JP2001016762A - Ground failure point locating device for high-voltage signal distribution line - Google Patents

Ground failure point locating device for high-voltage signal distribution line

Info

Publication number
JP2001016762A
JP2001016762A JP11182631A JP18263199A JP2001016762A JP 2001016762 A JP2001016762 A JP 2001016762A JP 11182631 A JP11182631 A JP 11182631A JP 18263199 A JP18263199 A JP 18263199A JP 2001016762 A JP2001016762 A JP 2001016762A
Authority
JP
Japan
Prior art keywords
ground
distribution line
ground fault
point
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11182631A
Other languages
Japanese (ja)
Other versions
JP3898855B2 (en
Inventor
Hideo Negishi
英雄 根岸
章雄 ▲高▼橋
Akio Takahashi
Tetsuzo Kitagawa
哲三 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUDA DENKI KEIKI KK
East Japan Railway Co
Original Assignee
TSUDA DENKI KEIKI KK
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUDA DENKI KEIKI KK, East Japan Railway Co filed Critical TSUDA DENKI KEIKI KK
Priority to JP18263199A priority Critical patent/JP3898855B2/en
Publication of JP2001016762A publication Critical patent/JP2001016762A/en
Application granted granted Critical
Publication of JP3898855B2 publication Critical patent/JP3898855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

PROBLEM TO BE SOLVED: To obtain a ground failure point locating device for a high-voltage signal distribution line which can surely locate a grounded point, even for a ground failure which can be restored when the current is cut off or even if the ground failure is temporary. SOLUTION: A device has a transmission side transformer T1, whose center tap T0 is grounded, a measuring unit M which measures the instantaneous values of the respective waveforms of voltages VsR and VsT between transmission ends of respective distribution lines R and T and the ground, a failure current flowing into the center tap Tx0 from a ground point and voltages VrR and VrT between reception ends of the respective distribution lines R and T and the ground, ring buffers 2a and 2b in which the measured instantaneous values of the respective waveforms are recorded as waveform data with synchronized timing and a computer 4, which reads out the wavelength data of the measured values of a difference VsR-VsT between the transmission end to ground voltages, a difference VrR-VrT between the reception end to ground voltages and a failure current ig, when a ground failure occurs and calculates the reactance value and a distance Lf of a distribution line R from a transmission end Rs and a ground failure point P.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄道等における配
電線において地絡事故を起こした場合に、送電側から地
絡点までの距離を標定する信号高圧配電線路の地絡故障
点標定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for locating a ground fault in a high-voltage signal distribution line for determining a distance from a power transmission side to a ground fault when a ground fault occurs in a distribution line of a railway or the like. .

【0002】[0002]

【従来の技術】従来より、配電線の地絡点標定装置とし
て、配電線によっていわゆるマレーループを形成し、こ
のマレーループを形成した配電線と大地との間に標定用
電圧を印加したときに各線に流れる電流の大きさを測定
し、その大きさから地絡点を標定するようにした故障点
標定装置がある。
2. Description of the Related Art Conventionally, a so-called Murray loop is formed by a distribution line as a ground fault point locating device for a distribution line, and when a locating voltage is applied between the distribution line forming the Murray loop and the ground. There is a fault point locating device that measures the magnitude of current flowing through each line and locates a ground fault point based on the magnitude of the current.

【0003】図4は従来の地絡点標定装置による標定方
法を説明する図である。図4において、Pwは交流電
源、11,12は配電線であり、CBp1は配電線11,
12に対する通電を遮断する遮断器、Rp1はマレールー
プLmを形成するために受電側端において各線11,1
2を短絡するためのリレー、Rp2は前記マレーループL
mを構成する配電線11,12に対地間電圧Eを印加す
るためのリレー、Rgは地絡抵抗、Ip0はマレーループ
Lmに流れる総電流、IP1,IP2はそれぞれ配電線1
1,12に流れる標定電流である。
FIG. 4 is a view for explaining a location method using a conventional ground fault location apparatus. In FIG. 4, Pw is an AC power supply, 11 and 12 are distribution lines, and CB p1 is a distribution line 11,
A circuit breaker R p1 for cutting off the power supply to the power supply line 12 is connected to each of the wires 11, 1 at the power receiving end to form a Murray loop Lm.
2 is a relay for short-circuiting the circuit, R p2 is the Murray loop L
m, a relay for applying a ground-to-ground voltage E to the distribution lines 11 and 12, Rg is a ground fault resistance, I p0 is a total current flowing through the Murray loop Lm, and I P1 and I P2 are distribution lines 1 respectively.
This is the standardization current flowing through the reference numerals 1 and 12.

【0004】上記構成において、地絡事故が発生すると
遮断器CBp1がトリップ(開路の状態)して配電線1
1,12への通電を遮断した後に、リレーRp1の接点を
閉路することによりマレーループLmを形成し、リレー
p2をオン(閉路の状態)にすることにより、標定電流
p1,Ip2を流すことができる。このとき、各配電線1
1,12は単位長さ当たりのインピーダンス(r+j
x)が定まっているゆえに、前記標定電流Ip1,Ip2
大きさが、マレーループLmの全長Lと、地絡故障点P
までの距離lによって定められる。
[0004] In the above configuration, when a ground fault occurs, the circuit breaker CB p1 trips (open state) and the distribution line 1
After energization of the 1,12, by forming a Murray Loop Lm by closing the contacts of the relay R p1, the relay R p2 on (closed condition), orientation current I p1, I p2 Can flow. At this time, each distribution line 1
1, 12 are impedances per unit length (r + j
x) is determined, the magnitude of the locating currents I p1 and I p2 is determined by the total length L of the Murray loop Lm and the ground fault point P
To the distance l.

【0005】したがって、前記標定電流IP0,IP1,I
P2の大きさを比較することにより、配電線11,12の
全長Lに対する地絡点Pまでの距離lの比を以下の式
(1)に示すように求めることができる。 l/L=2Ip2/Ip0−1 … 式(1)
[0005] Therefore, the locating currents I P0 , I P1 , I
By comparing the magnitude of P2 , the ratio of the distance l to the ground fault point P with respect to the total length L of the distribution lines 11, 12 can be obtained as shown in the following equation (1). 1 / L = 2I p2 / I p0 −1 Equation (1)

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記従
来の地絡点標定装置では地絡点Pの標定を行なうための
標定用電源E(交流の場合もある)を印加するマレール
ープLmを形成するために、配電線11,12に対する
交流電源Pwの通電を遮断して、両配電線11,12を
無加圧とする必要があった。そして、無加圧になった時
に地絡事故が一時的に復旧することがあった。つまり、
一過性の事故では地絡状態が継続することがなかった。
However, in the above-mentioned conventional ground fault point locating device, a Murray loop Lm for applying a locating power source E (which may be AC) for locating the ground fault point P is formed. Therefore, it is necessary to cut off the supply of the AC power supply Pw to the distribution lines 11 and 12 so that both distribution lines 11 and 12 are not pressurized. Then, when no pressure was applied, the ground fault accident sometimes recovered temporarily. That is,
The ground fault did not continue in the transient accident.

【0007】このために、標定用の電圧Eを印加して
も、地絡事故が再現されることがなく、地絡点Pの標定
を行うための電流IP0が流れることもないので、標定を
行えなくなっていた。そして、このような場合は、不安
定な地絡事故発生の原因究明のために配電線11,12
の状態を順次目視で確認する必要があり、事故の再発を
防止するためには多大の時間と労力を浪費することにな
る。
For this reason, even if the voltage E for locating is applied, the ground fault will not be reproduced and the current I P0 for locating the ground fault point P will not flow. Could not be done. In such a case, the distribution lines 11 and 12 are used to investigate the cause of the occurrence of the unstable ground fault.
It is necessary to visually confirm the state of the accident, and a great deal of time and labor is wasted in preventing the recurrence of the accident.

【0008】本発明は、上述の事柄を考慮に入れてなさ
れたものであって、その目的とするところは、通電を遮
断した段階で復旧する程度の地絡事故や一過性の地絡事
故であっても、地絡事故が発生したときに確実に地絡点
を標定することができる信号高圧配電線路の地絡故障点
標定装置を提供することにある。
The present invention has been made in consideration of the above-described circumstances, and has as its object to provide a ground fault accident or a transient ground fault that can be restored when power is cut off. Even in this case, it is an object of the present invention to provide a ground fault point locating apparatus for a signal high-voltage distribution line, which can reliably locate a ground fault point when a ground fault accident occurs.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の信号高圧配電線路の地絡故障点標定装置
は、配電線に地絡故障が起こった際に地絡故障点を標定
する装置であって、中間タップを接地する送電側変圧器
と、各配電線の送電端における対地間電圧、接地点から
中間点に流入する故障電流、および各配電線の受電端に
おける対地間電圧のそれぞれを測定する測定部と、地絡
事故発生時に故障電流が流れることによって生じた各配
電線の送電端における対地間電圧の差、受電端における
各配電線の対地間電圧の差、および故障電流の測定値を
用いて送電端から地絡故障点までの配電線が持つインピ
ーダンスの大きさを求め、このインピーダンスの大きさ
によって送電端から地絡故障点までの距離を算出する演
算部とを有することを特徴としている。
In order to achieve the above object, a ground fault point locating apparatus for a signal high voltage distribution line according to the present invention is provided for locating a ground fault point when a ground fault occurs in a distribution line. A transmission-side transformer that grounds the intermediate tap, a ground-to-ground voltage at the transmitting end of each distribution line, a fault current flowing from the ground point to the intermediate point, and a ground-to-ground voltage at the receiving end of each distribution line. The difference between the voltage to ground at the transmitting end of each distribution line, the difference between the voltage to ground at each distribution line at the receiving end, and the fault An arithmetic unit that calculates the impedance of the distribution line from the transmitting end to the ground fault using the measured value of the current and calculates the distance from the transmitting end to the ground fault based on the magnitude of the impedance. Having It is characterized.

【0010】したがって、本発明によれば地絡故障が発
生したときに、配電線に流れる故障電流を測定するの
で、たとえ配電線に対する送電を遮断した時点で地絡が
復旧したとしても、故障点の標定を行うことができる。
つまり、通電を遮断した段階で復旧する程度の地絡事故
や一過性の地絡事故であっても、地絡事故が発生したと
きに確実に地絡点を標定することができ、事故の再発を
迅速に予防することができる。
Therefore, according to the present invention, when a ground fault occurs, the fault current flowing in the distribution line is measured. Therefore, even if the ground fault is restored when the transmission to the distribution line is interrupted, the fault point is detected. Can be determined.
In other words, even if the ground fault accident is such that it is restored when the power supply is cut off, or if it is a temporary ground fault accident, the ground fault point can be reliably located when the ground fault accident occurs. Recurrence can be prevented promptly.

【0011】配電線に地絡故障が起こった際に地絡故障
点を標定する装置であって、中間タップを接地する送電
側変圧器と、各配電線の送電端における対地間電圧、接
地点から中間点に流入する故障電流、および各配電線の
受電端における対地間電圧の、それぞれの波形の瞬時値
を測定する測定部と、測定した各波形の瞬時値を同期し
たタイミングで波形データとして記録する一時記憶部
と、地絡事故発生時に故障電流が流れることによって生
じた各配電線の送電端における対地間電圧の差、受電端
における各配電線の対地間電圧の差、および故障電流の
測定値の波形データを前記一時記憶部から読み出して解
析することにより、送電端から地絡故障点までの配電線
が持つリアクタンスの大きさを求め、このリアクタンス
の大きさによって送電端から地絡故障点までの距離を算
出する演算部とを有する場合には、通電を遮断した段階
で復旧する程度の地絡事故や一過性の地絡事故であって
も、地絡事故が発生したときに確実に地絡点を標定する
ことができ、事故の再発を迅速に予防することができる
と共に、地絡抵抗の大きさなど不特定要素の影響をほと
んど受けない地絡故障点の標定を行うことができる。
[0011] A device for locating a ground fault point when a ground fault occurs in a distribution line, comprising: a transmission-side transformer for grounding an intermediate tap; a voltage to ground at a transmission end of each distribution line; The measurement unit that measures the instantaneous value of each waveform of the fault current flowing into the intermediate point from the terminal and the voltage to ground at the receiving end of each distribution line, and the waveform instantaneous value of each measured waveform is synchronized as waveform data. The temporary storage unit that records the difference between the voltage to ground at the transmitting end of each distribution line caused by the flow of fault current when a ground fault occurs, the difference between the voltage to ground of each distribution line at the receiving end, and the fault current The magnitude of the reactance of the distribution line from the transmitting end to the ground fault point is determined by reading the waveform data of the measured value from the temporary storage unit and analyzing the measured data, and the magnitude of the reactance is determined based on the magnitude of the reactance. If there is an arithmetic unit that calculates the distance from the end to the ground fault point, even if the ground fault accident is such that it can be restored when power is cut off, or if it is a transient ground fault, A ground fault point can be reliably located when a fault occurs, preventing a recurrence of an accident quickly, and a ground fault point that is hardly affected by unspecified factors such as the magnitude of the ground fault resistance. Can be determined.

【0012】前記配電線の送電端側の測定部および受電
端側の測定部がそれぞれ標準時刻収集装置を有してお
り、この標準時刻収集装置から得られる時刻情報を用い
て前記波形データの記録タイミングの同期をとる場合に
は、距離的に離れた地点に接地された測定部の間で極め
て容易に高精度の同期をとることができる。すなわち、
より正確にリアクタンスを求めることができ、それだ
け、故障点の標定精度を上げることができる。
The measuring section on the power transmission end and the measuring section on the power receiving end of the distribution line each have a standard time collection device, and record the waveform data using time information obtained from the standard time collection device. When synchronizing the timing, it is possible to extremely easily synchronize with high precision between the measurement units grounded at points distant from each other. That is,
The reactance can be obtained more accurately, and the localization accuracy of the fault point can be improved accordingly.

【0013】[0013]

【発明の実施の形態】図1は本発明の信号高圧配電線路
の地絡故障点標定装置による標定方法を説明する図であ
り、R,Tは例えば鉄道用信号機のための電源となる配
電線であり、一端側を送電端Rs,Ts、他端側を受電
端Rr,Trとしている。図1には説明を簡略化するた
めに、一端側を常に送電端Rs,Tsとして固定的に説
明しているが、実際の配電線R,Tにおいては必要に応
じて一端側が受電端、他端側が送電端となる反位配電に
切り替えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining a method of locating a signal high-voltage distribution line using a ground fault fault locating apparatus according to the present invention, wherein R and T are, for example, distribution lines serving as power sources for railway traffic signals. And one end is a power transmission end Rs, Ts, and the other end is a power reception end Rr, Tr. In FIG. 1, for simplicity of explanation, one end side is always fixedly described as the transmitting end Rs, Ts. However, in the actual distribution lines R, T, one end side is a receiving end and other ends as necessary. It is switched to inverted power distribution where the end side is the power transmission end.

【0014】Pwは鉄道用変電所に設けられた交流電源
であり、絶縁トランスT1 (送電側変圧器)によって前
記配電線R,Tの送電端Rs,Tsに電力を供給する。
なお、このトランスT1 には、中間タップT0 が設けら
れており、この中間タップT 0 が接地抵抗Rngを介して
接地されている。Z1 〜Z3 は前記配電線R,Tによっ
て生じるインピーダンスであり、ZT1,ZT2は配電線
R,T間に設けられた信号機などの負荷である。VsR
STは送電端Rs,Tsにおける対地間電圧、V rR,V
rTは受電端Rr,Trにおける対地間電圧を示してい
る。
Pw is an AC power supply provided at a railway substation
And the isolation transformer T1Before (Transmission side transformer)
Power is supplied to the transmission ends Rs, Ts of the distribution lines R, T.
Note that this transformer T1Has an intermediate tap T0Provided
This intermediate tap T 0Is the ground resistance RngThrough
Grounded. Z1~ ZThreeIs determined by the distribution lines R and T
Is the impedance that occursT1, ZT2Is the distribution line
This is a load such as a traffic light provided between R and T. VsR,
VSTIs the voltage between ground at the transmitting ends Rs and Ts, V rR, V
rTIndicates the voltage between the power receiving terminals Rr and Tr with respect to the ground.
You.

【0015】今、配電線R側の地点Pにおいて、地絡故
障が発生したとする(以下、地絡故障点Pという)。そ
して、例えば、この地絡故障によって抵抗Rgを介した
状態で大地と通電し、故障電流igが配電線Rから大地
に流れ、接地抵抗Rngを介して中間タップT0 に流入す
る。また、配電線Rの送電端Rsから地絡故障点Pまで
の間に故障電流igが流れる。
Assume that a ground fault has occurred at a point P on the distribution line R side (hereinafter referred to as a ground fault point P). Then, for example, the by ground fault energized with ground state via the resistor Rg, the fault current ig flows to ground from the power distribution line R, and flows into the intermediate tap T 0 through the ground resistor R ng. Further, a fault current ig flows from the transmission end Rs of the distribution line R to the ground fault point P.

【0016】このとき、送電線R側の送電端Rsと受電
端Rrの大地間電圧VsR,VrRの差は、以下の式(2)
に示すようになる。 VsR−VrR=Z1 (i1 +ig+i2 )+Z2 (ig+i2 )+Z3 ×i2 … 式(2)
At this time, the difference between the ground-to-ground voltages V sR and V rR between the transmitting end Rs and the receiving end Rr on the transmission line R side is expressed by the following equation (2).
It becomes as shown in. V sR −V rR = Z 1 (i 1 + ig + i 2 ) + Z 2 (ig + i 2 ) + Z 3 × i 2 Equation (2)

【0017】また、送電線T側の送電端Tsと受電端T
rの大地間電圧VsT,VrTの差は、送電線Tのインピー
ダンスが送電線Rと同じであるとして、以下の式(3)
に示すように表すことができる。 VsT−VrT=Z1 (i1 +i2 )+Z2 (i2 )+Z3 ×i2 … 式(3)
Further, a power transmitting end Ts and a power receiving end T
The difference between the earth-to-ground voltages V sT and V rT of r is given by the following equation (3), assuming that the impedance of the transmission line T is the same as that of the transmission line R.
Can be represented as shown in FIG. V sT −V rT = Z 1 (i 1 + i 2 ) + Z 2 (i 2 ) + Z 3 × i 2 Equation (3)

【0018】ここで、前記式(2)から式(3)を引く
ことにより、以下の式(4)を求めることができ、これ
を整理することにより、式(5)の関係を求めることが
できる。 (VsR−VsT)−(VrR−VrT)=ig(Z1 +Z2 ) … 式(4) Z1 +Z2 =((VsR−VsT)−(VrR−VrT))/ig … 式(5)
Here, the following equation (4) can be obtained by subtracting the equation (3) from the above equation (2), and by rearranging this, the relation of the equation (5) can be obtained. it can. (V sR −V sT ) − (V rR −V rT ) = ig (Z 1 + Z 2 ) Equation (4) Z 1 + Z 2 = ((V sR −V sT ) − (V rR −V rT )) / Ig Expression (5)

【0019】すなわち、送電端Rsから地絡故障点Pま
での間の送電線Rのインピーダンスの和(Z1 +Z2
は送電線R,T間に接続される負荷ZT1,ZT2の大きさ
やこれらに流れる電流i1 ,i2 の大きさ、地絡抵抗R
gや中性点抵抗Rngの大きさに関係なく求めることが
できる。そして、地絡事故発生時に故障電流igが流れ
ることによって生じた各配電線R,Tの送電端Rs,T
sにおける対地間電圧VsR,VsTの差、受電端Rr,T
rにおける各配電線R,Tの対地間電圧VrR,VrT
差、および故障電流igの測定値を用いて送電端Rsか
ら地絡故障点Pまでの配電線Rが持つインピーダンスZ
1 +Z2 を求めることができる。
That is, the sum of the impedance of the transmission line R from the transmission end Rs to the ground fault point P (Z 1 + Z 2 )
Are the magnitudes of the loads Z T1 and Z T2 connected between the transmission lines R and T, the magnitudes of the currents i 1 and i 2 flowing through them, the ground fault resistance R
g can be obtained regardless of the magnitude of the neutral point resistance Rng. The transmission ends Rs, T of the respective distribution lines R, T caused by the flow of the fault current ig at the time of occurrence of the ground fault.
s, the difference between the voltages V sR and V sT to the ground,
The impedance Z of the distribution line R from the transmitting end Rs to the ground fault point P using the difference between the voltages VrR and VrT of the respective distribution lines R and T at the point r and the measured value of the fault current ig.
1 + Z 2 can be obtained.

【0020】次いで、配電線Rが単位長さあたりのイン
ピーダンスzの大きさ(例えばz=r+jxで表わすこ
とができ、以下、単位インピーダンスという。)を有す
るものであるとき、送電端Rsから地絡故障点Pまでの
配電線Rが持つインピーダンスの大きさは、単位インピ
ーダンスzの大きさに地絡故障点Pまでの距離Lfを掛
けた値となる。すなわち、式(6)に示す関係が成り立
ち、前記インピーダンスZ1 +Z2 の大きさを求めた後
に、これを単位インピーダンスzの大きさで除算するこ
とにより、送電端Rsから地絡故障点Pまでの距離Lf
を求めることができる。 Z1 +Z2 =Lf×(r+jx) … 式(6)
Next, when the distribution line R has a magnitude of an impedance z per unit length (for example, it can be expressed by z = r + jx, and is hereinafter referred to as a unit impedance), a ground fault from the transmission end Rs. The magnitude of the impedance of the distribution line R to the fault point P is a value obtained by multiplying the magnitude of the unit impedance z by the distance Lf to the ground fault point P. That is, the relationship shown in Expression (6) is established, and after obtaining the magnitude of the impedance Z 1 + Z 2 , the obtained value is divided by the magnitude of the unit impedance z to obtain a value from the power transmitting end Rs to the ground fault point P. Distance Lf
Can be requested. Z 1 + Z 2 = Lf × (r + jx) Equation (6)

【0021】また、前記式(6)において、インピーダ
ンスZ1 +Z2 ,zの複素成分であるリアクタンスxの
大きさに注目することにより、以下の式(7)に示すよ
うに、リアクタンスxの大きさから前記距離Lfを求め
ることができる。 jx×Lf=((VsR−VsT)−(VrR−VrT))/ig×sin θ … 式(7) 但し、θは故障電流igと電圧(VsR−VsT)−(VrR
−VrT)との位相差である。
In the above equation (6), by paying attention to the magnitude of the reactance x which is a complex component of the impedance Z 1 + Z 2 , z, the magnitude of the reactance x is calculated as shown in the following equation (7). Thus, the distance Lf can be obtained. jx × Lf = ((V sR -V sT) - (V rR -V rT)) / ig × sin θ ... (7) however, theta fault current ig and the voltage (V sR -V sT) - ( V rR
−V rT ).

【0022】なお、以下の説明では、より簡潔で精度の
高い標定を行うために、リアクタンスxの大きさを用い
て、地絡故障点Pの標定を行なう例を開示するが、本発
明は、インピーダンス(r+jx)の複素成分であるリ
アクタンスxを用いて標定することに限定するものでは
ない。
In the following description, an example of locating the ground fault point P using the magnitude of the reactance x in order to perform locating more concisely and accurately is disclosed. The orientation is not limited to the orientation using the reactance x which is a complex component of the impedance (r + jx).

【0023】何れにしても、本発明によれば故障電流i
gが流れた時点で、その故障電流igと、この時の各部
の電圧VsR,VsT,VrR,VrTを測定することにより、
地絡故障点Pの標定を行うことができる。つまり、従来
のように(図4参照)配電線を標定するためのマレール
ープLmを形成するリレーRP1、別途の標定用電力を供
給するためのリレーRP2、標定用の電源Eなどの特別な
装置を設ける必要がなく、地絡故障点標定装置の構成を
簡素化することができる。そして、地絡故障点標定装置
の保守点検を簡便にすることができる。加えて、地絡故
障が一過性のものであって、すぐに復帰する程度のもの
であっても、最初の故障電流igが流れた時点でその原
因となる地絡故障点Pを標定できる。
In any case, according to the present invention, the fault current i
g, the fault current ig and the voltages V sR , V sT , V rR , V rT of the respective parts at this time are measured.
The ground fault point P can be located. That is, a relay R P1 forming a Murray loop Lm for locating a distribution line, a relay R P2 for supplying a separate locating power, a power source E for locating, etc. It is not necessary to provide a simple device, and the configuration of the ground fault fault locating device can be simplified. Further, maintenance and inspection of the ground fault fault locating device can be simplified. In addition, even if the ground fault is transient and has a degree of recovering immediately, the ground fault point P causing the fault can be located when the first fault current ig flows. .

【0024】図2は、上述した原理を用いて地絡故障点
Pの標定を行なう信号高圧配電線路の地絡故障点標定装
置1の一例を示す図である。図2において、図1と同じ
符号を付した部材は、同一または対応する部材であるの
で、その詳細な説明を省略する。
FIG. 2 is a diagram showing an example of a ground fault point locating apparatus 1 for a signal high voltage distribution line for locating a ground fault point P using the above-described principle. In FIG. 2, members denoted by the same reference numerals as those in FIG. 1 are the same or corresponding members, and thus detailed description thereof will be omitted.

【0025】図2において、配電線R,Tの送電端R
s,Ts側には、それぞれ、遮断器CB1 を設けてお
り、受電端Rr,Tr側には、遮断器CB2 を設けてい
る。そして通常は遮断器CB1 がオン(閉路)の状態
で、遮断器CB2 が切断(開路)されており、図示左側
から右側に送電される定位配電が行われる。また、地絡
故障が生じると、後述する手順で遮断器CB1 がトリッ
プ(開路の状態)されて、後に遮断器CB2 が投入(閉
路の状態)されることにより、図示右側から左側に送電
される反位配電が行われる。
In FIG. 2, the transmission end R of the distribution lines R and T
s, the Ts side, respectively, are provided with a breaker CB 1, the receiving end Rr, the Tr side is provided with a circuit breaker CB 2. And usually breaker CB 1 is in the ON state (closed), the circuit breaker CB 2 are disconnected (open), stereotactic distribution that is transmitting from the left side to the right side is performed. Further, when the ground fault occurs, by breaker CB 1 in the procedure described below is trip (open state), after the circuit breaker CB 2 is turned on (closed condition), the transmission from the right side to the left side Inversion distribution is performed.

【0026】tR ,tT はそれぞれ配電線R,Tに流れ
る電流iR ,iT を測定するためのカレントプローブ、
m はこれらのカレントプローブtR ,tT に接続され
た電流計、R1 は電流計Am に直列に接続された地絡保
護リレーである。ここで、カレントプローブtR ,tT
は配電線R,Tに流れる電流iR ,iT が同じ大きさで
あるとき(すなわち、故障が生じていないとき)に接続
点Cにおいて互いに打ち消すように接続されている。そ
して、前記電流iR ,iT に差が生じるようになると、
その差分の電流(すなわち故障電流ig)に比例する電
流が電流計Amおよび地絡保護リレーR1 に流れる。
T R and t T are current probes for measuring currents i R and i T flowing through distribution lines R and T, respectively.
A m These current probes t R, ammeter connected to t T, R 1 is a ground fault protection relay connected in series with the ammeter A m. Here, the current probes t R and t T
Are connected so as to cancel each other at the connection point C when the currents i R and i T flowing in the distribution lines R and T are the same (that is, when no failure occurs). When a difference occurs between the currents i R and i T ,
Current proportional to the current (i.e. fault current ig) of the difference flows to the ammeter A m and ground fault protection relay R 1.

【0027】したがって、配電線Rの途中で地絡抵抗R
gによる地絡事故が発生したとすると、この故障電流i
gが電流計Am および地絡保護リレーR1 によって検出
できる。地絡保護リレーR1 は故障電流igを検出する
と、それぞれ前記遮断器CB 1 ,CB2 をトリップする
ことにより、故障電流igが長時間流れることがないよ
うにする。
Accordingly, the ground fault resistance R
If a ground fault due to g occurs, the fault current i
g is the ammeter AmAnd ground fault protection relay R1Detected by
it can. Ground fault protection relay R1Detects fault current ig
And the circuit breaker CB, respectively. 1, CBTwoTrip
As a result, the fault current ig does not flow for a long time.
To do.

【0028】TsR,TsTはそれぞれ送電端Rs,Tsに
おける各配電線R,Tの対地間電圧VsR,VsTを測定可
能な電圧に降下させるトランス、MsR,MsTはこのトラ
ンスTsR,TsTを介して各配電線R,Tの対地間電圧V
sR,VsTを測定する電圧計、R2sは前記トランスTsR
sTを介して配電線R,Tの線間電圧を監視する不足電
圧継電器である。
T sR and T sT are transformers for lowering the voltages V sR and V sT of the respective distribution lines R and T at the transmitting ends Rs and Ts to a measurable voltage, respectively , and M sR and M sT are transformers T sR , T sT, and the voltage V to ground of each distribution line R, T
A voltmeter for measuring sR and V sT , R 2s is the transformer T sR ,
This is an undervoltage relay that monitors the line voltage of the distribution lines R and T via TsT .

【0029】また、受電端Rr,Tr側においても同様
に、各配電線R,Tの対地間電圧V rR,VrTを測定可能
な電圧に降下させるトランスTrR,TrT、このトランス
rR,TrTを介して各配電線R,Tの対地間電圧VrR
rTを測定する電圧計MrR,MrT、配電線R,Tの線間
電圧を監視する不足電圧継電器R2rを有している。
The same applies to the power receiving ends Rr and Tr.
And the ground voltage V of each distribution line R, T rR, VrTCan be measured
Transformer T that reduces voltagerR, TrT, This transformer
TrR, TrTOf each distribution line R, T viarR,
VrTVoltmeter M for measuringrR, MrT, Between distribution lines R and T
Undervoltage relay R for monitoring voltage2rhave.

【0030】Mは測定部を示しており、この測定部Mに
は前記カレントプローブtR ,tT、電流計Am 、トラ
ンスTsR,TsT,TrR,TrT、電圧計MsR,MsT
rR,M rTなどが含まれる。すなわち、この測定部Mに
より、各配電線R,Tの送電端Rs,Tsにおける対地
間電圧VsR,VsT、接地点から中間点T0 に流入する故
障電流ig、および各配電線の受電端Rr,Trにおけ
る対地間電圧VrR,VrTのそれぞれの瞬時値を波形デー
タとして測定することができる。
M indicates a measuring section, and the measuring section M
Is the current probe tR, TT, Ammeter Am,Tiger
Once TsR, TsT, TrR, TrT, Voltmeter MsR, MsT,
MrR, M rTAnd so on. That is, the measuring unit M
From the distribution lines R and T at the transmission ends Rs and Ts
Voltage VsR, VsT, From the ground point to the intermediate point T0Because it flows into
Fault current ig, and at the receiving end Rr, Tr of each distribution line
Voltage to ground VrR, VrTThe instantaneous value of
Can be measured.

【0031】2,3はそれぞれ配電線R,Tの両端に設
けられた、標定器本体であり、それぞれアナログ入力ポ
ート2a,3aと、デジタル入力ポート2d,3dを有
している。また、標定器本体2,3は前記測定部Mの一
部として標準時刻収集装置Gを有しており、この標準時
刻収集装置Gから得られる時刻情報(時刻情報パルスT
g)を用いてアナログ入力ポート2a,3aから入力さ
れる各波形データの記録タイミングの同期をとる。
Reference numerals 2 and 3 denote main body units provided at both ends of the distribution lines R and T, respectively, having analog input ports 2a and 3a and digital input ports 2d and 3d, respectively. Each of the orientation unit main bodies 2 and 3 has a standard time collection device G as a part of the measurement unit M, and time information (time information pulse T) obtained from the standard time collection device G is obtained.
Using g), the recording timing of each waveform data input from the analog input ports 2a and 3a is synchronized.

【0032】送電端側の標定器本体2において、アナロ
グ入力ポート2aには、上述した送電端Rs,Tsにお
ける対地間電圧VsR,VsT、および故障電流igの瞬時
値を波形データとして入力し、デジタル入力ポート2d
には送電側の前記地絡保護リレーR1 ,不足電圧継電器
2s、標準時刻収集装置Gからの時刻情報パルスTg、
および、遮断器CB1 の動作状況を入力する。
In the locator main body 2 on the transmitting end side, the above-mentioned instantaneous values of the voltages V sR and V sT and the instantaneous value of the fault current ig at the transmitting ends Rs and Ts are input to the analog input port 2a as waveform data. , Digital input port 2d
The ground fault protection relay R 1 on the power transmission side, the undervoltage relay R 2s , the time information pulse Tg from the standard time collection device G,
And inputs the operation status of the circuit breaker CB 1.

【0033】一方、受電端側の標定器本体3において、
アナログ入力ポート3aには、受電端Rr,Trにおけ
る対地間電圧VrR,VrT、および故障電流igの瞬時値
を波形データとして入力し、デジタル入力ポート3dに
は受電側の地絡保護リレーR 1 ,不足電圧継電器R2r
および、遮断器CB2 の動作状況を入力する。
On the other hand, in the locator body 3 on the power receiving end side,
The analog input port 3a is connected to the power receiving terminals Rr and Tr.
Voltage to ground VrR, VrT, And the instantaneous value of the fault current ig
Is input as the waveform data, and is input to the digital input port 3d.
Is the ground fault protection relay R on the receiving side 1, Undervoltage relay R2r,
And circuit breaker CBTwoEnter the operation status of.

【0034】また、標定器本体2,3はそれぞれ一時記
憶部としてのリングバッファ2b,3bを有しており、
例えば、前記標準時刻収集装置Gから受けた時刻情報と
共に記録する。このリングバッファ2b,3bは例えば
10秒程度の各波形データを記憶可能としており、これ
らを10秒程度毎に順次上書き記憶し続ける。さらに、
前記標定器本体2,3は通信部2c,3cを有してお
り、この通信部2c,3cを介することにより、例えば
コンピュータなどの演算部4と通信して測定した各波形
データを演算部4に送信可能している。
The orientation units 2 and 3 have ring buffers 2b and 3b as temporary storage units, respectively.
For example, it is recorded together with the time information received from the standard time collection device G. The ring buffers 2b and 3b are capable of storing, for example, respective waveform data for about 10 seconds, and continuously overwrite and store these for about every 10 seconds. further,
The orientation unit main bodies 2 and 3 have communication units 2c and 3c, and communicate with the arithmetic unit 4 such as a computer through the communication units 2c and 3c to convert each waveform data measured. Can be sent to

【0035】前記演算部4は例えば電話回線などの通信
線によって各標定器本体2,3と通信可能とする通信部
4aを有しており、前記リングバッファ2b、3bに書
き込まれた各測定値VsR,VsT,VrR,VrT,igの瞬
時値を表わす測定値データを収集し、これを解析するこ
とにより地絡故障点Pの標定を行うことができる。
The arithmetic unit 4 has a communication unit 4a for making it possible to communicate with each of the orientation units 2 and 3 through a communication line such as a telephone line, for example, and each measurement value written in the ring buffers 2b and 3b. By collecting measurement value data representing the instantaneous values of V sR , V sT , V rR , V rT , and ig and analyzing the data, the ground fault point P can be located.

【0036】図3は、上記構成の信号高圧配電線路の地
絡故障点標定装置1を用いて、地絡故障が生じた時の各
部の動作を説明する図である。以下、図2,3を用いて
本発明の信号高圧配電線路の地絡故障点標定装置1の動
作を説明する。
FIG. 3 is a diagram for explaining the operation of each unit when a ground fault occurs using the ground fault point locating apparatus 1 for a signal high-voltage distribution line having the above configuration. Hereinafter, the operation of the ground fault fault locating apparatus 1 of the signal high-voltage distribution line according to the present invention will be described with reference to FIGS.

【0037】すなわち、時点t0 において地絡故障が発
生すると、送電端側の変圧器T1 に故障電流igが流れ
ると共に、配電線R,Tの大地間電圧VsRに変化が生じ
る。また、故障電流igを検知して前記地絡保護リレー
1 が動作し、遮断器CB1をトリップすると同時に、
遮断器CB1 が入り状態でかつ地絡保護リレーR1 が動
作した条件により標定器本体2内において標定器起動信
号Ssを発生させる。同時に地絡保護リレーR1 の動作
時点の時刻を記録する。
That is, when a ground fault occurs at time t 0 , a fault current ig flows through the transformer T 1 on the transmission end side, and a change occurs in the ground-to-ground voltage V sR of the distribution lines R and T. The fault current ig detects the ground fault protection relay R 1 is operated, when to trip the circuit breaker CB 1 simultaneously,
The locator start signal Ss is generated in the locator body 2 according to the condition that the circuit breaker CB 1 is in the ON state and the ground fault protection relay R 1 is operated. At the same time it records the time of the operation time of the ground fault protection relay R 1.

【0038】そして、前記標定器起動信号Ssが入った
時点t1 から例えば前に0.5秒、後に9.5秒の合計
10秒間の測定値VsR,VsT,igの瞬時値を表わす測
定値データを時刻データと共にリングバッファ2bから
保存し、これを測定値の保存データとする。次いで、時
点t2 において遮断器CB1 がトリップすると配電線
R,T間に電位差がなくなるゆえに不足電圧継電器R2S
が動作する。なお、送電端側においては、これに先行す
る地絡保護リレーR1 の動作から例えば10秒間の不足
電圧継電器R2Sの動作を無視するので、不足電圧継電器
2Sの動作に伴って動作することはない。
The instantaneous values of the measured values V sR , V sT , and ig for a total of 10 seconds, for example, 0.5 seconds before and 9.5 seconds after the time t 1 at which the locator start signal Ss is input , are shown. The measurement value data is stored together with the time data from the ring buffer 2b, and this is used as the measurement value storage data. Then, and lack breaker CB 1 at time t 2 is tripped distribution lines R, because the potential difference is eliminated between the T voltage relay R 2S
Works. Note that in the power transmission end side, this so ignores the operation of the undervoltage relay R 2S from the operation of the ground fault protection relay R 1 which precedes example 10 seconds, to operate in accordance with the operation of the undervoltage relay R 2S There is no.

【0039】一方、前記時点t2 において遮断器CB1
がトリップすると、受電端側においては配電線R,T間
に電位差がなくなるので、受電端側の不足電圧継電器R
2Rがこれを検知して動作し、時点t3 において不足電圧
継電器R2Rによって遮断器CB2 が投入される。このと
き、受電端側の標定器本体3内においては標定器起動信
号Srを発生させる。そして、この標定器起動信号Sr
が入った時点t3 から例えば前に4秒、後に6秒の合計
10秒間の測定値VrR,VrT,igの瞬時値を表わす測
定値データを時刻データと共にリングバッファ3bから
保存し、これを測定値の保存データとする。
On the other hand, at the time point t 2 , the circuit breaker CB 1
Trips, there is no potential difference between the distribution lines R and T on the receiving end side, so the undervoltage relay R on the receiving end side
2R operates detects this, breaker CB 2 by undervoltage relay R 2R at time t 3 is turned. At this time, a locator start signal Sr is generated in the locator body 3 on the power receiving end side. Then, the locator activation signal Sr
Saved from the ring buffer 3b is entered time point t 3, for example, from front to 4 seconds, after 6 seconds of a total of 10 seconds of measurement V rR, V rT, together with the time data measurements data representing the instantaneous value of ig, which Is stored data of measured values.

【0040】次いで、時点t4 において遮断器CB2
投入されることにより、今度は受電端側から送電端側へ
電力が供給されて、反位配電が行われる。なお、本願明
細書の説明では、表現を統一するために反位配電が行わ
れているときも図示向かって左側を(通常は)送電端
側、右側を受電端側と表現するが、反位配電になった状
態では送電端側と受電端側を切り換えて標定処理をして
もよいことはいうまでもない。
Next, when the circuit breaker CB 2 is turned on at the time point t 4 , power is supplied from the power receiving end side to the power transmission end side, and inverted power distribution is performed. In the description of the specification of the present application, the left side (usually) is referred to as the power transmission end side and the right side is referred to as the power reception end side even when inverted power distribution is performed in order to unify the expressions. It goes without saying that in the state of power distribution, the location processing may be performed by switching between the power transmission end side and the power reception end side.

【0041】遮断器CB2 が投入された時点t4 で地絡
故障が継続しており、故障電流igが流れた場合には、
時点t5 において受電端側の地絡保護リレーR1 が故障
電流igを検知して遮断器CB2 をトリップする。この
ようにして、時点t6 には配電線R,Tが開放状態とな
り、故障電流igが流れつづけることを防止する。ま
た、標定器本体3は地絡保護リレーR1 の動作時刻を記
録する。
When the ground fault continues at time t 4 when the circuit breaker CB 2 is turned on and the fault current ig flows,
Ground fault protection relay R 1 in the receiving end to trip the circuit breaker CB 2 detects the fault current ig at time t 5. In this way, the distribution line R, T becomes open state at time t 6, to prevent the fault current ig continues to flow. Also, orientation body 3 records the operation time of the ground fault protection relay R 1.

【0042】一方、前記標定器本体2は演算部4を呼び
出して、前記保存データから送電側の地絡保護リレーR
1 の動作時刻マーカを含む3サイクル分の測定値VsR
sT,igの瞬時値を表わす測定値データを演算部4に
送信する。次いで、これに対応する3サイクル分の測定
値VrR,VrTの瞬時値を表わす波形データを、標定器本
体3の保存データの中から演算部4に転送する。なお、
各標定器本体2,3と演算部4との接続は一般の電話回
線を用いて行っても、無線を含む専用回線を用いて行っ
てもよい。
On the other hand, the locator main body 2 calls the arithmetic unit 4 and, based on the stored data, the ground fault protection relay R on the power transmission side.
The measured value V sR for three cycles including the operation time marker of 1 ,
The measured value data representing the instantaneous value of V sT , ig is transmitted to the arithmetic unit 4. Next, the waveform data representing the instantaneous values of the measured values V rR and V rT for three cycles corresponding to this is transferred to the arithmetic unit 4 from the data stored in the orientation unit main body 3. In addition,
The connection between the orientation units 2 and 3 and the arithmetic unit 4 may be performed using a general telephone line or a dedicated line including wireless.

【0043】このようにすることにより、同期するタイ
ミングで測定した測定値VsR,VsT,ig,VrR,VrT
の瞬時値を得ることができる。演算部4はこれらの測定
値V sR,VsT,VrR,VrT,igを解析する。解析方法
として、例えば、前記各測定値VsR,VsT,VrR
rT,igをフーリエ展開することにより、高調波成分
を取り除くことができる。また、前述の式(7)の演算
を行うことにより、送電端Rsから地絡故障点Pまでの
配電線Rが有するリアクタンス分の大きさを求めること
ができ、このリアクタンス分の大きさを単位長当たりの
リアクタンスxで除算することにより、送電端Rsから
地絡故障点Pまでの距離Lfを標定することができる。
By doing so, the synchronized ties are
Measured value VsR, VsT, Ig, VrR, VrT
Can be obtained. The arithmetic unit 4 performs these measurements
Value V sR, VsT, VrR, VrT, Ig are analyzed. analysis method
As an example, each of the measured values VsR, VsT, VrR,
VrT, Ig are subjected to Fourier expansion to obtain harmonic components
Can be removed. In addition, the calculation of the above equation (7)
Is performed, the distance from the transmitting end Rs to the ground fault point P is
Finding the size of the reactance of the distribution line R
And the magnitude of this reactance is
By dividing by reactance x, from the transmitting end Rs
The distance Lf to the ground fault point P can be located.

【0044】また、前記演算部4による標定演算は時点
0 〜t2 までの間の3サイクル分の各波形データ
sR,VsT,VrR,VrT,igを用いており、地絡故障
が発生した時点における最初の故障電流igを用いて地
絡故障点Pまでの距離Lfを標定しているので、地絡故
障が発生したら、たとえ反位配電に切り換えられた後に
地絡故障が回復したとしても、地絡故障点Pの標定を行
うことができる。
The orientation calculation by the arithmetic unit 4 uses the waveform data V sR , V sT , V rR , V rT , and ig for three cycles from time t 0 to t 2. Since the distance Lf to the ground fault point P is determined by using the first fault current ig at the time when the fault occurs, if a ground fault occurs, even if the ground fault is switched to the reverse power distribution, the fault is detected. Even after recovery, the ground fault point P can be located.

【0045】しかしながら、本発明はこれに限られるも
のではなく、例えば、反位配電になった後の時点t4
6 の間の各測定値VsR,VsT,VrR,VrT,ig(こ
の場合の故障電流igは受電端側のトランスT2 の中間
タップT0 に流れ込む電流であり、求まる距離Lfは受
電端側から計った距離である)を用いて標定を行っても
よい。さらに、定位配電の状態で測定した地絡故障点P
の標定結果と、反位配電の状態で測定した地絡故障点P
の標定結果を比較して、より信頼性の高い地絡故障点P
の標定を行ってもよい。
However, the present invention is not limited to this. For example, at time t 4 after inversion power distribution,
Each measured value V sR , V sT , V rR , V rT , ig during t 6 (the fault current ig in this case is a current flowing into the intermediate tap T 0 of the transformer T 2 on the receiving end side, and the distance Lf obtained is Is the distance measured from the power receiving end side). Furthermore, the ground fault point P measured in the state of
And the ground fault point P measured in the state of inverted power distribution
The more reliable ground fault P
May be performed.

【0046】なお、上述の例では、測定値VsR,VsT
rR,VrT,igの波形データを同期するタイミングで
測定するために、標準時刻収集装置Gの時刻情報パルス
Tgを用いることにより、離れた地点に配置された標定
器本体2,3においても、例えば数μs以下の誤差に抑
えた同期をとることができる。標準時刻収集装置GにG
PSレシーバなどを用いて実施することができる。
In the above example, the measured values V sR , V sT ,
In order to measure the waveform data of VrR , VrT , and ig at the synchronized timing, the time information pulse Tg of the standard time collection device G is used, so that the locator bodies 2, 3 arranged at distant points can be used. For example, synchronization can be achieved with an error of several μs or less. G for standard time collection device G
It can be implemented using a PS receiver or the like.

【0047】また、長波JJY(平成11年6月から送
信されている長波帯標準電波)の標準時刻信号を受信し
て同期信号とすることも可能である。その他にも、例え
ば両標定器本体2,3のそれぞれに原子時計のような極
めて精度の高い時計を組み込んでもよい。また、同期を
とるための通信線を接続し、これを用いて同期をとるこ
とも、配電線R,Tなどに周波数変調した同期信号を重
畳させて同期をとることも可能である。
It is also possible to receive a standard time signal of a long wave JJY (a long wave standard radio wave transmitted from June 1999) and use it as a synchronization signal. In addition, for example, an extremely accurate clock such as an atomic clock may be incorporated in each of the two target body 2 and 3. It is also possible to connect a communication line for synchronization and use the communication line for synchronization, or to synchronize by superimposing a frequency-modulated synchronization signal on the distribution lines R and T.

【0048】また、上述の例では一時記憶部としてのリ
ングバッファ2b,3bの大きさの一例として10秒程
度としているが、本発明はリングバッファ2b,3bの
大きさを限定するものではない。同様にリングバッファ
2b,3bから一例として10秒分の測定値VsR
sT,VrR,VrT,igの瞬時値を保存し、その内、3
サイクル分の波形データを用いて標定演算を行なう例を
開示しているが、その長さおよび基準となる時点t1
上記実施例に限定するものではない。一時期奥部2b,
3bの大きさは大きいほうがよく、保存し、標定演算す
る波形データの長さは長いほうがよい。
In the above example, the size of the ring buffers 2b and 3b as the temporary storage unit is set to about 10 seconds as an example, but the present invention does not limit the size of the ring buffers 2b and 3b. Similarly, the measured values V sR for 10 seconds as an example from the ring buffers 2b and 3b,
The instantaneous values of V sT , V rR , V rT , and ig are stored.
It discloses an example in which the orientation calculation using the waveform data of the cycle, are not intended to limit the time t 1 to be its length and a reference to the embodiments described above. For the time being back 2b,
The larger the size of 3b, the better the length of the waveform data to be stored and orientated.

【0049】さらに、リングバッファ2b,3bに記憶
させる測定値データとして、各配電線R,Tの対地間電
圧の差分VsR−VsT,VrR−VrTを計算した後に、この
差分を記憶してもよい。この場合、リングバッファ2
b,3bに記憶させるデータの数を削減でき、同容量で
より長い時間の測定値データを記憶できる。
[0049] Further, the ring buffer 2b, as a measure data to be stored in 3b, each distribution line R, the difference V sR -V sT of ground voltage T, then after calculating V rR -V rT, stores the difference May be. In this case, the ring buffer 2
The number of data stored in b and 3b can be reduced, and the measured value data for a longer time can be stored with the same capacity.

【0050】加えて、上述の例では配電線R,Tの内、
配電線Rにおいて地絡故障が生じた例を考慮している
が、配電線Tにおいて地絡故障が生じた場合にも同様の
手順で地絡故障点Pを標定可能であることは言うまでも
ない。この場合、地絡故障によって電圧が大きく減少し
た方において故障が発生したと判断できる。
In addition, in the above example, of the distribution lines R and T,
Although an example in which a ground fault has occurred in the distribution line R is considered, it is needless to say that the ground fault point P can be located in the same procedure when a ground fault occurs in the distribution line T. In this case, it can be determined that a fault has occurred when the voltage is greatly reduced due to a ground fault.

【0051】また、上述の例では常に配電線R,Tが2
本線である場合を開示しているが、本発明は配電線の数
を2線に限定するものではない。すなわち、3本線であ
っても同様の手法で地絡故障点Pの標定を行うことが可
能である。
In the above example, the distribution lines R and T are always 2
Although the case of a main line is disclosed, the present invention does not limit the number of distribution lines to two lines. In other words, it is possible to locate the ground fault point P in the same manner even with three lines.

【0052】[0052]

【発明の効果】以上説明したように、本発明によれば地
絡故障が発生したときに、配電線に流れる故障電流を測
定するので、たとえ配電線に対する送電を遮断した時点
で地絡が復旧するような一過性の地絡事故であったとし
ても、故障点の標定を行うことができる。つまり、地絡
事故が発生したときに確実に地絡点を標定することがで
き、事故の再発を迅速に予防することができる。前記配
電線の送電端側の測定部および受電端側の測定部がそれ
ぞれ標準時刻収集装置を有しており、この標準時刻収集
装置から得られる時刻情報を用いて前記波形データの記
録タイミングの同期をとる場合には、距離的に離れた地
点に接地された測定部の間で極めて容易に高精度の同期
をとることができる。すなわち、それだけ故障点の標定
精度を上げることができる。
As described above, according to the present invention, when a ground fault occurs, the fault current flowing in the distribution line is measured, so that the ground fault is restored even when the power transmission to the distribution line is cut off. Even if it is a temporary ground fault accident, the fault point can be located. That is, when a ground fault occurs, the ground fault point can be reliably located, and recurrence of the fault can be quickly prevented. The measuring unit on the transmitting end and the measuring unit on the receiving end of the distribution line each have a standard time collection device, and use the time information obtained from the standard time collection device to synchronize the recording timing of the waveform data. In this case, highly accurate synchronization can be achieved very easily between the measurement units grounded at points distant from each other. That is, the localization accuracy of the fault point can be increased accordingly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の信号高圧配電線路の地絡故障点標定装
置による標定方法を説明する図である。
FIG. 1 is a diagram illustrating a method for locating a high-voltage signal distribution line using a ground fault fault locating apparatus according to the present invention.

【図2】本発明の信号高圧配電線路の地絡故障点標定装
置の一例を示す図である。
FIG. 2 is a diagram showing an example of a ground fault fault locating apparatus for a signal high-voltage distribution line according to the present invention.

【図3】前記信号高圧配電線路の地絡故障点標定装置の
動作を説明する図である。
FIG. 3 is a diagram for explaining an operation of the ground fault fault locating device for the signal high-voltage distribution line.

【図4】従来の地絡故障点標定装置による標定方法を説
明する図である。
FIG. 4 is a diagram illustrating a location method using a conventional ground fault fault location device.

【符号の説明】[Explanation of symbols]

1…信号高圧配電線路の地絡故障点標定装置、2b,3
b…一時記憶部、4…演算部、G…標準時刻収集装置、
ig…故障電流、M…測定部、R,T…配電線、T0
中間タップ、T1 …送電側変圧器、Tg…時刻情報、R
s…送電端、Rr…受電端、VsR,VsT,VrR,VrT
対地間電圧。
1 ... ground fault fault locating device for signal high voltage distribution line, 2b, 3
b: temporary storage unit, 4: operation unit, G: standard time collection device,
ig: fault current, M: measuring section, R, T: distribution line, T 0 ...
Intermediate tap, T 1 ... Transmission side transformer, Tg ... Time information, R
s ... the sending end, Rr ... receiving end, V sR, V sT, V rR, V rT ...
Voltage to ground.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲高▼橋 章雄 大阪府箕面市瀬川4丁目4番10号 津田電 気計器株式会社内 (72)発明者 北川 哲三 大阪府箕面市瀬川4丁目4番10号 津田電 気計器株式会社内 Fターム(参考) 2G033 AA04 AB01 AC02 AD11 AG12 5G058 EE01 EF03 EF04 EG15 EH02 EH03  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor ▲ Takao Hashio 4-4-1-10 Segawa, Minoh-shi, Osaka Inside Tsuda Denki Keiki Co., Ltd. (72) Tetsuzo Kitagawa 4-4-2 Segawa, Minoh-shi, Osaka No. 10 Tsuda Denki Keiki Co., Ltd. F term (reference) 2G033 AA04 AB01 AC02 AD11 AG12 5G058 EE01 EF03 EF04 EG15 EH02 EH03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 配電線に地絡故障が起こった際に地絡故
障点を標定する装置であって、中間タップを接地する送
電側変圧器と、各配電線の送電端における対地間電圧、
接地点から中間点に流入する故障電流、および各配電線
の受電端における対地間電圧のそれぞれを測定する測定
部と、地絡事故発生時に故障電流が流れることによって
生じた各配電線の送電端における対地間電圧の差、受電
端における各配電線の対地間電圧の差、および故障電流
の測定値を用いて送電端から地絡故障点までの配電線が
持つインピーダンスの大きさを求め、このインピーダン
スの大きさによって送電端から地絡故障点までの距離を
算出する演算部とを有することを特徴とする信号高圧配
電線路の地絡故障点標定装置。
An apparatus for locating a ground fault point when a ground fault occurs in a distribution line, comprising: a transmission-side transformer for grounding an intermediate tap; and a voltage to ground at a transmission end of each distribution line.
A measuring unit that measures the fault current flowing from the ground point to the intermediate point and the voltage to ground at the receiving end of each distribution line, and the transmission end of each distribution line caused by the fault current flowing when a ground fault occurs The difference between the voltage to ground at, the difference between the voltage to ground of each distribution line at the receiving end, and the magnitude of the impedance of the distribution line from the transmitting end to the ground fault using the measured value of the fault current, A calculating unit for calculating a distance from the power transmitting end to the ground fault point based on the magnitude of the impedance, and a ground fault point locating device for the signal high-voltage distribution line.
【請求項2】 配電線に地絡故障が起こった際に地絡故
障点を標定する装置であって、中間タップを接地する送
電側変圧器と、各配電線の送電端における対地間電圧、
接地点から中間点に流入する故障電流、および各配電線
の受電端における対地間電圧の、それぞれの波形の瞬時
値を測定する測定部と、測定した各波形の瞬時値を同期
したタイミングで波形データとして記録する一時記憶部
と、地絡事故発生時に故障電流が流れることによって生
じた各配電線の送電端における対地間電圧の差、受電端
における各配電線の対地間電圧の差、および故障電流の
測定値の波形データを前記一時記憶部から読み出して解
析することにより、送電端から地絡故障点までの配電線
が持つリアクタンスの大きさを求め、このリアクタンス
の大きさによって送電端から地絡故障点までの距離を算
出する演算部とを有することを特徴とする信号高圧配電
線路の地絡故障点標定装置。
2. An apparatus for locating a ground fault point when a ground fault occurs in a distribution line, comprising: a transmission-side transformer for grounding an intermediate tap; and a ground-to-ground voltage at a transmission end of each distribution line.
A measuring unit that measures the instantaneous value of each waveform of the fault current flowing from the ground point to the intermediate point, and the voltage to ground at the receiving end of each distribution line, and the waveform at the timing that synchronizes the instantaneous value of each measured waveform A temporary storage unit that records data, a difference in ground-to-ground voltage at the transmitting end of each distribution line caused by a fault current flowing when a ground fault occurs, a difference in ground-to-ground voltage of each distribution line at the receiving end, and a fault By reading and analyzing the waveform data of the measured current value from the temporary storage unit, the magnitude of the reactance of the distribution line from the transmitting end to the ground fault point is obtained, and the magnitude of the reactance is used to determine the magnitude of the reactance from the transmitting end to the ground. And a calculation unit for calculating a distance to a ground fault point.
【請求項3】 前記配電線の送電端側の測定部および受
電端側の測定部がそれぞれ標準時刻収集装置を有してお
り、この標準時刻収集装置から得られる時刻情報を用い
て前記波形データの記録タイミングの同期をとる請求項
2に記載の信号高圧配電線路の地絡故障点標定装置。
3. The measuring section on the transmitting end and the measuring section on the receiving end of the distribution line each have a standard time collection device, and the waveform data is obtained by using time information obtained from the standard time collection device. 3. The apparatus for locating a ground fault in a signal high-voltage distribution line according to claim 2, wherein the recording timing is synchronized.
JP18263199A 1999-06-29 1999-06-29 Ground fault fault locator for signal high voltage distribution lines Expired - Lifetime JP3898855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18263199A JP3898855B2 (en) 1999-06-29 1999-06-29 Ground fault fault locator for signal high voltage distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18263199A JP3898855B2 (en) 1999-06-29 1999-06-29 Ground fault fault locator for signal high voltage distribution lines

Publications (2)

Publication Number Publication Date
JP2001016762A true JP2001016762A (en) 2001-01-19
JP3898855B2 JP3898855B2 (en) 2007-03-28

Family

ID=16121677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18263199A Expired - Lifetime JP3898855B2 (en) 1999-06-29 1999-06-29 Ground fault fault locator for signal high voltage distribution lines

Country Status (1)

Country Link
JP (1) JP3898855B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279031A (en) * 2006-03-16 2007-10-25 Tokyo Electric Power Co Inc:The Grounding accident point survey device, and grounding accident point survey method using the same
WO2011116818A1 (en) 2010-03-25 2011-09-29 Widex A/S Hearing aid with mechanical sound generating means for function selection
CN114184843A (en) * 2020-09-15 2022-03-15 日立能源瑞士股份公司 Method and apparatus for estimating source impedance on one or more transmission lines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279031A (en) * 2006-03-16 2007-10-25 Tokyo Electric Power Co Inc:The Grounding accident point survey device, and grounding accident point survey method using the same
WO2011116818A1 (en) 2010-03-25 2011-09-29 Widex A/S Hearing aid with mechanical sound generating means for function selection
US8885864B2 (en) 2010-03-25 2014-11-11 Widex A/S Hearing aid with mechanical sound generating means for function selection
CN114184843A (en) * 2020-09-15 2022-03-15 日立能源瑞士股份公司 Method and apparatus for estimating source impedance on one or more transmission lines
JP2022049007A (en) * 2020-09-15 2022-03-28 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Method and device for estimating source impedances across one or more transmission lines
US11916367B2 (en) 2020-09-15 2024-02-27 Hitachi Energy Switzerland Ag Method and device for estimating source impedances across one or more transmission lines
CN114184843B (en) * 2020-09-15 2024-04-19 日立能源有限公司 Method and apparatus for estimating source impedance on one or more transmission lines

Also Published As

Publication number Publication date
JP3898855B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US6256592B1 (en) Multi-ended fault location system
US8861155B2 (en) High-impedance fault detection and isolation system
WO1998029752A1 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
US5272440A (en) Isolation monitors and measuring device for an electrical power system with isolated neutral
US5903155A (en) Method of measurement for fault-distance determination on a HVDC power transmission line having at least two lines connected in parallel
CN107209220A (en) Use the fault location of traveling wave
CN110187235A (en) Distributed power line fault positioning system and method based on traveling wave speed dynamic measurement
WO2004088331A2 (en) Method of precisely determining the location of a fault on an electrical transmision system
WO1998029752A9 (en) System for locating faults and estimating fault resistance in distribution networks with tapped loads
JP2008070177A (en) Test system for protection relay device
Das et al. Estimating zero-sequence line impedance and fault resistance using relay data
KR20210143551A (en) Apparatus and method for detecting fault point location in transmission line
JP2001016762A (en) Ground failure point locating device for high-voltage signal distribution line
Cory et al. Satellites for power system applications
JP2001196980A (en) Method and system for retrieving and locating fault point of communication cable for wired distribution line remote supervisory control
JP4104341B2 (en) Accident location system
JP4316103B2 (en) Fault location system
Ye et al. Impact analysis and mitigation of losing time synchronization at micro-PMUs in event location identification
JPS58208675A (en) Fault point locating system
JP2002071740A (en) System of detecting ground fault by waveform transmission
US6859025B2 (en) Measurement of quantities of electric line
CN219552575U (en) Intelligent distribution network fault monitoring system
Peretto et al. A distributed measurement system for locating transient-voltage sources
Kasztenny et al. A new multiterminal fault location algorithm embedded in line current differential relays
JP2000346900A (en) Failure point locating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent or registration of utility model

Ref document number: 3898855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term