JP2001019423A - Silica particles and their production - Google Patents

Silica particles and their production

Info

Publication number
JP2001019423A
JP2001019423A JP11188166A JP18816699A JP2001019423A JP 2001019423 A JP2001019423 A JP 2001019423A JP 11188166 A JP11188166 A JP 11188166A JP 18816699 A JP18816699 A JP 18816699A JP 2001019423 A JP2001019423 A JP 2001019423A
Authority
JP
Japan
Prior art keywords
silica particles
surface area
specific surface
formula
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11188166A
Other languages
Japanese (ja)
Inventor
Shozo Nishida
昌三 西田
Yoshihide Jo
榮秀 徐
Kinji Yamada
欣司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP11188166A priority Critical patent/JP2001019423A/en
Publication of JP2001019423A publication Critical patent/JP2001019423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain porous silica particles having a small particle diameter by using an organosiloxane having a specified structure and satisfying a specified relation of an average particle diameter. SOLUTION: The silica particles having 5-40 nm average particle diameter comprise an organosiloxane of formula I [where R1 is a 1-8C alkyl and (n) is 0-2] and satisfy the relation of inequality II between specific surface area A obtained by analyzing nitrogen adsorption data by the BET method and the specific surface area B of pores having >=2 nm diameter obtained by T- PLOT analysis. The silica particles are produced by hydrolyzing and condensing a compound of formula III [where R1 is a 1-8C alkyl, R2 is a 1-5C alkyl and (n) is 0-2] in the presence of water, an alcohol of formula IV [where (m) is 1-3], an acid amide, a diol and its hemiester and a catalyst. The compound of formula III is, e.g. tetramethoxysilane or tetraethoxysilane. The alcohol of formula IV is, e.g. methanol or ethanol. The catalyst is, e.g. ammonia or ethanolamine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は超微細粒子径でかつ
多孔質であるシリカ粒子およびその製造方法に関する。
The present invention relates to a silica particle having an ultrafine particle diameter and being porous, and a method for producing the same.

【0002】[0002]

【従来技術】シリカ粒子は、電子材料の中でもサブミク
ロンの微細加工を施される材料の補強および空隙の付与
に有用である。従来、シリカ微粒子はアルカリ金属珪酸
塩の中和あるいは珪酸ソーダ水溶液のイオン交換法等に
よる製造方法が知られている。これらはいずれも中空粒
子や多孔質粒子はえられないし、金属イオンの除去は極
めて難しい。さらに、特公平04ー70255には、ス
トーバー法を基本としたゾルーゲル法に、特定アルコー
ルによる処理を加えることにより多孔質シリカ微粒子を
得る方法が開示されている。しかしながら、粒径の範囲
は0.05〜10μmにとどまっている。このような定
義に基づく多孔質性を有し、粒径が40nm以下という
シリカ粒子は今まで何らの開示もなされていない。
2. Description of the Related Art Silica particles are useful for reinforcing and providing voids in electronic materials which are subjected to submicron processing. Conventionally, a method for producing silica fine particles by neutralizing an alkali metal silicate or an ion exchange method of an aqueous solution of sodium silicate is known. Neither of these can produce hollow particles or porous particles, and it is extremely difficult to remove metal ions. Further, Japanese Patent Publication No. 04-70255 discloses a method for obtaining porous silica fine particles by adding a treatment with a specific alcohol to a sol-gel method based on the Stover method. However, the range of the particle size is only 0.05 to 10 μm. Silica particles having a porosity based on such a definition and having a particle diameter of 40 nm or less have not been disclosed at all.

【0003】[0003]

【発明が解決しようとする課題】本発明は、多孔性を有
し、粒径の小さなシリカ粒子およびその製造方法を得る
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a porous silica particle having a small particle size and a method for producing the same.

【0004】[0004]

【発明を解決するための手段】本発明は、下記一般式
(1)で表される構造からなり、さらに下記式(2)を
満たす平均の粒径が5〜40nmのシリカ粒子およびそ
の製造方法を提供するものである。 (R1nSiO(4-n)/2 (1) (式中、R1は炭素数1〜8のアルキル基を、nは0〜2
の数を示す。) (A−B)/A>0.1 (2) (ここで、Aは窒素吸着データをBET法で解析して求
めた比表面積を、BはT−PLOT解析法により求めた
直径2nm以上の空孔の比表面積をそれぞれ表す。)
The present invention provides a silica particle having a structure represented by the following general formula (1) and further satisfying the following formula (2) and having an average particle diameter of 5 to 40 nm, and a method for producing the same. Is provided. (R 1 ) n SiO (4-n) / 2 (1) (wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, and n is 0 to 2)
Indicates the number of (AB) / A> 0.1 (2) (where A is the specific surface area obtained by analyzing the nitrogen adsorption data by the BET method, and B is the diameter of 2 nm or more obtained by the T-PLOT analysis method) Represents the specific surface area of the pores.)

【0005】[0005]

【発明の実施の形態】本発明の一般式(1)においてR
1のアルキル基としては、メチル基、エチル基、プロピ
ル基、ブチル基、オクチル基などを挙げることができる
が、反応時間が短い、工業的に入手が容易であるという
点でメチル基、エチル基などが特に好ましい。また、一
般式(1)において、nは0〜2であるが、製造条件の
範囲の広さという点から0〜1が好ましい。本発明のシ
リカ粒子の多孔質性は、窒素吸着法の実験データをBE
T法(以後、「BET法比表面積」と略記)で解析して
比表面積A(m2/g)を求め、T−PLOT解析法(以
後、(T−PLOT法比表面積)と略記)により孔径2
nm以上の空孔の比表面積B(m2/g)を求め、(A−
B)/Aにより計算される。このBはメソスコピックな
大きさ以上の空孔の比表面積を示し、Aは全部の比表面
積を示しているので、A−Bはその差即ち孔径2nm以
下のミクロな空孔の比表面積を示し、それをAで除した
(A−B)/Aはミクロな空孔の比表面積の全比表面積
に対する割合を示していることになる。本発明のシリカ
粒子は、この割合が0.1より大きく好ましくは0.15
以上である。また、本発明のシリカ粒子の粒径は5〜4
0nm、好ましくは5〜30nmである。
BEST MODE FOR CARRYING OUT THE INVENTION In the general formula (1) of the present invention, R
Examples of the alkyl group 1 include a methyl group, an ethyl group, a propyl group, a butyl group, and an octyl group.The methyl group and the ethyl group are short in reaction time and easily available industrially. Etc. are particularly preferred. In the general formula (1), n is 0 to 2, but 0 to 1 is preferable from the viewpoint of the range of the manufacturing conditions. The porosity of the silica particles of the present invention was determined by BE
The specific surface area A (m 2 / g) was determined by analysis by the T method (hereinafter abbreviated as “BET method specific surface area”), and was analyzed by T-PLOT analysis method (hereinafter abbreviated as (T-PLOT method specific surface area)). Hole diameter 2
The specific surface area B (m2 / g) of pores having a diameter of at least
B) Calculated by / A. Since B represents the specific surface area of pores having a mesoscopic size or more, and A represents the entire specific surface area, AB represents the difference, that is, the specific surface area of micropores having a pore diameter of 2 nm or less, (AB) / A obtained by dividing the ratio by A indicates the ratio of the specific surface area of the micropores to the total specific surface area. The silica particles of the present invention have this ratio greater than 0.1, preferably 0.15.
That is all. Further, the particle size of the silica particles of the present invention is 5-4.
0 nm, preferably 5 to 30 nm.

【0006】本発明のシリカ粒子は、下記一般式(3)
で表される化合物を下記(ロ)〜(ホ)の存在下、加水
分解、縮合することにより製造方法することができる。 (R1)nSi(OR2)4-n (3) (式中、R1は炭素数1〜8のアルキル基、R2は炭素数
1〜5のアルキル基、nは0〜2の数を示す。) (ロ)水 (ハ)一般式H(CH2)mOH, (式中、mは1〜3の数
を示す)で表されるアルコール (ニ)酸アミド類、ジオールおよびジオールの半エステ
ル類から選ばれる少なくとも1種 (ホ)触媒
The silica particles of the present invention have the following general formula (3)
Can be produced by hydrolyzing and condensing the compound represented by the following formulas (b) to (e). (R 1) nSi (OR 2 ) 4-n (3) ( wherein, R 1 represents an alkyl group having 1 to 8 carbon atoms, R 2 is an alkyl group having 1 to 5 carbon atoms, n represents 0-2 Number of are shown.) (b) water (c) general formula H (CH 2) mOH, (wherein, m is an alcohol (d) acid amides represented by the number of 1-3), a diol and diol At least one (e) catalyst selected from half esters

【0007】本発明のシリカ粒子を製造する方法におい
て、(イ)一般式(3)で表される化合物の具体例とし
ては、テトラメトキシシラン、テトラエトキシシラン、
テトライソプロポキシシラン、テトラブトキシシラン、
トリメトキシシラン、トリエトキシシラン、メチルトリ
メトキシシラン、メチルトリエトキシシラン、ジメトキ
シメチルシラン、ジエトキシメチルシランがあげられ
る。これらは二種以上混合して使用することができる。
一般式(3)におけるnが1または2の化合物は、一般
式(3)で表される化合物全体の50モル%以下の混合
比で使用することが好ましい。 (ロ)水は特に限定するものではない。 (ハ)一般式H(CH2mOH, (mは1〜3の数を示
す)で表されるアルコールは上記一般式(3)で表され
る化合物を完全に溶解し、本製造方法に含まれる水や触
媒とも混合されて均一溶液となり得ることが必要であ
る。mが本発明の範囲外であると、一般式(3)で表さ
れる化合物を溶解し、水や触媒などと均一溶液を形成す
ることは困難である。上記一般式で表されるアルコール
としては、メチルアルコール、エチルアルコール、プロ
ピルアルコールを挙げることができる。
In the method for producing silica particles of the present invention, (a) specific examples of the compound represented by the general formula (3) include tetramethoxysilane, tetraethoxysilane,
Tetraisopropoxysilane, tetrabutoxysilane,
Examples include trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethoxymethylsilane, and diethoxymethylsilane. These can be used as a mixture of two or more.
The compound in which n in Formula (3) is 1 or 2 is preferably used at a mixing ratio of 50 mol% or less of the whole compound represented by Formula (3). (B) Water is not particularly limited. (Iii) the general formula H (CH 2) m OH, (m is a number of 1 to 3) is an alcohol represented by the complete dissolution of the compound represented by the general formula (3), the method It is necessary that the water and the catalyst contained in the mixture be mixed to form a homogeneous solution. If m is outside the range of the present invention, it is difficult to dissolve the compound represented by the general formula (3) and form a homogeneous solution with water, a catalyst, and the like. Examples of the alcohol represented by the above general formula include methyl alcohol, ethyl alcohol, and propyl alcohol.

【0008】(ニ)酸アミド類およびジオールまたはジ
オールの半エステル類は(ロ)水および(ハ)アルコー
ルと相溶性を持つことが必須で、具体的には、N,Nジ
メチルホルムアミド、N,Nージメチルアセトアミド,
N−メチルピロリドン、エチレングリコール、プロピレ
ングリコールなどを挙げることができる。 (ホ)触媒は一般式(3)で表される化合物のアルコキ
シド基の加水分解および縮合反応の触媒として機能する
酸または塩基が好ましく、乾燥又は焼成の後に金属イオ
ンの残留が問題になる場合は、有機酸または有機塩基が
好ましく、さらに、反応後の生成ポリマーが粒子を形成
しやすいことを考慮すると有機塩基が好ましい。有機塩
基の具体例としては、アンモニア、エタノールアミン等
があげられる。
It is essential that (d) acid amides and diols or half esters of diols are compatible with (b) water and (c) alcohols. Specifically, N, N dimethylformamide, N, N N-dimethylacetamide,
Examples thereof include N-methylpyrrolidone, ethylene glycol, propylene glycol and the like. (E) The catalyst is preferably an acid or a base that functions as a catalyst for the hydrolysis and condensation reaction of the alkoxide group of the compound represented by the general formula (3). , An organic acid or an organic base is preferred, and an organic base is more preferred in view of the fact that the resulting polymer after the reaction easily forms particles. Specific examples of the organic base include ammonia, ethanolamine and the like.

【0009】本発明において、これらの(イ)〜(ホ)
の化合物を反応器内で混合反応させるに当たり、一般式
(3)で表される化合物と(ホ)触媒は、他の反応物が
添加混合され所定の反応温度に到達した後に混合され、
両者が均一に混合した状態で接触し反応開始されること
が好ましい。従って、一般式(3)で表される化合物は
アルコール、酸アミド類などの1部と予め混合物を作っ
てから添加するなどの方法を採用することもできる。本
発明において、各成分の混合比率はモル比で、(イ):
(ロ):(ハ):(ニ):(ホ)= 1:(10〜10
0):(10〜100):(0.1〜50):(0.05
〜1)が好ましい範囲である。本発明において、各成分
を反応させる際の攪拌速度は反応混合物が均一に混合さ
れる程度でよく、特に限定はされない。
In the present invention, these (a) to (e)
In the mixing reaction of the compound of the formula (3) in the reactor, the compound represented by the general formula (3) and the catalyst (e) are mixed after other reactants are added and mixed to reach a predetermined reaction temperature,
It is preferable that the two be contacted in a uniformly mixed state to initiate the reaction. Therefore, a method of preparing a mixture of the compound represented by the general formula (3) with one part of an alcohol, an acid amide or the like in advance and then adding the mixture may be employed. In the present invention, the mixing ratio of each component is a molar ratio, and (a):
(B): (c): (d): (e) = 1: (10 to 10)
0): (10-100): (0.1-50): (0.05)
To 1) are preferred ranges. In the present invention, the stirring speed when reacting each component may be such that the reaction mixture is uniformly mixed, and is not particularly limited.

【0010】反応温度は、使用するアルコールおよび酸
アミド類の沸点および反応時間を考慮して任意に決める
ことができる。反応時間は一般式(3)で表される化合
物の種類、反応温度、触媒の種類と量に依存してその最
適値は変化する性質のものであり、限定されない。
[0010] The reaction temperature can be arbitrarily determined in consideration of the boiling point of the alcohol and acid amide used and the reaction time. The optimum value of the reaction time varies depending on the type of the compound represented by the general formula (3), the reaction temperature, and the type and amount of the catalyst, and is not limited.

【0011】このようにして得られた本発明のシリカ粒
子の液体分散体を真空乾燥し、さらに500℃以上の温
度で焼成することにより当該粒子の粉体を得ることがで
きる。この焼成温度については含まれる有機物を実質的
に除去できる温度が望ましい。本発明のシリカ粒子は、
吸着剤、各種のカラム用充填剤、易滑剤、塗料、樹脂、
ゴムおよび紙の充填剤、改質剤、化粧品等などに使用す
ることができる。
The liquid dispersion of the silica particles of the present invention thus obtained is dried in a vacuum, and then calcined at a temperature of 500 ° C. or higher to obtain a powder of the particles. The firing temperature is preferably a temperature at which organic substances contained can be substantially removed. Silica particles of the present invention,
Adsorbents, various column fillers, lubricants, paints, resins,
It can be used for rubber and paper fillers, modifiers, cosmetics and the like.

【0012】[0012]

【実施例】以下、実施例を挙げて、本発明の実施の形態
をさらに具体的に説明する。但し、本発明はこれらの実
施例に何ら制約されるものでない。実施例および比較例
中の部および%は、特記しない限り重量基準である。 実施例1 攪拌機および温度計付き500mlのガラス製丸底フラ
スコに、72gの1%NH3水溶液、次にエタノール1
75g、ジメチルアセトアミド18gを攪拌しながら順
次添加し、温度を50℃に維持する。これらが十分混合
した後、最後にテトラエトキシシラン17gを添加して
攪拌を8時間続け反応を完了させた。この反応生成液の
一部をエタノールにより50倍に希釈し、それをTEM
用カーボングリッド上で乾燥しTEM観察を行った。ま
た、反応生成液の1部を200℃で乾燥させて粉末を
得、さらにその粉末を450℃で焼成し、窒素吸着によ
る比表面積測定のサンプルとした。 実施例2〜5および比較例1 表1に示す配合とした以外は実施例1と同じ条件で実施
例2〜5および比較例1の合成を行った。また、実施例
1と同様にTEMによる粒径測定、窒素吸着による比表
面積測定を行った。得られた各粒子の粒子径および比表
面積はを表2に示す。
EXAMPLES Hereinafter, embodiments of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these embodiments. Parts and% in Examples and Comparative Examples are by weight unless otherwise specified. Example 1 In a 500 ml glass round bottom flask equipped with a stirrer and a thermometer, 72 g of a 1% NH3 aqueous solution and then ethanol 1
75 g and 18 g of dimethylacetamide are added sequentially with stirring, maintaining the temperature at 50 ° C. After these were sufficiently mixed, finally 17 g of tetraethoxysilane was added and stirring was continued for 8 hours to complete the reaction. A part of this reaction product solution was diluted 50-fold with ethanol,
It dried on the carbon grid for TEM and observed by TEM. A part of the reaction solution was dried at 200 ° C. to obtain a powder, and the powder was fired at 450 ° C. to obtain a sample for specific surface area measurement by nitrogen adsorption. Examples 2 to 5 and Comparative Example 1 Examples 2 to 5 and Comparative Example 1 were synthesized under the same conditions as in Example 1 except that the formulations shown in Table 1 were used. Further, in the same manner as in Example 1, the particle size was measured by TEM, and the specific surface area was measured by nitrogen adsorption. Table 2 shows the particle diameter and specific surface area of each of the obtained particles.

【0013】[0013]

【表1】 (1):N,Nージメチルアセトアミド (2):プロピレングリコールモノプロピルエーテル (3):プロピレングリコール (4):ヘキシレングリコール (5):N−メチルピロリドン[Table 1] (1): N, N-dimethylacetamide (2): propylene glycol monopropyl ether (3): propylene glycol (4): hexylene glycol (5): N-methylpyrrolidone

【0014】[0014]

【表2】 (A):BET法で求めた全比表面積(m2/g) (B):T−Plot法で求めたマクロ空孔の比表面積
(m2/g) (A)−(B):ミクロ空孔の比表面積(m2/g) (C):ミクロ空孔の比表面積の全比表面積に対する割
合(%)
[Table 2] (A): The total specific was determined by the BET method surface area (m 2 / g) (B ): a specific surface area of the macro pores found in T-Plot method (m 2 / g) (A ) - (B): Micro Specific surface area of pores (m 2 / g) (C): ratio of specific surface area of micropores to total specific surface area (%)

【0015】[0015]

【発明の効果】本発明のシリカ粒子は粒子径が小さく、
多孔質であるので幅広い用途に優等である。さらに、本
発明の製造方法によれば、本発明のシリカ粒子を容易に
製造することができる。
The silica particles of the present invention have a small particle size,
Since it is porous, it is excellent for a wide range of applications. Further, according to the production method of the present invention, the silica particles of the present invention can be easily produced.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G072 AA28 BB05 BB15 CC13 DD06 DD07 GG01 GG03 HH30 JJ11 KK03 LL06 LL11 LL14 LL15 MM01 PP17 RR05 TT06 UU07 UU09 UU11 UU25 UU30 4H049 VN01 VP10 VQ21 VQ79 VR20 VR40 VS21 VT32 VT33 VT40 VT43 VT44 VT47 VT49 VT53 VU16 VU21 VU28 VW02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G072 AA28 BB05 BB15 CC13 DD06 DD07 GG01 GG03 HH30 JJ11 KK03 LL06 LL11 LL14 LL15 MM01 PP17 RR05 TT06 UU07 UU09 UU11 UU25 UU30 4H049 VN01 VP21 VT1030 VT47 VT49 VT53 VU16 VU21 VU28 VW02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で表される構造からな
り、さらに式(2)を満たす平均の粒径が5〜40nm
のシリカ粒子。 (R1nSiO(4-n)/2 (1) (式中、R1は炭素数1〜8のアルキル基を、nは0〜2
の数を示す。) (A−B)/A>0.1 (2) (ここで、Aは窒素吸着データをBET法で解析して求
めた比表面積を、BはT−PLOT解析法により求めた
直径2nm以上の空孔の比表面積をそれぞれ表す。)
An average particle size satisfying the formula (2), which has a structure represented by the following general formula (1) and satisfies the formula (2) is 5 to 40 nm.
Silica particles. (R 1 ) n SiO (4-n) / 2 (1) (wherein, R 1 is an alkyl group having 1 to 8 carbon atoms, and n is 0 to 2)
Indicates the number of (AB) / A> 0.1 (2) (where A is the specific surface area obtained by analyzing the nitrogen adsorption data by the BET method, and B is the diameter 2 nm or more obtained by the T-PLOT analysis method) Represents the specific surface area of the pores.)
【請求項2】 (イ)下記一般式(3)で表される化合
物を下記(ロ)〜(ホ)の存在下、加水分解、縮合する
ことを特徴とする請求項1記載のシリカ粒子の製造方
法。 (R1)nSi(OR2)4-n (3) (式中、R1は炭素数1〜8のアルキル基、R2は炭素数
1〜5のアルキル基、nは0〜2の数を示す。) (ロ)水 (ハ)一般式H(CH2)mOH, (式中、mは1〜3の数
を示す)で表されるアルコール (ニ)酸アミド類、ジオールおよびジオールの半エステ
ル類から選ばれる少なくとも1種 (ホ)触媒
2. The silica particles according to claim 1, wherein (a) a compound represented by the following general formula (3) is hydrolyzed and condensed in the presence of the following (b) to (e): Production method. (R 1) nSi (OR 2 ) 4-n (3) ( wherein, R 1 represents an alkyl group having 1 to 8 carbon atoms, R 2 is an alkyl group having 1 to 5 carbon atoms, n represents 0-2 Number of are shown.) (b) water (c) general formula H (CH 2) mOH, (wherein, m is an alcohol (d) acid amides represented by the number of 1-3), a diol and diol At least one (e) catalyst selected from half esters
JP11188166A 1999-07-01 1999-07-01 Silica particles and their production Pending JP2001019423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11188166A JP2001019423A (en) 1999-07-01 1999-07-01 Silica particles and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11188166A JP2001019423A (en) 1999-07-01 1999-07-01 Silica particles and their production

Publications (1)

Publication Number Publication Date
JP2001019423A true JP2001019423A (en) 2001-01-23

Family

ID=16218916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11188166A Pending JP2001019423A (en) 1999-07-01 1999-07-01 Silica particles and their production

Country Status (1)

Country Link
JP (1) JP2001019423A (en)

Similar Documents

Publication Publication Date Title
EP3388391B1 (en) Method for manufacturing metal oxide-silica composite aerogel
US9216909B2 (en) Aerogel and method for manufacture thereof
CN102781839B (en) The method manufacturing high purity metal oxide particle and the material manufactured by it
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JPS6374911A (en) Production of fine spherical silica
CN103717531A (en) Method for making high purity metal oxide particles and materials made thereof
Edrissi et al. Synthesis of Silica Nanoparticles by Ultrasound‐Assisted Sol‐Gel Method: Optimized by Taguchi Robust Design
JPH07507991A (en) Method for making inorganic gel
US20200354225A1 (en) Silica particle dispersion and method for producing the same
JP7024121B2 (en) Method for synthesizing pre-hydrolyzed polysilicate
KR20080034996A (en) Mesoporous silica and method for production thereof
JP5299627B2 (en) Fluorine-containing nanocomposite particles and method for producing the same
JP2008280193A (en) Method for producing mesoporous silica fine particle, coating liquid for forming silica-based coating film, and silica-based coating film
JP2019116396A (en) Silica-based particle dispersion and production method thereof
CN100488614C (en) Noval double-structure surfactant and method for producing mesoporous materials with the same
JP4211115B2 (en) Method for producing hollow particles
US20100015027A1 (en) Channel-type mesoporous silica material with elliptical pore section
JP2017095297A (en) Manufacturing method of silica particles and silica particles
CN102602959A (en) Preparation method of pure nano-silicon ZSM-5 zeolite
JP2001019423A (en) Silica particles and their production
JP2003183396A (en) Method for producing spherical silicone fine particle
EP3722349A1 (en) Aerogel precursor and aerogel produced by using same
JP5505900B2 (en) High concentration silica sol
JP2003165717A (en) Silica gel
JP2007045692A (en) Method of manufacturing mesoporous silica and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929