JP2001016878A - Actuator and drive method therefor - Google Patents

Actuator and drive method therefor

Info

Publication number
JP2001016878A
JP2001016878A JP11185197A JP18519799A JP2001016878A JP 2001016878 A JP2001016878 A JP 2001016878A JP 11185197 A JP11185197 A JP 11185197A JP 18519799 A JP18519799 A JP 18519799A JP 2001016878 A JP2001016878 A JP 2001016878A
Authority
JP
Japan
Prior art keywords
displacement element
displacement
frequency
driving
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11185197A
Other languages
Japanese (ja)
Inventor
Takashi Matsuo
隆 松尾
Shinya Matsuda
伸也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP11185197A priority Critical patent/JP2001016878A/en
Priority to US09/591,622 priority patent/US6713943B1/en
Publication of JP2001016878A publication Critical patent/JP2001016878A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate control by ensuring that a drive unit drives a first displacement element and a second displacement element by the drive signal of a single frequency contained in a region, where a first frequency region and a second frequency region overlap with each other. SOLUTION: When a first piezoelectric element and a second piezoelectric element are driven at a frequency f1, where the phase difference between the voltage and current of the first piezoelectric element and the phase difference between the voltage and current of the second piezoelectric element are equal to each other, a region where the phase difference between voltage and current is substantially constant with respect to the first piezoelectric element and a region, where the phase difference between voltage and current is substantially constant with respect to the second piezoelectric element overlap with each other. Therefore, by taking f1 to be the frequency of a drive signal and the phase difference to be 90 deg. and inputting them to the first piezoelectric element and the second piezoelectric element, respectively, the phase difference of the currents passed through the mechanical arms of the first piezoelectric element and the second piezoelectric element can be set to 90 deg., and the locus of a chip material is made almost circular. Thus the drive speed, drive direction, drive force, and the like of a member to be driven can be controlled readily.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電素子等の変位
素子を用いたアクチュエータ、例えば複数の変位素子の
変位を合成して楕円運動を発生させるトラス型アクチュ
エータにおいて、共振現象を利用して変位を拡大して駆
動する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an actuator using a displacement element such as a piezoelectric element, for example, a truss-type actuator which generates an elliptical motion by synthesizing displacements of a plurality of displacement elements. And a method of driving by enlarging.

【0002】[0002]

【従来の技術】従来より、圧電素子等の変位素子をチッ
プ部材を介して互いに直交するように配置し、各変位素
子を位相が異なる駆動信号で駆動して、チップ部材を楕
円形の軌跡を描くように駆動するトラス型アクチュエー
タが知られている。ところで、圧電素子はその変位量が
小さいため、圧電素子を用いたアクチュエータを効率良
く駆動するためには、共振現象を用いて駆動することが
好ましい。
2. Description of the Related Art Conventionally, a displacement element such as a piezoelectric element is arranged so as to be orthogonal to each other via a chip member, and each displacement element is driven by a drive signal having a different phase so that the chip member is moved along an elliptical locus. A truss-type actuator that drives to draw is known. By the way, since the displacement of the piezoelectric element is small, in order to efficiently drive an actuator using the piezoelectric element, it is preferable to drive the actuator using a resonance phenomenon.

【0003】圧電素子は電気的にコンデンサと等価であ
るため、駆動信号の周波数が共振周波数に近づくと、供
給する電圧と流れる電流の位相差が変化する。圧電素子
の変位量は電流と等価関係にあるため、2つの圧電素子
の共振周波数にずれが存在すると、駆動信号に与えた位
相差が正確に軌跡形状に反映されず、また、駆動する周
波数によっては2つの圧電素子の変位量に差が生ずるの
で、チップ部材の軌跡の形状が目的通りにはならない。
[0003] Since the piezoelectric element is electrically equivalent to a capacitor, when the frequency of the drive signal approaches the resonance frequency, the phase difference between the supplied voltage and the flowing current changes. Since the displacement of the piezoelectric element is equivalent to the current, if there is a deviation in the resonance frequency of the two piezoelectric elements, the phase difference given to the drive signal will not be accurately reflected on the trajectory shape. Since a difference occurs between the displacement amounts of the two piezoelectric elements, the shape of the trajectory of the chip member does not become as intended.

【0004】このような問題を解決するために、例えば
特開昭63−110970号公報に記載された技術(こ
の先行技術は進行波型超音波モータに関するものであ
る)を応用し、2つの圧電素子に流れる機械腕電流(図
11参照)を検出し、その振幅が所定値となるように電
圧振幅を制御し、電流の位相が所定値(例えば90度)
となるように入力電圧の位相差を制御してチップ部材の
軌跡を所定の楕円形(円形)にする方法が考えられる。
In order to solve such a problem, for example, a technique described in Japanese Patent Application Laid-Open No. 63-110970 (this prior art relates to a traveling wave type ultrasonic motor) is applied, and two piezoelectric elements are used. A mechanical arm current (see FIG. 11) flowing through the element is detected, the voltage amplitude is controlled so that the amplitude becomes a predetermined value, and the phase of the current becomes a predetermined value (for example, 90 degrees).
A method of controlling the phase difference of the input voltage so as to make the trajectory of the chip member a predetermined ellipse (circle) can be considered.

【0005】圧電素子の等価回路を図11に示す。圧電
素子の変位量は機械腕側の電流値に比例するが、実際に
電流値を検出するのは抵抗Raの両端の電圧からである
ので、電気腕側に流れる電流を差し引く必要がある。電
気腕側の静電容量Cはあらかじめ計測により求めておく
ことができ、その値はほとんど変化せずほぼ一定とみな
すことができる。圧電素子に供給される駆動信号の電圧
から電気腕側に流れる電流値を求めることができるの
で、上記抵抗Raに流れる電流値から電気腕側に流れる
電流値を差し引くことにより、機械腕側に流れる電流値
がわかる。
FIG. 11 shows an equivalent circuit of a piezoelectric element. Although the amount of displacement of the piezoelectric element is proportional to the current value on the mechanical arm side, the current value is actually detected from the voltage at both ends of the resistor Ra, so it is necessary to subtract the current flowing on the electric arm side. The capacitance C on the electric arm side can be obtained in advance by measurement, and its value hardly changes and can be regarded as substantially constant. The current value flowing to the electric arm side can be obtained from the voltage of the drive signal supplied to the piezoelectric element, so that the current value flowing to the electric arm side is subtracted from the current value flowing to the resistor Ra to flow to the mechanical arm side. The current value is known.

【0006】また、上記応用例(従来例としては実在せ
ず)の駆動回路のブロック構成を図12に示す。図12
において、発振器50は、環境の変化等による共振周波
数の変化に追従可能なように発振周波数可変であり、所
定周波数の正弦波信号を発生(発振)する。位相制御部
51は、被駆動部材であるロータ40の回転速度、駆動
トルク、回転方向等に応じて遅延回路52を制御し、位
相のずれた正弦波信号を発生する。振幅制御部53は第
1増幅器54及び第2増幅器55を制御して、互いに位
相のずれた2つの正弦波信号の振幅を増幅する。第1増
幅器54及び第2増幅器55により増幅された正弦波信
号は、それぞれ第1圧電素子10及び第2圧電素子1
0’に印加され、第1圧電素子10及び第2圧電素子1
0’が駆動される。第1電流検出器56及び第2電流検
出器57は、それぞれ第1圧電素子10及び第2圧電素
子10’の機械腕に流れる電流を検出し、検出結果であ
る電流信号を位相制御部51及び振幅制御部53に入力
する。位相制御部51は、第1電流検出器56及び第2
電流検出器57により検出された電流信号から第1圧電
素子10及び第2圧電素子10’の機械腕に流れる電流
の位相差を検出し、電流の位相差が所定値となるように
遅延回路52を制御する。また、振幅制御部53は、第
1電流検出器56及び第2電流検出器57により検出さ
れた電流信号から第1圧電素子10及び第2圧電素子1
0’の機械腕に流れる電流の振幅を検出し、各電流の振
幅が所定値となるように第1増幅器54及び第2増幅器
55を制御する。
FIG. 12 shows a block configuration of a drive circuit of the above-mentioned application example (which does not exist as a conventional example). FIG.
In, the oscillator 50 is variable in oscillation frequency so as to be able to follow a change in resonance frequency due to a change in environment or the like, and generates (oscillates) a sine wave signal of a predetermined frequency. The phase control unit 51 controls the delay circuit 52 according to the rotation speed, drive torque, rotation direction, and the like of the rotor 40, which is a driven member, and generates a sine wave signal with a phase shift. The amplitude controller 53 controls the first amplifier 54 and the second amplifier 55 to amplify the amplitudes of the two sinusoidal signals that are out of phase with each other. The sine wave signals amplified by the first amplifier 54 and the second amplifier 55 are respectively connected to the first piezoelectric element 10 and the second piezoelectric element 1.
0 ′, the first piezoelectric element 10 and the second piezoelectric element 1
0 'is driven. The first current detector 56 and the second current detector 57 detect currents flowing through the mechanical arms of the first piezoelectric element 10 and the second piezoelectric element 10 ′, respectively, and convert the detected current signals into phase control units 51 and It is input to the amplitude controller 53. The phase control unit 51 includes a first current detector 56 and a second current detector 56.
The phase difference between the currents flowing through the mechanical arms of the first piezoelectric element 10 and the second piezoelectric element 10 'is detected from the current signal detected by the current detector 57, and the delay circuit 52 is set so that the phase difference between the currents becomes a predetermined value. Control. In addition, the amplitude control unit 53 converts the current signals detected by the first current detector 56 and the second current detector 57 into the first piezoelectric element 10 and the second piezoelectric element 1.
The amplitude of the current flowing through the mechanical arm of 0 'is detected, and the first amplifier 54 and the second amplifier 55 are controlled so that the amplitude of each current becomes a predetermined value.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記応
用例によれば、第1圧電素子10及び第2圧電素子1
0’の機械腕に流れる電流の位相及び振幅を検出し、位
相及び振幅がそれぞれ所定値となるように制御しなけれ
ばならず、制御が複雑である。また、可変遅延回路や可
変増幅器を必要とし、制御回路の構成が複雑となり、コ
ストアップの要因となる。
However, according to the above-described application, the first piezoelectric element 10 and the second piezoelectric element 1
The phase and the amplitude of the current flowing through the mechanical arm of 0 'must be detected and controlled so that the phase and the amplitude each become a predetermined value, and the control is complicated. In addition, a variable delay circuit and a variable amplifier are required, and the configuration of the control circuit becomes complicated, which causes an increase in cost.

【0008】本発明は、上記問題点を解決するためにな
されたものであり、構造が簡単で、制御が容易で、かつ
駆動効率の高いアクチュエータ及びその駆動方法を提供
することを目的としている。
The present invention has been made to solve the above problems, and has as its object to provide an actuator having a simple structure, easy control, and high driving efficiency, and a driving method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のアクチュエータは、少なくとも第1変位素
子及び第2変位素子と、第1変位素子及び第2変位素子
の先端部にそれぞれ結合され、各変位素子の変位を合成
するための変位合成部と、変位合成部が楕円運動を行う
ように各変位素子を駆動する駆動部とを含み、第1変位
素子の共振周波数と反共振周波数との間であって、第1
変位素子に供給される駆動信号の電圧と第1変位素子に
流れる電流の位相差がほぼ一定の領域を第1周波数領域
とし、第2変位素子の共振周波数と反共振周波数との間
であって、第2変位素子に供給される駆動信号の電圧と
第2変位素子に流れる電流の位相差がほぼ一定の領域を
第2周波数領域として、前記駆動部は、第1周波数領域
と第2周波数領域とが重複する領域に含まれる一つの周
波数の駆動信号で第1変位素子及び第2変位素子を駆動
することを特徴とする。
In order to achieve the above object, an actuator according to the present invention is connected to at least a first displacement element and a second displacement element, and a tip of each of the first displacement element and the second displacement element. A displacement synthesizer for synthesizing the displacements of the respective displacement elements, and a driver for driving the respective displacement elements such that the displacement synthesizer performs an elliptical motion. The resonance frequency and the anti-resonance frequency of the first displacement element are included. Between the first
An area where the phase difference between the voltage of the drive signal supplied to the displacement element and the current flowing through the first displacement element is substantially constant is defined as the first frequency area, and is between the resonance frequency and the anti-resonance frequency of the second displacement element. The driving unit includes a region where the phase difference between the voltage of the drive signal supplied to the second displacement element and the current flowing through the second displacement element is substantially constant, as a second frequency region. The first displacement element and the second displacement element are driven by a drive signal of one frequency included in the region where the first displacement element and the second displacement element are overlapped.

【0010】上記構成において、前記一つの周波数は、
第1変位素子と第2変位素子の共振周波数のうち周波数
の低い第1周波数と第1変位素子と第2変位素子の反共
振周波数のうち周波数の高い第2周波数の中央値の周波
数であることが好ましい。
In the above configuration, the one frequency is:
The median frequency of a first frequency having a low frequency among the resonance frequencies of the first displacement element and the second displacement element and a second frequency having a high frequency among the anti-resonance frequencies of the first displacement element and the second displacement element. Is preferred.

【0011】また、第1変位素子を駆動する駆動信号と
第2変位素子を駆動する駆動信号に所定の位相差を設け
ることが好ましい。
It is preferable that a predetermined phase difference is provided between a drive signal for driving the first displacement element and a drive signal for driving the second displacement element.

【0012】また、本発明の別のアクチュエータは、少
なくとも第1変位素子及び第2変位素子と、第1変位素
子及び第2変位素子の先端部にそれぞれ結合され、各変
位素子の変位を合成するための変位合成部と、変位合成
部が楕円運動を行うように各変位素子を駆動する駆動部
を含み、前記駆動部は、第1変位素子と第2変位素子の
共振周波数付近の周波数領域において、第1変位素子と
第2変位素子の変位量が等しくなる周波数で第1変位素
子及び第2変位素子を駆動することを特徴とする。
Further, another actuator of the present invention is coupled to at least the first displacement element and the second displacement element, and to the distal ends of the first displacement element and the second displacement element, respectively, and synthesizes displacements of the respective displacement elements. And a drive unit for driving each displacement element so that the displacement synthesis unit performs an elliptical motion, wherein the drive unit operates in a frequency region near the resonance frequency of the first displacement element and the second displacement element. Driving the first displacement element and the second displacement element at a frequency at which the displacement amounts of the first displacement element and the second displacement element are equal.

【0013】上記構成において、第1変位素子に流れる
電流と第2変位素子に流れる電流の位相差が所定値とな
るように、第1変位素子を駆動する駆動信号と第2変位
素子を駆動する駆動信号に所定の位相差を設けることが
好ましい。
In the above configuration, the drive signal for driving the first displacement element and the drive signal for driving the second displacement element are set such that the phase difference between the current flowing through the first displacement element and the current flowing through the second displacement element becomes a predetermined value. It is preferable to provide a predetermined phase difference to the drive signal.

【0014】また、上記各構成において、第1変位素子
及び第2変位素子に流れる電流を検出する電流検出部を
さらに具備することが好ましい。
[0014] In each of the above-described configurations, it is preferable that a current detecting unit for detecting a current flowing through the first displacement element and the second displacement element is further provided.

【0015】一方、本発明のアクチュエータの駆動方法
は、少なくとも第1変位素子及び第2変位素子と、第1
変位素子及び第2変位素子の先端部にそれぞれ結合さ
れ、各変位素子の変位を合成するための変位合成部とを
含み、変位合成部が楕円運動を行うように各変位素子を
駆動する駆動方法であって、第1変位素子の共振周波数
と反共振周波数との間であって、第1変位素子に供給さ
れる駆動信号の電圧と第1変位素子に流れる電流の位相
差がほぼ一定の領域を第1周波数領域とし、第2変位素
子の共振周波数と反共振周波数との間であって、第2変
位素子に供給される駆動信号の電圧と第2変位素子に流
れる電流の位相差がほぼ一定の領域を第2周波数領域と
して、第1周波数領域と第2周波数領域とが重複する領
域に含まれる一つの周波数の駆動信号で第1変位素子及
び第2変位素子を駆動することを特徴とする。
On the other hand, the method of driving an actuator according to the present invention comprises at least a first displacement element and a second displacement element;
A displacement combining unit coupled to the distal ends of the displacement element and the second displacement element, respectively, for combining displacements of the respective displacement elements, wherein the displacement combining unit drives the respective displacement elements such that the displacement combining unit performs an elliptic motion. Wherein the phase difference between the voltage of the drive signal supplied to the first displacement element and the current flowing through the first displacement element is substantially constant between the resonance frequency and the antiresonance frequency of the first displacement element. Is defined as a first frequency region, and the phase difference between the voltage of the drive signal supplied to the second displacement element and the current flowing through the second displacement element is substantially between the resonance frequency and the antiresonance frequency of the second displacement element. The first displacement element and the second displacement element are driven by a drive signal of one frequency included in an area where the first frequency area and the second frequency area overlap each other, with a certain area as a second frequency area. I do.

【0016】上記構成において、前記一つの周波数は、
第1変位素子と第2変位素子の共振周波数のうち周波数
の低い第1周波数と第1変位素子と第2変位素子の反共
振周波数のうち周波数の高い第2周波数の中央値である
ことが好ましい。
In the above configuration, the one frequency is:
It is preferable that the center frequency is a median value of a first frequency having a low frequency among the resonance frequencies of the first displacement element and the second displacement element and a second frequency having a high frequency among the anti-resonance frequencies of the first displacement element and the second displacement element. .

【0017】また、第1変位素子を駆動する駆動信号と
第2変位素子を駆動する駆動信号に所定の位相差を設け
ることが好ましい。
It is preferable that a predetermined phase difference is provided between the drive signal for driving the first displacement element and the drive signal for driving the second displacement element.

【0018】また、本発明の別のアクチュエータの駆動
方法は、少なくとも第1変位素子及び第2変位素子と、
第1変位素子及び第2変位素子の先端部にそれぞれ結合
され、各変位素子の変位を合成するための変位合成部と
を含み、変位合成部が楕円運動を行うように各変位素子
を駆動する駆動方法であって、第1変位素子と第2変位
素子の共振周波数付近の周波数領域において、第1変位
素子と第2変位素子の変位量が等しくなる周波数で第1
変位素子及び第2変位素子を駆動することを特徴とす
る。
Further, another driving method of the actuator according to the present invention comprises the steps of: at least a first displacement element and a second displacement element;
A displacement combining unit for combining the displacements of the respective displacement elements, the displacement combining unit driving the respective displacement elements such that the displacement combining unit performs an elliptical motion. In a driving method, in a frequency region near a resonance frequency of a first displacement element and a second displacement element, a first displacement element is driven at a frequency at which displacement amounts of the first displacement element and the second displacement element become equal.
Driving the displacement element and the second displacement element.

【0019】上記構成において、第1変位素子に流れる
電流と第2変位素子に流れる電流の位相差が所定値とな
るように、第1変位素子を駆動する駆動信号と第2変位
素子を駆動する駆動信号に所定の位相差を設けることが
好ましい。
In the above configuration, the drive signal for driving the first displacement element and the second displacement element are driven such that the phase difference between the current flowing through the first displacement element and the current flowing through the second displacement element becomes a predetermined value. It is preferable to provide a predetermined phase difference to the drive signal.

【0020】[0020]

【発明の実施の形態】本発明の一実施形態であるトラス
型アクチュエータについて説明する。まず、本実施形態
において変位素子として用いる積層型圧電素子の構成を
図1に示す。図1に示すように、積層型圧電素子10
は、PZT等の圧電特性を示す複数のセラミック薄板1
1と電極12,13を交互に積層したものであり、各セ
ラミック薄板11と電極12,13とは接着剤等により
固定されている。1つおきに配置された各電極群12及
び13は、それぞれ信号線14,15を介して駆動電源
16に接続されている。信号線14と15の間に所定の
電圧を印加すると、電極12と13に挟まれた各セラミ
ック薄板11には、その積層方向に電界が発生し、その
電界は1つおきに同じ方向である。従って、各セラミッ
ク薄板11は、1つおきに分極の方向が同じになる(隣
り合う2つのセラミック薄板11の分極方向は逆とな
る)ように積層されている。なお、積層型圧電素子10
の両端部には、保護層17が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A truss-type actuator according to one embodiment of the present invention will be described. First, the configuration of a laminated piezoelectric element used as a displacement element in the present embodiment is shown in FIG. As shown in FIG.
Are a plurality of ceramic thin plates 1 exhibiting piezoelectric characteristics such as PZT.
1 and electrodes 12 and 13 are alternately laminated, and each ceramic thin plate 11 and electrodes 12 and 13 are fixed by an adhesive or the like. The alternate electrode groups 12 and 13 arranged alternately are connected to a driving power supply 16 via signal lines 14 and 15, respectively. When a predetermined voltage is applied between the signal lines 14 and 15, an electric field is generated in the laminating direction on each ceramic thin plate 11 sandwiched between the electrodes 12 and 13, and the electric field is in the same direction every other one. . Therefore, the ceramic thin plates 11 are stacked so that the polarization direction of every other ceramic thin plate 11 is the same (the polarization direction of two adjacent ceramic thin plates 11 is opposite). Note that the multilayer piezoelectric element 10
Are provided with protective layers 17 at both ends.

【0021】駆動電源16により直流の駆動電圧を各電
極12と13の間に印加すると、全てのセラミック薄板
11が同方向に伸び又は縮み、圧電素子10全体として
伸縮する。電界が小さく、かつ変位の履歴が無視できる
領域では、各電極12と13の間に発生する電界と圧電
素子10の変位は、ほぼ直線的な関係と見なすことがで
きる。この様子を図2に示す。図中、横軸は電界強度
を、縦軸は歪み率を表す。
When a DC drive voltage is applied between the electrodes 12 and 13 by the drive power supply 16, all the ceramic thin plates 11 expand or contract in the same direction, and the entire piezoelectric element 10 expands and contracts. In a region where the electric field is small and the displacement history can be neglected, the electric field generated between the electrodes 12 and 13 and the displacement of the piezoelectric element 10 can be regarded as a substantially linear relationship. This is shown in FIG. In the figure, the horizontal axis represents the electric field intensity, and the vertical axis represents the distortion rate.

【0022】次に、駆動電源16により交流の駆動電圧
(交流信号)を各電極12と13の間に印加すると、そ
の電界に応じて各セラミック薄板11は同方向に伸縮を
繰り返し、圧電素子10全体として伸縮を繰り返す。圧
電素子10には、その構造や電気的特性により決定され
る固有の共振周波数が存在する。交流の駆動電圧の周波
数が圧電素子10の共振周波数と一致すると、インピー
ダンスが低下し、圧電素子10の変位が増大する。圧電
素子10は、その外形寸法に対して変位が小さいため、
低い電圧で駆動するためには、この共振現象を利用する
ことが望ましい。
Next, when an AC drive voltage (AC signal) is applied between the electrodes 12 and 13 by the drive power supply 16, each ceramic thin plate 11 repeatedly expands and contracts in the same direction in accordance with the electric field. Repeated expansion and contraction as a whole. The piezoelectric element 10 has a unique resonance frequency determined by its structure and electrical characteristics. When the frequency of the AC drive voltage matches the resonance frequency of the piezoelectric element 10, the impedance decreases and the displacement of the piezoelectric element 10 increases. Since the displacement of the piezoelectric element 10 is small with respect to its external dimensions,
In order to drive at a low voltage, it is desirable to use this resonance phenomenon.

【0023】次に、本実施形態のトラス型アクチュエー
タ(以下、単にアクチュエータと称する)の構成を図3
に示す。図3に示すように、2つの変位素子(積層型の
第1圧電素子及び第2圧電素子)10,10’を略直角
に交差させて配置し、それらの交差側端部にチップ部材
(変位合成部)20を接着剤により接合している。一
方、第1及び第2圧電素子10,10’の他端部をベー
ス部材(固定部)30に接着剤により接合している。チ
ップ部材20の材料としては、安定して高い摩擦係数が
得られ、かつ耐摩耗性に優れたタングステン等が好まし
い。ベース部材30の材料としては、製造が容易で、か
つ強度に優れたステンレス鋼等が好ましい。また、接着
剤としては、接着力及び強度に優れたエポキシ系樹脂等
が好ましい。なお、第1圧電素子10及び第2圧電素子
10’は図1に示す圧電素子10と実質的に同一であ
る。ベース部材30はばね41により付勢されており、
ばね41の付勢力によりチップ部材20はロータ40と
が所定の圧力で接触する。
Next, the structure of a truss-type actuator (hereinafter, simply referred to as an actuator) of the present embodiment is shown in FIG.
Shown in As shown in FIG. 3, two displacement elements (laminated first piezoelectric element and second piezoelectric element) 10, 10 'are arranged to intersect at a substantially right angle, and a tip member (displacement) is provided at an intersection side end thereof. (Synthesizing part) 20 is joined by an adhesive. On the other hand, the other ends of the first and second piezoelectric elements 10 and 10 ′ are joined to a base member (fixed portion) 30 by an adhesive. As a material of the tip member 20, tungsten or the like, which can stably obtain a high friction coefficient and has excellent wear resistance, is preferable. The material of the base member 30 is preferably stainless steel or the like, which is easy to manufacture and has excellent strength. Further, as the adhesive, an epoxy resin or the like having excellent adhesive strength and strength is preferable. The first piezoelectric element 10 and the second piezoelectric element 10 'are substantially the same as the piezoelectric element 10 shown in FIG. The base member 30 is biased by a spring 41,
The tip member 20 comes into contact with the rotor 40 at a predetermined pressure by the urging force of the spring 41.

【0024】圧電素子10,10’をそれぞれ所定の位
相差を有する駆動信号で駆動すると、チップ部材20は
楕円形(円形を含む)の軌跡を描くように駆動される。
このチップ部材20を、例えば所定の軸の周りに回転可
能なロータ40の円筒面に押しつけると、チップ部材2
0の楕円運動(円運動を含む)をロータ40の回転運動
に変換することが可能となる。または、チップ部材20
を、例えば棒状部材(図示せず)の平面部に押しつける
ことにより、チップ部材20の楕円運動を棒状部材の直
線運動に変換することが可能となる。ロータ40の材料
としては、アルミニウム等の軽量金属が好ましく、チッ
プ部材20との摩擦による摩耗を防止するため、表面に
アルマイト等の処理を施すことが好ましい。
When the piezoelectric elements 10 and 10 'are each driven by a drive signal having a predetermined phase difference, the chip member 20 is driven so as to draw an elliptical (including circular) locus.
When the tip member 20 is pressed against, for example, the cylindrical surface of the rotor 40 rotatable about a predetermined axis, the tip member 2
It is possible to convert the elliptical motion of 0 (including the circular motion) into the rotational motion of the rotor 40. Alternatively, the tip member 20
Is pressed against, for example, a flat portion of a rod-shaped member (not shown), so that the elliptical motion of the tip member 20 can be converted into a linear motion of the rod-shaped member. As a material of the rotor 40, a lightweight metal such as aluminum is preferable. In order to prevent abrasion due to friction with the tip member 20, it is preferable to apply a treatment such as alumite to the surface.

【0025】次に、アクチュエータによるロータ40の
回転原理について説明する。第1圧電素子10及び第2
圧電素子10’に印加する正弦波電圧の周波数(圧電素
子の駆動周波数)が小さく、チップ部材20の回転速度
が遅い場合、ばね41の付勢力によりアクチュエータ自
体がチップ部材20の変位に追従してしまい、チップ部
材20はロータ40の表面から離反することはなく、ロ
ータ40の表面と接触した状態で往復駆動される。従っ
て、この場合ロータ40を回転させることはできない。
Next, the principle of rotation of the rotor 40 by the actuator will be described. First piezoelectric element 10 and second piezoelectric element 10
When the frequency of the sine wave voltage applied to the piezoelectric element 10 ′ (the driving frequency of the piezoelectric element) is small and the rotation speed of the tip member 20 is low, the actuator itself follows the displacement of the tip member 20 by the urging force of the spring 41. Therefore, the tip member 20 does not separate from the surface of the rotor 40 and is reciprocally driven in a state of being in contact with the surface of the rotor 40. Therefore, in this case, the rotor 40 cannot be rotated.

【0026】これに対して、第1圧電素子10及び第2
圧電素子10’に印加する正弦波電圧の周波数が大き
く、チップ部材20の回転速度が速い場合、ばね41の
付勢力によってはアクチュエータ自体がチップ部材20
の変位に追従できず、チップ部材20がロータ40の表
面から一時的に離反する状態が生まれる。従って、チッ
プ部材20がロータ40の表面に接触している間にチッ
プ部材20を所定方向に移動させ、チップ部材20がロ
ータ40の表面から離反している間に所定方向と反対の
方向に移動させることにより、ロータ40を所定方向に
回転させることができる。この状態を図4に示す。
On the other hand, the first piezoelectric element 10 and the second
When the frequency of the sine wave voltage applied to the piezoelectric element 10 ′ is large and the rotation speed of the tip member 20 is high, the actuator itself may be driven by the biasing force of the spring 41.
, The tip member 20 is temporarily separated from the surface of the rotor 40. Accordingly, the tip member 20 is moved in a predetermined direction while the tip member 20 is in contact with the surface of the rotor 40, and is moved in a direction opposite to the predetermined direction while the tip member 20 is separated from the surface of the rotor 40. By doing so, the rotor 40 can be rotated in a predetermined direction. This state is shown in FIG.

【0027】図4において、(a)及び(e)は第1圧
電素子10及び第2圧電素子10が共に伸び、チップ部
材20がロータ40の表面に接触した状態、(b)は第
1圧電素子10が縮み第2圧電素子10’が伸び、チッ
プ部材20がロータ40の表面から離反した状態、
(c)は第1圧電素子10及び第2圧電素子10が共に
縮み、チップ部材20がロータ40の表面から離反した
状態、(d)は第1圧電素子10が伸び第2圧電素子1
0’が縮んでいるが、チップ部材20がロータ40の表
面に接触した状態を示す。図4からわかるように、チッ
プ部材20がロータ40の表面から離反することによ
り、ロータ40を回転させることができる。なお、チッ
プ部材20をロータ40の表面から離反させるための条
件は、本発明の本質部分とは直接関係がないので、その
説明を省略する。
FIGS. 4A and 4E show a state where the first piezoelectric element 10 and the second piezoelectric element 10 are both extended and the chip member 20 is in contact with the surface of the rotor 40, and FIG. A state in which the element 10 is contracted, the second piezoelectric element 10 ′ is extended, and the tip member 20 is separated from the surface of the rotor 40;
(C) is a state where the first piezoelectric element 10 and the second piezoelectric element 10 are both contracted and the chip member 20 is separated from the surface of the rotor 40, and (d) is a state where the first piezoelectric element 10 is extended and the second piezoelectric element 1
The state where the tip member 20 is in contact with the surface of the rotor 40 is shown in FIG. As can be seen from FIG. 4, the rotor 40 can be rotated by the tip member 20 moving away from the surface of the rotor 40. Note that the conditions for separating the tip member 20 from the surface of the rotor 40 have no direct relation to the essential part of the present invention, and thus the description thereof is omitted.

【0028】次に、第1圧電素子10及び第2圧電素子
10’を駆動するための駆動信号について説明する。互
いに直交する独立した2つの運動を合成すると、その交
点は楕円振動の式(Lissajousの式)に従った軌跡を描
く。本実施形態のアクチュエータにおいても、第1圧電
素子10及び第2圧電素子10’を駆動するための駆動
信号の振幅や位相差を変化させることにより、種々の軌
跡を得ることができる。各駆動信号の振幅を等しくした
場合において、各駆動信号間の位相差を0°、45°、
90°、135°及び180°とした場合の軌跡をそれ
ぞれ図5の(a)〜(e)に示す。
Next, drive signals for driving the first piezoelectric element 10 and the second piezoelectric element 10 'will be described. When two independent motions that are orthogonal to each other are synthesized, the intersection points draw a trajectory according to the equation of elliptical vibration (Lissajous equation). Also in the actuator of the present embodiment, various trajectories can be obtained by changing the amplitude and phase difference of the drive signal for driving the first piezoelectric element 10 and the second piezoelectric element 10 '. When the amplitude of each drive signal is equal, the phase difference between each drive signal is 0 °, 45 °,
Locuses at 90 °, 135 °, and 180 ° are shown in FIGS. 5A to 5E, respectively.

【0029】このように、チップ部材20の軌跡を制御
することにより、ロータ40の回転方向、回転速度、回
転力(トルク)等を制御することができる。具体的に
は、ロータ40に対してその接線方向におけるチップ部
材20の軌跡の径を大きくすれば回転速度が上昇する。
また、ロータ40に対してその法線方向におけるチップ
部材20の軌跡の径を大きくすれば回転力が上昇する。
さらに、位相を反転すれば回転方向を反転させることが
できる。
As described above, by controlling the trajectory of the tip member 20, the rotation direction, the rotation speed, the rotation force (torque) and the like of the rotor 40 can be controlled. Specifically, if the diameter of the trajectory of the tip member 20 in the tangential direction with respect to the rotor 40 is increased, the rotation speed increases.
Further, if the diameter of the trajectory of the tip member 20 in the direction normal to the rotor 40 is increased, the rotational force increases.
Further, if the phase is reversed, the rotation direction can be reversed.

【0030】次に、圧電素子の共振特性について説明す
る。図6中、(a)は圧電素子の駆動信号の周波数(以
下、単に「周波数」とする)の変化に対するインピーダ
ンスの変化を、(b)は周波数の変化に対する入力電圧
と圧電素子の機械腕に流れる電流の位相差の変化を、
(c)は周波数の変化に対する圧電素子の変位量の変化
を表し、それぞれ横軸を周波数とする。
Next, the resonance characteristics of the piezoelectric element will be described. 6A shows a change in impedance with respect to a change in the frequency (hereinafter, simply referred to as “frequency”) of the drive signal of the piezoelectric element, and FIG. 6B shows an input voltage and a mechanical arm of the piezoelectric element with respect to the change in frequency. The change in the phase difference of the flowing current
(C) represents a change in the displacement of the piezoelectric element with respect to a change in the frequency, and the horizontal axis represents the frequency.

【0031】各図の左側から右側に順に注目してゆく。
周波数を徐々に大きくすると、インピーダンスが低下
し、それに伴って圧電素子の変位量が増加する。電圧と
電流の位相差は、通常電流の方が90度進んでいるが、
共振周波数frに近づくと急激に位相差が小さくなる。
周波数が共振周波数frになると、インピーダンスが最
低となり、電圧と電流の位相差が0となる。また、圧電
素子の変位量は最大となる。
Attention is paid in order from the left to the right in each figure.
When the frequency is gradually increased, the impedance decreases, and the displacement of the piezoelectric element increases accordingly. The phase difference between voltage and current is usually 90 degrees ahead of current,
Rapid phase difference becomes smaller when approaching the resonance frequency f r.
When the frequency is the resonance frequency f r, the impedance becomes minimum, the phase difference between the voltage and current is zero. Further, the displacement amount of the piezoelectric element becomes maximum.

【0032】周波数が共振周波数frよりも大きくなる
と、インピーダンスが急激に増加し、電流の位相が電圧
の位相よりも遅れるようになる。一方、圧電素子の変位
量は、共振周波数frの時をピークとして徐々に減少す
る。周波数がさらに大きくなると、電圧と電流の位相差
がほぼ一定となり、安定する周波数領域が存在する。
[0032] When the frequency is greater than the resonance frequency f r, the impedance rapidly increases, the phase of the drive current to lag behind the voltage phase. On the other hand, the amount of displacement of the piezoelectric element gradually decreases as a peak when the resonance frequency f r. As the frequency further increases, the phase difference between the voltage and the current becomes substantially constant, and there is a stable frequency region.

【0033】周波数がさらに大きくなると、電圧と電流
の位相差が小さくなり、反共振周波数fzの時に、両者
の位相差が0となる。このとき、インピーダンスが最大
となる。周波数が反共振周波数fzよりも大きくなる
と、インピーダンスが徐々に減少し、電流の位相が電圧
の位相に対して進むようになり、90度進んだ状態で安
定する。このように、共振周波数frの近傍では、入力
電圧の位相と圧電素子の機械腕に流れる電流の位相の関
係(位相差)が急激に変化することがわかる。
As the frequency further increases, the phase difference between the voltage and the current decreases, and the phase difference between the two becomes zero at the anti-resonance frequency f z . At this time, the impedance becomes maximum. When the frequency becomes higher than the anti-resonance frequency f z , the impedance gradually decreases, and the phase of the current advances with respect to the phase of the voltage. As described above, in the vicinity of the resonance frequency fr , the relationship (phase difference) between the phase of the input voltage and the phase of the current flowing through the mechanical arm of the piezoelectric element rapidly changes.

【0034】次に、一例としてアクチュエータをチップ
部材20が円形の軌跡を描くように駆動する場合を考え
る。第1圧電素子10と第2圧電素子10’の共振周波
数が一致し、かつインピーダンスが揃っていれば、駆動
信号の周波数を共振周波数付近で変化させても、第1圧
電素子10と第2圧電素子10’の変位量、電圧と電流
の位相も同様に変化する。従って、駆動信号の周波数を
共振周波数に一致させ、第1圧電素子10と第2圧電素
子10’に入力する駆動信号の電圧の振幅を等しくし、
かつ位相差を90度に保つだけで、図8(a)左側に示
すようにチップ部材20の軌跡を最大径の円形にするこ
とができる。そのときの駆動信号の様子は同図右側に示
すようになる。
Next, as an example, consider a case where the actuator is driven so that the tip member 20 draws a circular locus. If the resonance frequencies of the first piezoelectric element 10 and the second piezoelectric element 10 ′ match and the impedances are uniform, even if the frequency of the drive signal is changed near the resonance frequency, the first piezoelectric element 10 and the second piezoelectric element 10 ′ are changed. The displacement amount of the element 10 'and the phases of the voltage and the current change similarly. Therefore, the frequency of the drive signal is made equal to the resonance frequency, and the amplitudes of the voltages of the drive signals input to the first piezoelectric element 10 and the second piezoelectric element 10 'are made equal.
Further, only by keeping the phase difference at 90 degrees, the trajectory of the tip member 20 can be made a circle having the maximum diameter as shown on the left side of FIG. The state of the drive signal at that time is as shown on the right side of FIG.

【0035】ところが、実際には圧電素子の製造上のば
らつきや組立時のばらつき等により第1圧電素子10と
第2圧電素子10’の共振周波数やインピーダンスに差
が生じる場合が多い。図7に共振周波数やインピーダン
ス等の特性の異なる2つの圧電素子の共振特性を示す。
図7中、(a)、(b)及び(c)は図6の場合と同様
である。また、実線は第1圧電素子10の共振特性を示
し、破線は第2圧電素子10’の共振特性を表すものと
する。
However, in practice, there are many cases where a difference occurs between the resonance frequency and the impedance of the first piezoelectric element 10 and the second piezoelectric element 10 'due to variations in the manufacture of the piezoelectric elements and variations during the assembly. FIG. 7 shows the resonance characteristics of two piezoelectric elements having different characteristics such as resonance frequency and impedance.
7, (a), (b) and (c) are the same as those in FIG. The solid line indicates the resonance characteristic of the first piezoelectric element 10, and the broken line indicates the resonance characteristic of the second piezoelectric element 10 '.

【0036】図7中実線で示す第1圧電素子10の共振
周波数faに着目すると、第1圧電素子10に関する電
圧と電流の位相差は0であるのに対し、周波数faは第
2圧電素子10’の共振周波数fb以下であるため、第
2圧電素子10’の電流の位相は電圧の位相に対して約
60度進んでいる。
Paying attention to the resonance frequency f a of the first piezoelectric element 10 shown by a solid line in FIG. 7, the phase difference between the voltage and current of the first piezoelectric element 10 is 0, while the frequency f a is the second piezoelectric element 10. 'because it is below the resonance frequency f b of the second piezoelectric element 10' element 10 phase of the current of is proceeding about 60 degrees with respect to the voltage phase.

【0037】このような関係にある第1圧電素子10と
第2圧電素子10’に対し、図8(b)の右側に示すよ
うに第1圧電素子10の駆動信号の電圧の位相が90度
進んだ駆動信号を入力すると、第1圧電素子10と第2
圧電素子10’の電流の位相差は約30度になり、左側
に示すようにチップ部材20の軌跡はアクチュエータの
対称軸方向を長軸とする楕円形となる。逆に、図8
(c)の右側に示すように第2圧電素子10’の駆動信
号の電圧の位相が90度進んだ駆動信号を入力すると、
第1圧電素子10と第2圧電素子10’の電流の位相差
は約150度になり、左側に示すようにチップ部材20
の軌跡はアクチュエータの対称軸方向を短軸とする楕円
形となる。従って、チップ部材20(又はロータ40)
の回転方向によって速度差が生じる。
With respect to the first piezoelectric element 10 and the second piezoelectric element 10 'having such a relationship, the phase of the voltage of the drive signal of the first piezoelectric element 10 is 90 degrees as shown on the right side of FIG. When the advanced drive signal is input, the first piezoelectric element 10 and the second
The phase difference of the current of the piezoelectric element 10 'is about 30 degrees, and the trajectory of the chip member 20 has an elliptical shape whose major axis is the symmetric axis direction of the actuator as shown on the left. Conversely, FIG.
As shown on the right side of (c), when a drive signal in which the phase of the voltage of the drive signal of the second piezoelectric element 10 'is advanced by 90 degrees is input,
The phase difference between the currents of the first piezoelectric element 10 and the second piezoelectric element 10 'is about 150 degrees, and as shown on the left side, the tip member 20
Has an elliptical shape whose minor axis is the axis of symmetry of the actuator. Therefore, the tip member 20 (or the rotor 40)
There is a speed difference depending on the direction of rotation.

【0038】この問題を解決するための第1の方法とし
て、第1圧電素子10の電圧と電流の位相差と第2圧電
素子10’の電圧と電流の位相差が等しくなる周波数f
iで第1圧電素子10及び第2圧電素子10’を駆動す
る。前述のように、圧電素子の共振周波数と反共振周波
数の間に電圧と電流の位相差がほぼ一定となり安定する
領域が存在する。図7(b)に注目すると、第1圧電素
子10に関しての電圧と電流の位相差がほぼ一定の領域
と第2圧電素子10’に関しての電圧と電流の位相差が
ほぼ一定の領域とが周波数fi付近で重複していること
がわかる。
As a first method for solving this problem, a frequency f at which the phase difference between the voltage and the current of the first piezoelectric element 10 and the phase difference between the voltage and the current of the second piezoelectric element 10 'are equal.
The first piezoelectric element 10 and the second piezoelectric element 10 'are driven by i . As described above, there is a region where the phase difference between the voltage and the current is substantially constant between the resonance frequency and the antiresonance frequency of the piezoelectric element and is stable. Paying attention to FIG. 7B, the region where the phase difference between the voltage and the current for the first piezoelectric element 10 is almost constant and the region where the phase difference between the voltage and the current for the second piezoelectric element 10 ′ are almost constant are the frequencies. It can be seen that they overlap near f i .

【0039】従って、駆動信号の周波数をfiとし、位
相差を90度として第1圧電素子10及び第2圧電素子
10’にそれぞれ入力することにより、第1圧電素子1
0と第2圧電素子10’の各機械腕に流れる電流の位相
差を90度とすることができる。なお、第1圧電素子1
0及び第2圧電素子10’の共振周波数fa,fbが異な
るので、周波数fiでは、第1圧電素子10の変位量と
第2圧電素子10’の変位量が若干異なる場合がある。
しかしながら、いずれか一方の共振周波数fa又はfb
駆動する場合と比較して各圧電素子10,10’の変位
量の差は小さいので(図7(c)参照)、チップ部材2
0の軌跡をほぼ円形にすることができ、実用上問題はな
い。
Accordingly, the frequency of the drive signal is set to f i , and the phase difference is set to 90 degrees and input to the first piezoelectric element 10 and the second piezoelectric element 10 ′.
The phase difference between 0 and the current flowing through each mechanical arm of the second piezoelectric element 10 'can be set to 90 degrees. The first piezoelectric element 1
0 and the second piezoelectric element 10 'resonant frequency f a of, since f b are different, the frequencies f i, the displacement amount and the second piezoelectric element 10 of the first piezoelectric element 10' displacement amount of which may vary slightly.
However, since one as compared to the case of driving at the resonance frequency f a or f b difference of the displacement amounts of the piezoelectric elements 10, 10 'it is small (see FIG. 7 (c)), the tip member 2
The locus of 0 can be made substantially circular, and there is no practical problem.

【0040】この第1の方法による駆動回路のブロック
構成を図9に示す。発振器50は周波数可変であり、所
定の周波数で正弦波信号を発生(発振)する。遅延回路
52は、発振器50からの正弦波信号に対して、例えば
位相が90度ずれた正弦波信号を発生する。第1増幅器
54及び第2増幅器55は、それぞれ互いに位相のずれ
た2つの正弦波信号の振幅を増幅し、第1圧電素子10
及び第2圧電素子10’に印加する。第1電流検出器5
6及び第2電流検出器57は、それぞれ第1圧電素子1
0及び第2圧電素子10’の機械腕に流れる電流を検出
し、検出結果である電流信号を発振器50に入力する。
発振器50は、第1電流検出器56及び第2電流検出器
57からの電流信号から、上記第1圧電素子10の電圧
と電流の位相差がほぼ一定の領域と第2圧電素子10’
の電圧と電流の位相差がほぼ一定の領域とが重複してい
る領域を見つけ、駆動周波数fiを決定する。一旦駆動
周波数fiが決定されると、発振器50はその周波数で
発振を続ける。
FIG. 9 shows a block diagram of a drive circuit according to the first method. The oscillator 50 is variable in frequency, and generates (oscillates) a sine wave signal at a predetermined frequency. The delay circuit 52 generates, for example, a sine wave signal whose phase is shifted by 90 degrees with respect to the sine wave signal from the oscillator 50. The first amplifier 54 and the second amplifier 55 amplify the amplitudes of the two sinusoidal signals having phases shifted from each other, respectively.
And the second piezoelectric element 10 '. First current detector 5
6 and the second current detector 57 are respectively connected to the first piezoelectric element 1
The current flowing through the zero and the mechanical arm of the second piezoelectric element 10 ′ is detected, and a current signal as a detection result is input to the oscillator 50.
The oscillator 50 detects a region where the phase difference between the voltage and the current of the first piezoelectric element 10 is substantially constant and the second piezoelectric element 10 ′ based on the current signals from the first current detector 56 and the second current detector 57.
Locate the area where the phase difference between the voltage and current are overlapped and the substantially constant region, determines the driving frequency f i. Once the drive frequency f i is determined, the oscillator 50 will continue to oscillate at that frequency.

【0041】周波数fiを決定する方法としては、発振
器50による発振周波数を徐々に変化させながら、第1
電流検出器56及び第2電流検出器57により検出した
電流と駆動信号の電圧から第1圧電素子10の共振周波
数faと第2圧電素子の反共振周波数fb’を求め、その
中央値に決定してもよい。あるいは、発振器50に撚る
発振周波数を徐々に変化させながら、第1圧電素子10
及び第2圧電素子10’の電圧と電流の位相差がそれぞ
れ最大となる付近の周波数を比較して、共通に含まれる
周波数の中からいずれかの周波数に決定してもよい。
As a method of determining the frequency f i , while gradually changing the oscillation frequency of the oscillator 50, the first
The resonance frequency f a of the first piezoelectric element 10 and the anti-resonance frequency f b ′ of the second piezoelectric element are obtained from the currents detected by the current detector 56 and the second current detector 57 and the voltage of the drive signal, and the median value is obtained. You may decide. Alternatively, while gradually changing the oscillation frequency of the oscillator 50, the first piezoelectric element 10
Alternatively, the frequencies near the phase difference between the voltage and the current of the second piezoelectric element 10 ′ at which the respective phases are maximized may be compared to determine any of the frequencies included in common.

【0042】図12に示す応用例の駆動回路と比較する
と、位相制御部51及び振幅制御部53が不要になり回
路構成が簡単になる。また、駆動信号の電圧の振幅調整
及び位相調整は行わないので制御が簡単になる。さら
に、駆動周波数fi付近は位相が安定しているので、環
境変化による共振周波数の変化が小さければ、あらかじ
め求められた駆動周波数fiで常に駆動しても、位相の
変化はほとんどないので、軌跡を円形に保つことができ
る。その場合、発振器の周波数調整や電流検出器も不要
になり、回路構成がさらに簡略化される。
As compared with the driving circuit of the application example shown in FIG. 12, the phase control unit 51 and the amplitude control unit 53 are not required, and the circuit configuration is simplified. In addition, since the amplitude and phase of the voltage of the drive signal are not adjusted, the control is simplified. Further, since the phase is stable near the driving frequency fi, if the change in the resonance frequency due to the environmental change is small, even if the driving is always performed at the driving frequency fi obtained in advance, there is almost no change in the phase. Can be kept round. In that case, the frequency adjustment of the oscillator and the current detector are not required, and the circuit configuration is further simplified.

【0043】次に、上記問題点を解決するための第2の
方法として、第1圧電素子10の共振周波数faと第2
圧電素子10’の共振周波数fbとの間で、第1圧電素
子10と第2圧電素子10’の変位量が等しくなる周波
数feで第1圧電素子10及び第2圧電素子10’を駆
動する。前述のように、圧電素子の変位量は、駆動周波
数が共振周波数と一致するときに最大となり、その前後
では変位量は減少する。従って、第1圧電素子10の共
振周波数faと第2圧電素子の共振周波数fbの間で、各
圧電素子10,10’の変位量が等しくなる周波数fe
が存在する。各圧電素子10,10’の機械腕にそれぞ
れ流れる電流を検出し、電流値が等しくなる周波数fe
を発見して、その周波数feで駆動すればよい。なお、
駆動周波数f eは各圧電素子10,10’の共振周波数
a及びfbとは異なるので、各圧電素子10,10’の
電流の位相差が90度となるように駆動信号の電圧の位
相差を調節する必要がある。
Next, a second method for solving the above problem will be described.
As a method, the resonance frequency f of the first piezoelectric element 10aAnd the second
The resonance frequency f of the piezoelectric element 10 'bBetween the first piezoelectric element
Frequency at which the displacement amount of the element 10 and the second piezoelectric element 10 'becomes equal.
Number feDrive the first piezoelectric element 10 and the second piezoelectric element 10 '.
Move. As described above, the amount of displacement of the piezoelectric element
When the number coincides with the resonance frequency, the maximum
Then, the amount of displacement decreases. Therefore, the first piezoelectric element 10
Vibration frequency faAnd the resonance frequency f of the second piezoelectric elementbBetween each
Frequency f at which displacement amounts of piezoelectric elements 10 and 10 'are equale
Exists. Each to the mechanical arm of each piezoelectric element 10, 10 '
The current fe
And find its frequency feDrive. In addition,
Drive frequency f eIs the resonance frequency of each piezoelectric element 10, 10 '
faAnd fbTherefore, each of the piezoelectric elements 10 and 10 ′
The voltage level of the drive signal is adjusted so that the current phase difference is 90 degrees.
It is necessary to adjust the phase difference.

【0044】この第2の方法による駆動回路のブロック
構成を図10に示す。発振器50は周波数可変であり、
所定の周波数で正弦波信号を発生(発振)する。位相制
御部51は遅延回路52を制御し、位相がずれた正弦波
信号を発生させる。第1増幅器54及び第2増幅器55
は、それぞれ互いに位相のずれた2つの正弦波信号の振
幅を増幅し、第1圧電素子10及び第2圧電素子10’
に印加する。第1電流検出器56及び第2電流検出器5
7は、それぞれ第1圧電素子10及び第2圧電素子1
0’の機械腕に流れる電流を検出し、検出結果である電
流信号を発振器50及び位相制御部51に入力する。発
振器50は、第1電流検出器56及び第2電流検出器5
7からの電流信号から、第1圧電素子10の共振周波数
aと第2圧電素子の共振周波数fbの付近で、各圧電素
子10,10’の変位量が等しくなる周波数feを見つ
け、駆動周波数feを決定する。また、位相制御部51
は、第1電流検出器56及び第2電流検出器57からの
電流信号の位相差が90度となるように、遅延回路52
を調節する。
FIG. 10 shows a block diagram of a drive circuit according to the second method. The oscillator 50 is variable in frequency,
A sine wave signal is generated (oscillated) at a predetermined frequency. The phase control section 51 controls the delay circuit 52 to generate a sine wave signal having a phase shift. First amplifier 54 and second amplifier 55
Amplifies the amplitudes of two sinusoidal signals that are out of phase with each other, and the first piezoelectric element 10 and the second piezoelectric element 10 ′.
Is applied. First current detector 56 and second current detector 5
7 denotes a first piezoelectric element 10 and a second piezoelectric element 1
A current flowing through the mechanical arm of 0 ′ is detected, and a current signal as a detection result is input to the oscillator 50 and the phase control unit 51. The oscillator 50 includes a first current detector 56 and a second current detector 5
From the current signal from 7, in the vicinity of the resonance frequency f b of the resonant frequency f a and the second piezoelectric elements of the first piezoelectric element 10, find the frequency f e of the displacement amount of the piezoelectric elements 10 and 10 'are equal, The drive frequency fe is determined. Also, the phase control unit 51
The delay circuit 52 is configured such that the phase difference between the current signals from the first current detector 56 and the second current detector 57 becomes 90 degrees.
Adjust

【0045】各圧電素子10,10’の変位量が等しく
なる周波数feを決定する方法としては、発振器50に
よる発振周波数を徐々に変化させながら、第1電流検出
器56及び第2電流検出器57からの電流信号の振幅に
基づいて、電流値が等しくなる周波数を見つけるように
してもよい。
As a method of determining the frequency f e at which the displacement amounts of the piezoelectric elements 10 and 10 ′ are equal, the first current detector 56 and the second current detector 56 are gradually changed while the oscillation frequency of the oscillator 50 is gradually changed. The frequency at which the current values become equal may be found based on the amplitude of the current signal from 57.

【0046】図12に示す応用例の駆動回路と比較する
と、振幅制御部53が不要になり回路構成が簡単にな
る。また、駆動信号の電圧の振幅調整は行わないので制
御が簡単になる。
As compared with the driving circuit of the application example shown in FIG. 12, the amplitude control section 53 becomes unnecessary and the circuit configuration becomes simple. Further, since the amplitude of the voltage of the drive signal is not adjusted, the control is simplified.

【0047】なお、上記実施形態の説明では、チップ部
材20を駆動するための2つの変位素子10,10’を
それぞれ直交するように配置したが、これに限定される
ものではなく、その他の角度、例えば45°、135°
等任意の角度であってもよい。さらに、変位素子の数は
2つに限定されず、変位素子を3個、あるいはそれ以上
用いて、3自由度又は4自由度の駆動を行うように構成
してもよい。さらに、変位素子の駆動源として、圧電素
子だけでなく、磁歪素子等他の電気的又は機械的変位素
子を用いてもよい。
In the description of the above embodiment, the two displacement elements 10 and 10 'for driving the tip member 20 are arranged so as to be orthogonal to each other. However, the present invention is not limited to this. For example, 45 °, 135 °
Any angle may be used. Further, the number of displacement elements is not limited to two, and three or more displacement elements may be used to drive three or four degrees of freedom. Further, as the driving source of the displacement element, not only the piezoelectric element but also another electric or mechanical displacement element such as a magnetostrictive element may be used.

【0048】また、上記実施形態の説明では、チップ部
材20の軌跡が円形となるように駆動する例について説
明したが、これに限定されるものではなく、ロータ40
の回転速度、回転方向、トルク等に応じて任意の楕円形
に駆動するように構成しても良い。
In the above embodiment, an example was described in which the tip member 20 is driven so that the trajectory is circular. However, the present invention is not limited to this.
It may be configured to be driven in an arbitrary elliptical shape according to the rotation speed, rotation direction, torque, and the like.

【0049】さらに、上記実施形態ではトラス型アクチ
ュエータを例に説明したが、これに限定されず、進行波
型アクチュエータに応用することも可能である。
Further, in the above embodiment, the truss type actuator has been described as an example, but the present invention is not limited to this, and it is also possible to apply to a traveling wave type actuator.

【0050】[0050]

【発明の効果】以上説明したように、本発明の第1のア
クチュエータによれば、少なくとも第1変位素子及び第
2変位素子と、第1変位素子及び第2変位素子の先端部
にそれぞれ結合され、各変位素子の変位を合成するため
の変位合成部と、変位合成部が楕円運動を行うように各
変位素子を駆動する駆動部とを含み、第1変位素子の共
振周波数と反共振周波数との間であって、第1変位素子
に供給される駆動信号の電圧と第1変位素子に流れる電
流の位相差がほぼ一定の領域を第1周波数領域とし、第
2変位素子の共振周波数と反共振周波数との間であっ
て、第2変位素子に供給される駆動信号の電圧と第2変
位素子に流れる電流の位相差がほぼ一定の領域を第2周
波数領域として、前記駆動部は、第1周波数領域と第2
周波数領域とが重複する領域に含まれる一つの周波数の
駆動信号で第1変位素子及び第2変位素子を駆動するこ
とを特徴とする。
As described above, according to the first actuator of the present invention, at least the first displacement element and the second displacement element are connected to the distal ends of the first displacement element and the second displacement element, respectively. A displacement synthesizer for synthesizing the displacements of the respective displacement elements, and a driver for driving the respective displacement elements such that the displacement synthesizer performs an elliptical motion. The resonance frequency and the anti-resonance frequency of the first displacement element are included. And a region in which the phase difference between the voltage of the drive signal supplied to the first displacement element and the current flowing through the first displacement element is substantially constant is defined as the first frequency region, and the region opposite to the resonance frequency of the second displacement element. The drive unit includes a region between the resonance frequency and a phase difference between the voltage of the drive signal supplied to the second displacement element and the phase difference of the current flowing through the second displacement element as a second frequency region. One frequency domain and second
The first displacement element and the second displacement element are driven by a drive signal of one frequency included in an area where the frequency area overlaps.

【0051】すなわち、第1変位素子の電圧と電流の位
相差と、第2変位素子の電圧と電流の位相差が等しくな
り、第1変位素子と第2変位素子に入力する駆動信号の
位相差がそのまま第1変位素子と第2変位素子の変位の
位相差として反映される。その結果、変位合成部の軌跡
を所望する形状(例えば位相差を90度の場合は円形)
にすることができ、被駆動部材の駆動速度、駆動方向、
駆動力等の制御が容易になる。また、いずれの変位素子
もその共振周波数では駆動されないけれども、いずれか
一方の変位素子の共振周波数で駆動する場合と比較し
て、各変位素子の変位量の差が小さくなり、変位合成部
の軌跡をほぼ所望する形状ににすることができる。さら
に、駆動信号の位相や振幅を調整する必要がなく、制御
回路の構成及び制御方法が簡単になり、コストダウンに
つながる。
That is, the phase difference between the voltage and the current of the first displacement element becomes equal to the phase difference between the voltage and the current of the second displacement element, and the phase difference between the drive signals input to the first displacement element and the second displacement element. Is directly reflected as the phase difference between the displacements of the first displacement element and the second displacement element. As a result, the shape of the trajectory of the displacement synthesizing unit is desired (for example, a circle when the phase difference is 90 degrees).
The driving speed, driving direction,
Control of driving force and the like becomes easy. Further, although none of the displacement elements is driven at the resonance frequency, the difference between the displacement amounts of the respective displacement elements becomes smaller than when driven at the resonance frequency of one of the displacement elements, and Can be made into a substantially desired shape. Further, there is no need to adjust the phase and amplitude of the drive signal, and the configuration and control method of the control circuit are simplified, leading to cost reduction.

【0052】また、本発明の第2のアクチュエータによ
れば、少なくとも第1変位素子及び第2変位素子と、第
1変位素子及び第2変位素子の先端部にそれぞれ結合さ
れ、各変位素子の変位を合成するための変位合成部と、
変位合成部が楕円運動を行うように各変位素子を駆動す
る駆動部を含み、前記駆動部は、第1変位素子と第2変
位素子の共振周波数付近の周波数領域において、第1変
位素子と第2変位素子の変位量が等しくなる周波数で第
1変位素子及び第2変位素子を駆動することを特徴とす
る。
Further, according to the second actuator of the present invention, at least the first displacement element and the second displacement element are coupled to the distal ends of the first displacement element and the second displacement element, respectively. A displacement combining unit for combining
The displacement synthesis unit includes a drive unit that drives each displacement element so as to perform an elliptical motion, and the drive unit includes a first displacement element and a second displacement element in a frequency region near a resonance frequency of the first displacement element and the second displacement element. The first displacement element and the second displacement element are driven at a frequency at which the displacement amounts of the two displacement elements become equal.

【0053】すなわち、各変位素子の共振周波数近傍に
おいて変位量が等しくなる周波数で駆動するので、変位
合成部の軌跡をほぼ所望する形状ににすることができ
る。また、いずれの変位素子もその共振周波数では駆動
されないけれども、共振周波数で駆動した場合に近い大
きな変位量を得ることができるので、アクチュエータの
駆動効率を高くすることができる。さらに、駆動信号の
振幅を調整する必要がなく、制御回路の構成及び制御方
法が簡単になり、コストダウンにつながる。
That is, since the driving is performed at a frequency at which the amount of displacement becomes equal in the vicinity of the resonance frequency of each displacement element, the trajectory of the displacement synthesizing section can be made into a substantially desired shape. Further, although none of the displacement elements is driven at the resonance frequency, a large amount of displacement close to that when driven at the resonance frequency can be obtained, so that the driving efficiency of the actuator can be increased. Further, there is no need to adjust the amplitude of the drive signal, which simplifies the configuration and control method of the control circuit, leading to cost reduction.

【0054】また、本発明の第1のアクチュエータの駆
動方法によれば、少なくとも第1変位素子及び第2変位
素子と、第1変位素子及び第2変位素子の先端部にそれ
ぞれ結合され、各変位素子の変位を合成するための変位
合成部とを含み、変位合成部が楕円運動を行うように各
変位素子を駆動する駆動方法であって、第1変位素子の
共振周波数と反共振周波数との間であって、第1変位素
子に供給される駆動信号の電圧と第1変位素子に流れる
電流の位相差がほぼ一定の領域を第1周波数領域とし、
第2変位素子の共振周波数と反共振周波数との間であっ
て、第2変位素子に供給される駆動信号の電圧と第2変
位素子に流れる電流の位相差がほぼ一定の領域を第2周
波数領域として、第1周波数領域と第2周波数領域とが
重複する領域に含まれる一つの周波数の駆動信号で第1
変位素子及び第2変位素子を駆動することを特徴とす
る。
According to the first actuator driving method of the present invention, at least the first displacement element and the second displacement element are coupled to the distal ends of the first displacement element and the second displacement element, respectively. A displacement synthesizing unit for synthesizing the displacement of the element, wherein the displacement synthesizing unit drives each of the displacement elements such that the displacement synthesizing unit performs an elliptical motion, wherein A region where the phase difference between the voltage of the drive signal supplied to the first displacement element and the current flowing through the first displacement element is substantially constant is defined as a first frequency region;
A region between the resonance frequency and the anti-resonance frequency of the second displacement element, where the phase difference between the voltage of the drive signal supplied to the second displacement element and the current flowing through the second displacement element is substantially constant, is defined as the second frequency. As a region, the first frequency drive signal is included in a region where the first frequency region and the second frequency region overlap each other.
Driving the displacement element and the second displacement element.

【0055】すなわち、既存のアクチュエータにこの第
1の駆動方法を用いることにより、上記本発明の第1の
アクチュエータを容易に実現することができ、その効果
を得ることができる。
That is, by using the first driving method for an existing actuator, the first actuator of the present invention can be easily realized, and its effect can be obtained.

【0056】また、本発明の第2のアクチュエータの駆
動方法によれば、少なくとも第1変位素子及び第2変位
素子と、第1変位素子及び第2変位素子の先端部にそれ
ぞれ結合され、各変位素子の変位を合成するための変位
合成部とを含み、変位合成部が楕円運動を行うように各
変位素子を駆動する駆動方法であって、第1変位素子と
第2変位素子の共振周波数付近の周波数領域において、
第1変位素子と第2変位素子の変位量が等しくなる周波
数で第1変位素子及び第2変位素子を駆動することを特
徴とする。
According to the second actuator driving method of the present invention, at least the first displacement element and the second displacement element are coupled to the distal ends of the first displacement element and the second displacement element, respectively. A displacement synthesizing unit for synthesizing displacements of the elements, wherein the displacement synthesizing unit drives each of the displacement elements such that the displacement synthesizing unit performs an elliptical motion. In the frequency domain of
The first displacement element and the second displacement element are driven at a frequency at which the displacement amounts of the first displacement element and the second displacement element are equal.

【0057】すなわち、既存のアクチュエータにこの第
2の駆動方法を用いることにより、上記本発明の第2の
アクチュエータを容易に実現することができ、その効果
を得ることができる。
That is, by using the second driving method for an existing actuator, the second actuator of the present invention can be easily realized, and its effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態であるトラス型アクチュ
エータにおいて変位素子として用いる積層型圧電素子の
構成を示す図である。
FIG. 1 is a diagram showing a configuration of a laminated piezoelectric element used as a displacement element in a truss-type actuator according to an embodiment of the present invention.

【図2】 上記積層型圧電素子における各電極の間に発
生する電界と圧電素子の変位の関係を示す図である。
FIG. 2 is a diagram showing a relationship between an electric field generated between electrodes of the multilayer piezoelectric element and displacement of the piezoelectric element.

【図3】 上記実施形態におけるトラス型アクチュエー
タの構成を示す図である。
FIG. 3 is a diagram showing a configuration of a truss-type actuator in the embodiment.

【図4】 上記実施形態におけるアクチュエータにより
ロータを回転させる原理を示す図である。
FIG. 4 is a view showing a principle of rotating a rotor by an actuator in the embodiment.

【図5】 上記実施形態において、2つの圧電素子に印
加する駆動信号の振幅を等しくし、各駆動信号間の位相
差を変化させた場合の軌跡を示す図である。
FIG. 5 is a diagram showing a trajectory when the amplitudes of drive signals applied to two piezoelectric elements are made equal and the phase difference between the drive signals is changed in the embodiment.

【図6】 圧電素子の共振特性を示す図である。FIG. 6 is a diagram showing resonance characteristics of a piezoelectric element.

【図7】 共振周波数やインピーダンス等の特性の異な
る2つの圧電素子の共振特性を示す図である。
FIG. 7 is a diagram illustrating resonance characteristics of two piezoelectric elements having different characteristics such as a resonance frequency and an impedance.

【図8】 2つの圧電素子に入力する駆動信号の位相差
とチップ部材の軌跡の関係を示す図である。
FIG. 8 is a diagram illustrating a relationship between a phase difference between drive signals input to two piezoelectric elements and a trajectory of a chip member.

【図9】 本発明の実施形態における第1の駆動方法に
適する駆動回路の構成例を示すブロック図である。
FIG. 9 is a block diagram illustrating a configuration example of a driving circuit suitable for a first driving method according to an embodiment of the present invention.

【図10】 本発明の実施形態における第2の駆動方法
に適する駆動回路の構成例を示すブロック図である。
FIG. 10 is a block diagram illustrating a configuration example of a driving circuit suitable for a second driving method according to an embodiment of the present invention.

【図11】 圧電素子の等価回路を示す図である。FIG. 11 is a diagram showing an equivalent circuit of a piezoelectric element.

【図12】 従来の駆動方法をトラス型アクチュエータ
に応用する場合の駆動回路の構成例(未公知)を示す図
である。
FIG. 12 is a diagram illustrating a configuration example (unknown) of a drive circuit when a conventional drive method is applied to a truss-type actuator.

【符号の説明】[Explanation of symbols]

10 :第1圧電素子(第1変位素子) 10’:第2圧電素子(第2変位素子) 20 :チップ部材(変位合成部) 30 :ベース部材 40 :ロータ(被駆動部材) 50 :発振器 51 :位相制御部 52 :遅延回路 54 :第1増幅器 55 :第2増幅器 56 :第1電流検出器 57 :第2電流検出器 10: first piezoelectric element (first displacement element) 10 ': second piezoelectric element (second displacement element) 20: chip member (displacement synthesizing section) 30: base member 40: rotor (driven member) 50: oscillator 51 : Phase control unit 52: delay circuit 54: first amplifier 55: second amplifier 56: first current detector 57: second current detector

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H680 AA06 AA10 AA19 BB03 CC02 CC10 DD02 DD15 DD37 DD73 DD84 FF25 FF27 FF30 FF33 FF36 GG21  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H680 AA06 AA10 AA19 BB03 CC02 CC10 DD02 DD15 DD37 DD73 DD84 FF25 FF27 FF30 FF33 FF36 GG21

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも第1変位素子及び第2変位素
子と、第1変位素子及び第2変位素子の先端部にそれぞ
れ結合され、各変位素子の変位を合成するための変位合
成部と、変位合成部が楕円運動を行うように各変位素子
を駆動する駆動部とを含み、 第1変位素子の共振周波数と反共振周波数との間であっ
て、第1変位素子に供給される駆動信号の電圧と第1変
位素子に流れる電流の位相差がほぼ一定の領域を第1周
波数領域とし、第2変位素子の共振周波数と反共振周波
数との間であって、第2変位素子に供給される駆動信号
の電圧と第2変位素子に流れる電流の位相差がほぼ一定
の領域を第2周波数領域として、前記駆動部は、第1周
波数領域と第2周波数領域とが重複する領域に含まれる
一つの周波数の駆動信号で第1変位素子及び第2変位素
子を駆動することを特徴とするアクチュエータ。
1. A displacement combining unit coupled to at least a first displacement element and a second displacement element, and a tip of the first displacement element and the second displacement element for combining displacements of the displacement elements, A driving unit that drives each of the displacement elements so that the combining unit performs an elliptical motion. The driving unit supplies a driving signal between the resonance frequency and the anti-resonance frequency of the first displacement element and supplied to the first displacement element. The region where the phase difference between the voltage and the current flowing through the first displacement element is substantially constant is defined as the first frequency region, and is between the resonance frequency and the anti-resonance frequency of the second displacement element and is supplied to the second displacement element. The region where the phase difference between the voltage of the driving signal and the current flowing through the second displacement element is substantially constant is defined as the second frequency region, and the driving unit includes one region included in the region where the first frequency region and the second frequency region overlap. The first displacement element and the drive signal of two frequencies Actuator and drives the second displacement element.
【請求項2】 前記一つの周波数は、第1変位素子と第
2変位素子の共振周波数のうち周波数の低い第1周波数
と第1変位素子と第2変位素子の反共振周波数のうち周
波数の高い第2周波数の中央値の周波数であることを特
徴とする請求項1記載のアクチュエータ。
2. The one frequency is a first frequency having a low frequency among the resonance frequencies of the first displacement element and the second displacement element and a high frequency among the anti-resonance frequencies of the first displacement element and the second displacement element. 2. The actuator according to claim 1, wherein the frequency is a median frequency of the second frequency.
【請求項3】 第1変位素子を駆動する駆動信号と第2
変位素子を駆動する駆動信号に所定の位相差を設けるこ
とを特徴とする請求項1記載のアクチュエータ。
3. A driving signal for driving a first displacement element and a second driving signal.
The actuator according to claim 1, wherein a predetermined phase difference is provided to a drive signal for driving the displacement element.
【請求項4】 少なくとも第1変位素子及び第2変位素
子と、第1変位素子及び第2変位素子の先端部にそれぞ
れ結合され、各変位素子の変位を合成するための変位合
成部と、変位合成部が楕円運動を行うように各変位素子
を駆動する駆動部を含み、 前記駆動部は、第1変位素子と第2変位素子の共振周波
数付近の周波数領域において、第1変位素子と第2変位
素子の変位量が等しくなる周波数で第1変位素子及び第
2変位素子を駆動することを特徴とするアクチュエー
タ。
4. A displacement synthesizing unit coupled to at least the first displacement element and the second displacement element, the tip of each of the first displacement element and the second displacement element, and for synthesizing the displacement of each displacement element. The combining unit includes a driving unit that drives each displacement element so as to perform an elliptic motion. The driving unit includes a first displacement element and a second displacement element in a frequency region near a resonance frequency of the first displacement element and the second displacement element. An actuator for driving a first displacement element and a second displacement element at a frequency at which displacement amounts of the displacement elements become equal.
【請求項5】 第1変位素子に流れる電流と第2変位素
子に流れる電流の位相差が所定値となるように、第1変
位素子を駆動する駆動信号と第2変位素子を駆動する駆
動信号に所定の位相差を設けることを特徴とする請求項
4記載のアクチュエータ。
5. A drive signal for driving the first displacement element and a drive signal for driving the second displacement element such that a phase difference between a current flowing through the first displacement element and a current flowing through the second displacement element becomes a predetermined value. 5. The actuator according to claim 4, wherein a predetermined phase difference is provided to the actuator.
【請求項6】 第1変位素子及び第2変位素子に流れる
電流を検出する電流検出部をさらに具備することを特徴
とする請求項1から5のいずれかに記載のアクチュエー
タ。
6. The actuator according to claim 1, further comprising a current detection unit that detects a current flowing through the first displacement element and the second displacement element.
【請求項7】 少なくとも第1変位素子及び第2変位素
子と、第1変位素子及び第2変位素子の先端部にそれぞ
れ結合され、各変位素子の変位を合成するための変位合
成部とを含み、変位合成部が楕円運動を行うように各変
位素子を駆動するアクチュエータの駆動方法であって、 第1変位素子の共振周波数と反共振周波数との間であっ
て、第1変位素子に供給される駆動信号の電圧と第1変
位素子に流れる電流の位相差がほぼ一定の領域を第1周
波数領域とし、第2変位素子の共振周波数と反共振周波
数との間であって、第2変位素子に供給される駆動信号
の電圧と第2変位素子に流れる電流の位相差がほぼ一定
の領域を第2周波数領域として、第1周波数領域と第2
周波数領域とが重複する領域に含まれる一つの周波数の
駆動信号で第1変位素子及び第2変位素子を駆動するこ
とを特徴とするアクチュエータの駆動方法。
7. At least a first displacement element and a second displacement element, and a displacement synthesizing unit coupled to distal ends of the first displacement element and the second displacement element, respectively, for synthesizing displacements of the respective displacement elements. A method of driving an actuator that drives each displacement element such that the displacement synthesis unit performs elliptical motion, wherein the actuator is between the resonance frequency and the anti-resonance frequency of the first displacement element and is supplied to the first displacement element. A region in which the phase difference between the voltage of the drive signal and the current flowing through the first displacement element is substantially constant is defined as the first frequency region, and is between the resonance frequency and the anti-resonance frequency of the second displacement element. The region in which the phase difference between the voltage of the drive signal supplied to the second displacement element and the current flowing through the second displacement element is substantially constant is defined as the second frequency region, and the first frequency region and the second frequency region
A method of driving an actuator, comprising: driving a first displacement element and a second displacement element with a drive signal of one frequency included in a region where a frequency region overlaps.
【請求項8】 前記一つの周波数は、第1変位素子と第
2変位素子の共振周波数のうち周波数の低い第1周波数
と第1変位素子と第2変位素子の反共振周波数のうち周
波数の高い第2周波数の中央値の周波数であることを特
徴とする請求項7記載のアクチュエータの駆動方法。
8. The one frequency includes a first frequency having a low frequency among resonance frequencies of the first displacement element and the second displacement element and a high frequency among anti-resonance frequencies of the first displacement element and the second displacement element. 8. The method of driving an actuator according to claim 7, wherein the frequency is a median frequency of the second frequency.
【請求項9】 第1変位素子を駆動する駆動信号と第2
変位素子を駆動する駆動信号に所定の位相差を設けるこ
とを特徴とする請求項7記載のアクチュエータの駆動方
法。
9. A driving signal for driving a first displacement element and a second driving signal
8. The method of driving an actuator according to claim 7, wherein a predetermined phase difference is provided to a drive signal for driving the displacement element.
【請求項10】 少なくとも第1変位素子及び第2変位
素子と、第1変位素子及び第2変位素子の先端部にそれ
ぞれ結合され、各変位素子の変位を合成するための変位
合成部とを含み、変位合成部が楕円運動を行うように各
変位素子を駆動するアクチュエータの駆動方法であっ
て、 第1変位素子と第2変位素子の共振周波数付近の周波数
領域において、第1変位素子と第2変位素子の変位量が
等しくなる周波数で第1変位素子及び第2変位素子を駆
動することを特徴とするアクチュエータの駆動方法。
10. A system comprising: at least a first displacement element and a second displacement element; and a displacement combining part coupled to respective distal ends of the first displacement element and the second displacement element for combining displacements of the respective displacement elements. A driving method of an actuator for driving each displacement element such that the displacement synthesis unit performs an elliptic motion, wherein the first displacement element and the second displacement element are arranged in a frequency region near a resonance frequency of the first displacement element and the second displacement element. A method for driving an actuator, comprising: driving a first displacement element and a second displacement element at a frequency at which displacement amounts of the displacement elements are equal.
【請求項11】 第1変位素子に流れる電流と第2変位
素子に流れる電流の位相差が所定値となるように、第1
変位素子を駆動する駆動信号と第2変位素子を駆動する
駆動信号に所定の位相差を設けることを特徴とする請求
項10記載のアクチュエータの駆動方法。
11. The first displacement element such that a phase difference between a current flowing through the first displacement element and a current flowing through the second displacement element becomes a predetermined value.
11. The actuator driving method according to claim 10, wherein a predetermined phase difference is provided between the drive signal for driving the displacement element and the drive signal for driving the second displacement element.
JP11185197A 1999-06-14 1999-06-30 Actuator and drive method therefor Withdrawn JP2001016878A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11185197A JP2001016878A (en) 1999-06-30 1999-06-30 Actuator and drive method therefor
US09/591,622 US6713943B1 (en) 1999-06-14 2000-06-09 Actuator and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11185197A JP2001016878A (en) 1999-06-30 1999-06-30 Actuator and drive method therefor

Publications (1)

Publication Number Publication Date
JP2001016878A true JP2001016878A (en) 2001-01-19

Family

ID=16166572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11185197A Withdrawn JP2001016878A (en) 1999-06-14 1999-06-30 Actuator and drive method therefor

Country Status (1)

Country Link
JP (1) JP2001016878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006616A (en) * 2005-06-23 2007-01-11 Seiko Epson Corp Drive controller for piezoelectric actuator, electronic apparatus and drive control method for the piezoelectric actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006616A (en) * 2005-06-23 2007-01-11 Seiko Epson Corp Drive controller for piezoelectric actuator, electronic apparatus and drive control method for the piezoelectric actuator

Similar Documents

Publication Publication Date Title
JPH10507900A (en) Piezoelectric motor
JP2002112563A (en) Driving method and apparatus for actuator
JPH08182357A (en) Ultrasonic motor driving circuit
JP2001016878A (en) Actuator and drive method therefor
JP2001016879A (en) Ultrasonic motor and drive method therefor
JP2002281770A (en) Piezoelectric actuator
US6492760B1 (en) Actuator
JP2002165469A (en) Piezo-electric actuator
US20020014812A1 (en) Actuator using a piezoelectric element
JP4208753B2 (en) Control device for vibration type drive device, control method for vibration type drive device, control program for vibration type drive device
JP4411736B2 (en) Actuator driving method and apparatus
JPS61221584A (en) Drive circuit of vibration wave motor
JP2004222453A (en) Actuator
JP2001136761A (en) Actuator
JP2001103770A (en) Ultrasonic motor and method of driving the same
JP2001190081A (en) Actuator
JP2563351B2 (en) Ultrasonic motor driving method
JP2002101676A (en) Actuator
JP4595453B2 (en) Ultrasonic motor drive circuit and actuator
JP4529237B2 (en) Vibration actuator
JP2006081237A (en) Drive circuit of ultrasonic motor and actuator
JP4520570B2 (en) Piezoelectric actuator
JPS60183981A (en) Supersonic wave motor
JPH02101974A (en) Ultrasonic motor drive
JP2601268B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050613

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905