JP2001018290A - Aliphatic polyester stretch-molded object and production thereof - Google Patents

Aliphatic polyester stretch-molded object and production thereof

Info

Publication number
JP2001018290A
JP2001018290A JP19358599A JP19358599A JP2001018290A JP 2001018290 A JP2001018290 A JP 2001018290A JP 19358599 A JP19358599 A JP 19358599A JP 19358599 A JP19358599 A JP 19358599A JP 2001018290 A JP2001018290 A JP 2001018290A
Authority
JP
Japan
Prior art keywords
stretching
aliphatic polyester
molded article
stretch
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19358599A
Other languages
Japanese (ja)
Inventor
Takuro Ito
卓郎 伊藤
Yuji Yamaguchi
裕司 山口
Suketaka Watanabe
祐登 渡辺
Tsuneo Arita
恒夫 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP19358599A priority Critical patent/JP2001018290A/en
Publication of JP2001018290A publication Critical patent/JP2001018290A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a biaxially stretched molded object made of aliphatic polyester eliminated or reduced in the anisotropy of mechanical strength characteristics and enhanced in gas barrier properties. SOLUTION: In a method for producing an aliphatic polyester stretch-molded object by the biaxial stretch molding of a preform of a resin based on aliphatic polyester, a negative gradient is provided to a stretching speed in the biaxial stretching of the preform so that an initial stretching speed becomes high and a final stretching speed becomes low. By vapor-depositing hard carbon film, gas barrier properties are also enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械的強度の異方
性を改善した脂肪族ポリエステルの延伸成形体及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stretch molded article of an aliphatic polyester having improved mechanical strength anisotropy and a method for producing the same.

【0002】[0002]

【従来の技術】近年、都市が排出する固形廃棄物は、そ
の量が段々膨大となり、廃棄処理能力の限界に近づきつ
つある。この固形廃棄物の元凶の一つとして、プラスチ
ックがいつも指摘されている。
2. Description of the Related Art In recent years, the amount of solid waste discharged from cities has become enormous, and is approaching the limit of waste disposal capacity. Plastic has always been pointed out as one of the causes of this solid waste.

【0003】プラスチック廃棄物の理想的解決法とし
て、自然環境で消滅する分解性プラスチックが注目され
ている。分解性プラスチックには、紫外線によってポリ
マーの分子鎖が切断される光分解性プラスチックと、バ
クテリヤや真菌類が体外に放出する酵素の作用で崩壊す
る生分解性プラスチックとがある。
As an ideal solution for plastic waste, degradable plastics that disappear in the natural environment are attracting attention. Degradable plastics include photodegradable plastics, in which the molecular chains of the polymer are cut by ultraviolet light, and biodegradable plastics, which are broken down by the action of enzymes released by bacteria and fungi outside the body.

【0004】しかしながら、光分解性プラスチックの場
合、土中埋没処理では効果が期待できなく、また分解生
成物による環境汚染の恐れもあることから、生分解性プ
ラスチックに大きな期待が寄せられている。
[0004] However, in the case of photodegradable plastics, there is no expectation of an effect by burial treatment in the soil, and there is a risk of environmental pollution due to decomposition products.

【0005】生分解性プラスチックとしては、従来、脂
肪族ポリエステル、例えばポリヒドロキシブチレート
(PHA)、3−ヒドロキシブチレート(3HB)と3
−ヒドロキシバリレート(3HV)とのランダムコポリ
マー、ポリ(ε−カプロラクトン)(PCL)、ポリブ
チレンサクシネート(PBS)、ポリブチレンサクシネ
ート・アジペート(PBAS)、ポリ乳酸(PLLA)
等が知られている。
[0005] As biodegradable plastics, conventionally, aliphatic polyesters such as polyhydroxybutyrate (PHA), 3-hydroxybutyrate (3HB) and
-Random copolymer with hydroxyvalerate (3HV), poly (ε-caprolactone) (PCL), polybutylene succinate (PBS), polybutylene succinate adipate (PBAS), polylactic acid (PLLA)
Etc. are known.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、これ
らの脂肪族ポリエステルは、生分解性など環境との調和
の点では優れているものの、成形性の点で未だ解決しな
ければならない問題点を有している。1例として、脂肪
族ポリエステルは、樹脂の溶融物性が劣り、ダイレクト
ブロー、射出延伸成形、シートのサーモフォーム成形な
どの成形が困難であるという問題を有している。このた
め、無機フィラーの添加による溶融張力の向上(特開平
5−289623)やジイソシアネートやジエポキシ化
合物、酸無水物を用いた鎖長延伸による高分子量化(特
開平7−205278)が提案されている。又、脂肪族
ポリエステルは一般に延伸成形による加工にて材料強度
を向上させることができる。
However, although these aliphatic polyesters are excellent in harmony with the environment such as biodegradability, they still have problems to be solved in moldability. are doing. As an example, aliphatic polyesters have a problem that the melt properties of the resin are inferior and that molding such as direct blow, injection stretch molding, and thermoforming of sheets is difficult. For this reason, it has been proposed to improve the melt tension by adding an inorganic filler (Japanese Patent Laid-Open No. 5-289623) and to increase the molecular weight by extending the chain length using a diisocyanate, a diepoxy compound or an acid anhydride (Japanese Patent Laid-Open No. 7-205278). . In addition, the aliphatic polyester can generally improve the material strength by processing by stretch molding.

【0007】[0007]

【発明が解決しようとする課題】脂肪族ポリエステル
は、通常のプラスチックと同様に、延伸により降伏点強
度、弾性率などの機械的強度が向上する。しかし、脂肪
族ポリエステルを二軸延伸成形した場合、得られた延伸
成形物は機械的強度の異方性が生じる。
In the case of aliphatic polyester, mechanical strength such as yield point strength and elastic modulus is improved by stretching, like ordinary plastics. However, when the aliphatic polyester is biaxially stretch-formed, the obtained stretch-formed product has anisotropy in mechanical strength.

【0008】例えば、芳香族ポリエステル、ポリエチレ
ンテレフタレート(PET)の二軸延伸成形体において
は、延伸方向、即ち機械方向(MD)及び横断方向(T
D)の降伏点強度と、MD、TDから45度方向の降伏
点強度がほぼ等しい強度を示すのに、ポリ乳酸のような
脂肪族ポリエステルは、延伸方向、即ち機械方向(M
D)及び横断方向(TD)の降伏点強度が、MD及びT
D方向から45度の方向の降伏点強度より低下してい
る。
For example, in a biaxially stretched molded article of aromatic polyester and polyethylene terephthalate (PET), the stretching direction, ie, the machine direction (MD) and the transverse direction (T
Although the yield point strength of D) and the yield point strength in the direction of 45 degrees from MD and TD show almost the same strength, the aliphatic polyester such as polylactic acid is stretched in the stretching direction, that is, the machine direction (M
D) and the yield strength in the transverse direction (TD) are MD and T
It is lower than the yield point strength in the direction of 45 degrees from the D direction.

【0009】このように脂肪族ポリエステルの二軸延伸
成形体は機械的強度の異方性が生じており、特に本来強
度が増加すべき延伸軸方向で強度が低くなるため、成形
体の強度設計が難しいという問題を有している。例え
ば、ボトルやカップなどの立体成形容器では、延伸方向
を容器軸方向と容器周方向にとるのが適している。この
場合、延伸軸のなす面の機械的強度を等方的に存するこ
とは座屈防止や落下衝撃による割れ防止、膨張、収縮や
変形による割れを防止にも重要な要点となっている。と
ころが、軸方向や周方向の強度が延伸軸と45度方向を
なす方向においても機械的強度が異なるため、脂肪族ポ
リエステルの二軸延伸成形体の強度は所期の目的を達成
していない。一方、容器の軸方向や周方向から45度偏
った方向に延伸操作を行うことは実際的でない。
As described above, the biaxially stretched molded article of the aliphatic polyester has anisotropy in mechanical strength, and the strength is particularly low in the stretching axis direction where the strength should be increased. Is difficult. For example, in a three-dimensional molded container such as a bottle or a cup, it is suitable to set the stretching direction to the container axial direction and the container circumferential direction. In this case, having the mechanical strength of the surface formed by the stretching axis isotropic is also an important point for preventing buckling, preventing cracking due to a drop impact, and preventing cracking due to expansion, contraction and deformation. However, the mechanical strength is different even in the direction in which the strength in the axial direction and the circumferential direction forms a 45-degree direction with respect to the stretching axis, so that the strength of the biaxially stretched molded article of the aliphatic polyester has not achieved the intended purpose. On the other hand, it is not practical to perform the stretching operation in a direction deviated by 45 degrees from the axial direction or the circumferential direction of the container.

【0010】しかも、上記のように機械的強度の異方性
を有する二軸延伸成形体では、比較例に示すとおり、圧
縮変形に際し、しばしば割れを発生する傾向もあること
が分かった。
In addition, it was found that the biaxially stretched molded article having anisotropy in mechanical strength as described above often had a tendency to crack during compression deformation as shown in Comparative Examples.

【0011】したがって、本発明の目的は、脂肪族ポリ
エステルから形成された二軸延伸成形体において、上記
の機械強度の異方性が解消乃至低減された機械的強度特
性の安定した脂肪族ポリエステル二軸延伸成形体及びそ
の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a biaxially stretched molded article formed of an aliphatic polyester, wherein the anisotropy of the mechanical strength described above is eliminated or reduced, and the aliphatic polyester has a stable mechanical strength characteristic. An object of the present invention is to provide an axially stretched molded article and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】本発明によれば、脂肪族
ポリエステルを主体とする樹脂の予備成形体を二軸延伸
成形することからなる脂肪族ポリエステル延伸成形体の
製法において、予備成形体の二軸延伸を、初期の延伸速
度を大きく且つ終期の延伸速度を小さくしたように延伸
速度に負の勾配を設けた延伸成形を特徴とする延伸成形
体の製法が提供される。本発明によればまた、脂肪族ポ
リエステルを主体とする樹脂から形成された延伸成形体
であって、下記式(1) T45≦Tx ‥(1) 式中、Txは成形体の二軸延伸方向の引張降伏点強度
(MPa)であり、T45は成形体の延伸方向に対して
45゜方向の引張降伏点強度(MPa)である、で表さ
れる強度特性を有することを特徴とする脂肪族ポリエス
テル延伸成形体が提供される。本発明による脂肪族ポリ
エステル延伸成形体は、下記式(2) Do=(S−Sa)/S ‥(2) 式中、Sは成形体試料を13C広幅NMRで測定したと
きの化学シフト100乃至300ppmのピーク面積を
表し、Saは前記試料の非晶質粉末について上記と同様
に測定したときのNMRスペクトルのピーク面積を表
す、で定義される配向結晶化度(Do)が0.15以上
であることが好ましい。また、本発明に用いる脂肪族ポ
リエステルは、ガラス転移点(Tg)が−60℃以上の
脂肪族ポリエステルであり、ポリヒドロキシアルカノエ
ートを示す。本発明によれば、更に、上記延伸成形体か
らなることを特徴とする包装容器が提供される。本発明
による延伸成形体には、器壁を通してのガス透過性を抑
制し、且つ内容物中の香味成分の収着を防止する目的
で、化学蒸着法により硬質炭素膜を形成することができ
る。
According to the present invention, there is provided a method for producing a stretched aliphatic polyester article comprising biaxially stretching a preform of a resin mainly composed of an aliphatic polyester. There is provided a method for producing a stretched article characterized by stretch molding in which a biaxial stretching is performed with a negative gradient in the stretching speed such that the initial stretching speed is increased and the final stretching speed is decreased. According to the present invention, there is provided a stretched molded article formed from a resin mainly composed of an aliphatic polyester, the following equation (1) T in 45 ≦ Tx ‥ (1) formula, Tx biaxial stretching of the molded body , And T 45 is a tensile yield point strength (MPa) in a direction of 45 ° with respect to the stretching direction of the molded body, and has a strength characteristic expressed by: An aliphatic polyester stretch molded article is provided. The aliphatic polyester stretched molded product according to the present invention has the following formula (2) Do = (S-Sa) / S ‥ (2) where S is a chemical shift of 100 when a molded product sample is measured by 13 C wide-area NMR. Represents a peak area of about 300 ppm, and Sa represents a peak area of an NMR spectrum when the amorphous powder of the sample is measured in the same manner as described above. The degree of orientational crystallinity (Do) is 0.15 or more. It is preferred that Further, the aliphatic polyester used in the present invention is an aliphatic polyester having a glass transition point (Tg) of -60 ° C or higher, and represents polyhydroxyalkanoate. According to the present invention, there is further provided a packaging container comprising the above stretch-formed body. In the stretch molded article according to the present invention, a hard carbon film can be formed by a chemical vapor deposition method for the purpose of suppressing gas permeability through the vessel wall and preventing sorption of flavor components in the contents.

【0013】[0013]

【発明の実施形態】[作用]本発明は、脂肪族ポリエス
テル予備成形体の二軸延伸を、初期の延伸速度を大きく
且つ終期の延伸速度を小さくした延伸速度に負の勾配を
設けた延伸成形にて、延伸成形体の強度の異方性を解消
乃至低減させうるという新規知見に基づくものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Action] In the present invention, the biaxial stretching of an aliphatic polyester preform is carried out by stretching at a high initial stretching speed and at a low final stretching speed with a negative gradient. Thus, the present invention is based on a new finding that the anisotropy of strength of a stretch molded article can be eliminated or reduced.

【0014】即ち、本発明において、初期の延伸速度を
大きく且つ終期の延伸速度を小さくする延伸速度に負の
勾配を設けた二軸延伸操作を行うことで、脂肪族ポリエ
ステル延伸成形体の機械的強度の異方性を解消乃至低減
させるのに重要である。例えば、延伸速度が一定の速度
で延伸を行った場合、延伸速度が大きい場合、小さい場
合のどちらの場合においても延伸方向の降伏点強度は4
5度方向(対角方向)の降伏点強度に比して低下してい
る。これに対し、初期の延伸速度を大きくし、且つ終期
の延伸速度を小さくする延伸速度に負の勾配を設けた延
伸成形を行うことにより、延伸方向の降伏点強度を対角
方向の降伏点強度と等しいか、或いはそれよりも大きく
することができる。結果、延伸方向の強度が低下すると
いう不利益を解消することが可能となった。
That is, in the present invention, by performing a biaxial stretching operation in which the initial stretching speed is increased and the final stretching speed is decreased, and the stretching speed is provided with a negative gradient, mechanical stretching of the aliphatic polyester stretch molded article is performed. This is important for eliminating or reducing strength anisotropy. For example, when the stretching speed is constant, when the stretching speed is high or when the stretching speed is low, the yield point strength in the stretching direction is 4
It is lower than the yield point strength in the 5 degree direction (diagonal direction). On the other hand, the yield strength in the stretching direction is reduced by the yield strength in the diagonal direction by increasing the initial stretching speed and performing stretching with a negative gradient in the stretching speed to decrease the final stretching speed. Can be equal to or greater than. As a result, the disadvantage that the strength in the stretching direction is reduced can be eliminated.

【0015】本発明による脂肪族ポリエステル延伸成形
体は、前記式(1)を満足する強度特性を示す。このた
め、本発明の延伸成形体からなる容器は、耐座屈性や耐
落下衝撃性に優れていると共に、膨張収縮や変形による
割れも有効に防止されているという利点を有する。
[0015] The stretched aliphatic polyester molded article according to the present invention exhibits strength characteristics satisfying the above formula (1). For this reason, the container made of the stretched molded article of the present invention has excellent buckling resistance and drop impact resistance, and has the advantage that cracking due to expansion, shrinkage, and deformation is effectively prevented.

【0016】本発明による延伸成形体は、前記式(2)
で定義される配向結晶化度(Do)が0.15以上、特
に0.2以上であることが、機械的特性、透明性、耐熱
性の点で好ましい。
The stretch molded article according to the present invention has the formula (2)
It is preferable that the oriented crystallinity (Do) defined by the formula (1) is 0.15 or more, particularly 0.2 or more, from the viewpoint of mechanical properties, transparency and heat resistance.

【0017】通常、芳香族カルボン酸を主体とする二塩
基酸とグリコールとから誘導された熱可塑性ポリエステ
ルは、配向による結晶化度を密度法にて測定することが
でき、測定される密度と結晶化度との関係が下記式
(3)で表される。結晶化度 X=(ρ/ρ)×{(ρ−ρam)/(ρ−ρam)}×100 ‥(3) 式中、ρはn−ヘプタン−四塩化炭素系密度勾配管(池
田理化製)で、20℃測定されるサンプルの密度、ρ
amは非晶密度(1.335g/cm)、ρは結
晶密度(1.455g/cm)。
In general, the degree of crystallinity of a thermoplastic polyester derived from a dibasic acid mainly composed of an aromatic carboxylic acid and glycol can be measured by a density method. The relationship with the degree of conversion is represented by the following equation (3). Crystallinity X c = (ρ c / ρ) × {(ρ−ρ am ) / (ρ c −ρ am )} × 100 (3) where ρ is an n-heptane-carbon tetrachloride density gradient Density of sample measured at 20 ° C in a tube (manufactured by Ikeda Rika), ρ
am is the amorphous density (1.335 g / cm 3 ), and p c is the crystal density (1.455 g / cm 3 ).

【0018】ところが、脂肪族ポリエステルの場合、特
にポリ乳酸などは非晶試料も高度に配向した試料も密度
は殆ど一定であり、密度法を用い配向結晶化度を求める
ことができない。
However, in the case of aliphatic polyester, the density of amorphous and highly oriented samples of polylactic acid and the like is almost constant, and the oriented crystallinity cannot be determined by the density method.

【0019】本発明者は、脂肪族ポリエステルを13
広幅NMRで測定したときの化学シフト100乃至30
0ppm(カルボニル炭素領域)のピーク面積が、脂肪
族ポリエステルの配向の程度と密接な関係があり、この
ピーク面積から配向度を測定できることを見出した。即
ち、脂肪族ポリエステル延伸成形体について、NMRス
ペクトルの面積Sを求め、次いでこの試料の非晶質粉末
について上記と同様に測定したときのNMRスペクトル
のピーク面積Saを求め、前記式(2)から配向結晶化
度(Do)を算出する。このように求められた配向結晶
化度(Do)と延伸倍率との間には1:1の対応があ
る。
The present inventor has proposed that an aliphatic polyester is made of 13 C
Chemical shift 100 to 30 as measured by broad NMR
It has been found that the peak area at 0 ppm (carbonyl carbon region) is closely related to the degree of orientation of the aliphatic polyester, and the degree of orientation can be measured from this peak area. That is, for the aliphatic polyester stretched molded body, the area S of the NMR spectrum was obtained, and then the peak area Sa of the NMR spectrum when the amorphous powder of this sample was measured in the same manner as above was obtained. The orientation crystallinity (Do) is calculated. There is a one-to-one correspondence between the orientational crystallinity (Do) and the stretching ratio thus obtained.

【0020】図1は、脂肪族ポリエステルの各種延伸成
形体について、延伸倍率(軸方向延伸倍率、面積延伸倍
率)と得られた配向結晶化度(Do)との関係を示して
いる。図1によると、延伸倍率が増大するにつれ、配向
結晶化度向度が増大していることが解る。
FIG. 1 shows the relationship between the draw ratio (axial draw ratio, area draw ratio) and the obtained oriented crystallinity (Do) for various stretched molded products of aliphatic polyester. According to FIG. 1, it can be seen that as the stretching ratio increases, the degree of oriented crystallinity increases.

【0021】本発明によれば、以上説明したとおり、脂
肪族ポリエステルを初期の延伸速度を大きく且つ終期の
延伸速度を小さくする延伸速度に負の勾配を設けた二軸
延伸操作を行うことにより、延伸成形物の強度特性が前
記式(1)を満足する範囲にあって機械的強度の異方性
解消乃至低減され、しかもこの異方性の改善が配向結晶
化度(Do)が0.15以上の領域で達成される点に着
目されるべきである。
According to the present invention, as described above, the aliphatic polyester is subjected to a biaxial stretching operation in which the initial stretching speed is increased and the final stretching speed is decreased, and a stretching gradient is provided with a negative gradient. When the strength characteristics of the stretched molded product satisfy the above-mentioned formula (1), mechanical strength anisotropy is eliminated or reduced, and the improvement of the anisotropy is due to the orientation crystallinity (Do) of 0.15. It should be noted that this is achieved in the above areas.

【0022】(脂肪族ポリエステル樹脂)本発明におい
て、脂肪族ポリエステル樹脂としては、ヒドロキシアル
カノエート単位を主体とする生分解性脂肪族ポリエステ
ル樹脂の任意のものが使用される。この脂肪族ポリエス
テル樹脂は、少なくともフィルムを形成し得る分子量を
有するべきであり、一般にその数平均分子量は、100
00乃至300000、特に20000乃至20000
0の範囲にあるのがよい。好適な脂肪族ポリエステル樹
脂の例は、ポリヒドロキシアルカノエート、或いはこれ
らの共重合体である。
(Aliphatic polyester resin) In the present invention, as the aliphatic polyester resin, any biodegradable aliphatic polyester resin mainly composed of hydroxyalkanoate units is used. The aliphatic polyester resin should have at least a molecular weight capable of forming a film, and generally has a number average molecular weight of 100
00 to 300,000, especially 20,000 to 20,000
It should be in the range of 0. Examples of suitable aliphatic polyester resins are polyhydroxyalkanoates or copolymers thereof.

【0023】ポリヒドロキシアルカノエートとしては、
下記式
As the polyhydroxyalkanoate,
The following formula

【化1】 式中、Rは水素原子、または直鎖或いは分岐鎖のアルキ
ル基であり、nはゼロを含む正の整数である、で表され
る反復単位、例えば、 乳酸[R=CH、n=0、LLA]、 3−ヒドロキシブチレート[R=CH、n=1、3HB]、 3−ヒドロキシバリレート[R=CHCH、n=1、3HV]、 3−ヒドロキシカプロエート[R=(CHCH、n=1、3HC ]、 3−ヒドロキシヘプタノエート[R=(CHCH、n=1、3H H]、 3−ヒドロキシオクタノエート[R=(CHCHn=1、3HO ]、 3−ヒドロキシノナノエート[R=(CHCH、n=1、3HN ]、 3−ヒドロキシデカノエート[R=(CHCH、n=1、3HD ]、 γ−ブチロラクトン[R=H、n=2、BL]、 δ−バレロラクトン[R=H、n=3、VL]、 ε−カプロラクトン[R=H、n=4、CL] 等の1種或いは2種以上からなる重合体が挙げられる。
Embedded image In the formula, R is a hydrogen atom or a linear or branched alkyl group, and n is a positive integer including zero, for example, lactic acid [R = CH 3 , n = 0 , LLA], 3- hydroxybutyrate [R = CH 3, n = 1,3HB], 3- hydroxyvalerate [R = CH 2 CH 3, n = 1,3HV], 3- hydroxy-caproate [R = (CH 2) 2 CH 3 , n = 1,3HC], 3- hydroxy-heptanoate [R = (CH 2) 3 CH 3, n = 1,3H H], 3- hydroxyoctanoate [R = (CH 2 ) 4 CH 3 n = 1, 3HO], 3-hydroxynonanoate [R = (CH 2 ) 5 CH 3 , n = 1, 3HN], 3-hydroxydecanoate [R = (CH 2 )] 6 CH 3, n = 1,3HD] , γ- Bed One or two types of lolactone [R = H, n = 2, BL], δ-valerolactone [R = H, n = 3, VL], ε-caprolactone [R = H, n = 4, CL] Polymers composed of the above are exemplified.

【0024】このポリヒドロキシアルカノエートは、ポ
リ乳酸(ポリ乳酸としては、構成単位がL−乳酸のみか
らなるポリ(L−乳酸)、D−乳酸のみからなるポリ
(D−乳酸)およびL−乳酸単位とD−乳酸種任意の割
合で存在するポリ(DL−乳酸)を示す。)又、ポリε
カプロラクトンのような単独重合体であってもよく、他
のヒドロキシアルカリエートとの共重合体でもよい。ま
た3−ヒドロキシブチレートと、他の3−ヒドロキシア
ルカノエート、特に3−ヒドロキシバリレートとを共重
合させた共重合体であってもよい。
The polyhydroxyalkanoate includes polylactic acid (polylactic acid includes poly (L-lactic acid) having a structural unit of only L-lactic acid, poly (D-lactic acid) including only D-lactic acid, and L-lactic acid. Units and poly (DL-lactic acid) present in an arbitrary ratio of D-lactic acid species.)
It may be a homopolymer such as caprolactone or a copolymer with another hydroxyalkaliate. Further, a copolymer obtained by copolymerizing 3-hydroxybutyrate and another 3-hydroxyalkanoate, particularly 3-hydroxyvalerate, may be used.

【0025】本発明に用いる脂肪族ポリエステルは、ガ
ラス転移点(Tg)が−60℃以上、特に30℃以上の
ものが好ましい。これらの脂肪族ポリエステルの内、工
業的に量産され入手が容易であり、環境にも優しい脂肪
族ポリエステルとして、ポリ乳酸が挙げられる。ポリ乳
酸(PLLA)は、トウモロコシなどの穀物デンプンを
原料とする樹脂であり、デンプンの乳酸発酵物、L−乳
酸をモノマーとする重合体である。一般にそのダイマー
であるラクタイドの開環重合法、及び、直接重縮合法に
より製造される。この重合体は、自然界に存在する微生
物により、水と炭酸ガスにより分解され、完全リサイク
ルシステム型の樹脂として着目されている。また、その
ガラス転移点(Tg)も約58℃とPETのTgに近い
という利点を有している。
The aliphatic polyester used in the present invention preferably has a glass transition point (Tg) of -60 ° C or more, particularly preferably 30 ° C or more. Among these aliphatic polyesters, polylactic acid is mentioned as an aliphatic polyester which is industrially mass-produced, easily available, and environmentally friendly. Polylactic acid (PLLA) is a resin using cereal starch such as corn as a raw material, and is a lactic acid fermentation product of starch and a polymer using L-lactic acid as a monomer. In general, it is produced by a ring-opening polymerization method of lactide, which is a dimer, and a direct polycondensation method. This polymer is decomposed by water and carbon dioxide gas by microorganisms existing in nature, and is attracting attention as a complete recycling system type resin. The glass transition point (Tg) is also about 58 ° C., which is close to that of PET.

【0026】本発明の延伸成形体は、上記脂肪族ポリエ
ステル、特にポリ乳酸を単独で使用することもできる
し、他の脂肪族ポリエステル或いは他の樹脂とのブレン
ド物或いは他の樹脂との積層体としても用いることもで
きる。
The stretch molded article of the present invention can use the above-mentioned aliphatic polyester, especially polylactic acid alone, or can be a blend with another aliphatic polyester or another resin or a laminate with another resin. Can also be used.

【0027】更に、上記脂肪族ポリエステルとのブレン
ド物或いは積層体の形で使用可能な他の樹脂としては、
バリアー樹脂、例えば酸素に対してバリアー性を示す水
酸基含有熱可塑性樹脂、ナイロン樹脂、バリアー性ポリ
エステル樹脂、ハイニトリル樹脂や、水蒸気に対してバ
リアー性を示す環状オレフィン系共重合体等を挙げるこ
とができる。これらの内でも、生分解性の点では水酸基
含有樹脂が好ましく、熱成形が可能である限り、任意の
樹脂を用いることができる。この樹脂は、その分子鎖中
に、水酸基を有する反復単位と、樹脂に熱成形性を付与
する単位とを有している。水酸基含有反復単位はビニル
アルコール単位、ヒドロキシアルキル(メタ)アクリレ
ート単位であってよいが、生分解性の点ではビニルアル
コール単位が好ましい。この水酸基含有樹脂中に含有さ
れる他の単位は、エチレン、プロピレン等のオレフィン
単位、酢酸ビニル等のビニルエステル単位;アルキル
(メタ)アクリレート単位等が挙げられる。又、これら
の水酸基含有樹脂は、少なくともフィルムを形成するに
足る分子量を有するべきである。
Further, other resins usable in the form of a blend or a laminate with the above aliphatic polyester include:
Barrier resins, for example, a hydroxyl group-containing thermoplastic resin having a barrier property to oxygen, a nylon resin, a barrier polyester resin, a hynitrile resin, and a cyclic olefin copolymer having a barrier property to water vapor may be mentioned. it can. Among these, a hydroxyl group-containing resin is preferable in terms of biodegradability, and any resin can be used as long as thermoforming is possible. This resin has, in its molecular chain, a repeating unit having a hydroxyl group and a unit for imparting thermoformability to the resin. The hydroxyl group-containing repeating unit may be a vinyl alcohol unit or a hydroxyalkyl (meth) acrylate unit, but a vinyl alcohol unit is preferred from the viewpoint of biodegradability. Other units contained in the hydroxyl group-containing resin include olefin units such as ethylene and propylene, vinyl ester units such as vinyl acetate, and alkyl (meth) acrylate units. These hydroxyl-containing resins should have at least a molecular weight sufficient to form a film.

【0028】好適な水酸基含有樹脂は、10乃至40モ
ル%のエチレン単位と、40乃至88モル%のビニルア
ルコール単位と、50モル%以下のエステル含有ビニル
単位とを含有する共重合体からなる。このような水酸基
含有重合体をブレンド物或いは積層体として用いること
で、延伸成形体のガスバリアー性を向上させることがで
き、しかも生分解性を実質上阻害しないという利点が達
成される。
A preferred hydroxyl group-containing resin comprises a copolymer containing 10 to 40 mol% of ethylene units, 40 to 88 mol% of vinyl alcohol units, and 50 mol% or less of ester-containing vinyl units. By using such a hydroxyl group-containing polymer as a blend or a laminate, it is possible to improve the gas barrier properties of the stretched molded article, and to achieve the advantage that the biodegradability is not substantially inhibited.

【0029】本発明の延伸成形体には、その用途に応じ
て、各種着色剤、充填剤、無機系或いは有機系の補強
剤、滑剤、可塑剤、レベリング剤、界面活性剤、増粘
剤、減粘剤、安定剤、抗酸化剤、紫外線吸収剤、防錆剤
等を、公知の処方にしたがって配合することができる。
The stretch molded article of the present invention may contain various coloring agents, fillers, inorganic or organic reinforcing agents, lubricants, plasticizers, leveling agents, surfactants, thickeners, etc. A viscosity reducing agent, a stabilizer, an antioxidant, an ultraviolet absorber, a rust inhibitor and the like can be blended according to a known formulation.

【0030】(延伸成形体及びその製法)本発明の延伸
成形体は、脂肪族ポリエステルを主体とする樹脂の予備
成形体を、初期の延伸速度を大きく且つ終期の延伸速度
を小さくするという延伸速度に負の勾配を設けた二軸延
伸を行うことにより製造される。
(Stretched Molded Article and Method for Producing the Same) The stretched molded article of the present invention is obtained by stretching a preformed article of a resin mainly composed of an aliphatic polyester by increasing the initial stretching rate and decreasing the final stretching rate. It is manufactured by performing biaxial stretching in which a negative gradient is provided.

【0031】予備成形体(プリフォーム)の製造は、そ
れ自体公知の押出成形法や射出成形法、圧縮成形法で製
造することができる。例えば、溶融樹脂をTーダイを通
して押し出しすることにより、延伸フィルムの薄肉シー
ト、及び、フィルムや、カップへの圧空成形乃至プラグ
アシスト成形用のシートが成形される。また、溶融樹脂
をリングダイを通して押し出しすることにより、容器成
形用のパイプ状プリフォームも成形することができる。
更に、溶融樹脂を、スクリュー或いはプランジャーによ
り、キャビテイ金型とコア金型とからなる金型中に射出
することで、ボトルなどの立体容器用のプリフォームが
成形される。また、溶融樹脂のパリソンをキャビテイ金
型とコア金型で圧縮することでもボトルなどの立体用プ
リフォームが得られる。
The preform can be produced by a known extrusion molding method, injection molding method or compression molding method. For example, by extruding the molten resin through a T-die, a thin sheet of a stretched film, and a sheet for a film or a cup for air pressure molding or plug assist molding are formed. By extruding the molten resin through a ring die, a pipe-shaped preform for molding a container can also be formed.
Further, a preform for a three-dimensional container such as a bottle is formed by injecting the molten resin into a mold including a cavity mold and a core mold by using a screw or a plunger. A three-dimensional preform such as a bottle can also be obtained by compressing a molten resin parison with a cavity mold and a core mold.

【0032】脂肪族ポリエステルと他の樹脂、例えば水
酸基含有樹脂との積層体から成る予備成形体を製造する
には、それ自体公知の積層技術が使用され、例えば押出
成形法の場合、樹脂の種類に対応する押出機を用い、多
層ダイを用いて共押出することにより、多層の予備成形
体を製造する。また、射出成形では、それ自体公知の同
時共射出法や逐次共射出法により、多層プリフォームを
形成することができる。更に、圧縮成形法でも、共押出
などにより多層の溶融樹脂パリソンを形成することで、
多層プリフォームを製造することができる。
In order to produce a preform made of a laminate of an aliphatic polyester and another resin, for example, a hydroxyl group-containing resin, a lamination technique known per se is used. Is produced by co-extrusion using a multilayer die using an extruder corresponding to the above-mentioned method. In injection molding, a multilayer preform can be formed by a co-injection method or a sequential co-injection method known per se. Furthermore, even in the compression molding method, by forming a multilayer molten resin parison by co-extrusion etc.,
Multilayer preforms can be manufactured.

【0033】予備成形体の延伸成形は、脂肪族ポリエス
テルの延伸温度において、延伸速度が前述した方法をと
り、且つ得られた成形体の配向結晶化度(Do)が0.
15以上となる条件で行う。
The stretching of the preform is performed at the stretching temperature of the aliphatic polyester by the above-mentioned method at the stretching speed, and the oriented crystallinity (Do) of the obtained molded article is 0.1 mm.
This is performed under the condition of 15 or more.

【0034】延伸温度は、脂肪族ポリエステルの種類に
よっても相違するが、一般的にいって、脂肪族ポリエス
テルのガラス転移点(Tg)を基準とし、Tg乃至Tg
+60℃の温度が適当であり、例えばポリ乳酸の場合、
Tg+10℃乃至Tg+20℃の温度が適当である。
Although the stretching temperature varies depending on the type of the aliphatic polyester, generally, the stretching temperature is from Tg to Tg based on the glass transition point (Tg) of the aliphatic polyester.
A temperature of + 60 ° C. is appropriate, for example for polylactic acid
A temperature of Tg + 10 ° C. to Tg + 20 ° C. is appropriate.

【0035】本発明では、初期の延伸速度を大きく且つ
終期の延伸速度を小さくした延伸速度に負の勾配を設け
た二軸延伸成形を行うが、第1段の延伸速度(V)と
最終段の延伸速度(V)の比(V/V)が、一般
に3乃至70の範囲にあることが、強度の異方性を解消
乃至低減させる上で好ましい。即ち、V/Vの比が
上記範囲を下回ると、前記式(1)を満足するように強
度特性を改善することが困難となる傾向があり、一方、
この比が上記範囲を上回ると延伸成形の生産性が悪くな
るので好ましくない。
[0035] In the present invention, performs the initial biaxial stretching in which a negative slope stretching speed large and the stretching speed was reduced drawing speed of the end of the stretching speed of the first stage and (V 1) Final The ratio (V 1 / V 2 ) of the stretching speed (V 2 ) of the step is generally preferably in the range of 3 to 70 in order to eliminate or reduce the anisotropy of strength. That is, when the ratio of V 1 / V 2 is lower than the above range, it tends to be difficult to improve the strength characteristics so as to satisfy the above formula (1).
If this ratio exceeds the above range, the productivity of stretch molding is undesirably deteriorated.

【0036】第1段目における延伸速度は、特に限定さ
れないが、一般に1m/sec乃至50m/secの範
囲にあるのが望ましい。延伸速度の変化は、二段或いは
それ以上の多段にわたって段階的に変化させることもで
きるし、また連続的に変化させることもできる。勿論、
これら何れの場合にも、延伸初期から終段に向けて延伸
速度が単調に減少するよう延伸速度に勾配を設けなけれ
ばならない。延伸速度の切り替えは、機械的延伸では延
伸棒や把持チャックの移動速度を変化させることによ
り、また膨張延伸ではブロー圧を変化させることにより
行うことができる。
The stretching speed in the first stage is not particularly limited, but is generally preferably in the range of 1 m / sec to 50 m / sec. The change of the stretching speed can be changed stepwise over two or more stages or continuously. Of course,
In any of these cases, a gradient must be provided in the stretching speed such that the stretching speed monotonically decreases from the initial stage to the final stage. The switching of the stretching speed can be performed by changing the moving speed of the stretching rod or the gripping chuck in mechanical stretching, or by changing the blow pressure in expansion stretching.

【0037】延伸倍率は、前記式(2)で定義される配
向結晶化度(Do)が0.15以上となるようなもので
あり、一般的にいって、機械方向(容器軸方向)の延伸
倍率が1.4乃至4倍、横断方向(容器周方向)の延伸
倍率が1.4乃至4倍で、好適には面積延伸倍率が2乃
至16倍となるようなものである。
The stretching ratio is such that the degree of orientational crystallinity (Do) defined by the above formula (2) is 0.15 or more. The stretching ratio is 1.4 to 4 times, the stretching ratio in the transverse direction (container circumferential direction) is 1.4 to 4 times, and preferably the area stretching ratio is 2 to 16 times.

【0038】本発明の延伸成形において、延伸速度に負
の勾配を設けることにより、強度の異方性が解消乃至低
減される理由は未だ解明されるには至っていない。しか
しながら、このような延伸条件では、延伸による歪みの
緩和と一種の熱固定とが起こっている可能性が否定でき
ない。
In the stretch molding of the present invention, the reason why the anisotropy of strength is eliminated or reduced by providing a negative gradient in the stretching speed has not yet been elucidated. However, under such stretching conditions, the possibility that relaxation of strain due to stretching and a kind of heat fixation have occurred cannot be denied.

【0039】本発明による脂肪族ポリエステル延伸成形
体は、機械的強度の異方性が解消されており、容器とし
ての種々の特性にも優れているが、芳香族ポリエステル
に比してガスバリアー性においてやや劣る傾向がある。
これを改善するために、延伸成形体の少なくとも一方の
表面に硬質炭素膜を化学蒸着法(CVD)で形成するこ
とが好ましい。
The aliphatic polyester stretched molded article according to the present invention is free from anisotropy in mechanical strength and is excellent in various properties as a container, but has a gas barrier property as compared with aromatic polyester. Tend to be slightly inferior.
In order to improve this, it is preferable to form a hard carbon film on at least one surface of the stretched molded body by a chemical vapor deposition method (CVD).

【0040】硬質炭素膜とは、一般にDLC(diam
ond like carbon)膜、iカーボン膜ま
たは水素化アモルファスカーボン膜(a−C:H)と呼
ばれるのものであり、SP結合を主体にしたアモルフ
アスな炭素膜から成っている。この炭素膜は、香味成分
などの低分子有機化合物の収着抑制効果およぴガスバリ
ア性に優れている。炭素膜の厚みは、これらの特性の向
上と、プラスチックとの密着性、耐久性および透明性等
との見地から、0.05〜5μmの範囲にあることが好
ましい。
A hard carbon film is generally referred to as DLC (diam).
ond like carbon) film, i carbon film or hydrogenated amorphous carbon film (a-C: is of the called H), consist Amorufuasu carbon film was mainly SP 3 bond. This carbon film is excellent in the effect of suppressing sorption of low molecular organic compounds such as flavor components and gas barrier properties. The thickness of the carbon film is preferably in the range of 0.05 to 5 μm from the viewpoint of improving these properties and the adhesion to plastic, durability, transparency, and the like.

【0041】硬質炭素膜の形成は、それ自体公知の化学
蒸着法(CVD)、特にプラズマCVDにより行うこと
ができる。プラズマCVDとは、気体プラズマを利用し
て薄膜成長を行うものであり、基本的には、減圧下にお
いて原料ガスを含むガスを高電界による電気的エネルギ
ーで放電させ、分解させ、生成する物質を気相中或いは
基板上での化学反応を経て、基板上に堆積させるプロセ
スから成る。プラズマ状態は、グロー放電をによって実
現されるものであり、このグロー放電の方式によって、
直流グロー放電を利用する方法、高周波グロー放電を利
用する方法、マイクロ波放電を利用する方法などが知ら
れている。
The hard carbon film can be formed by a known chemical vapor deposition method (CVD), in particular, plasma CVD. Plasma CVD is to grow a thin film using gas plasma. Basically, a gas containing a raw material gas is discharged under a reduced pressure with electric energy by a high electric field to decompose and generate a substance to be generated. It consists of a process of depositing on a substrate through a chemical reaction in the gas phase or on the substrate. The plasma state is realized by glow discharge, and by this glow discharge method,
A method using a DC glow discharge, a method using a high-frequency glow discharge, a method using a microwave discharge, and the like are known.

【0042】プラズマCVDは、高速電子によるガス
分子の直接分解を利用しているため、生成エネルギーの
大きな原料ガスを容易に解離できる、電子温度とガス
分子温度が異なる熱的非平衡状態にあり、低温プロセス
が可能となる、基板温度が低くても比較的均一なアモ
ルファス膜を形成できる、という利点を有するものであ
り、脂肪族ポリエステル延伸成形体にも容易に適用でき
るものである。
Since plasma CVD utilizes the direct decomposition of gas molecules by high-speed electrons, it is in a thermal non-equilibrium state in which the electron temperature and the gas molecule temperature are different so that a source gas having a large generation energy can be easily dissociated. It has the advantage that a low-temperature process is possible and that a relatively uniform amorphous film can be formed even when the substrate temperature is low, and it can be easily applied to an aliphatic polyester stretch molded article.

【0043】膜形成用の原料ガスとしては、常温で気体
またば液体の脂肪族炭化水素類,芳香族炭化水素類,含
酸素炭化水素類、含窒素炭化水素類などが使用される。
この中でも、炭素数が6以上のベンゼン、トルエン、o
−キシレン、m−キシレン、p−キシレ、シクロヘキサ
ン等が望ましい。これらの原料は、単独で用いることも
できるし、2種以上の混合ガスとして使用してもよく、
さらに、これらのガスをアルゴンやヘリウムの様な希ガ
スで希釈して用いてもよい。
As the raw material gas for forming the film, aliphatic or aromatic hydrocarbons, aromatic hydrocarbons, oxygen-containing hydrocarbons, nitrogen-containing hydrocarbons, etc., which are gaseous or liquid at ordinary temperature, are used.
Among them, benzene having 6 or more carbon atoms, toluene, o
-Xylene, m-xylene, p-xylene, cyclohexane and the like are desirable. These raw materials may be used alone or may be used as a mixture of two or more gases.
Further, these gases may be diluted with a rare gas such as argon or helium before use.

【0044】硬質炭素膜の形成には、反応容器内に脂肪
族ポリエステル延伸成形体を充填し、反応容器内を減圧
にする。このときの真空度は一般的に10−2〜10
−5torrの範囲が望ましい。次いで、反応容器内に
前記原料ガスを供給し、グロー放電を開始して、膜形成
を行う。反応容器内の圧力は0.5〜0.001tor
rの範囲にあることが好ましい。炭素膜と成形体との密
着性をさらに向上させるために、炭素膜を形成するに先
だって、アルゴンや酸素などの無機ガスによってプラズ
マ処理を行い、成形体表面を活性化させることもでき
る。
To form a hard carbon film, a stretched aliphatic polyester article is filled in a reaction vessel, and the pressure in the reaction vessel is reduced. The degree of vacuum at this time is generally 10 −2 to 10
A range of -5 torr is desirable. Next, the source gas is supplied into the reaction vessel, glow discharge is started, and a film is formed. The pressure in the reaction vessel is 0.5-0.001 torr
It is preferably in the range of r. In order to further improve the adhesion between the carbon film and the molded body, the surface of the molded body can be activated by performing a plasma treatment with an inorganic gas such as argon or oxygen before forming the carbon film.

【0045】(用途)本発明の延伸成形体は、各種プラ
スチック包装容器、例えばボトル、カップ、チューブ、
プラスチック缶、パウチ、キャップ等として、またフィ
ルム、トレイ等の包装材料として、更にコンテナー、タ
ンク、篭等の流通用容器として、更にパイプ、ケース等
の構造物として有用である。
(Usage) The stretch molded article of the present invention can be used in various plastic packaging containers such as bottles, cups, tubes,
They are useful as plastic cans, pouches, caps, etc., as packaging materials for films, trays, etc., as distribution containers such as containers, tanks, baskets, etc., and as structures such as pipes and cases.

【0046】[0046]

【実施例】次に、具体的な実施例をもって本発明を説明
する。尚、本発明は以下の実施例に限定されるものでは
ない。
Next, the present invention will be described with reference to specific examples. The present invention is not limited to the following embodiments.

【0047】(成形) ボトル成形:重量平均分子量が180000のポリ乳酸
を用いた。射出成形機を用い、190〜200℃条件
下、口径28mmφのプリフォームを射出成形した。金
型温度15℃。次に、プリフォームを赤外線ヒーターに
て65〜75℃に再加熱後、金型ブロー成形機を用い、
丸形の500ml容金型ブローボトルを作成した。この
場合、ブロー圧を圧縮空気圧30Kg/cmとする定
圧ブロー成形とした。又、圧縮空気吹き込み口と排気口
を併設させ、初期の圧縮空気圧が30Kg/cm とし
た後、排気バルブを暫時開放し、ブロー時間内に段階的
にブロー圧を減少させ、最終的なブロー圧を0.5Kg
/cmまで減圧した金型ブローを行った。
(Molding) Bottle molding: polylactic acid having a weight average molecular weight of 180,000
Was used. 190-200 ° C using an injection molding machine
Below, a preform having a diameter of 28 mmφ was injection molded. Money
Mold temperature 15 ° C. Next, convert the preform to an infrared heater
After reheating to 65 to 75 ° C, using a mold blow molding machine,
A round 500 ml mold blow bottle was prepared. this
In the case, the blow pressure is 30 kg / cm compressed air pressure.2Suppose
Pressure blow molding was performed. Also, compressed air blowing port and exhaust port
And the initial compressed air pressure is 30 kg / cm 2age
After opening the exhaust valve for a while,
And reduce the final blow pressure to 0.5kg
/ Cm2The mold was blown to a reduced pressure.

【0048】カップ成形:前記ポリ乳酸を用いた。押し
出し機を用い、スクリュー部のC1〜C4を190〜2
00℃、Tダイ温度を190℃とし、400mm幅、2
mm厚のシートを作成した。このシートをサーモフォー
ム成形機を用い、70℃に再加熱後、円錐型プラグアシ
ストにて縦方向に延伸すると同時に圧縮空気で円柱状カ
ップを成形した。(口径80mmφ,底径50mmφ,
高さ90mm)。金型温度15℃。この場合、吹き込み
の圧縮空気の圧力を10Kg/cmの定圧とした成形
と、吹き込み圧縮空気の圧力を初期空気圧10kg/c
から0.5kg/cmまで変化させた成形を行っ
た。
Cup molding: The above-mentioned polylactic acid was used. Using an extruder, C1 to C4 of the screw part were 190 to 200
00 ° C, T-die temperature 190 ° C, 400mm width, 2
A sheet having a thickness of mm was prepared. The sheet was reheated to 70 ° C. using a thermoform molding machine, and then stretched in the longitudinal direction by conical plug assist, and at the same time, a cylindrical cup was formed with compressed air. (80mmφ diameter, 50mmφ bottom diameter,
Height 90 mm). Mold temperature 15 ° C. In this case, the pressure of the blown compressed air was set to a constant pressure of 10 kg / cm 2 and the pressure of the blown compressed air was increased to an initial air pressure of 10 kg / c.
Molding was carried out with varying from m 2 to 0.5 kg / cm 2.

【0049】延伸シート成形:前記ポリ乳酸を用いた。
射出成形機を用い、190〜200℃条件下、2mm厚
の11mm×11mmサイズ平板を射出成形した。金型
温度15℃。次に、二軸延伸装置を用い射出成形平板を
70℃に再加熱後、延伸速度10m/minにて、2×
2倍、2.5×2.5倍、3×3倍の同時二軸延伸し
た。又、延伸倍率を3×3倍と一定にし、延伸速度を5
0mm/min、500mm/min、1000mm/
minと変化させた同時二軸延伸を行った。同様に、延
伸倍率を3×3倍とし、初期延伸速度が1000mm/
minであり、二軸延伸時間内に、段階的に500mm
/min、50mm/minと延伸速度を減速させた二
軸延伸を行った。
Stretched sheet molding: The above-mentioned polylactic acid was used.
Using an injection molding machine, an 11 mm × 11 mm size flat plate having a thickness of 2 mm was injection molded under a condition of 190 to 200 ° C. Mold temperature 15 ° C. Next, the injection molded flat plate was reheated to 70 ° C. using a biaxial stretching device, and then stretched 2 × at a stretching speed of 10 m / min.
Simultaneous biaxial stretching was performed twice, 2.5 × 2.5 times, and 3 × 3 times. Further, the stretching ratio is kept constant at 3 × 3 times, and the stretching speed is 5 × 3.
0mm / min, 500mm / min, 1000mm /
Simultaneous biaxial stretching was performed with the min. Similarly, the stretching ratio is set to 3 × 3 times, and the initial stretching speed is 1000 mm /
min and within 500 mm stepwise within the biaxial stretching time.
The biaxial stretching was performed at a reduced stretching speed of 50 mm / min.

【0050】(評価) 二軸延伸シートの延伸応力:東洋精機社製、二軸延伸装
置を用い、二軸延伸時の延伸応力を測定した。この場
合、延伸軸は二軸であるが、それぞれの延伸軸の延伸応
力は同パターンを示した。このため、一軸方向の延伸応
力を示した。 機械的強度:二軸延伸シートを用いた。延伸軸方向
(X,Y)を軸とする方向、及び、延伸二軸方向のなす
対角方向(45゜方向)を軸とする方向にそれぞれAS
TMD−1822型ダンベルを切り出し、ORIENT
EC社製引っ張り試験機にて引っ張り応力−ひずみ曲線
を得た。 圧縮強度:金型ブローボトルとサーモフォーム成形カッ
プを用いた。ボトル、及び、カップの胴部(横方向)に
10mmφのジグを用い、ひずみ量10%の圧縮ひずみ
試験を行った。ひずみ変形時に胴部方向に割れを生成し
たボトル、及び、カップを×とし、変形時に割れが生成
しないボトル、及び、カップを○とした。
(Evaluation) Stretching stress of biaxially stretched sheet: The stretching stress at the time of biaxial stretching was measured using a biaxial stretching apparatus manufactured by Toyo Seiki Co., Ltd. In this case, the stretching axes were biaxial, and the stretching stress of each stretching axis showed the same pattern. For this reason, it showed uniaxial stretching stress. Mechanical strength: A biaxially stretched sheet was used. The AS has a direction in which the axis is the stretching axis direction (X, Y) and a direction in which the axis is the diagonal direction (45 ° direction) formed by the stretching biaxial directions.
Cut out TMD-1822 type dumbbell, and ORIENT
A tensile stress-strain curve was obtained using a tensile tester manufactured by EC. Compressive strength: A mold blow bottle and a thermoform molding cup were used. Using a jig of 10 mmφ on the body (horizontal direction) of the bottle and the cup, a compression strain test of a strain amount of 10% was performed. Bottles and cups that generated cracks in the body direction during strain deformation were marked with “x”, and bottles and cups that did not crack with deformation were marked with “○”.

【0051】13C広幅NMR測定:JEOL 社製
NMR装置を用い、二軸延伸シート、金型ブローボト
ル、及び、サーモフォームカップから4mm幅に方向を
そろえて切り出した切片を用い、切り出し方向をそろえ
て重ね合わせた後、ダイフロン製ホルダーに充填した。
その後、13C広幅NMR測定を行った。又、着目原子
核をカルボニル炭素領域に限定した。得られたNMRス
ペクトルは、無配向成分のみであれば、図1に示す非晶
パターンを示す。もし、配向成分が存在していれば、図
2に示す非晶パターンに加え、図3,図4に示すような
配向成分の配向軸とNMRの静磁場方向のなす角度依存
スペクトルパターンを示す(例、図3→垂直,図4→平
行)。このため、実測の13C広幅NMR測定スペクト
ルから図2に示すパウダーパターンを差し引くことで、
配向結晶成分の組成分率を求めることができる。はじめ
に、溶融試料を急冷した薄肉非晶試料を作成し、細かく
裁断後、ダイフロン製試料管にランダム充填し、13
広幅NMR測定した(図1)。次に、二軸延伸シート、
金型ブローボトル、並びに、サーモフォームカップから
切り出した切片を、切り出し方向をそろえて重ね合わ
せ、13C広幅NMR測定を行った。それぞれの実測ス
ペクトルをイメージスキャナーで読みとった後、スペク
トルのX,Y座標を得た。その後、表計算ソフトウェア
(マイクロソフト社製、Excel(登録商標))に
て、二軸延伸シート、金型ブローボトル、並びに、サー
モフォームカップの切片の13C広幅NMRスペクトル
から無配向成分のパウダーパターンを差し引いた。計算
前のスペクトルピーク強度をSとした。計算で差し引い
た非晶成分をSaとした。この場合、S−Sa=Scが
配向結晶成分となる。このため、ここでは、Do=(S
−Sa)/Sが配向結晶成分の組成分を示す。ここで示
した、13C広幅NMR測定は一般的な分析手法であ
る。
13 C wide-area NMR measurement: manufactured by JEOL
Using an NMR apparatus, using a biaxially stretched sheet, a mold blow bottle, and a piece cut out from the Thermofoam cup in a direction of 4 mm in width, superposed in the cutout direction, and then filled in a Diflon holder. .
Then, 13 C wide-area NMR measurement was performed. Further, the focused nucleus was limited to the carbonyl carbon region. The obtained NMR spectrum shows the amorphous pattern shown in FIG. 1 if only the non-oriented component is present. If an orientation component is present, an angle-dependent spectrum pattern between the orientation axis of the orientation component and the direction of the static magnetic field of NMR as shown in FIGS. 3 and 4 is shown in addition to the amorphous pattern shown in FIG. 2 ( For example, FIG. 3 → vertical, FIG. 4 → parallel). Therefore, by subtracting the powder pattern shown in FIG. 2 from the actually measured 13 C wide NMR measurement spectrum,
The composition fraction of the oriented crystal component can be determined. First, create a thin amorphous samples quenched molten sample, after chopped, randomly packed in Daifuron made sample tube, 13 C
Broad NMR measurement was performed (FIG. 1). Next, a biaxially stretched sheet,
The sections cut out from the mold blow bottle and the thermofoam cup were overlapped with each other in the same cutting direction, and 13 C wide-area NMR measurement was performed. After reading each measured spectrum with an image scanner, the X and Y coordinates of the spectrum were obtained. Then, using a spreadsheet software (Microsoft, Excel (registered trademark)), the powder pattern of the non-oriented component was determined from the 13 C wide NMR spectrum of the biaxially stretched sheet, the mold blow bottle, and the section of the thermoform cup. deducted. The spectral peak intensity before calculation was set to S. The amorphous component subtracted by the calculation was defined as Sa. In this case, S-Sa = Sc is the oriented crystal component. Therefore, here, Do = (S
-Sa) / S indicates the composition of the oriented crystal component. The 13 C wide NMR measurement shown here is a general analytical technique.

【0052】[実施例1]2mm厚の平板を70℃に再
加熱後、二軸延伸装置を用い延伸倍率3×3の同時二軸
延伸を行った。初期延伸速度を1000mm/minと
し、同時二軸延伸時間内に、段階的に延伸速度を500
mm/min、50mm/minと低下させた。上記同
時二軸延伸試料につき、延伸軸方向とその対角方向(4
5゜方向)の機械的強度(降伏点強度)、同試料の二軸
延伸時の延伸応力パターン、並びに、 13C広幅NMR
測定から求めた配向結晶化度を表1に示した。
Example 1 A flat plate having a thickness of 2 mm was reheated to 70 ° C.
After heating, use a biaxial stretching device to simultaneously stretch 3 × 3
Stretching was performed. The initial stretching speed is 1000 mm / min
During the simultaneous biaxial stretching time, the stretching speed is gradually increased to 500
mm / min and 50 mm / min. Same as above
For the biaxially stretched sample, the stretching axis direction and its diagonal direction (4
5 °) mechanical strength (yield point strength), biaxial of the same sample
Stretching stress pattern during stretching, and 13C-wide NMR
Table 1 shows the degree of orientational crystallinity determined from the measurement.

【0053】[比較例1]2mm厚の平板を70℃に再
加熱後、二軸延伸装置を用い延伸倍率が3×3の同時二
軸延伸を行った。延伸速度を1000mm/min、5
00mm/min、50mm/minのそれぞれの速度
にて定速度延伸した。上記同時二軸延伸試料につき、延
伸軸方向とその対角方向(45゜方向)の機械的強度
(降伏点強度)、同試料の二軸延伸時の延伸応力パター
ン、並びに、 13C広幅NMRから求めた配向結晶化度
を表1に示した。
[Comparative Example 1] A flat plate having a thickness of 2 mm was reheated to 70 ° C.
After heating, use a biaxial stretching device to adjust the stretching ratio to 3 × 3 at the same time.
Axial stretching was performed. Stretching speed is 1000 mm / min, 5
Each speed of 00mm / min, 50mm / min
At a constant speed. For the above simultaneous biaxially stretched sample,
Mechanical strength in the extension axis direction and its diagonal direction (45 ° direction)
(Yield point strength), stretching stress pattern during biaxial stretching of the same sample
And 13Oriented crystallinity determined from wide C NMR
Are shown in Table 1.

【0054】[比較例2]2mm厚の平板を70℃に再
加熱後、二軸延伸装置を用い同時二軸延伸を行った。延
伸速度を10m/minの定速度とし、延伸倍率を2×
2倍、2.5×2.5倍、3×3倍と変化させた。上記
同時二軸延伸試料につき、延伸軸方向とその対角方向
(45゜方向)の機械的強度(降伏点強度)、同試料の
二軸延伸時の延伸応力パターン、並びに、 13広幅CN
MRから求めた配向結晶化度を表2に示した。
[Comparative Example 2] A flat plate having a thickness of 2 mm was reheated to 70 ° C.
After heating, simultaneous biaxial stretching was performed using a biaxial stretching apparatus. Delay
The elongation speed is 10 m / min and the elongation ratio is 2 ×
It was changed to 2 times, 2.5 × 2.5 times, and 3 × 3 times. the above
For simultaneous biaxially stretched samples, stretch axis direction and its diagonal direction
(45 ° direction) mechanical strength (yield point strength)
Stretching stress pattern during biaxial stretching, and 13Wide CN
Table 2 shows the degree of orientational crystallinity determined from MR.

【0055】[実施例2]前記ポリ乳酸を用いた。押し
出し機を用い、スクリュー部のC1〜C4を190〜2
00℃、Tダイ温度を190℃とした、400mm幅、
2mm厚のシートを作成した。このシートをサーモフォ
ーム成形機を用い、70℃に再加熱後、円錐型のプラグ
アシストにて縦方向に延伸すると同時に初期圧縮空気圧
15Kg/cmから終期に1Kg/cm低圧空気と
し円柱状カップを成形した。(口径80mmφ,底径5
0mmφ,高さ90mm)金型温度15℃。カップ胴部
(横方向)に10mmφ平板ジグを用い、ヒズミ量10
%の圧縮変形させた。圧縮ひずみ変形時に、胴部に割れ
が生じないカップを○とし、変形時に胴部に割れが生じ
たカップ×とした。結果を表3に示した。
Example 2 The above-mentioned polylactic acid was used. Using an extruder, C1 to C4 of the screw part were 190 to 200
400 ° C, 00 ° C, T-die temperature 190 ° C,
A sheet having a thickness of 2 mm was prepared. The sheet was reheated to 70 ° C. using a thermoform molding machine, and then stretched in the longitudinal direction with a conical plug assist, while simultaneously reducing the initial compressed air pressure from 15 kg / cm 2 to 1 kg / cm 2 low pressure air at the end, and forming a cylindrical cup. Was molded. (Diameter 80mmφ, bottom diameter 5
0mmφ, height 90mm) Mold temperature 15 ° C. A 10 mmφ flat jig is used for the cup body (lateral direction),
% Compression deformation. Cups that did not crack in the trunk during compression strain deformation were marked with ○, and cups that cracked in the trunk during deformation were marked X. The results are shown in Table 3.

【0056】[比較例3]前記ポリ乳酸を用いた。押し
出し機を用い、スクリュー部温度、C1〜C4を190
〜200℃、Tダイ温度を190℃とした、400mm
幅で2mm厚のシートを作成した。このシートをサーモ
フォーム成形機を用い、70℃に加熱後、円錐型プラグ
アシストにて縦方向に延伸すると同時に圧縮空気で円柱
状カップに成形した。(口径80mmφ,底径50mm
φ,高さ90mm)金型温度15℃。この場合、吹き込
みの圧縮空気の圧力を15Kg/cmとした。カップ
胴部(横方向)に10mmφ平板ジグを用い、ひずみ量
10%で圧縮ひずみ変形させた。ひずみ変形後、胴部に
割れが生じないカップを○とし、変形時に胴部に割れが
生じたカップ×とした。結果を表3に示した。
Comparative Example 3 The above-mentioned polylactic acid was used. Using an extruder, adjust the screw temperature and C1 to C4 to 190
~ 200 ° C, T-die temperature at 190 ° C, 400mm
A sheet having a width of 2 mm was prepared. This sheet was heated to 70 ° C. using a thermoform forming machine, then stretched in the longitudinal direction by conical plug assist, and simultaneously formed into a cylindrical cup with compressed air. (Diameter 80mmφ, Bottom diameter 50mm
φ, height 90mm) Mold temperature 15 ° C. In this case, the pressure of the blown compressed air was 15 kg / cm 2 . Using a 10 mmφ flat plate jig in the cup body (lateral direction), compression strain deformation was performed with a strain amount of 10%. A cup that did not crack in the trunk after strain deformation was marked with ○, and a cup that cracked in the trunk during deformation was marked X. The results are shown in Table 3.

【0057】[実施例3]前記ポリ乳酸を用いた。射出
成形機を用い、190〜200℃条件下、28mmφの
プリフォームを射出成形した。金型温度15℃。プリフ
ォームを赤外線ヒーターを用い70〜75℃に再加熱
後、金型ブロー成形機にて丸形の500ml容ブローボ
トルを作成した。ブロー時のブロー圧力は、圧縮空気吹
き込み口と排気口を併設させ、初期に圧縮空気圧を30
Kg/cmとした後、排気バルブを暫時開放し、ブロ
ー時間内にブロー圧を段階的に減圧した。最終的に0.
5Kg/cmまで減圧し金型ブローをした。上記成形
金型ブローボトルの胴部(横方向)を、10mmφ平板
ジグを用い、ヒズミ量10%まで圧縮ひずみ変形させ
た。圧縮ひずみ変形後、胴部に割れが生じないボトルを
○とし、ひずみ変形時に胴部に割れが生じたボトル×と
した。結果を表3に示した。
Example 3 The polylactic acid was used. Using an injection molding machine, a preform of 28 mmφ was injection-molded under a condition of 190 to 200 ° C. Mold temperature 15 ° C. After the preform was reheated to 70 to 75 ° C. using an infrared heater, a round 500 ml-capacity blow bottle was prepared using a mold blow molding machine. The blow pressure at the time of blow is set to 30 at the beginning with the compressed air blow-in port and the exhaust port.
After adjusting the pressure to Kg / cm 2 , the exhaust valve was temporarily opened, and the blow pressure was reduced stepwise within the blow time. Finally 0.
The pressure was reduced to 5 kg / cm 2 and the mold was blown. Using a 10 mmφ flat jig, the body (horizontal direction) of the molding die blow bottle was subjected to compressive strain deformation until the strain amount was 10%. A bottle with no crack in the body after compression strain deformation was marked with a circle, and a bottle with a crack in the body during strain deformation was marked with x. The results are shown in Table 3.

【0058】[比較例4]前記ポリ乳酸を用いた。射出
成形機を用い、190〜200℃条件下、ノズル径28
mmφのプリフォームを射出成形した。金型温度15
℃。プリフォームを赤外線ヒーターを用い70〜75℃
に再加熱後、金型ブロー成形機で500ml容の丸形ブ
ローボトルを作成した。ブロー時の圧縮空気圧を30K
g/cmとする定圧ブロー成形を行った。上記成形金
型ブローボトルにつき、胴部(横方向)を10mmφ平
板ジグを用い、ヒズミ量10%の圧縮ひずみ変形させ
た。圧縮ひずみ変形後、胴部に割れが生じないボトルを
○とし、ひずみ変形時に胴部に割れが生じたボトル×と
した。結果を表3に示した。
Comparative Example 4 The above-mentioned polylactic acid was used. Using an injection molding machine, under conditions of 190 to 200 ° C., a nozzle diameter of 28
A preform of mmφ was injection molded. Mold temperature 15
° C. 70-75 ° C for preform using infrared heater
After reheating, a round blow bottle having a volume of 500 ml was prepared using a mold blow molding machine. 30K compressed air pressure during blow
g / cm 2 constant pressure blow molding was performed. Using a 10 mmφ flat jig, the body (transverse direction) of the above molding die blow bottle was subjected to compressive strain deformation with a strain amount of 10%. A bottle with no crack in the body after compression strain deformation was marked with a circle, and a bottle with a crack in the body during strain deformation was marked with x. The results are shown in Table 3.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【表3】 [Table 3]

【0062】次に硬質炭素膜を形成した脂肪族ポリエス
テル延伸成形性に関する実施例及び比較例において、試
料の調製及び測定を示した。
Next, the preparation and measurement of samples were shown in Examples and Comparative Examples relating to the stretch moldability of an aliphatic polyester having a hard carbon film formed thereon.

【0063】(ボトル成形)ポリ乳酸を射出成形機を用
い、190℃〜200℃条件下、口径28mmφのプリ
フォームを射出成形した。金型温度15℃。次に、プリ
フォームを赤外線ヒーターにて65〜75℃に再加熱
後、金型ブロー成形機を用い、500ml容の平均肉厚
300μmの金型ブローボトルを作成した。この場合、
圧縮空気吹き込み口と排気口を併設させ、初期の圧縮空
気圧を30Kg/cmとした後、段階的にブロー時間
内に減圧した。最終的なブロー圧力を0.5Kg/cm
とした金型ブロー成形を行った。又、ブロー圧力を3
0Kg/cmの定圧とした金型ブロー成形を行った。
(Bottle molding) A preform having a diameter of 28 mmφ was injection-molded from polylactic acid at 190 ° C. to 200 ° C. using an injection molding machine. Mold temperature 15 ° C. Next, the preform was reheated to 65 to 75 ° C. with an infrared heater, and a 500 ml-thick mold blow bottle having an average thickness of 300 μm was prepared using a mold blow molding machine. in this case,
A compressed air blowing port and an exhaust port were provided side by side, and the initial compressed air pressure was set to 30 kg / cm 2, and then the pressure was reduced stepwise within the blowing time. Final blow pressure of 0.5 kg / cm
The mold blow molding of No. 2 was performed. Also, set the blow pressure to 3
Die blow molding was performed at a constant pressure of 0 kg / cm 2 .

【0064】(シート成形)ポリ乳酸を押し出し機を用
い、スクリュー部のC1〜C4温度を190℃〜200
℃、Tダイ温度を190℃とした、200mm幅、2m
m厚のシートを成形した。その後、加熱オーブンを用
い、65℃〜75℃に再加熱し、改造したテンター式二
軸延伸機を用い、3×3倍の二軸延伸を行った(平均肉
厚:200μm)。この場合、初期の延伸速度を1m/
minとし、所定の延伸倍率に至るまでに延伸速度を
0.05m/minに段階的に減速した。又、延伸速度
を1m/minとした定速延伸成形を行った。
(Sheet forming) The polylactic acid was extruded using an extruder, and the temperature of C1 to C4 of the screw portion was increased to 190 ° C to 200 ° C.
℃, T die temperature was 190 ℃, 200mm width, 2m
An m-thick sheet was formed. Then, it was reheated to 65 ° C. to 75 ° C. using a heating oven, and 3 × 3 times biaxial stretching was performed using a modified tenter-type biaxial stretching machine (average wall thickness: 200 μm). In this case, the initial stretching speed is 1 m /
min, and the stretching speed was gradually reduced to 0.05 m / min until a predetermined stretching ratio was reached. In addition, constant-speed stretching was performed at a stretching speed of 1 m / min.

【0065】(炭素膜の製膜)(ボトル)CVD蒸着装
置にて、ボトル形状の電極とボトル内部に設置した電極
を用い、ボトル内圧力を真空減圧後、ヘキサン・アルゴ
ン混合ガスを原料ガスとした、成膜圧0.1torr、
高周波電力13.56MHzのPE−CVD炭素膜蒸着
を行った。成膜温度25℃。 (延伸シート)真空チャンバー内上下に設定した平板電
極を用い、ヘキサン・アルゴン混合ガスを原料ガスとし
た、成膜圧0.1torr、高周波電力13.56MH
zのPE−CVD炭素膜蒸着を行った。成膜温度25
℃。
(Formation of Carbon Film) (Bottle) Using a bottle-shaped electrode and an electrode installed inside the bottle, the pressure inside the bottle was reduced by vacuum using a CVD deposition apparatus, and a mixed gas of hexane and argon was mixed with the raw material gas. The deposition pressure was 0.1 torr,
PE-CVD carbon film deposition at a high frequency power of 13.56 MHz was performed. Film formation temperature 25 ° C. (Stretched sheet) Using a plate electrode set up and down in a vacuum chamber, using a mixed gas of hexane and argon as a source gas, a film forming pressure of 0.1 torr, and a high frequency power of 13.56 MH
z-PE-CVD carbon film deposition was performed. Film forming temperature 25
° C.

【0066】(酸素ガスバリア性) (ボトル)試作ボトルを真空チャンバー内に入れ、真空
減圧した後、高純度窒素ガスを流入させ、ボトル内気相
を窒素ガス置換した。その後、ゴム栓にて密封した。酸
素濃度20.9%の30℃−RH80%条件に保存し
た。3週間後に、ガスタイトシリンジを用い、ボトル内
空気を採取し、GC分析し、BOに換算した。 (延伸シート)Mocon社製ガス透過試験機を用い、
40℃条件下、酸素透過度を測定し、酸素透過係数に換
算した。
(Oxygen Gas Barrier Property) (Bottle) A prototype bottle was placed in a vacuum chamber, and after depressurizing the vacuum, high-purity nitrogen gas was flowed in, and the gas phase in the bottle was replaced with nitrogen gas. Then, it sealed with the rubber stopper. It was stored under conditions of 30 ° C.-80% RH with an oxygen concentration of 20.9%. After 3 weeks, using a gas-tight syringe, it was taken the bottle in the air, and GC analysis, in terms of BO 2. (Stretched sheet) Using a gas transmission tester manufactured by Mocon,
At 40 ° C., the oxygen permeability was measured and converted to an oxygen permeability coefficient.

【0067】(機械的強度) (ボトル)金型ブローボトルと炭素薄膜を蒸着後のボト
ル胴部(横方向)に10mmφのジグを用い、ひずみ量
10%の圧縮ひずみ試験を行った。ひずみ変形時に胴部
方向で割れが生成したボトルを×とし、変形時に割れの
生じないボトルを○とした。 (延伸シート)二軸延伸シートを用いた、延伸軸方向
(X,Y)を軸とする方向、及び、延伸二軸のなす対角
方向(45°)を軸とする方向にそれぞれASTM−1
822型ダンベルを切り出し、ORIENTEC社製引
っ張り試験機にて引っ張り応力−ひずみ曲線を得た。
(Mechanical Strength) (Bottle) A compression strain test was performed with a strain amount of 10% using a 10 mmφ jig on the bottle body (horizontal direction) after the mold blow bottle and the carbon thin film were deposited. A bottle in which cracks were generated in the body direction during strain deformation was rated as x, and a bottle in which cracks did not occur during deformation was rated as ○. (Stretched sheet) Using a biaxially stretched sheet, ASTM-1 is applied to a direction having an axis in the stretching axis direction (X, Y) and a direction having an axis in a diagonal direction (45 °) formed by the stretching two axes.
An 822 type dumbbell was cut out, and a tensile stress-strain curve was obtained using a tensile tester manufactured by ORIENTEC.

【0068】[実施例4]ポリ乳酸を射出成形機を用
い、190℃〜200℃条件下、口径28mmφのプリ
フォームを射出成形した。金型温度15℃。次に、プリ
フォームを赤外線ヒーターにて65℃〜75℃に再加熱
後、金型ブロー成形機を用い、500ml容の平均肉厚
300μmの金型ブローボトルを作成した。この場合、
圧縮空気吹き込み口と排気口を併設させ、初期の圧縮空
気圧を30Kg/cmとした後、段階的にブロー時間
内に減圧した。最終的なブロー圧力を0.5Kg/cm
とした金型ブロー成形を行った。次に、CVD蒸着装
置にて、ボトル形状の電極とボトル内部に設置した電極
を用い、ボトル内圧力を真空減圧後、ヘキサン・アルゴ
ン混合ガスを原料ガスとする、成膜圧0.1torr、
高周波電力13.56MHzのPE−CVD炭素膜蒸着
を行った。成膜温度25℃。炭素膜を蒸着後のボトルを
酸素濃度20.9%の40℃−RH80%に保存して得
たBOを得た。更に、ボトル胴部(横方向)に10m
mφのジグを用い、ひずみ量10%の圧縮ひずみ試験を
行った。ひずみ変形時に胴部方向で割れが生成したボト
ルを×とし、変形時に割れの生じないボトルを○とし
た。得られた結果を表4に示した。
Example 4 A preform having a diameter of 28 mmφ was injection molded from polylactic acid at 190 ° C. to 200 ° C. using an injection molding machine. Mold temperature 15 ° C. Next, the preform was reheated to 65 ° C. to 75 ° C. with an infrared heater, and then a 500 ml volume blow mold bottle having an average thickness of 300 μm was prepared using a mold blow molding machine. in this case,
A compressed air blowing port and an exhaust port were provided side by side, and the initial compressed air pressure was set to 30 kg / cm 2, and then the pressure was reduced stepwise within the blowing time. Final blow pressure of 0.5 kg / cm
The mold blow molding of No. 2 was performed. Next, using a bottle-shaped electrode and an electrode placed inside the bottle, the pressure inside the bottle was reduced by vacuum, and a hexane / argon mixed gas was used as a source gas.
PE-CVD carbon film deposition at a high frequency power of 13.56 MHz was performed. Film formation temperature 25 ° C. BO 2 obtained by storing the bottle after depositing the carbon film at 40 ° C.-RH 80% with an oxygen concentration of 20.9% was obtained. Furthermore, it is 10m in the bottle body (lateral direction)
Using a jig of mφ, a compressive strain test of a strain amount of 10% was performed. A bottle in which cracks were generated in the body direction during strain deformation was rated as x, and a bottle in which cracks did not occur during deformation was rated as ○. Table 4 shows the obtained results.

【0069】[比較例5]ポリ乳酸を射出成形機を用
い、190℃〜200℃条件下、口径28mmφのプリ
フォームを射出成形した。金型温度15℃。次に、プリ
フォームを赤外線ヒーターにて65℃〜75℃に再加熱
後、金型ブロー成形機を用い、500ml容の平均肉厚
300μmの金型ブローボトルを作成した。この場合、
圧縮空気吹き込み口と排気口を併設させ、初期の圧縮空
気圧を30Kg/cmとした後、段階的にブロー時間
内に減圧した。最終的なブロー圧力を0.5Kg/cm
とした金型ブロー成形を行った。上記ボトルを窒素置
換後、酸素濃度20.9%の30℃−RH80%に保存
して得たボトルのBOを得た。更に、ボトル胴部(横
方向)に10mmφのジグを用い、ひずみ量10%の圧
縮ひずみ試験を行った。ひずみ変形時に胴部方向で割れ
が生成したボトルを×とし、変形時に割れの生じないボ
トルを○とした。得られた結果を表4に示した。
Comparative Example 5 A preform having a diameter of 28 mmφ was injection-molded from polylactic acid at 190 ° C. to 200 ° C. using an injection molding machine. Mold temperature 15 ° C. Next, the preform was reheated to 65 ° C. to 75 ° C. with an infrared heater, and then a 500 ml volume blow mold bottle having an average thickness of 300 μm was prepared using a mold blow molding machine. in this case,
A compressed air blowing port and an exhaust port were provided side by side, and the initial compressed air pressure was set to 30 kg / cm 2, and then the pressure was reduced stepwise within the blowing time. Final blow pressure of 0.5 kg / cm
The mold blow molding of No. 2 was performed. After replacing the bottle with nitrogen, the bottle was stored at 30 ° C.-RH 80% with an oxygen concentration of 20.9% to obtain a bottle BO 2 . Further, a compression strain test with a strain amount of 10% was performed using a 10 mmφ jig in the bottle body (lateral direction). A bottle in which cracks were generated in the body direction during strain deformation was rated as x, and a bottle in which cracks did not occur during deformation was rated as ○. Table 4 shows the obtained results.

【0070】[比較例6]ポリ乳酸を射出成形機を用
い、190℃〜200℃条件下、口径28mmφのプリ
フォームを射出成形した。金型温度15℃。次に、プリ
フォームを赤外線ヒーターにて65℃〜75℃に再加熱
後、金型ブロー成形機を用い、500ml容の平均肉厚
300μmの金型ブローボトルを作成した。この場合、
圧縮空気圧力を30Kg/cmの一定圧とした金型ブ
ロー成形を行った。次に、CVD蒸着装置にて、ボトル
形状の電極とボトル内部に設置した電極を用い、ボトル
内圧力を真空減圧後、ヘキサン・アルゴン混合ガスを原
料ガスとする、成膜圧0.1torr、高周波電力1
3.56MHzのPE−CVD炭素膜蒸着を行った。成
膜温度25℃。炭素膜を蒸着後のボトルを酸素濃度2
0.9%の30℃−RH80%に保存して得たボトルの
BOを得た。更に、ボトル胴部(横方向)に10mm
φのジグを用い、ひずみ量10%の圧縮ひずみ試験を行
った。ひずみ変形時に胴部方向で割れが生成したボトル
を×とし、変形時に割れの生じないボトルを○とした。
得られた結果を表4に示した。
[Comparative Example 6] A preform having a diameter of 28 mm was injection molded from polylactic acid at 190 ° C to 200 ° C using an injection molding machine. Mold temperature 15 ° C. Next, the preform was reheated to 65 ° C. to 75 ° C. with an infrared heater, and then a 500 ml volume blow mold bottle having an average thickness of 300 μm was prepared using a mold blow molding machine. in this case,
Die blow molding was performed at a constant compressed air pressure of 30 kg / cm 2 . Next, using a bottle-shaped electrode and an electrode placed inside the bottle, the pressure inside the bottle was reduced by vacuum, and a hexane / argon mixed gas was used as a source gas. Electric power 1
A 3.56 MHz PE-CVD carbon film was deposited. Film formation temperature 25 ° C. After depositing the carbon film, the bottle is
To obtain a BO 2 bottles obtained and stored in 0.9% 30 ℃ -RH80%. In addition, the bottle body (lateral direction)
Using a jig of φ, a compression strain test with a strain amount of 10% was performed. A bottle in which cracks were generated in the body direction during strain deformation was rated as x, and a bottle in which cracks did not occur during deformation was rated as ○.
Table 4 shows the obtained results.

【0071】[実施例5]ポリ乳酸を押し出し機を用
い、スクリュー部のC1〜C4温度を190℃〜200
℃、Tダイ温度を190℃とした、200mm幅、2m
m厚のシートを成形した。その後、加熱オーブンを用
い、65℃〜75℃に再加熱し、改造したテンター式二
軸延伸機を用い、3×3倍の二軸延伸を行った(平均肉
厚:200μm)。この場合、初期の延伸速度を10m
/minとし、所定の延伸倍率に至るまでに延伸速度を
0.05m/minに段階的に減速した。次に、真空チ
ャンバー内上下に設定した平板電極を用い、ヘキサン・
アルゴン混合ガスを原料ガスとした、成膜圧0.1to
rr、高周波電力13.56MHzのPE−CVD炭素
膜蒸着を行った。成膜温度25℃。更に、Mocon社
製ガス透過試験機を用い、40℃条件下、酸素透過度を
測定し、酸素透過係数に換算した。更に、延伸軸方向
(X,Y)を軸とする方向、及び、延伸二軸のなす対角
方向(45°)を軸とする方向にそれぞれASTM−1
822型ダンベルを切り出し、ORIENTEC社製引
っ張り試験機にて引っ張り応力−ひずみ曲線を得た。得
られた結果を表5に示した。
Example 5 Using a polylactic acid extruder, the temperature of C1 to C4 in the screw portion was increased to 190 ° C to 200 ° C.
℃, T die temperature was 190 ℃, 200mm width, 2m
An m-thick sheet was formed. Then, it was reheated to 65 ° C. to 75 ° C. using a heating oven, and 3 × 3 times biaxial stretching was performed using a modified tenter-type biaxial stretching machine (average wall thickness: 200 μm). In this case, the initial stretching speed is 10 m
/ Min, and the stretching speed was gradually reduced to 0.05 m / min until a predetermined stretching ratio was reached. Next, using flat electrodes set up and down in the vacuum chamber, hexane
Deposition pressure 0.1 to using argon mixed gas as source gas
rr, PE-CVD carbon film deposition at a high frequency power of 13.56 MHz was performed. Film formation temperature 25 ° C. Further, the oxygen permeability was measured at 40 ° C. using a gas permeation tester manufactured by Mocon and converted to an oxygen permeability coefficient. Further, ASTM-1 is applied to a direction about the stretching axis direction (X, Y) and a direction about the diagonal direction (45 °) between the stretching axes.
An 822 type dumbbell was cut out, and a tensile stress-strain curve was obtained using a tensile tester manufactured by ORIENTEC. Table 5 shows the obtained results.

【0072】[比較例7]ポリ乳酸を押し出し機を用
い、スクリュー部のC1〜C4温度を190℃〜200
℃、Tダイ温度を190℃とした、200mm幅、2m
m厚のシートを成形した。その後、加熱オーブンを用
い、65℃〜75℃に再加熱し、改造したテンター式二
軸延伸機を用い、3×3倍の二軸延伸を行った(平均肉
厚:200μm)。この場合、初期の延伸速度を10m
/minとし、所定の延伸倍率に至るまで延伸速度を
0.05m/minに段階的に減速した。上記延伸シー
トを用い、Mocon社製ガス透過試験機を用い、40
℃条件下、酸素透係数を測定し、酸素透過係数に換算し
た。更に、延伸軸方向(X,Y)を軸とする方向、及
び、延伸二軸のなす対角方向(45°)を軸とする方向
にそれぞれASTM−1822型ダンベルを切り出し、
ORIENTEC社製引っ張り試験機にて引っ張り応力
−ひずみ曲線を得た。得られた結果を表5に示した。
[Comparative Example 7] The polylactic acid was extruded by using an extruder, and the C1 to C4 temperature of the screw portion was increased to 190 ° C to 200 ° C.
℃, T die temperature was 190 ℃, 200mm width, 2m
An m-thick sheet was formed. Then, it was reheated to 65 ° C. to 75 ° C. using a heating oven, and 3 × 3 times biaxial stretching was performed using a modified tenter-type biaxial stretching machine (average wall thickness: 200 μm). In this case, the initial stretching speed is 10 m
/ Min, and the stretching speed was gradually reduced to 0.05 m / min until a predetermined stretching ratio was reached. Using the above stretched sheet, using a gas transmission tester manufactured by Mocon, 40
The oxygen permeability was measured under the condition of ° C., and was converted into the oxygen permeability. Furthermore, ASTM-1822 type dumbbells are cut out in a direction about the stretching axis direction (X, Y) and a direction about the diagonal direction (45 °) formed by the stretching two axes, respectively.
A tensile stress-strain curve was obtained with a tensile tester manufactured by ORIENTEC. Table 5 shows the obtained results.

【0073】[比較例8]ポリ乳酸を射出成形機を用
い、スクリュー部のC1〜C4温度を190℃〜200
℃、Tダイ温度を190℃とした、200mm幅、2m
m厚のシートを成形した。その後、加熱オーブンを用
い、65℃〜75℃に再加熱し、改造したテンター式二
軸延伸機を用い、3×3倍の二軸延伸を行った(平均肉
厚:200μm) この場合、延伸速度を10m/minの一定延伸速度と
した。次に、CVD蒸着装置にて、ボトル形状の電極と
ボトル内部に設置した電極を用い、ボトル内圧力を真空
減圧後、ヘキサン・アルゴン混合ガスを原料ガスとす
る、成膜圧0.1torr、高周波電力13.56MH
zのPE−CVD炭素膜蒸着を行った。成膜温度25
℃。上記延伸シートを用い、Mocon社製ガス透過試
験機を用い、40℃条件下、酸素透過係数を測定し、素
透過係数に換算した。更に、延伸軸方向(X,Y)を軸
とする方向、及び、延伸二軸のなす対角方向(45°)
を軸とする方向にそれぞれASTM−1822型ダンベ
ルを切り出し、ORIENTEC社製引っ張り試験機に
て引っ張り応力−ひずみ曲線を得た。得られた結果を表
5に示した。
[Comparative Example 8] Polylactic acid was used in an injection molding machine, and the C1 to C4 temperature of the screw portion was set to 190 ° C to 200 ° C.
℃, T die temperature was 190 ℃, 200mm width, 2m
An m-thick sheet was formed. Thereafter, the film was reheated to 65 ° C. to 75 ° C. using a heating oven, and 3 × 3 times biaxial stretching was performed using a modified tenter type biaxial stretching machine (average thickness: 200 μm). The speed was a constant stretching speed of 10 m / min. Next, using a bottle-shaped electrode and an electrode placed inside the bottle, the pressure inside the bottle was reduced by vacuum, and a hexane / argon mixed gas was used as a source gas. 13.56MHZ
z-PE-CVD carbon film deposition was performed. Film forming temperature 25
° C. Using the stretched sheet, the oxygen permeability coefficient was measured at 40 ° C. using a gas permeability tester manufactured by Mocon, and converted to the elemental permeability coefficient. Furthermore, a direction having the stretching axis direction (X, Y) as an axis, and a diagonal direction (45 °) formed by the two stretching axes.
ASTM-1822 type dumbbells were cut out in the directions around the axis, and a tensile stress-strain curve was obtained using a tensile tester manufactured by ORIENTEC. Table 5 shows the obtained results.

【0074】[0074]

【表4】 [Table 4]

【0075】[0075]

【表5】 [Table 5]

【0076】[0076]

【発明の効果】本発明によれば、初期の延伸速度が大き
く且つ終期の延伸速度が小さくする延伸速度に負の勾配
を設けた二軸延伸操作を行うことにより、脂肪族ポリエ
ステルの延伸成形物の強度特性が前記式(1)を満足す
る範囲にあって機械的強度の異方性が解消乃至低減さ
れ、しかもこの異方性の改善が配向度(Do)が0.1
5以上という領域で達成される。本発明の延伸成形体か
らなる容器は、耐座屈性や耐落下衝撃性に優れていると
共に、膨張収縮や変形による割れに対しても有効に防止
されている利点を有する。更に、この脂肪族ポリエステ
ル延伸成形体に、化学蒸着法(CVD)により硬質炭素
膜を形成させることにより、耐気体透過性を向上させ、
しかも低分子有機成分の収着をも抑制することができ
る。
According to the present invention, a stretch molded product of an aliphatic polyester is obtained by performing a biaxial stretching operation in which the initial stretching speed is high and the final stretching speed is low and the stretching speed is provided with a negative gradient. Is in a range satisfying the above formula (1), the anisotropy of the mechanical strength is eliminated or reduced, and the improvement of the anisotropy is caused by the degree of orientation (Do) of 0.1.
Achieved in the region of 5 or more. The container made of the stretch molded article of the present invention has an advantage that it is excellent in buckling resistance and drop impact resistance, and is effectively prevented from being cracked due to expansion / contraction or deformation. Further, by forming a hard carbon film on the aliphatic polyester stretched molded article by chemical vapor deposition (CVD), the gas permeation resistance is improved,
In addition, the sorption of low molecular organic components can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脂肪族ポリエステル延伸成形体についての各種
延伸成形品について得られた延伸倍率(軸方向延伸倍
率、面積延伸倍率)と配向結晶化度(Do)との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the draw ratio (axial draw ratio, area draw ratio) and the orientation crystallinity (Do) obtained for various stretch-formed products of an aliphatic polyester stretch-formed product.

【図2】無配向の脂肪族ポリエステルの13C広幅NM
Rスペクトルパターンを示した。
FIG. 2: 13 C wide NM of unoriented aliphatic polyester
The R spectrum pattern was shown.

【図3】配向軸とNMRの静磁場方向とが直角方向にな
る場合の脂肪族ポリエステルの 13C広幅NMRスペク
トルパターンを示した。
FIG. 3 shows that the orientation axis is perpendicular to the direction of the static magnetic field of NMR.
When the aliphatic polyester 13C wide NMR spec
A tor pattern was shown.

【図4】配向軸とNMRの静磁場方向とが平行方向にし
た場合の脂肪族ポリエステルの 13C広幅NMRスペク
トルパターンを示した。
FIG. 4 shows that the orientation axis is parallel to the direction of the static magnetic field of NMR.
When the aliphatic polyester 13C wide NMR spec
A tor pattern was shown.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 7:00 9:00 Fターム(参考) 3E033 AA08 BA17 BB04 BB05 BB08 EA10 FA02 FA03 GA02 GA03 4F100 AA37B AA37C AK41A BA02 BA03 BA06 BA10A BA10B BA10C EH66B EH66C EH662 EJ38 EJ381 GB16 JA05A JA11A JC00 JD02 JK02A JK10 JK20 JM02B JM02C YY00A 4F208 AA24C AE01 AG01 AG03 AG07 LA02 LB01 LN28 4F210 AA24C AE01 AG01 AG03 AG07 AR08 QC05 QC07 QD25 QG01 QG18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B29L 7:00 9:00 F term (Reference) 3E033 AA08 BA17 BB04 BB05 BB08 EA10 FA02 FA03 GA02 GA03 4F100 AA37B AA37C AK41A BA02 BA03 BA06 BA10A BA10B BA10C EH66B EH66C EH662 EJ38 EJ381 GB16 JA05A JA11A JC00 JD02 JK02A JK10 JK20 JM02B JM02C YY00A 4F208 AA24C AE01 AG01 AG03 AG07 LA02 LB01 L0728AG01A07Q01 AG01 QN04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 脂肪族ポリエステルを主体とする樹脂の
予備成形体を二軸延伸成形することからなる脂肪族ポリ
エステル延伸成形体の製法において、予備成形体の二軸
延伸を、初期の延伸速度が大きく且つ終期の延伸速度が
小さくなるように延伸速度に負の勾配を設けて成形する
ことを特徴とする延伸成形体の製法。
In a method for producing an aliphatic polyester stretched molded article, which comprises biaxially stretching a preformed article of a resin mainly composed of an aliphatic polyester, the biaxial stretching of the preformed article is performed at an initial stretching speed. A method for producing a stretch-molded article, characterized in that molding is performed while providing a negative gradient in the stretching speed so that the stretching speed is large and the final stretching speed is low.
【請求項2】 形成される脂肪族ポリエステル延伸成形
体の少なくとも一方の表面に化学蒸着法により硬質炭素
膜を形成することを特徴とする延伸成形体の製法。
2. A method for producing a stretch molded article, comprising forming a hard carbon film on at least one surface of the formed aliphatic polyester stretch molded article by a chemical vapor deposition method.
【請求項3】 脂肪族ポリエステルを主体とする樹脂か
ら形成された延伸成形体であって、下記式(1) T45≦Tx ‥(1) 式中、Txは成形体の二軸延伸方向の引張降伏点強度
(MPa)であり、T45は成形体の延伸方向に対して
45゜方向の引張降伏点強度(MPa)である、で表さ
れる強度特性を有することを特徴とする脂肪族ポリエス
テル延伸成形体。
3. A stretched molded article formed from a resin mainly composed of an aliphatic polyester, the following equation (1) T in 45 ≦ Tx ‥ (1) formula, Tx is biaxially oriented direction of the molded body Aliphatic having a tensile yield point strength (MPa), wherein T 45 is a tensile yield point strength (MPa) in a direction of 45 ° with respect to the stretching direction of the molded article, Polyester stretch molded article.
【請求項4】 下記式(2) Do=(S−Sa)/S ‥(2) 式中、Sは成形体試料を13C広幅NMRで測定したと
きの化学シフト100乃至300ppmのピーク面積を
表し、Saは前記試料の非晶質粉末について上記と同様
に測定したときのNMRスペクトルのピーク面積を表
す、で定義される配向結晶化度(Do)が0.15以上
であることを特徴とする請求項3記載の延伸成形体。
4. The following formula (2): Do = (S—Sa) / S ‥ (2) In the formula, S represents a peak area of 100 to 300 ppm of chemical shift when a molded sample is measured by 13 C wide-area NMR. Wherein Sa represents the peak area of an NMR spectrum when the amorphous powder of the sample is measured in the same manner as described above, and the degree of orientational crystallinity (Do) is 0.15 or more. The stretch molded article according to claim 3, wherein
【請求項5】 脂肪族ポリエステルがガラス転移点(T
g)が−60℃以上の脂肪族ポリエステルであることを
特徴とする請求項3または4に記載の延伸成形体。
5. An aliphatic polyester having a glass transition point (T
The stretch molded article according to claim 3 or 4, wherein g) is an aliphatic polyester having a temperature of -60 ° C or higher.
【請求項6】 脂肪族ポリエステルがポリヒドロキシア
ルカノエートであることを特徴とする請求項3または4
に記載の延伸成形体。
6. The method according to claim 3, wherein the aliphatic polyester is a polyhydroxyalkanoate.
The stretched molded article according to the above.
【請求項7】 脂肪族ポリエステル延伸成形体の少なく
とも一方の表面に硬質炭素膜が形成されていることを特
徴とする請求項3乃至6の何れかに記載の延伸成形体。
7. The stretched molded article according to claim 3, wherein a hard carbon film is formed on at least one surface of the aliphatic polyester stretched molded article.
【請求項8】 請求項3乃至7の何れかに記載の延伸成
形体からなることを特徴とする包装容器。
8. A packaging container comprising the stretched molded article according to claim 3.
JP19358599A 1999-07-07 1999-07-07 Aliphatic polyester stretch-molded object and production thereof Pending JP2001018290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19358599A JP2001018290A (en) 1999-07-07 1999-07-07 Aliphatic polyester stretch-molded object and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19358599A JP2001018290A (en) 1999-07-07 1999-07-07 Aliphatic polyester stretch-molded object and production thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005340090A Division JP4158800B2 (en) 2005-11-25 2005-11-25 Aliphatic polyester cup

Publications (1)

Publication Number Publication Date
JP2001018290A true JP2001018290A (en) 2001-01-23

Family

ID=16310440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19358599A Pending JP2001018290A (en) 1999-07-07 1999-07-07 Aliphatic polyester stretch-molded object and production thereof

Country Status (1)

Country Link
JP (1) JP2001018290A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274521A (en) * 2001-03-16 2002-09-25 Yoshino Kogyosho Co Ltd Environment-friendly plastic container
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
JP2003226322A (en) * 2001-04-24 2003-08-12 Toyo Seikan Kaisha Ltd Plastic multi-layer container
WO2008149918A1 (en) 2007-06-06 2008-12-11 Toyo Seikan Kaisha, Ltd. Biodegradable resin bottle and process for producing the same
JP2009007039A (en) * 2007-06-28 2009-01-15 Yoshino Kogyosho Co Ltd Polylactic acid resin container provided with gas barrier property
WO2009022526A1 (en) * 2007-08-14 2009-02-19 Toyo Seikan Kaisha, Ltd. Biodegradable resin container having deposited film, and method for formation of deposited film
JP2009542363A (en) * 2006-06-30 2009-12-03 アボット、カーディオバスキュラー、システムズ、インコーポレーテッド Balloon catheter shaft having high strength and flexibility and manufacturing method thereof
WO2013140868A1 (en) 2012-03-21 2013-09-26 東洋製罐グループホールディングス株式会社 Polylactic acid molding provided with deposited film and method for producing same
US9216274B2 (en) 2007-12-17 2015-12-22 Abbott Cardiovascular Systems Inc. Catheter having transitioning shaft segments
US9381325B2 (en) 2008-11-26 2016-07-05 Abbott Cadiovascular Systems, Inc. Robust catheter tubing
US9669196B2 (en) 2008-11-26 2017-06-06 Abbott Cardiovascular Systems, Inc. Robust multi-layer balloon
US9855400B2 (en) 2001-09-19 2018-01-02 Abbott Cardiovascular Systems, Inc. Catheter with a multilayered shaft section having a polyimide layer

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002836A1 (en) * 2001-03-16 2004-01-08 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
US7422780B2 (en) 2001-03-16 2008-09-09 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
JP2002274521A (en) * 2001-03-16 2002-09-25 Yoshino Kogyosho Co Ltd Environment-friendly plastic container
JP2003226322A (en) * 2001-04-24 2003-08-12 Toyo Seikan Kaisha Ltd Plastic multi-layer container
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
US7390543B2 (en) 2001-07-19 2008-06-24 Toyo Seikan Kaisha Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
US9855400B2 (en) 2001-09-19 2018-01-02 Abbott Cardiovascular Systems, Inc. Catheter with a multilayered shaft section having a polyimide layer
US10245352B2 (en) 2006-06-30 2019-04-02 Abbott Cardiovascular Systems Inc. Catheter shaft having high strength and flexibility
US9968713B2 (en) 2006-06-30 2018-05-15 Abbott Cardiovascular Systems Inc. Balloon catheter shaft having high strength and flexibility
JP2009542363A (en) * 2006-06-30 2009-12-03 アボット、カーディオバスキュラー、システムズ、インコーポレーテッド Balloon catheter shaft having high strength and flexibility and manufacturing method thereof
US9205223B2 (en) 2006-06-30 2015-12-08 Abbott Cardiovascular Systems Inc Balloon catheter shaft having high strength and flexibility
US9056190B2 (en) 2006-06-30 2015-06-16 Abbott Cardiovascular Systems Inc. Balloon catheter tapered shaft having high strength and flexibility and method of making same
WO2008149918A1 (en) 2007-06-06 2008-12-11 Toyo Seikan Kaisha, Ltd. Biodegradable resin bottle and process for producing the same
US8470421B2 (en) 2007-06-06 2013-06-25 Toyo Seikan Kaisha, Ltd. Biodegradable resin bottle and method of producing the same
JP5136551B2 (en) * 2007-06-06 2013-02-06 東洋製罐株式会社 Biodegradable resin bottle and method for producing the same
JP2009007039A (en) * 2007-06-28 2009-01-15 Yoshino Kogyosho Co Ltd Polylactic acid resin container provided with gas barrier property
CN101778719B (en) * 2007-08-14 2013-05-01 东洋制罐株式会社 Biodegradable resin container having deposited film, and method for formation of deposited film
JP5321459B2 (en) * 2007-08-14 2013-10-23 東洋製罐株式会社 Biodegradable resin container provided with vapor deposition film and method for forming vapor deposition film
KR101420473B1 (en) 2007-08-14 2014-07-16 도요세이칸 그룹 홀딩스 가부시키가이샤 Biodegradable resin container having deposited film, and method for formation of deposited film
US8950614B2 (en) 2007-08-14 2015-02-10 Toyo Seikan Kaisha, Ltd. Biodegradable resin container with a vacuum-evaporated film and method of forming a vacuum-evaporated film
CN101778719A (en) * 2007-08-14 2010-07-14 东洋制罐株式会社 Biodegradable resin container having deposited film, and method for formation of deposited film
WO2009022526A1 (en) * 2007-08-14 2009-02-19 Toyo Seikan Kaisha, Ltd. Biodegradable resin container having deposited film, and method for formation of deposited film
US9216274B2 (en) 2007-12-17 2015-12-22 Abbott Cardiovascular Systems Inc. Catheter having transitioning shaft segments
US9468744B2 (en) 2007-12-17 2016-10-18 Abbott Cardiovascular Systems Inc. Catheter having transitioning shaft segments
US9381325B2 (en) 2008-11-26 2016-07-05 Abbott Cadiovascular Systems, Inc. Robust catheter tubing
US9669196B2 (en) 2008-11-26 2017-06-06 Abbott Cardiovascular Systems, Inc. Robust multi-layer balloon
US9539368B2 (en) 2008-11-26 2017-01-10 Abbott Cardiovascular Systems, Inc. Robust catheter tubing
US9845175B2 (en) 2012-03-21 2017-12-19 Toyo Seikan Group Holdings, Ltd. Polylactic acid formed body having a vapor-deposited film and method of producing the same
WO2013140868A1 (en) 2012-03-21 2013-09-26 東洋製罐グループホールディングス株式会社 Polylactic acid molding provided with deposited film and method for producing same

Similar Documents

Publication Publication Date Title
EP0925915B1 (en) Gas-barrier, multi-layer hollow container
US6001439A (en) Stretch blow molded container and production process thereof
JP4294475B2 (en) Biaxial stretch blow thermoset container and method for manufacturing the same
JP2001018290A (en) Aliphatic polyester stretch-molded object and production thereof
KR20200063270A (en) Process for producing an oriented film comprising poly(ethylene-2,5-furandicarboxylate
AU2005258308A1 (en) Injection stretch blow molding process using polylactide resins
EP0806283B1 (en) Stretch blow molded container and production process thereof
US9095997B2 (en) Multi-layer polyester container and method of producing the same
JPH10138371A (en) Multilayer hollow container of gas barrier property
US8012553B2 (en) Biodegradable stretch mold container having excellent heat resistance
AU2021347979A1 (en) Biodegradable containers and resin therefor
JPH10337772A (en) Stretching blown container and its manufacture
JPS58160344A (en) Hollow polyester molding having excellent gas barrier properties
JP4158800B2 (en) Aliphatic polyester cup
WO2003006535A1 (en) Molded polyglycolic acid
JP2001354223A (en) Container made of aliphatic polyester
WO1998013266A9 (en) Transparent oxygen-scavenging article including biaxially-oriented polyester
CN114206999B (en) Heat-shrinkable polyester film
JP4285016B2 (en) Flat polyester stretch molding
JPH03122116A (en) Copolymer polyethylene terephthalate and use thereof
JP4348960B2 (en) POLYESTER RESIN COMPOSITION, EXTENDED MOLDED BODY, AND METHOD FOR PRODUCING EXTENDED MOLDED BODY
JP2002201293A (en) Stretched and molded container
AU2021347248A1 (en) Pre-forms for making biodegradable containers and resin therefor
AU710677B2 (en) Transparent oxygen-scavenging article including biaxially-oriented polyester
JP2019182472A (en) Polylactic acid container and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051222

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060203