JP2001019698A - Sulfated oligosaccharide compound and its synthesis - Google Patents

Sulfated oligosaccharide compound and its synthesis

Info

Publication number
JP2001019698A
JP2001019698A JP11190009A JP19000999A JP2001019698A JP 2001019698 A JP2001019698 A JP 2001019698A JP 11190009 A JP11190009 A JP 11190009A JP 19000999 A JP19000999 A JP 19000999A JP 2001019698 A JP2001019698 A JP 2001019698A
Authority
JP
Japan
Prior art keywords
oligosaccharide
galactosidase
reaction
galβ
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP11190009A
Other languages
Japanese (ja)
Inventor
Takeomi Murata
健臣 村田
Yasuichi Usui
泰市 碓氷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP11190009A priority Critical patent/JP2001019698A/en
Publication of JP2001019698A publication Critical patent/JP2001019698A/en
Ceased legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new oligosaccharide having Galβ (1-6) glycoside bond and provide a new process for producing the oligosaccharide using an enzyme β-D-galactosidase. SOLUTION: The objective new oligosaccharide having Galβ (1-6) glycoside bond, especially 6'-sulfo N-acetylisolactosamine (S6Galβ1-6GlcNA), 6'- sulfoisolactose (S6Galβ-6G1c), etc., is produced by galactosyl group transfer reaction using a β-D-galactosidase, especially a β-D-galactosidase derived from E.coli. The synthesis of oligosaccharide uses an enzyme.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Galβ(1−
6)グリコシド結合を持つ新規なオリゴ糖および前記オ
リゴ糖をβ−D−ガラクトシダーゼを用いて製造する新
規な製造方法、詳細には4−メチルウンベリフェリルβ
−D−ガラクトピラノシド6硫酸(S6Galβ−4M
U)を供与体基質とし用いて得られる前記新規なオリゴ
糖および前記新規なオリゴ糖の製造方法に関する。
[0001] The present invention relates to a method for preparing Galβ (1-
6) A novel oligosaccharide having a glycosidic bond and a novel method for producing the oligosaccharide using β-D-galactosidase, specifically 4-methylumbelliferyl β
-D-galactopyranoside 6 sulfate (S6Galβ-4M
The present invention relates to the novel oligosaccharide obtained by using U) as a donor substrate and a method for producing the novel oligosaccharide.

【0002】[0002]

【従来技術】硫酸基を含む糖鎖・糖質は、細胞表面など
に存在して生体情報の伝達、細胞同士の識別などの相互
作用や識別現象に際して情報分子として機能している。
例えば、シアリル6’−スルホLeXは、細胞間接着に
関与するセレクチンと相互作用すること(J.Biol.Chem.
(1996)271,27213参照)や、シアリル6’−スルホラク
トースはラットやヒトのミルクに存在し乳児への硫酸基
の供給源として重要であることが示唆されている(Pedi
atr Res.(1985)19,216参照)。また、最近ヒトインフル
エンザA型ウイルスがスルファチド(硫酸化糖鎖)と特
異的に結合することが明らかになり、硫酸化糖(硫酸化
糖鎖)の生理活性などその機能がますます注目されてき
ている。しかしながら、硫酸化オリゴ糖の合成自体に酵
素を用いるという試みはほとんどされていない。ただ、
生体内での糖鎖合成は、糖転移酵素というグリコシド生
成を触媒する酵素により、一段階で行われていることは
知られている。しかしながら、糖転移酵素は一般に生体
から単離するのが困難で、特殊な反応基質も必要であ
り、一般的とはいえない。そこで、糖加水分解酵素(グ
リコシド結合分解酵素)が本来の加水分解反応の逆反応
である配糖化反応を触媒できるのではないかとの考えに
基づいた、糖の合成の試みはされている。また、種々の
細胞を利用して異なる構造の糖鎖を細胞に作らせる試み
もなされている。
2. Description of the Related Art Sugar chains and carbohydrates containing a sulfate group are present on cell surfaces and the like, and function as information molecules at the time of interaction such as transmission of biological information, identification of cells, and identification phenomena.
For example, sialyl 6'-sulfo Le X interacts with selectins involved in cell-cell adhesion (J. Biol. Chem.
(1996) 271, 27213), and sialyl 6'-sulfolactose is present in rat and human milk and has been suggested to be important as a source of sulfate groups for infants (Pedi).
atr Res. (1985) 19,216). Recently, it has been revealed that human influenza A virus specifically binds to sulfatide (sulfated sugar chains), and its functions such as the physiological activity of sulfated sugars (sulfated sugar chains) are receiving more and more attention. I have. However, few attempts have been made to use enzymes for the synthesis of sulfated oligosaccharides. However,
It is known that in vivo synthesis of sugar chains is performed in one step by an enzyme that catalyzes the production of glycosides, a glycosyltransferase. However, glycosyltransferases are generally difficult to isolate from living organisms, require special reaction substrates, and are not common. Thus, attempts have been made to synthesize sugars based on the idea that sugar hydrolases (glycoside bond degrading enzymes) can catalyze glycosylation reactions that are the reverse of the original hydrolysis reactions. Attempts have also been made to make cells produce sugar chains having different structures using various cells.

【0003】前記のように、N−アセチルラクトサミン
を骨格とする糖鎖は、セレクチンファミリーに属する細
胞接着分子への結合能を持つリガンド糖鎖として、生体
内では重要な生理活性を発現している。細胞表面におけ
るこれらの糖鎖の発現は、異種細胞間の特異的な接着に
関与していることが明かとなり、これら糖鎖を利用した
機能賦活剤や抑制剤(炎症の抑制)は、有用な薬物にな
ると期待されている。また、これらの糖鎖は、微生物が
ターゲット細胞へ感染する際の接着に関与するとも考え
られており、これらの疾病防御の薬剤開発の素材として
重視されている。このように糖鎖の生体内における生理
機能の重要性が明かになる中で、本発明者らは、4−メ
チルウンベリフェリルβ−D−ガラクトピラノシド6硫
酸(S6Galβ−4MU)とN−アセチルグルコサミ
ン(GlcNAc)から酵素β−D−ガラクトシダーゼ
を用いて6’−スルホN−アセチルラクトサミン(S6
Galβ1−4GlcNAc)を合成する試みやS6G
alβ−4MUの酵素β−D−ガラクトシダーゼを用い
た加水分解反応の基本的な研究をしてきた。
[0003] As described above, a sugar chain having N-acetyllactosamine as a skeleton is a ligand sugar chain capable of binding to a cell adhesion molecule belonging to the selectin family and expresses an important physiological activity in vivo. I have. It is clear that the expression of these sugar chains on the cell surface is involved in specific adhesion between heterologous cells, and functional activators and inhibitors (suppression of inflammation) using these sugar chains are useful. Expected to be a drug. These sugar chains are also considered to be involved in the adhesion of microorganisms to target cells when they infect the cells, and are therefore regarded as important materials for developing drugs for protecting these diseases. As the importance of the physiological function of a sugar chain in a living body becomes clear, the present inventors have proposed that 4-methylumbelliferyl β-D-galactopyranoside 6 sulfate (S6Galβ-4MU) and N 6-Sulfo N-acetyllactosamine (S6) from acetylglucosamine (GlcNAc) using the enzyme β-D-galactosidase.
Attempts to synthesize Galβ1-4GlcNAc) or S6G
Basic research on the hydrolysis reaction of alβ-4MU using the enzyme β-D-galactosidase has been performed.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、前記の
ように細胞表面に存在して生体内において種々の生理活
性を発現する糖鎖を更に研究するためには、新しい糖鎖
を合成し、その活性特性を知ることも重要であると考え
た。いわゆる糖鎖ライブラリーの豊富化である。従っ
て、本発明の課題は、新規な糖鎖を提供することおよび
前記新規な糖鎖を合成する方法を提供することである。
また、得られた新規な糖鎖の用途を見出すことである。
前記課題を解決すべく、前記酵素による糖鎖の合成を更
に進める中で、本発明者らは、4−メチルウンベリフェ
リルβ−D−ガラクトピラノシド6硫酸(S6Galβ
−4MU)を供与体基質とし、酵素として大腸菌由来の
β−D−ガラクトシダーゼを用いることにより、受容体
基質へのガラクトシル基転移反応によりGalβ(1−
6)グリコシド結合を持つオリゴ糖が得られることを発
見した。そして、該ガラクトシル基転移反応を利用し
て、受容体基質として、N−アセチルグルコサミン(G
lcNAc)、グルコースなどを用いて、新規な6’−
スルホN−アセチルイソラクトサミン(S6Galβ1
−6GlcNAc)、6’−スルホイソラクトース(S
6Galβ1−6Glc)が得られることを発見した。
SUMMARY OF THE INVENTION As described above, the present inventors need to synthesize new sugar chains in order to further study sugar chains present on cell surfaces and expressing various physiological activities in vivo. It was also important to know their active properties. This is the so-called sugar chain library enrichment. Therefore, an object of the present invention is to provide a novel sugar chain and a method for synthesizing the novel sugar chain.
Another object of the present invention is to find use of the obtained novel sugar chain.
In order to solve the above-mentioned problem, while further promoting the synthesis of a sugar chain by the enzyme, the present inventors have found that 4-methylumbelliferyl β-D-galactopyranoside hexasulfate (S6Galβ
-4MU) as a donor substrate, and using β-D-galactosidase from Escherichia coli as an enzyme, Galβ (1-
6) It was discovered that oligosaccharides having glycosidic bonds could be obtained. Then, utilizing the galactosyl group transfer reaction, N-acetylglucosamine (G
lcNAc), glucose, etc.
Sulfo N-acetylisolactosamine (S6Galβ1
-6GlcNAc), 6'-sulfoisolactose (S
6Galβ1-6Glc) was found to be obtained.

【0005】[0005]

【課題を解決するための手段】本発明の第1は、4−メ
チルウンベリフェリルβ−D−ガラクトピラノシド6硫
酸(S6Galβ−4MU)を供与体基質とし用いβ−
D−ガラクトシダーゼによる受容体基質へのガラクトシ
ル基転移反応により得られるGalβ(1−6)グリコ
シド結合を持つオリゴ糖である。好ましくは、受容体基
質がN−アセチルグルコサミンであることを特徴とする
オリゴ糖であり、また、受容体基質がグルコースである
ことを特徴とするオリゴ糖である。本発明の第2は、4
−メチルウンベリフェリルβ−D−ガラクトピラノシド
6硫酸(S6Galβ−4MU)を供与体基質とし用い
β−D−ガラクトシダーゼによる受容体基質へのガラク
トシル基転移反応によりGalβ(1−6)グリコシド
結合を持つオリゴ糖を合成する方法である。好ましく
は、受容体基質がN−アセチルグルコサミンであること
を特徴とするオリゴ糖であり、また、受容体基質がグル
コースであることを特徴とするオリゴ糖である。より好
ましくは、β−D−ガラクトシダーゼが大腸菌由来のも
のであることを特徴とする前記オリゴ糖の合成方法であ
り、更に好ましくは、ガラクトシド転移反応を40℃お
よびpH7〜8のアルカリ条件下で行うことを特徴とす
る前記オリゴ糖の合成方法である。本発明の第3は、生
理活性機能を持つ薬剤の製造用の中間体としてのGal
β(1−6)グリコシド結合を持つオリゴ糖の使用であ
る。好ましくは、前記オリゴ糖が6’−スルホN−アセ
チルイソラクトサミン(S6Galβ1−6GlcN
A)または6’−スルホイソラクトース(S6Galβ
1−6Glc)であることを特徴とする前記オリゴ糖の
使用である。本発明は、特定の供与体基質の受容体基質
へのガラクトシル基転移反応によりGalβ(1−6)
グリコシド結合を持つオリゴ糖を生成する酵素であるβ
−D−ガラクトシダーゼを発見することにより前記課題
を解決したものである。
A first aspect of the present invention is to use 4-methylumbelliferyl β-D-galactopyranoside hexasulfate (S6Galβ-4MU) as a donor substrate.
An oligosaccharide having a Galβ (1-6) glycoside bond obtained by a galactosyl group transfer reaction to a receptor substrate by D-galactosidase. Preferably, the oligosaccharide is characterized in that the acceptor substrate is N-acetylglucosamine, and the oligosaccharide is characterized in that the acceptor substrate is glucose. The second of the present invention is 4
-Methylumbelliferyl β-D-galactopyranoside 6-sulfate (S6Galβ-4MU) as a donor substrate, Galβ (1-6) glycoside linkage by galactosyl transfer reaction to an acceptor substrate by β-D-galactosidase This is a method for synthesizing an oligosaccharide having Preferably, the oligosaccharide is characterized in that the acceptor substrate is N-acetylglucosamine, and the oligosaccharide is characterized in that the acceptor substrate is glucose. More preferably, the method for synthesizing the oligosaccharide is characterized in that the β-D-galactosidase is derived from Escherichia coli. Still more preferably, the galactosidyl transfer reaction is carried out at 40 ° C. under alkaline conditions of pH 7 to 8. A method for synthesizing the oligosaccharide. A third aspect of the present invention is that Gal as an intermediate for the production of a drug having a bioactive function.
An oligosaccharide having a β (1-6) glycosidic bond is used. Preferably, the oligosaccharide is 6′-sulfo N-acetylisolactosamine (S6Galβ1-6GlcN
A) or 6′-sulfoisolactose (S6Galβ
1-6Glc), wherein the oligosaccharide is used. The present invention provides a method of galactosyl transfer of a specific donor substrate to an acceptor substrate to obtain a Galβ (1-6)
Β, an enzyme that produces oligosaccharides with glycosidic bonds
The present invention has solved the above-mentioned problem by discovering -D-galactosidase.

【0006】[0006]

【本発明の実施の態様】本発明を詳細に説明する。本発
明の新規な糖鎖結合を持つオリゴ糖の合成方法の基本
は、 1.供与体基質である4−メチルウンベリフェリルβ−
D−ガラクトピラノシド6硫酸(S6Galβ−4M
U)を緩衝溶液中で酵素を用いて、受容体基質へガラク
トシル基転移反応によりGalβ(1−6)グリコシド
結合を持つオリゴ糖を生成させるものである。前記酵素
としては、特に大腸菌由来のβ−D−ガラクトシダーゼ
が使用される。緩衝溶液の緩衝剤としては、リン酸ナト
リウム、酢酸ナトリウムなど化合物を使用することがで
きる。pHとしては酵素の活性範囲、例えば中性〜アル
カリを選択できる。受容体基質としては、N−アセチル
グルコサミン(GlcNAc)、グルコース等の糖類を
使用することができる。 2.新規な糖鎖結合を持つオリゴ糖の合成反応は、前記
供与体基質と受容体基質を、例えば酵素の至適反応pH
に調整した緩衝溶媒に溶解させ、次いで、前記溶液に酵
素、例えばβ−D−ガラクトシダーゼを加え、酵素の至
適反応温度条件に調整して反応を進行させ後、煮沸反応
の進行を停止させる。反応停止後の溶液を遠心分離によ
り沈殿物を除去し、沈殿物を除去した反応液を、糖鎖の
分離、精製の手段である、例えばイオン交換クロマトグ
ラフ〔Sep−PacAccelQMAカラム(Wat
ers社製、φ1.0×4.0cm)〕に共した。非吸
着部を蒸留水などで洗浄して除去し、吸着部はNaCl
緩衝溶液、ピリジン酢酸緩衝液等の直線濃度勾配法で溶
出させる。直線濃度勾配法とは、例えば、0〜0.5M
の直線勾配のピリジン酢酸緩衝液(pH5.4)等が使
用される。これによって、目的化合物のGalβ(1−
6)グリコシド結合を持つオリゴ糖、例えば6’−スル
ホN−アセチルイソラクトサミン(S6Galβ1−6
GlcNAc)、6’−スルホイソラクトース(S6G
alβ1−6Glc)が得られる。この反応プロセスを
図1に示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail. The synthesis method of the oligosaccharide having a novel sugar chain bond of the present invention is basically composed of: Donor substrate, 4-methylumbelliferyl β-
D-galactopyranoside hexasulfate (S6Galβ-4M
U) is to produce an oligosaccharide having a Galβ (1-6) glycosidic bond by a galactosyl transfer reaction to an acceptor substrate using an enzyme in a buffer solution. As the enzyme, β-D-galactosidase derived from Escherichia coli is particularly used. As the buffer of the buffer solution, compounds such as sodium phosphate and sodium acetate can be used. As the pH, the activity range of the enzyme, for example, neutral to alkali, can be selected. As the acceptor substrate, saccharides such as N-acetylglucosamine (GlcNAc) and glucose can be used. 2. In the synthesis reaction of oligosaccharides having a novel sugar chain bond, the donor substrate and the acceptor substrate are reacted with each other, for example, by the optimal reaction pH of an enzyme.
Then, an enzyme, for example, β-D-galactosidase is added to the solution, the reaction is adjusted to an optimal reaction temperature condition of the enzyme, and the reaction is allowed to proceed. Then, the boiling reaction is stopped. The solution after the reaction is stopped is subjected to centrifugation to remove the precipitate, and the reaction solution from which the precipitate has been removed is subjected to separation and purification of sugar chains, for example, ion exchange chromatography [Sep-PacAccel QMA column (Wat
ers Co., Ltd., φ1.0 × 4.0 cm)]. The non-adsorbed portion is removed by washing with distilled water, etc.
Elution is performed by a linear concentration gradient method such as a buffer solution or a pyridine acetate buffer. The linear concentration gradient method is, for example, 0 to 0.5 M
A pyridine acetate buffer (pH 5.4) having a linear gradient as described above is used. Thus, the target compound Galβ (1-
6) An oligosaccharide having a glycosidic bond, for example, 6'-sulfo N-acetylisolactosamine (S6Galβ1-6
GlcNAc), 6'-sulfoisolactose (S6G
alβ1-6Glc) is obtained. This reaction process is shown in FIG.

【0007】本発明において使用する酵素は、ガラクト
シル基転移反応を進行させる作用を持つものであればよ
く、大腸菌由来のβ−D−ガラクトシダーゼを好ましい
ものとして挙げることができる。前記大腸菌由来のβ−
D−ガラクトシダーゼは、ナカライテスク(株)、和光
純薬工業(株)等から入手できる。前記β−D−ガラク
トシダーゼは以下のような理化学的性質を有する。 作用:ガラクトシル基を受容体基質の6位水酸基に転移
する。 基質特異性:ラクトース、アリールまたはアルキルβ−
D−ガラクトシドなど 至適反応pH:7〜8 阻害及び活性化:Hg2+、Ag2+で阻害。 分子量:464,992(Proc.Natl.Acad.Sci.USA(187
7)74,1507-1510参照)
[0007] The enzyme used in the present invention may be any enzyme capable of promoting the galactosyl transfer reaction, and β-D-galactosidase derived from Escherichia coli is preferred. Β-
D-galactosidase can be obtained from Nakarai Tesque Co., Ltd., Wako Pure Chemical Industries, Ltd. or the like. The β-D-galactosidase has the following physicochemical properties. Action: The galactosyl group is transferred to the 6-position hydroxyl group of the acceptor substrate. Substrate specificity: lactose, aryl or alkyl β-
D-galactoside, etc. Optimal reaction pH: 7-8 Inhibition and activation: Inhibited by Hg 2+ and Ag 2+ . Molecular weight: 464,992 (Proc. Natl. Acad. Sci. USA (187
7) See 74,1507-1510)

【0008】本発明の、Galβ(1−6)グリコシド
結合を持つオリゴ糖にはシアル酸残基を含有するものも
含む。詳細には、シアル酸残基を含有する6’−スルホ
N−アセチルイソラクトサミン(S6Galβ1−6G
lcNA)、6’−スルホイソラクトース(S6Gal
β1−6Glc)等が含まれる。
The oligosaccharide having a Galβ (1-6) glycosidic bond of the present invention includes those containing a sialic acid residue. Specifically, 6′-sulfo N-acetylisolactosamine containing a sialic acid residue (S6Galβ1-6G
lcNA), 6'-sulfoisolactose (S6Gal
β1-6Glc) and the like.

【0009】[0009]

【実施例】実施例1 4−メチルウンベリフェリルβ−D−ガラクトピラノシ
ド6硫酸(S6Galβ−4MU)50mgとN−アセ
チルグルコサミン(GlcNAc)132mgを0.1
M酢酸緩衝溶液(pH6.0)500μlと水250μ
lに溶解し、大腸菌由来のβ−D−ガラクトシダーゼ溶
液250μl(76U)を添加した。40℃で30時間
反応を行った後、5分間煮沸して反応を停止した。遠心
分離により沈殿物を除去後、10mlの蒸留水で洗浄し
たイオン交換クロマトSep−PacAccelQMA
カラム(Waters社製、φ1.0×4.0cm、流
速は0.5ml/ml)で精製した。イオン交換クロマ
トによる反応生成物の分離の状態を図2に示す。蒸留水
10mlで非吸着部を洗浄した後、0.1M塩化ナトリ
ウム溶液7.0ml吸着部を溶出させた(画分9〜2
2)。各吸着部を集め濃縮後、BioLCシステム(D
IONEX社、CarboPacPA1、φ4×250
mm、流速は1.0ml/ml、溶出液は0.4M酢酸
ナトリウムを含む100mMNaOH)に供した。精製
前の反応混合物および精製後の分析結果を図3に示す。
糖転移生成物と思われるピークが10〜13.5min
に溶出され、この画分を分取し1H−NMRによる分析
を行った。得られたスペクトルを図4に示す。その結
果、合成された化合物は6’−スルホN−アセチルイソ
ラクトサミン(S6Galβ1−6GlcNAc)であ
ることが明らかになった。
EXAMPLE 1 50 mg of 4-methylumbelliferyl β-D-galactopyranoside hexasulfate (S6Galβ-4MU) and 132 mg of N-acetylglucosamine (GlcNAc) were added in 0.1 parts.
500 μl of M acetate buffer solution (pH 6.0) and 250 μl of water
and 250 μl (76 U) of a β-D-galactosidase solution derived from Escherichia coli was added. After performing the reaction at 40 ° C. for 30 hours, the reaction was stopped by boiling for 5 minutes. After removing the precipitate by centrifugation, ion-exchange chromatography Sep-PacAccelQMA washed with 10 ml of distilled water
Purification was performed using a column (Waters, φ1.0 × 4.0 cm, flow rate 0.5 ml / ml). FIG. 2 shows the state of the separation of the reaction product by ion exchange chromatography. After washing the non-adsorbed portion with 10 ml of distilled water, the adsorbed portion of 7.0 ml of 0.1 M sodium chloride solution was eluted (fractions 9 to 2).
2). After collecting and concentrating each adsorption part, the BioLC system (D
IONEX, CarboPacPA1, φ4 × 250
mm, the flow rate was 1.0 ml / ml, and the eluate was subjected to 100 mM NaOH containing 0.4 M sodium acetate). FIG. 3 shows the reaction mixture before purification and the analysis result after purification.
The peak which seems to be a glycosyl transfer product is 10 to 13.5 min.
This fraction was fractionated and analyzed by 1 H-NMR. FIG. 4 shows the obtained spectrum. As a result, it was revealed that the synthesized compound was 6′-sulfo N-acetylisolactosamine (S6Galβ1-6GlcNAc).

【0010】実施例2 前記反応を、温度35℃、40℃および48℃で行い、
糖転移反応の温度特性を調べた。その結果を図5に示
す。特定の温度、すなわち約40℃が至適温度であるこ
とがわかった。
Example 2 The reaction was carried out at a temperature of 35 ° C., 40 ° C. and 48 ° C.
The temperature characteristics of the sugar transfer reaction were investigated. The result is shown in FIG. A particular temperature, about 40 ° C., was found to be the optimal temperature.

【0011】実施例3 前記反応を、pHの条件を、4,5,6,7および8で
行い、糖転移反応のpH特性を調べた。その結果を図6
に示す。pH7〜8が至適pHであることがわかった。
Example 3 The above reaction was carried out at pH conditions of 4, 5, 6, 7 and 8, and the pH characteristics of the sugar transfer reaction were examined. The result is shown in FIG.
Shown in pH 7-8 was found to be the optimal pH.

【0012】実施例4 4−メチルウンベリフェリルβ−D−ガラクトピラノシ
ド6硫酸(S6Galβ−4MU)50mgとN−アセ
チルグルコサミン(GlcNAc)132mgを0.1
Mリン緩衝溶液(pH6.0)500μlと水250μ
lに溶解し、大腸菌由来のβ−D−ガラクトシダーゼ溶
液250μl(76U)を添加した。40℃で30時間
反応を行った後、5分間煮沸して反応を停止した。遠心
分離により沈殿物を除去した反応液をイオン交換クロマ
トBioLCシステム(DIONEX社、CarboPac PA1,φ4×250m
m,流速は1.0ml/ml,溶出液は0.4M酢酸ナトリウムを含む1
00mMNaOH)にて分析した。図7に示すように糖転移生
成物と思われるピークが確認されたので、反応液を10
mlの蒸留水で洗浄したSep-Pac Accel QMAカラム(Wat
ers社製、φ1.0×4.0cm、流速は0.5ml/
ml)に供した。蒸留水で非吸着部を洗浄した後、0〜
0.5Mピリジン酢酸緩衝液(pH5.4)の直線濃度
勾配法で吸着部を溶出させた。分離パターンを図8の示
す。吸着部の一部をBioLCシステムで分析したところ画
分21〜24(図8の縦軸にフェノール硫酸法による糖
の発色強度を示している。)に目的の生成物が検出され
ていたので濃縮乾固後、1H−NMRによる分析を行っ
た。その結果を図9に示す。その結果から、合成された
化合物は6’−スルホN−アセチルイソラクトサミン
(S6Galβ1-6GlcNAc)であることは明らかとなった。
Example 4 50 mg of 4-methylumbelliferyl β-D-galactopyranoside hexasulfate (S6Galβ-4MU) and 132 mg of N-acetylglucosamine (GlcNAc) were added in 0.1 mg.
500 μl of M phosphate buffer solution (pH 6.0) and 250 μl of water
and 250 μl (76 U) of a β-D-galactosidase solution derived from Escherichia coli was added. After performing the reaction at 40 ° C. for 30 hours, the reaction was stopped by boiling for 5 minutes. The reaction solution from which the precipitate was removed by centrifugation was subjected to ion exchange chromatography BioLC system (DIONEX, CarboPac PA1, φ4 × 250m
m, flow rate 1.0 ml / ml, eluate contains 0.4 M sodium acetate1
(00 mM NaOH). As shown in FIG. 7, a peak considered to be a glycosyltransfer product was confirmed.
Sep-Pac Accel QMA column (Wat
ers, φ1.0 × 4.0cm, flow rate 0.5ml /
ml). After washing the non-adsorption part with distilled water,
The adsorbed part was eluted by a linear concentration gradient method using 0.5 M pyridine acetate buffer (pH 5.4). FIG. 8 shows the separation pattern. When a part of the adsorption part was analyzed by a BioLC system, the target product was detected in fractions 21 to 24 (the vertical axis in FIG. 8 indicates the color development intensity of the sugar by the phenol-sulfuric acid method), so the concentration was performed. After drying, analysis by 1 H-NMR was performed. FIG. 9 shows the result. The results revealed that the synthesized compound was 6′-sulfo N-acetylisolactosamine (S6Galβ1-6GlcNAc).

【0013】実施例5 4−メチルウンベリフェリルβ−D−ガラクトピラノシ
ド6硫酸(S6Galβ−4MU)50mgとグルコー
ス(Glc)108mgを0.1リン酸緩衝液500μ
lと水250μlに溶解し、大腸菌由来のβ−D−ガラ
クトシターゼ溶液250μl(76U)を添加した。4
0℃で30時間反応を行った後、5分間煮沸して反応を
停止した。合成反応を図10に示す。遠心分離により沈
殿物を除去した反応液をBioLCシステム(DIONEX社、Car
boPac PA1,φ4×250mm,流速は1.0ml/ml,溶出液は0.4M酢
酸ナトリウムを含む100mMNaOH)にて分析した。その結
果を図11に示す。この結果から糖転移生成物と思われ
るピークが確認されたので、反応液を10mlの蒸留水
で洗浄したSep-Pac Accel QMAカラム(Waters社製、φ
1.0×4.0cm、流速は0.5ml/ml)に供し
た。蒸留水で非吸着部を洗浄した後、0〜0.5Mピリ
ジン酢酸緩衝液(pH5.4)の直線濃度勾配法で吸着
部を溶出させた。分離パターンを図12に示す。吸着部
の一部をBioLCシステムで分析したところ画分21〜2
4に目的の生成物が検出されていたので濃縮乾固後、1
H−NMRによる分析を行った。その結果(図13)、
合成された化合物は6’−スルホイソラクトース(S6
Galβ1−6Glc)であることは明らかとなった。
Example 5 4-methylumbelliferyl β-D-galactopyranoside hexasulfate (S6Galβ-4MU) (50 mg) and glucose (Glc) (108 mg) were added to 0.1 phosphate buffer (500 μM).
and 250 μl of water, and 250 μl (76 U) of a β-D-galactosidase solution derived from E. coli was added. 4
After performing the reaction at 0 ° C. for 30 hours, the reaction was stopped by boiling for 5 minutes. FIG. 10 shows the synthesis reaction. The reaction solution from which the precipitate was removed by centrifugation was transferred to a BioLC system (DIONEX, Car
The analysis was performed using boPac PA1, φ4 × 250 mm, the flow rate was 1.0 ml / ml, and the eluate was 100 mM NaOH containing 0.4 M sodium acetate). The result is shown in FIG. From this result, a peak considered to be a glycosyltransfer product was confirmed, and thus the reaction solution was washed with 10 ml of distilled water using a Sep-Pac Accel QMA column (Waters, φ
1.0 × 4.0 cm, flow rate 0.5 ml / ml). After washing the non-adsorbed portion with distilled water, the adsorbed portion was eluted by a linear concentration gradient method of 0 to 0.5 M pyridine acetate buffer (pH 5.4). FIG. 12 shows the separation pattern. When a part of the adsorption part was analyzed with the BioLC system, fractions 21 to 2 were found.
Since the target product was detected in 4 and concentrated to dryness, 1
Analysis by H-NMR was performed. As a result (FIG. 13),
The synthesized compound is 6'-sulfoisolactose (S6
Galβ1-6Glc).

【0014】前記各実施例において合成された新規糖鎖
をシアリル化処理することにより抗炎症剤やガン転移阻
止剤などのような生理活性機能を持つ化合物を合成する
ことができ、従来のシアル酸残基をもつ糖の生理活性が
期待できる。
By subjecting the novel sugar chain synthesized in each of the above examples to sialylation treatment, a compound having a physiologically active function such as an anti-inflammatory agent or a cancer metastasis inhibitor can be synthesized. The biological activity of sugars having residues can be expected.

【0015】[0015]

【発明の効果】以上述べたように、新規な糖鎖の合成法
および新規な糖鎖の提供は、糖鎖の新しい特性の研究の
ための糖ライブラリーの豊富化、新しい生理機能を持つ
薬剤の開発に貢献するという優れた効果をもたらすもの
である。
As described above, the novel method for synthesizing a sugar chain and the provision of a novel sugar chain are intended to enrich a sugar library for studying new properties of a sugar chain and to provide a drug having a new physiological function. It has an excellent effect of contributing to the development of the product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 β−D−ガラクトシダーゼによる硫酸化二糖
(S6Galβ1−6GlcNAc)の合成
FIG. 1. Synthesis of sulfated disaccharide (S6Galβ1-6GlcNAc) by β-D-galactosidase

【図2】 イオン交換クロマトグラフによる反応生成物
の分離
Fig. 2 Separation of reaction products by ion exchange chromatography

【図3】 BioLCシステムによる反応液(実施例
1)の分析結果
FIG. 3 Analysis result of a reaction solution (Example 1) by a BioLC system

【図4】 重水中での6’−スルホN−アセチルイソラ
クトサミン(S6Galβ1−6GlcNAc)1H−
NMRスペクトル
FIG. 4. 6′-Sulfo N-acetylisolactosamine (S6Galβ1-6GlcNAc) 1 H- in heavy water
NMR spectrum

【図5】 糖移転反応における温度の効果FIG. 5: Effect of temperature on sugar transfer reaction

【図6】 糖移転反応におけるpHの効果FIG. 6: Effect of pH on sugar transfer reaction

【図7】 BioLCシステムによる反応液(実施例
4)の分析結果
FIG. 7: Analysis result of reaction solution (Example 4) by BioLC system

【図8】 Sep-Pacによる目的の生成物(実施例4)の
分離パターン
FIG. 8: Separation pattern of target product (Example 4) by Sep-Pac

【図9】 重水中での6’−スルホN−アセチルイソラ
クトサミン(S6Galβ1−6GlcNAc)1H−
NMRスペクトル
FIG. 9: 6'-Sulfo N-acetylisolactosamine (S6Galβ1-6GlcNAc) 1 H- in heavy water
NMR spectrum

【図10】 β−D−ガラクトシダーゼによるS6Ga
lβ1−6Glcの合成
FIG. 10. S6Ga by β-D-galactosidase
Synthesis of lβ1-6Glc

【図11】 BioLCシステムによる反応液(実施例
5)の分析結果
FIG. 11 shows an analysis result of a reaction solution (Example 5) by a BioLC system.

【図12】 Sep-Pacによる目的の生成物(実施例5)
の分離パターン
FIG. 12: Desired product by Sep-Pac (Example 5)
Isolated pattern

【図13】 重水中での6’−スルホイソラクトース
(S6Galβ1−6Glc)1H−NMRスペクトル
FIG. 13: 6'-Sulfoisolactose (S6Galβ1-6Glc) 1 H-NMR spectrum in heavy water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12P 19/26 C12P 19/26 // C12N 9/38 C12N 9/38 Fターム(参考) 4B050 CC10 DD02 LL05 4B064 AF03 AF21 CA02 CA21 CB07 CB30 CC03 CC06 CC07 CD09 CD12 DA01 4C057 AA03 BB01 BB04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12P 19/26 C12P 19/26 // C12N 9/38 C12N 9/38 F-term (Reference) 4B050 CC10 DD02 LL05 4B064 AF03 AF21 CA02 CA21 CB07 CB30 CC03 CC06 CC07 CD09 CD12 DA01 4C057 AA03 BB01 BB04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 4−メチルウンベリフェリルβ−D−ガ
ラクトピラノシド6硫酸(S6Galβ−4MU)を供
与体基質とし用い、β−D−ガラクトシダーゼによる受
容体基質へのガラクトシル基転移反応により得られるG
alβ(1−6)グリコシド結合を持つオリゴ糖。
1. Use of 4-methylumbelliferyl β-D-galactopyranoside hexasulfate (S6Galβ-4MU) as a donor substrate obtained by a galactosyl group transfer reaction to an acceptor substrate by β-D-galactosidase. G
An oligosaccharide having an alβ (1-6) glycosidic bond.
【請求項2】 受容体基質がN−アセチルグルコサミン
であことを特徴とする請求項1に記載のオリゴ糖。
2. The oligosaccharide according to claim 1, wherein the acceptor substrate is N-acetylglucosamine.
【請求項3】 受容体基質がグルコースであることを特
徴とする請求項1に記載のオリゴ糖。
3. The oligosaccharide according to claim 1, wherein the acceptor substrate is glucose.
【請求項4】 4−メチルウンベリフェリルβ−D−ガ
ラクトピラノシド6硫酸(S6Galβ−4MU)を供
与体基質とし用いβ−D−ガラクトシダーゼによる受容
体基質へのガラクトシル基転移反応によりGalβ(1
−6)グリコシド結合を持つオリゴ糖を合成する方法。
4. A method for preparing Galβ (4-methylumbelliferyl β-D-galactopyranoside 6-sulfate (S6Galβ-4MU) as a donor substrate by a galactosyl transfer reaction to an acceptor substrate by β-D-galactosidase. 1
-6) A method for synthesizing an oligosaccharide having a glycosidic bond.
【請求項5】 受容体基質がN−アセチルグルコサミン
であることを特徴とする請求項4に記載のオリゴ糖の合
成方法。
5. The method for synthesizing an oligosaccharide according to claim 4, wherein the acceptor substrate is N-acetylglucosamine.
【請求項6】 受容体基質がグルコースであることを特
徴とする請求項4に記載のオリゴ糖の合成方法。
6. The method for synthesizing an oligosaccharide according to claim 4, wherein the acceptor substrate is glucose.
【請求項7】 β−D−ガラクトシダーゼが大腸菌由来
のものであることを特徴とする請求項4、5または6に
記載のオリゴ糖の合成方法。
7. The method for synthesizing an oligosaccharide according to claim 4, wherein the β-D-galactosidase is derived from Escherichia coli.
【請求項8】 ガラクトシル基転移反応を40℃および
pH7〜8のアルカリ条件下で行うことを特徴とする請
求項4乃至7のいずれかに記載のオリゴ糖の合成方法。
8. The method for synthesizing an oligosaccharide according to claim 4, wherein the galactosyl transfer reaction is carried out under alkaline conditions at 40 ° C. and pH 7 to 8.
【請求項9】 生理活性機能を持つ薬剤の製造用の中間
体としてのGalβ(1−6)グリコシド結合を持つオ
リゴ糖の使用。
9. Use of an oligosaccharide having a Galβ (1-6) glycoside bond as an intermediate for the production of a drug having a physiologically active function.
【請求項10】 Galβ(1−6)グリコシド結合を
持つオリゴ糖が6’−スルホN−アセチルイソラクトサ
ミン(S6Galβ1−6GlcNAc)であることを
特徴とする請求項9のオリゴ糖の使用。
10. The use of the oligosaccharide according to claim 9, wherein the oligosaccharide having a Galβ (1-6) glycoside bond is 6′-sulfoN-acetylisolactosamine (S6Galβ1-6GlcNAc).
【請求項11】 Galβ(1−6)グリコシド結合を
持つオリゴ糖が6’−スルホイソラクトース(S6Ga
lβ1−6Glc)であることを特徴とする請求項9の
オリゴ糖の使用。
11. An oligosaccharide having a Galβ (1-6) glycosidic bond is a 6′-sulfoisolactose (S6Ga
Use of the oligosaccharide according to claim 9, wherein the oligosaccharide is 1β1-6Glc).
JP11190009A 1999-07-05 1999-07-05 Sulfated oligosaccharide compound and its synthesis Ceased JP2001019698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11190009A JP2001019698A (en) 1999-07-05 1999-07-05 Sulfated oligosaccharide compound and its synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11190009A JP2001019698A (en) 1999-07-05 1999-07-05 Sulfated oligosaccharide compound and its synthesis

Publications (1)

Publication Number Publication Date
JP2001019698A true JP2001019698A (en) 2001-01-23

Family

ID=16250868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11190009A Ceased JP2001019698A (en) 1999-07-05 1999-07-05 Sulfated oligosaccharide compound and its synthesis

Country Status (1)

Country Link
JP (1) JP2001019698A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913532A (en) * 2014-04-14 2014-07-09 南京林业大学 Method for measuring N-acetylglucosamine by utilizing ion exchange chromatography
WO2017154938A1 (en) 2016-03-09 2017-09-14 株式会社糖鎖工学研究所 Method for producing sugar having sulfate group and/or phosphate group

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913532A (en) * 2014-04-14 2014-07-09 南京林业大学 Method for measuring N-acetylglucosamine by utilizing ion exchange chromatography
WO2017154938A1 (en) 2016-03-09 2017-09-14 株式会社糖鎖工学研究所 Method for producing sugar having sulfate group and/or phosphate group
KR20180120186A (en) * 2016-03-09 2018-11-05 가부시키가이샤 도우사 고가쿠 겐큐쇼 A method for producing a sugar having a sulfate group and / or a phosphate group
JPWO2017154938A1 (en) * 2016-03-09 2019-01-10 株式会社糖鎖工学研究所 Method for producing a sugar having a sulfate group and / or a phosphate group
US10913763B2 (en) 2016-03-09 2021-02-09 Glytech, Inc. Method for producing sugar having sulfate group and/or phosphate group
KR102468224B1 (en) * 2016-03-09 2022-11-17 가부시키가이샤 도우사 고가쿠 겐큐쇼 Method for producing a sugar having a sulfate group and/or a phosphate group

Similar Documents

Publication Publication Date Title
Boons et al. Recent advances in O-sialylation
EP0481038B1 (en) Saccharide compositions, methods and apparatus for their synthesis
US5874261A (en) Method for the purification of glycosyltransferases
Murata et al. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose
Thiem et al. Chemoenzymatic syntheses of sialyloligosaccharides with immobilized sialidase
BG98713A (en) Method for the preparation of fucosilated carbohydrates by enzymic flucolization synthesis of saccharine nucleotides and gop-fucosade regeneration in situ
Lubineau et al. Porcine liver (2→ 3)-α-sialyltransferase: substrate specificity studies and application of the immobilized enzyme to the synthesis of various sialylated oligosaccharide sequences
Tsuruta et al. Synthesis of GDP-5-thiosugars and their use as glycosyl donor substrates for glycosyltransferases
Murata et al. Enzymic synthesis of 3′-O-and 6′-ON-acetylglucosaminyl-N-acetyllactosaminide glycosides catalyzed by β-N-acetyl-D-hexosaminidase from Nocardia orientalis
JP2001019698A (en) Sulfated oligosaccharide compound and its synthesis
JPH05500905A (en) Saccharide composition, its synthesis method and synthesis equipment
Bojarová et al. N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide
JP4504607B2 (en) Method for producing glycoside
JP2754358B2 (en) Production method of glycosphingolipid
JP5892750B2 (en) Method for preparing sugar derivative in which N-acetylglucosamine is bonded with α
JPH05244975A (en) Production of alkylglycoside
Miura et al. Aglycone structure influences α-fucosyltransferase III activity using N-acetyllactosamine glycoside acceptors
JP3200129B2 (en) Method for producing α-glucosyl sugar compound
JP3045509B2 (en) Method for producing mannose-containing oligosaccharides
JP3078377B2 (en) Method for producing mannosyl-transferred oligosaccharide
JP3030646B2 (en) Method for producing oligosaccharides containing α1- → 3 linked L-fucose
JP3995774B2 (en) Novel α-fucosidase
ITMI970566A1 (en) COMPLETELY TRANSGLICOLIC SYNTHESIS OF BRANCHED OLIGOSACCHARIDES
Uhm et al. Synthesis of new oligosaccharides from raffinose by Aspergillus niger fructosyltransferase
Yoon et al. Enzymatic synthesis of 3-O-methyl-4-O-β-d-galactopyranosyl-d-glucose (3-O-methyl-lactose); a potential agent for the assessment of intestinal lactase activity

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20080527