JP2001019413A - Production of carbon nanofiber and device therefor - Google Patents

Production of carbon nanofiber and device therefor

Info

Publication number
JP2001019413A
JP2001019413A JP11222878A JP22287899A JP2001019413A JP 2001019413 A JP2001019413 A JP 2001019413A JP 11222878 A JP11222878 A JP 11222878A JP 22287899 A JP22287899 A JP 22287899A JP 2001019413 A JP2001019413 A JP 2001019413A
Authority
JP
Japan
Prior art keywords
gas
magnetic separator
magnetic
metal catalyst
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11222878A
Other languages
Japanese (ja)
Other versions
JP3100962B1 (en
Inventor
Kanichi Ito
寛一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP11222878A priority Critical patent/JP3100962B1/en
Application granted granted Critical
Publication of JP3100962B1 publication Critical patent/JP3100962B1/en
Publication of JP2001019413A publication Critical patent/JP2001019413A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high occluding capacity for gaseous hydrogen or Li ion per unit quantity without containing no unfaverable foreign matter by passing a product obtained by pyrolyzing ethylene or CO, or the like, by using a metallic catalyst such as Co having magneticity at a temp. equal to or above the pyrolysis temp. through a magnetic separator in a gas circulation process. SOLUTION: Valves A, D, E, and H are opened and valves B, C, F and G are closed and the formation of carbon nanofiber and the magnetic attraction in the magnetic separator 6 are performed by circulating an original starting gas through a closed circulation line connecting a gas adjusting vessel 4, a pyrolytic reaction vessel 5, the valve A, a magnetic separator 6 and the valve E. A magnetic separator 6' is demagnetized to release carbon nanofiber magnetically attracted to a wool like metal 16 in a circulation line of the magnetic separator 6', the valve H, a gas filter 7 and the valve D, and the carbon nanofiber is suspended in a gas and caught and recovered by a gas filter 7. The formation and recovery of the carbon nanofiber are completed after the elapse of a prescribed time and the magnetic separators 6, 6' are switched by reversing the opening and closing of each switching valve to be continuously operated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、水素吸蔵材など
に用いられるカーボンナノファイバーの製造方法及び装
置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing carbon nanofibers used as a hydrogen storage material.

【0002】[0002]

【従来の技術】金属触媒を用いてエチレンなどのハイド
ロカーボンガスや一酸化炭素などを熱分解して得られる
カーボンナノファイバーが、最近水素吸蔵合金以上に水
素ガスを吸蔵するという驚異的な実験結果が発表され、
水素貯蔵材料として注目されている。この水素吸蔵のメ
カニズムは完全に明らかにされてはいないが、水素吸蔵
合金は比重が重く繰り返し使用で粉化するなどの欠点が
あるので、合金と同等以上の貯蔵性能が安定的に証明さ
れれば、燃料電池などの水素貯蔵材料として活用できる
ので、現在各所でその性能が追試されている。
2. Description of the Related Art A phenomenal experimental result that carbon nanofibers obtained by thermally decomposing a hydrocarbon gas such as ethylene or carbon monoxide using a metal catalyst can absorb hydrogen gas more recently than a hydrogen storage alloy. Was announced,
It is attracting attention as a hydrogen storage material. Although the mechanism of hydrogen storage has not been fully elucidated, hydrogen storage alloys have the drawbacks of heavy specific gravity and powdering due to repeated use. For example, it can be used as a hydrogen storage material for fuel cells and the like.

【0003】また、現在リチュームイオン二次電池の陰
極に使用されているカーボンのリチュームイオン吸蔵能
力は電池の容量を左右する重要な因子なので、この陰極
にカーボンナノファイバーを用いることによってリチュ
ームイオンの吸蔵能力を増やすことができれば、電池容
量の飛躍的向上が期待できる。
[0003] Further, the capacity of carbon, which is currently used for the cathode of a lithium ion secondary battery, to absorb lithium, is an important factor influencing the capacity of the battery. If capacity can be increased, a dramatic improvement in battery capacity can be expected.

【0004】しかしながらカーボンナノファイバーは熱
分解生成物なので、これ以外の構造を持ったカーボンや
ハイドロカーボンなどの好ましくない異物の生成・混在
は避けられない。これらの異物が混在することにより、
単位体積ないし単位重量当りの吸蔵容量は当然減少する
ので、純粋なカーボンナノファイバーが得られる製造プ
ロセスが必要になるが、従来そのようなプロセスは存在
しなかった。
[0004] However, since carbon nanofibers are pyrolysis products, generation and mixing of undesirable foreign substances such as carbon and hydrocarbons having other structures cannot be avoided. By mixing these foreign substances,
Since the storage capacity per unit volume or unit weight is naturally reduced, a manufacturing process for obtaining pure carbon nanofibers is required, but such a process has not existed conventionally.

【0005】[0005]

【発明が解決しようとする課題】以上に鑑みこの発明
は、好ましくない異物を含まず、単位体積ないし単位重
量当りの水素ガスやリチュームイオンなどの吸蔵能力の
高いカーボンナノファイバーの製造方法と装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a method and an apparatus for producing carbon nanofibers which do not contain undesired foreign substances and have a high storage capacity for hydrogen gas and lithium ions per unit volume or unit weight. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、熱分解温度以上のキュー
リー温度を有する金属触媒すなわち熱分解温度以上の温
度で磁性を有するコバルト等の金属触媒を用いてエチレ
ンや一酸化炭素などを熱分解して得られる生成物を、ガ
ス循環過程において磁気分離機を通すことにより、該金
属触媒片を核として成長したカーボンナノファイバーを
磁力で分離することを特徴とする、カーボンナノファイ
バーの製造方法である。
In order to achieve the above object, the present invention is directed to a metal catalyst having a Curie temperature higher than the thermal decomposition temperature, such as cobalt having a magnetism at a temperature higher than the thermal decomposition temperature. The product obtained by thermal decomposition of ethylene, carbon monoxide, etc. using a metal catalyst of the above is passed through a magnetic separator in the gas circulation process, so that the carbon nanofiber grown with the metal catalyst piece as a nucleus is magnetized. It is a method for producing carbon nanofibers, characterized by separating.

【0007】また請求項2に記載の発明は、少なくとも
原料ガスの組成を調整するガス調整槽と、熱分解温度以
上の温度で磁性を有するコバルト等の金属触媒粒子を充
填した固定層及び/又は流動層で構成される熱分解反応
槽と、複数の磁気分離機と、ガスフィルターとを備える
と共に、ガス調整槽と熱分解反応槽と一方の磁気分離機
を繋ぐガス循環回路と、他方の磁気分離機とガスフィル
ターを繋ぐガス循環回路とをそれぞれ独立して構築し得
るようにしたことを特徴とする、カーボンナノファイバ
ーの製造装置である。
[0007] The invention according to claim 2 provides a gas regulating tank for adjusting at least the composition of the raw material gas, a fixed layer filled with metal catalyst particles such as cobalt having magnetism at a temperature higher than the thermal decomposition temperature, and / or A pyrolysis reaction tank composed of a fluidized bed, a plurality of magnetic separators, a gas filter, and a gas circulation circuit that connects the gas adjustment tank, the pyrolysis reaction tank and one magnetic separator, and the other magnetic field A carbon nanofiber manufacturing apparatus characterized in that a gas circulation circuit connecting a separator and a gas filter can be constructed independently of each other.

【0008】また請求項3に記載の発明は、ウール状の
金属触媒を充填するなどして金属触媒によって高勾配磁
場を形成した磁気分離機を用いることにより、磁気分離
機に触媒機能を持たせて前記熱分解反応槽を省略したこ
とを特徴とする、請求項2に記載のカーボンナノファイ
バーの製造装置である。
According to a third aspect of the present invention, the magnetic separator has a catalytic function by using a magnetic separator in which a high gradient magnetic field is formed by the metal catalyst by, for example, filling a wool-like metal catalyst. The apparatus for producing carbon nanofibers according to claim 2, wherein the thermal decomposition reaction tank is omitted.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を実施
例にもとずき図面を参照して説明する。図1は実施例の
説明図、図2はカーボンナノファイバーの模式図、をそ
れぞれ示す。
Embodiments of the present invention will be described below with reference to the drawings based on embodiments. FIG. 1 is an explanatory view of an example, and FIG. 2 is a schematic view of a carbon nanofiber.

【0010】図2の模式図に示すようにカーボンナノフ
ァイバー3は、微細な金属触媒片1を核にして偏平な炭
素片2がほぼG=0.34ナノメートルの隙間をもって
成長した、太さD=10〜数百ナノメートル、長さL=
数ミクロン,程度の微小な炭素繊維である。微細な金属
触媒片1の生成過程は、原料ガスが金属触媒と接触して
堆積した炭素が金属内に拡散し、金属に生成する炭化物
の体積変化に基ずく応力で触媒表面が破損崩壊して微粒
子になるものと推定されているが、いずれにせよ金属触
媒は微粒子となって消耗し、電子顕微鏡による観察結果
では、図2に示すような微細な金属触媒片1を核として
規則的な形態をもったカーボンナノファイバー3が形成
されている。
As shown in the schematic diagram of FIG. 2, the carbon nanofibers 3 are formed by growing flat carbon pieces 2 with a gap of approximately G = 0.34 nm with the fine metal catalyst pieces 1 as nuclei. D = 10 to several hundred nanometers, length L =
It is a fine carbon fiber of several microns. The process of forming the fine metal catalyst pieces 1 is such that the raw material gas comes into contact with the metal catalyst, the deposited carbon diffuses into the metal, and the catalyst surface breaks and collapses due to stress based on the volume change of the carbide generated in the metal. It is presumed that the metal catalyst becomes fine particles, but in any case, the metal catalyst is consumed as fine particles, and the results of observation by an electron microscope show that the fine metal catalyst piece 1 as shown in FIG. Is formed.

【0011】しかしながらカーボンナノファイバー3
は、エチレンなどのハイドロカーボンガスや一酸化炭素
などを550℃〜600℃程度の比較的低温下で還元性
熱分解によって製造されるものであるから、これらの条
件においては目的とするカーボンナノファイバー以外の
形態のカーボンやハイドロカーボンなどの異物の同時生
成・混在を防止することは困難である。
However, carbon nanofiber 3
Is produced by reductive pyrolysis of a hydrocarbon gas such as ethylene or carbon monoxide at a relatively low temperature of about 550 ° C. to 600 ° C., so that under these conditions, the target carbon nanofiber is produced. It is difficult to prevent simultaneous generation and mixing of foreign substances such as carbon and hydrocarbons in other forms.

【0012】この装置は、このような異物をカーボンナ
ンノファイバーの生成過程において除去するもので、主
要素は図1に示すように、ガス調整槽4、熱分解反応槽
5、複数の磁気分離機6、6’、及びガスフィルター7
で構成されている。ガス調整槽4にはガスの組成と温度
を常に最適状態に維持せしめるために、内部に加熱器8
と冷却器9が、またエチレンなどのハイドロカーボンガ
スや一酸化炭素などの原料ガス10の自動調整弁11
と、還元用の水素ガス12の自動調整弁13が設けられ
ている。なお、加熱器8と冷却器9は熱分解反応槽5の
内部に設けることができることは勿論である。熱分解反
応槽5のガス分散板14上には熱分解温度以上のキュー
リー温度(磁性喪失温度)を有する金属触媒粒子15が
充填されており、磁気分離機6、6’はそれぞれ高勾配
磁場を形成するウール状金属16とその回りに配した電
磁石17とで構成されている。図中の18、19はガス
循環ブロワ、20は熱分解で生成した非磁性物質すなわ
ち異物を示すが、異物20の捕捉・排出装置などの図示
は省略されている。また、ガスフィルター7はフィルタ
ーを耐熱性繊維で構成する周知のバグフィルターの略図
を示し、フィルターで分離された固形微粒子すなわちカ
ーボンナノファイバー3の排出装置などの図示は省略さ
れている。
This apparatus removes such foreign matters in the process of producing carbon nanofibers. The main elements are a gas regulating tank 4, a pyrolysis reaction tank 5, and a plurality of magnetic separators, as shown in FIG. 6, 6 'and gas filter 7
It is composed of A heater 8 is provided inside the gas regulating tank 4 in order to keep the composition and temperature of the gas in an optimum state at all times.
And a cooler 9, and an automatic regulating valve 11 for a raw material gas 10 such as a hydrocarbon gas such as ethylene or carbon monoxide.
And an automatic regulating valve 13 for hydrogen gas 12 for reduction. Note that the heater 8 and the cooler 9 can be provided inside the thermal decomposition reaction tank 5 as a matter of course. Metal catalyst particles 15 having a Curie temperature (magnetism loss temperature) equal to or higher than the thermal decomposition temperature are filled on the gas dispersion plate 14 of the thermal decomposition reaction tank 5, and the magnetic separators 6 and 6 'each apply a high gradient magnetic field. It is composed of a wool-like metal 16 to be formed and an electromagnet 17 arranged around the metal. In the figure, reference numerals 18 and 19 denote gas circulation blowers, and reference numeral 20 denotes a non-magnetic substance, that is, foreign matter generated by thermal decomposition, but illustration of a device for capturing and discharging the foreign matter 20 is omitted. The gas filter 7 is a schematic diagram of a well-known bag filter in which the filter is made of a heat-resistant fiber, and a device for discharging solid fine particles separated by the filter, that is, a carbon nanofiber 3 is not shown.

【0013】以上の構成において、以下に操作方法を説
明する。起動時は自動調整弁13を開いて系内に水素ガ
ス12を導入し、金属触媒粒子15を含め系内を還元状
態に維持する。次いで自動調整弁11を開きハイドロカ
ーボンガスや一酸化炭素などの原料ガス10を導入す
る。熱分解の進行に伴ってガス調整槽4内のガス組成は
常に変化するので、自動調整弁11、13によりガス組
成を最適値に維持するように自動調整すると共に、加熱
器8及び/又は冷却器9によってガスの温度を最適熱分
解温度(例えば600℃)に調整する。調整槽4内で調
整された原料ガスは、熱分解反応槽5のガス分散板14
を経て、金属触媒粒子15で形成される固定層及び/又
は流動層に接触して反応し、ここで金属触媒粒子15の
表面が崩壊して生ずる金属触媒片1を核としてカーボン
ナノファイバー3が成長する。
In the above configuration, an operation method will be described below. At the time of startup, the automatic regulating valve 13 is opened to introduce the hydrogen gas 12 into the system, and the system including the metal catalyst particles 15 is maintained in a reduced state. Next, the automatic regulating valve 11 is opened, and the raw material gas 10 such as hydrocarbon gas or carbon monoxide is introduced. Since the gas composition in the gas regulating tank 4 constantly changes with the progress of the thermal decomposition, the gas regulating composition is automatically adjusted by the automatic regulating valves 11 and 13 so as to maintain the gas composition at the optimum value, and the heater 8 and / or the cooling unit are cooled. The temperature of the gas is adjusted to the optimum pyrolysis temperature (for example, 600 ° C.) by the vessel 9. The raw material gas adjusted in the adjustment tank 4 is supplied to the gas dispersion plate 14 of the pyrolysis reaction tank 5.
The carbon nanofibers 3 are formed by contacting and reacting with the fixed layer and / or the fluidized bed formed of the metal catalyst particles 15, where the metal catalyst pieces 1 generated by the collapse of the surface of the metal catalyst particles 15 are used as nuclei. grow up.

【0014】上記の成長過程において適宜時間を経過
後、ガス循環ブロワー18の回転数を切替えてガス流速
を上げ金属触媒粒子15を流動化せしめることにより、
成長したカーボンナノファイバーはガス中に浮遊し磁気
分離機6で捕捉される。非磁性体すなわち異物20は磁
気分離機6を通過してガス調整槽4から排除される。な
お、金属触媒粒子15は通常は固定層とするが、カーボ
ンナノファイバーの成長を妨げぬ範囲で微弱な流動層と
してもよい。
After a suitable time has elapsed in the above-mentioned growth process, the number of revolutions of the gas circulation blower 18 is switched to increase the gas flow rate to fluidize the metal catalyst particles 15.
The grown carbon nanofibers float in the gas and are captured by the magnetic separator 6. The non-magnetic substance, that is, the foreign matter 20 passes through the magnetic separator 6 and is removed from the gas regulating tank 4. The metal catalyst particles 15 are usually a fixed bed, but may be a weak fluidized bed as long as the growth of carbon nanofibers is not hindered.

【0015】しかして、磁気分離機6、6’の入出口に
は図示のような配置で、A,B,C,D,E,F,G,
Hの8個の切替え弁が設けられている。説明を分かり易
くするため、図示例においては閉状態の弁は黒塗してあ
る。すなわち図示例のように、弁A,D,E,Hを開、
弁B,C,F、Gを閉とすることにより、ガス調整槽
4、熱分解反応槽5、弁A,磁気分離機6、弁Eを繋ぐ
閉回路において、原料ガスの循環によるカーボンナノフ
ァイバーの生成ならびに磁気分離機6における磁気吸着
が行われる。また、磁気分離機6’、弁H、ガスフィル
ター7、弁Dを繋ぐ閉回路においては、磁気分離機6’
を脱磁してウール状金属16に磁気吸着されているカー
ボンナノファイバーを解放してガス中に浮遊せしめ、こ
れをガスフィルター7で捕捉、回収する。一定時間経過
してカーボンナノファイバーの生成ならびに回収サイク
ルが完了後、各切替え弁の開閉を逆にして磁気分離機
6、6’を切替えることにより同様な運転が連続的に繰
り返される。
However, the inlets and outlets of the magnetic separators 6 and 6 'are arranged as shown in the figure, and A, B, C, D, E, F, G,
H eight switching valves are provided. In the illustrated example, the valve in the closed state is painted black for easy understanding. That is, the valves A, D, E, and H are opened as shown in the illustrated example,
By closing the valves B, C, F, and G, the carbon nanofibers are circulated by circulating the raw material gas in a closed circuit connecting the gas regulating tank 4, the pyrolysis reaction tank 5, the valve A, the magnetic separator 6, and the valve E. And magnetic adsorption in the magnetic separator 6 are performed. In a closed circuit connecting the magnetic separator 6 ', the valve H, the gas filter 7, and the valve D, the magnetic separator 6'
Is demagnetized to release the carbon nanofibers magnetically adsorbed to the wool-like metal 16 to float in the gas, which is captured and recovered by the gas filter 7. After a certain period of time has elapsed and the generation and recovery cycle of the carbon nanofibers is completed, the same operation is continuously repeated by switching the magnetic separators 6 and 6 'by reversing the opening and closing of each switching valve.

【0016】前記のように、磁気分離機6、6’は高勾
配磁場を形成するウール状金属16とその回りに配した
電磁石17とで構成されているが、ウール状金属16の
材質を触媒金属と同じにすると共に線径を小さくして比
表面積を増やすことにより、触媒機能を持たせて前記の
熱分解反応槽4を省略し、装置を簡略化することもでき
る。
As described above, the magnetic separators 6 and 6 'are composed of the wool-like metal 16 forming a high gradient magnetic field and the electromagnet 17 disposed therearound. By increasing the specific surface area by reducing the wire diameter to the same as that of the metal, the thermal decomposition reaction tank 4 can be omitted by providing a catalytic function, and the apparatus can be simplified.

【0017】[0017]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0018】熱分解温度において磁性を有するコバルト
などの金属を核として形成されるカーボンナノファイバ
ーのみが選択的に製造され、従来不可能だった異物除去
が可能となる。したがって本発明によって製造されたカ
ーボンナノファイバーは異物を含まないので、単位体積
ないし単位重量当りの水素ガスやリチュームイオンの吸
蔵能力が高くなり、燃料電池の水素貯蔵材料やリチュー
ムイオン二次電池の陰極材料など、付加価値の高い工業
材料として利用できる。
[0018] Only carbon nanofibers formed by using a metal such as cobalt having magnetic properties at the pyrolysis temperature as a nucleus are selectively produced, thereby enabling foreign matter removal which has been impossible in the past. Therefore, the carbon nanofibers manufactured according to the present invention do not contain foreign matter, so that the hydrogen gas or lithium ion storage capacity per unit volume or unit weight is increased, and the hydrogen storage material of a fuel cell and the cathode of a lithium ion secondary battery are increased. It can be used as high value-added industrial materials such as materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】カーボンナノファイバーの模式図である。FIG. 2 is a schematic view of a carbon nanofiber.

【符号の説明】[Explanation of symbols]

1 金属触媒片 2 炭素片 3 カーボンナノファイバー 4 ガス調整槽 5 熱分解反応槽 6、6’ 磁気分離機 7 ガスフィルター 10 原料ガス 11、13 自動調整弁 15 金属触媒粒子 16 ウール状金属 17 電磁石 20 異物 DESCRIPTION OF SYMBOLS 1 Metal catalyst piece 2 Carbon piece 3 Carbon nanofiber 4 Gas adjustment tank 5 Pyrolysis reaction tank 6, 6 'Magnetic separator 7 Gas filter 10 Raw material gas 11, 13 Automatic adjustment valve 15 Metal catalyst particles 16 Wool-like metal 17 Electromagnet 20 Foreign matter

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月26日(2000.5.2
6)
[Submission date] May 26, 2000 (2005.2.
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】また請求項3に記載の発明は、少なくとも
原料ガスの組成を調整するガス調整槽と、熱分解温度以
上の温度で磁性を有するコバルト等のウール状金属触媒
を充填して高勾配磁場を形成した複数の磁気分離機と、
ガスフィルターとを備えると共に、ガス調整槽と一方の
磁気分離機を繋ぐガス循環回路と、他方の磁気分離機と
ガスフィルターを繋ぐガス循環回路とをそれぞれ独立し
て構築し得るようにしたことを特徴とする、カーボンナ
ノファイバーの製造装置である。
[0008] Further, the invention according to claim 3 has at least
A gas regulating tank for adjusting the composition of the raw material gas
Woollike metal catalysts such as cobalt that are magnetic at high temperatures
A plurality of magnetic separators filled with to form a high gradient magnetic field,
In addition to having a gas filter,
Gas circulation circuit connecting the magnetic separator and the other magnetic separator
Independent gas circulation circuits connecting gas filters
An apparatus for producing carbon nanofibers , characterized in that the apparatus can be constructed by performing the following steps .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 熱分解温度以上の温度で磁性を有するコ
バルト等の金属触媒を用いてエチレンや一酸化炭素など
を熱分解して得られる生成物を、ガス循環過程において
磁気分離機を通すことにより、該金属触媒片を核として
成長したカーボンナノファイバーを磁力で分離すること
を特徴とする、カーボンナノファイバーの製造方法。
A product obtained by thermally decomposing ethylene, carbon monoxide or the like using a metal catalyst such as cobalt having a magnetism at a temperature higher than the thermal decomposition temperature is passed through a magnetic separator in a gas circulation process. Wherein the carbon nanofiber grown with the metal catalyst piece as a nucleus is separated by magnetic force.
【請求項2】 少なくとも原料ガスの組成を調整するガ
ス調整槽と、熱分解温度以上の温度で磁性を有するコバ
ルト等の金属触媒粒子を充填した固定層及び/又は流動
層で構成される熱分解反応槽と、複数の磁気分離機と、
ガスフィルターとを備えると共に、ガス調整槽と熱分解
反応槽と一方の磁気分離機を繋ぐガス循環回路と、他方
の磁気分離機とガスフィルターを繋ぐガス循環回路とを
それぞれ独立して構築し得るようにしたことを特徴とす
る、カーボンナノファイバーの製造装置。
2. Pyrolysis comprising at least a gas adjusting tank for adjusting the composition of a raw material gas, and a fixed bed and / or a fluidized bed filled with metal catalyst particles such as cobalt having magnetism at a temperature not lower than the pyrolysis temperature. A reaction vessel, a plurality of magnetic separators,
In addition to having a gas filter, a gas circulation circuit connecting the gas conditioning tank, the pyrolysis reaction tank and one magnetic separator, and a gas circulation circuit connecting the other magnetic separator and the gas filter can be independently constructed. An apparatus for producing carbon nanofibers, characterized in that:
【請求項3】 ウール状の金属触媒を充填するなどして
金属触媒によって高勾配磁場を形成した磁気分離機を用
いることにより、磁気分離機に触媒機能を持たせて前記
熱分解反応槽を省略したことを特徴とする、請求項2に
記載のカーボンナノファイバーの製造装置。
3. The use of a magnetic separator in which a high gradient magnetic field is formed by a metal catalyst by filling a wool-like metal catalyst or the like, so that the magnetic separator has a catalytic function and the thermal decomposition reaction tank is omitted. The apparatus for producing carbon nanofibers according to claim 2, wherein:
JP11222878A 1999-07-01 1999-07-01 Method and apparatus for producing carbon nanofiber Expired - Fee Related JP3100962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11222878A JP3100962B1 (en) 1999-07-01 1999-07-01 Method and apparatus for producing carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11222878A JP3100962B1 (en) 1999-07-01 1999-07-01 Method and apparatus for producing carbon nanofiber

Publications (2)

Publication Number Publication Date
JP3100962B1 JP3100962B1 (en) 2000-10-23
JP2001019413A true JP2001019413A (en) 2001-01-23

Family

ID=16789311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11222878A Expired - Fee Related JP3100962B1 (en) 1999-07-01 1999-07-01 Method and apparatus for producing carbon nanofiber

Country Status (1)

Country Link
JP (1) JP3100962B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122344A3 (en) * 2000-02-04 2002-01-30 Nihon Shinku Gijutsu Kabushiki Kaisha Graphite nanofibers and their use
WO2003025270A1 (en) * 2001-09-12 2003-03-27 Carbon Nanotech Research Institute Inc. Method and apparatus for producing fine carbon fiber
JP2003342840A (en) * 2002-05-27 2003-12-03 Mitsubishi Heavy Ind Ltd Method and apparatus for producing fibrous nano carbon
WO2004007820A1 (en) * 2002-07-17 2004-01-22 Bussan Nanotech Research Institute Inc. Method for producing fine carbon fiber
KR20040032060A (en) * 2002-10-08 2004-04-14 주식회사 카본나노텍 Method for Making Carbon Nanotubes and Carbon Nanofibers
KR20040035323A (en) * 2002-10-22 2004-04-29 이영희 Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System
WO2004035883A2 (en) * 2002-10-17 2004-04-29 Nexen Nano Tech Co., Ltd Fibrous nano-carbon and preparation method thereof
WO2004035882A2 (en) * 2002-10-17 2004-04-29 Nexen Nano Tech Co., Ltd Ultra-fine fibrous carbon and preparation method thereof
US7094123B2 (en) 2001-09-10 2006-08-22 Canon Kabushiki Kaisha Method of manufacturing an electron emitting device with carbon nanotubes
JP2006327915A (en) * 2005-05-30 2006-12-07 Bussan Nanotech Research Institute Inc Device for removing magnetic material in fine carbon fiber, and method for removing magnetic material
US7214408B2 (en) 2003-08-28 2007-05-08 Canon Kabushiki Kaisha Method of producing carbon fiber aggregate
JP2008044840A (en) * 2006-08-10 2008-02-28 Semes Co Ltd Carbon nanotube trap device and system and method of manufacturing carbon nanotube using the same
JP2009161426A (en) * 2007-12-31 2009-07-23 Semes Co Ltd Fluidized bed carbon nanotube production apparatus, and carbon nanotube production apparatus and method using the same
JP2010174418A (en) * 2009-01-30 2010-08-12 Showa Denko Kk Method for removing iron-based impurities in vapor grown carbon fibers
JP2010174419A (en) * 2009-01-30 2010-08-12 Showa Denko Kk Apparatus for removing iron-based impurities in vapor grown carbon fibers
KR100985724B1 (en) 2007-09-12 2010-10-07 세메스 주식회사 Apparatus and method of producting carbon nano tube
US8318124B2 (en) 2003-02-06 2012-11-27 Mitsubishi Heavy Industries, Ltd. Producing method and apparatus of carbon nanofibers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500407B2 (en) * 2000-03-28 2010-07-14 株式会社アルバック Graphite nano-fiber deposition method and apparatus
JP4881504B2 (en) * 2000-10-06 2012-02-22 株式会社アルバック Selective formation method of graphite nanofiber thin film by thermal CVD method
JP4949794B2 (en) * 2006-10-05 2012-06-13 三菱重工業株式会社 Method for producing catalyst for producing nanocarbon material
KR101231385B1 (en) 2008-05-30 2013-02-07 미츠비시 쥬고교 가부시키가이샤 Apparatus and process for the production of nanocarbon material
JP5422625B2 (en) * 2011-09-28 2014-02-19 三菱重工業株式会社 Method for producing nanocarbon material
JP5979913B2 (en) 2012-02-29 2016-08-31 三菱重工業株式会社 Nanocarbon material manufacturing apparatus and method
US9556542B2 (en) 2013-06-18 2017-01-31 Lg Chem, Ltd. Device for manufacturing carbon nanotube fibers and method for manufacturing carbon nanotube fibers using same
KR200490104Y1 (en) 2014-06-13 2019-09-25 윤남기 Signboard using led module

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122344A3 (en) * 2000-02-04 2002-01-30 Nihon Shinku Gijutsu Kabushiki Kaisha Graphite nanofibers and their use
US7094123B2 (en) 2001-09-10 2006-08-22 Canon Kabushiki Kaisha Method of manufacturing an electron emitting device with carbon nanotubes
US7258590B2 (en) 2001-09-10 2007-08-21 Canon Kabushiki Kaisha Electron emitting device using carbon fiber; electron source; image display device; method of manufacturing the electron emitting device; method of manufacturing electron source using the electron emitting device; and method of manufacturing image display device
WO2003025270A1 (en) * 2001-09-12 2003-03-27 Carbon Nanotech Research Institute Inc. Method and apparatus for producing fine carbon fiber
JP2003342840A (en) * 2002-05-27 2003-12-03 Mitsubishi Heavy Ind Ltd Method and apparatus for producing fibrous nano carbon
WO2004007820A1 (en) * 2002-07-17 2004-01-22 Bussan Nanotech Research Institute Inc. Method for producing fine carbon fiber
KR20040032060A (en) * 2002-10-08 2004-04-14 주식회사 카본나노텍 Method for Making Carbon Nanotubes and Carbon Nanofibers
WO2004035883A2 (en) * 2002-10-17 2004-04-29 Nexen Nano Tech Co., Ltd Fibrous nano-carbon and preparation method thereof
WO2004035883A3 (en) * 2002-10-17 2004-06-24 Nexen Nano Tech Co Ltd Fibrous nano-carbon and preparation method thereof
WO2004035882A3 (en) * 2002-10-17 2004-06-24 Nexen Nano Tech Co Ltd Ultra-fine fibrous carbon and preparation method thereof
WO2004035882A2 (en) * 2002-10-17 2004-04-29 Nexen Nano Tech Co., Ltd Ultra-fine fibrous carbon and preparation method thereof
US7470418B2 (en) 2002-10-17 2008-12-30 Nexen Nano Tech Co., Ltd. Ultra-fine fibrous carbon and preparation method thereof
US7799308B2 (en) 2002-10-17 2010-09-21 Suntel Co., Ltd. Ultra-fine fibrous carbon and preparation method thereof
KR20040035323A (en) * 2002-10-22 2004-04-29 이영희 Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System
US8318124B2 (en) 2003-02-06 2012-11-27 Mitsubishi Heavy Industries, Ltd. Producing method and apparatus of carbon nanofibers
US7214408B2 (en) 2003-08-28 2007-05-08 Canon Kabushiki Kaisha Method of producing carbon fiber aggregate
JP2006327915A (en) * 2005-05-30 2006-12-07 Bussan Nanotech Research Institute Inc Device for removing magnetic material in fine carbon fiber, and method for removing magnetic material
JP2008044840A (en) * 2006-08-10 2008-02-28 Semes Co Ltd Carbon nanotube trap device and system and method of manufacturing carbon nanotube using the same
JP4594966B2 (en) * 2006-08-10 2010-12-08 セメス株式会社 Carbon nanotube trap apparatus and carbon nanotube production system and method using the same
US7935175B2 (en) 2006-08-10 2011-05-03 Semes Co., Ltd. Apparatus for trapping carbon nanotube and system and method for producing the carbon nanotube
KR100985724B1 (en) 2007-09-12 2010-10-07 세메스 주식회사 Apparatus and method of producting carbon nano tube
JP2009161426A (en) * 2007-12-31 2009-07-23 Semes Co Ltd Fluidized bed carbon nanotube production apparatus, and carbon nanotube production apparatus and method using the same
JP2010174418A (en) * 2009-01-30 2010-08-12 Showa Denko Kk Method for removing iron-based impurities in vapor grown carbon fibers
JP2010174419A (en) * 2009-01-30 2010-08-12 Showa Denko Kk Apparatus for removing iron-based impurities in vapor grown carbon fibers

Also Published As

Publication number Publication date
JP3100962B1 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
JP3100962B1 (en) Method and apparatus for producing carbon nanofiber
RU2213050C2 (en) Method for preparing carbon
Saito et al. Carbon nanocapsules encaging metals and carbides
CA2758694C (en) Method for producing solid carbon by reducing carbon oxides
Schaper et al. Copper nanoparticles encapsulated in multi-shell carbon cages
US9796591B2 (en) Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US7794784B2 (en) Forming nanostructures
JP4594966B2 (en) Carbon nanotube trap apparatus and carbon nanotube production system and method using the same
US9783421B2 (en) Carbon oxide reduction with intermetallic and carbide catalysts
CZ292640B6 (en) Method for increasing regularity of carbon particle nanostructure
WO2005113433A1 (en) Cladophora-form carbon, process for producing the same and production apparatus therefor
US20230348264A1 (en) Method and device for preparing carbon nanotubes and hydrogen
CN105110290B (en) For the system and method for hydrogen production
JP3355157B2 (en) Manufacturing method of carbon nanofiber
WO2004083113A1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
JP2001039707A (en) Production of carbon capsule
JP3363113B2 (en) Method and apparatus for selecting carbon nanofiber
US20060034747A1 (en) Furnace for the manufacture of carbon fibers, and a procedure for obtaining fibers using the furnace
Baker et al. Continuous electron microscopic observation of carbonaceous deposits formed on graphite and silica surfaces
Geng et al. Direct conversion of nickel stearate into carbon nanotubes or pure-phase metallic Ni nanoparticles encapsulated in polyhedral graphite cages
JP4049097B2 (en) Gas storage material and gas storage device
JP5241543B2 (en) Method for removing iron-based impurities in vapor grown carbon fiber
JP2005350750A (en) Carbon surface coating type ferromagnetic metal spherical particle and its production method
WO2017145952A1 (en) Particle processing device and production method for catalyst carrier and/or fibrous carbon nanostructure
Ma et al. Insight into the Structural Evolution of the Cobalt Oxides Nanoparticles upon Reduction Process: An In Situ Transmission Electron Microscopy Study

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees