.04であって、温度に関係なくほぼ一
定の強度を有することが確認された。そしてこのことか
ら、かかる断熱材を組み込んだ床暖房装置は、局部的な
落ち込みなどのない歩行感の良好なものとなることも確
認された。 (5%圧縮強度) 0℃:5.3kg/cm2 23℃:5.5kg/cm2 50℃:4.7kg/cm2 70℃:5.1kg/cm2 比較例1 発泡倍率20倍の発泡ポリプロピレンにて、実施例1と
同形状、同寸法の発泡成形体を製造した。そしてその5
%圧縮強度を測定したところ下記のとおりであり、その
最小値S1と最大値S2とから求めた比S2/S1は2.8
5であって、温度変化に応じて強度が大きく変動するこ
とが判明した。そしてこのことから、かかる断熱材を組
み込んだ床暖房装置は、局部的な落ち込みによる歩行感
の悪化が生じやすいことも確認された。 (5%圧縮強度) 0℃:3.7kg/cm2 23℃:2.7kg/cm2 50℃:1.8kg/cm2 70℃:1.3kg/cm2 以上の結果を表1に示す。
The 5% compressive strength of the foamed molded product is as follows, and the ratio S 2 / S 1 obtained from the minimum value S 1 and the maximum value S 2 is 1.04. Irrespective of the strength, it was confirmed to have a substantially constant strength. From this, it was also confirmed that a floor heating device incorporating such a heat insulating material had a good walking feeling without local depression. (5% compressive strength) 0 ° C .: 5.3 kg / cm 2 23 ° C .: 5.5 kg / cm 2 50 ° C .: 4.7 kg / cm 2 70 ° C .: 5.1 kg / cm 2 Comparative Example 1 Foaming magnification 20 times A foam molded article having the same shape and the same dimensions as those of Example 1 was produced using foamed polypropylene. And that 5
The% compressive strength was measured as follows, and the ratio S 2 / S 1 obtained from the minimum value S 1 and the maximum value S 2 was 2.8.
5, it was found that the strength greatly fluctuated according to the temperature change. From this, it was also confirmed that the floor heating device incorporating such a heat insulating material is liable to cause deterioration of walking sensation due to local depression. (5% compressive strength) 0 ° C .: 3.7 kg / cm 2 23 ° C .: 2.7 kg / cm 2 50 ° C .: 1.8 kg / cm 2 70 ° C .: 1.3 kg / cm 2 or more The results are shown in Table 1. .

【0070】[0070]

【表1】 [Table 1]

【発明の効果】以上、詳述したように本発明によれば、
温度に関係なくほぼ一定の強度を有するために、とくに
高温環境下での局部的な落ち込みなどを生じにくい、改
良された床暖房用断熱材と、それを用いた、良好な歩行
感を有する床暖房装置とを提供できるという特有の効果
を奏する。
As described in detail above, according to the present invention,
Improved floor heating insulation and floors with good walking sensation, which have almost constant strength regardless of temperature, so that it is hard to cause local depression especially in high temperature environment. It has a unique effect that a heating device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の床暖房装置の、実施の形態の一例を示
す断面図である。
FIG. 1 is a sectional view showing an example of an embodiment of a floor heating device of the present invention.

【符号の説明】[Explanation of symbols]

5 床暖房用断熱材 6 加熱手段 5 Insulation material for floor heating 6 Heating means

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年7月29日(1999.7.2
9)
[Submission date] July 29, 1999 (1999.7.2
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】上記比S2/S1が2を超えるものは、前述
したように床暖房装置の運転開始時に、一時的に温度が
上昇した環境下で、圧縮強度の低下が大きくなり、床面
が局部的に落ち込んだり、その結果、歩行感が悪くなっ
たりするという問題を生じる。なお上記S2/S1は1.
5以下であるのが好ましい。
In the case where the ratio S 2 / S 1 exceeds 2, as described above, the compressive strength is greatly reduced under the environment where the temperature is temporarily increased at the start of the operation of the floor heating device, and However, there is a problem that a person is locally depressed, and as a result, walking feeling is deteriorated. Note the S 2 / S 1 is 1.
It is preferably 5 or less .

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0069[Correction target item name] 0069

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0069】また、発泡成形体の5%圧縮強度は下記の
とおりであり、その最小値S1と最大値S2とから求めた
比S2/S11.17であって、温度に関係なくほぼ一
定の強度を有することが確認された。そしてこのことか
ら、かかる断熱材を組み込んだ床暖房装置は、局部的な
落ち込みなどのない歩行感の良好なものとなることも確
認された。 (5%圧縮強度) 0℃:5.3kg/cm2 23℃:5.5kg/cm2 50℃:4.7kg/cm2 70℃:5.1kg/cm2 比較例1 発泡倍率20倍の発泡ポリプロピレンにて、実施例1と
同形状、同寸法の発泡成形体を製造した。そしてその5
%圧縮強度を測定したところ下記のとおりであり、その
最小値S1と最大値S2とから求めた比S2/S1は2.8
5であって、温度変化に応じて強度が大きく変動するこ
とが判明した。そしてこのことから、かかる断熱材を組
み込んだ床暖房装置は、局部的な落ち込みによる歩行感
の悪化が生じやすいことも確認された。 (5%圧縮強度) 0℃:3.7kg/cm2 23℃:2.7kg/cm2 50℃:1.8kg/cm2 70℃:1.3kg/cm2 以上の結果を表1に示す。
The 5% compressive strength of the foamed molded product is as follows, and the ratio S 2 / S 1 obtained from its minimum value S 1 and maximum value S 2 is 1.17. Irrespective of the strength, it was confirmed to have a substantially constant strength. From this, it was also confirmed that a floor heating device incorporating such a heat insulating material had a good walking feeling without local depression. (5% compressive strength) 0 ° C .: 5.3 kg / cm 2 23 ° C .: 5.5 kg / cm 2 50 ° C .: 4.7 kg / cm 2 70 ° C .: 5.1 kg / cm 2 Comparative Example 1 Foaming magnification 20 times A foam molded article having the same shape and the same dimensions as in Example 1 was produced using foamed polypropylene. And that 5
The% compressive strength was measured as follows, and the ratio S 2 / S 1 obtained from the minimum value S 1 and the maximum value S 2 was 2.8.
5, which indicates that the strength greatly fluctuates according to the temperature change. From this, it was also confirmed that the floor heating device incorporating such a heat insulating material is liable to cause deterioration of walking sensation due to local depression. (5% compressive strength) 0 ° C .: 3.7 kg / cm 2 23 ° C .: 2.7 kg / cm 2 50 ° C .: 1.8 kg / cm 2 70 ° C .: 1.3 kg / cm 2 or more The results are shown in Table 1. .

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0070[Correction target item name] 0070

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0070】[0070]

【表1】 [Table 1]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】環境温度0〜+70℃の温度範囲での、5
%圧縮強度の最小値S1と最大値S2との比S2/S1が2
以下である合成樹脂の発泡体からなることを特徴とする
床暖房用断熱材。
1. The method according to claim 1, wherein the ambient temperature ranges from 0 to + 70 ° C.
The ratio S 2 / S 1 between the minimum value S 1 and the maximum value S 2 of the% compressive strength is 2
An insulating material for floor heating, comprising: a synthetic resin foam as described below.
【請求項2】熱可塑性ポリエステル系樹脂の予備発泡粒
子を型内発泡成形した発泡成形体にて形成されており、
その結晶化度が20〜40%、融着率が40%以上であ
る請求項1記載の床暖房用断熱材。
2. A foam molded article obtained by in-mold foam molding of pre-expanded particles of a thermoplastic polyester resin,
The heat insulating material for floor heating according to claim 1, wherein the crystallinity is 20 to 40% and the fusion ratio is 40% or more.
【請求項3】熱可塑性ポリエステル系樹脂が、その全成
分中に、イソフタル酸、およびシクロヘキサンジメタノ
ールからなる群より選ばれた少なくとも1種の成分を、
総量で0.5〜10重量%の範囲で含有するものである
請求項2記載の床暖房用断熱材。
3. A thermoplastic polyester resin comprising at least one component selected from the group consisting of isophthalic acid and cyclohexanedimethanol in all the components thereof.
The heat insulating material for floor heating according to claim 2, which is contained in a total amount of 0.5 to 10% by weight.
【請求項4】熱可塑性ポリエステル系樹脂の少なくとも
一部が、使用済みの製品から回収した再生樹脂である請
求項2または3記載の床暖房用断熱材。
4. The heat insulating material for floor heating according to claim 2, wherein at least a part of the thermoplastic polyester resin is a recycled resin recovered from a used product.
【請求項5】上記請求項1ないし4のいずれかに記載の
床暖房用断熱材と、加熱手段とを備えることを特徴とす
る床暖房装置。
5. A floor heating device comprising the heat insulating material for floor heating according to any one of claims 1 to 4, and heating means.
JP19802299A 1999-07-12 1999-07-12 Insulation material for floor heating and floor heating device using it Expired - Fee Related JP3488400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19802299A JP3488400B2 (en) 1999-07-12 1999-07-12 Insulation material for floor heating and floor heating device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19802299A JP3488400B2 (en) 1999-07-12 1999-07-12 Insulation material for floor heating and floor heating device using it

Publications (2)

Publication Number Publication Date
JP2001020511A true JP2001020511A (en) 2001-01-23
JP3488400B2 JP3488400B2 (en) 2004-01-19

Family

ID=16384231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19802299A Expired - Fee Related JP3488400B2 (en) 1999-07-12 1999-07-12 Insulation material for floor heating and floor heating device using it

Country Status (1)

Country Link
JP (1) JP3488400B2 (en)

Also Published As

Publication number Publication date
JP3488400B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
KR100482404B1 (en) Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
KR100436101B1 (en) Method for producing foamed-in-mold product of aromatic polyester based resin
JP5777297B2 (en) Method for producing polycarbonate resin foam molding
JP2013067740A (en) Thermoplastic resin bead foam, and method for manufacturing the same
JP2001031151A (en) Heat insulation container
JP2001027387A (en) Pipe heat retaining material
JP3213871B2 (en) Thermoplastic polyester resin foam molded article, thermoplastic polyester resin pre-expanded particles, and method for producing thermoplastic polyester resin foam molded article from the pre-expanded particles
JP3722727B2 (en) In-mold foam molded article of thermoplastic polyester resin, its production method and its use
JP3705748B2 (en) Method for producing pre-expanded particles of thermoplastic polyester resin
JP3594877B2 (en) Method for producing aromatic polyester resin laminate
JP3631943B2 (en) Method for producing pre-expanded particles of aromatic polyester resin
JP3488400B2 (en) Insulation material for floor heating and floor heating device using it
JP3688179B2 (en) Thermoplastic polyester resin foamed particles for in-mold foam molding and method for producing in-mold foam molded article using the same
JP2001026246A (en) Interior material for automobile
JP3527662B2 (en) Pre-expanded thermoplastic polyester resin particles, process for producing the same, and foamed molded article using the same
JP3532789B2 (en) Pre-expanded particles of thermoplastic polyester resin
JP3631942B2 (en) Method for producing pre-expanded particles of aromatic polyester resin
JP2001018247A (en) Core material for bumper and bumper using core material
JP2001269960A (en) Method for manufacturing in-mold foam molding made from aromatic polyester-based resin
JP3453539B2 (en) Aromatic polyester resin foam molding and aromatic polyester resin prefoam used for molding
JP2001081793A (en) Wall surface construction material and wall surface structure
JP2001026217A (en) Sun visor
JP3631940B2 (en) Aromatic polyester resin pre-expanded particles and foamed moldings using the same
JP3640596B2 (en) Aromatic polyester resin pre-expanded particles for in-mold foam molding
JP2001329100A (en) Aromatic polyester resin prefoamed particle and foamed molded product using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141031

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees