JP2001013698A - Method for purifying polymer material for electrophotographic photoreceptor, and electrophotographic photoreceptor. - Google Patents

Method for purifying polymer material for electrophotographic photoreceptor, and electrophotographic photoreceptor.

Info

Publication number
JP2001013698A
JP2001013698A JP11187394A JP18739499A JP2001013698A JP 2001013698 A JP2001013698 A JP 2001013698A JP 11187394 A JP11187394 A JP 11187394A JP 18739499 A JP18739499 A JP 18739499A JP 2001013698 A JP2001013698 A JP 2001013698A
Authority
JP
Japan
Prior art keywords
polymer material
activated clay
parts
polymer
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11187394A
Other languages
Japanese (ja)
Inventor
Kazukiyo Nagai
一清 永井
Masaomi Sasaki
正臣 佐々木
Shinichi Kawamura
慎一 河村
Koukoku Ri
洪国 李
Susumu Suzuka
進 鈴鹿
Katsuhiro Morooka
勝宏 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Ricoh Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Ricoh Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP11187394A priority Critical patent/JP2001013698A/en
Publication of JP2001013698A publication Critical patent/JP2001013698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polymer material not containing impurities which deteriorate the characteristics of a photoreceptor and less liable to generate residual potential and to make obtainable an electrophotographic photoreceptor having good electrification ability, ensuring low residual potential and excellent in sensitivity and durability by dissolving a polymer material for an electrophotographic photoreceptor in an organic solvent and bringing the resulting solution into contact with activated clay. SOLUTION: A polymer material for an electrophotographic photoreceptor is dissolved in an organic solvent, powdery or granular activated clay is added to the resulting solution, stirred and separated by filtration and then the solvent is removed. Preferably the polymer material is dissolved in an organic solvent having a dielectric constant of <=8 and the resulting solution is brought into contact with the activated clay at a temp. of >=65 deg.C. The improvement of characteristics is attained at a treatment temperature of >=65 deg.C, and since impurities have high polarity, an apolar solvent produces a significant effect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複写機、プリンタ
ー、ファクシミリ等に使用される電子写真感光体用の高
分子材料、特に電荷輸送層に使用される高分子材料その
中でも特に電荷輸送層に使用される電荷輸送性高分子材
料を精製する方法、及び、それらの方法によって精製処
理された高分子材料を含有する電子写真感光体に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer material for an electrophotographic photoreceptor used for a copying machine, a printer, a facsimile, etc., particularly a polymer material used for a charge transport layer. The present invention relates to a method for purifying a charge-transporting polymer material to be used, and an electrophotographic photoreceptor containing the polymer material purified by those methods.

【0002】[0002]

【従来の技術】電子写真感光体には電気特性を初期から
長時間使用後まで安定させるために高純度の材料が要求
されている。その中で高分子材料についてはモノマー原
料の高純度化や重合過程に使用する薬品類の高純度化や
重合後の溶媒洗浄やアルカリ洗浄や酸洗浄や純水による
洗浄等が行われている。また、良溶媒に溶解させた液を
貧溶媒に注入する再沈殿を繰り返す手法も知られてい
る。しかしながら、低分子材料に比べて高分子化された
後の精製は一般に困難であり、電子写真特性を満足でき
ない場合がしばしば生じることがあった。特に感光体の
電荷輸送層に使用される高分子材料の場合、極微量の不
純物が電荷輸送能に影響を及ぼし感光体の残留電位を発
生させたり、感度低下を引き起こしたり、帯電特性を変
動させたりする。また特に、電荷輸送能を持たせた電荷
輸送性高分子材料を電荷輸送層に使用する場合はその影
響がより顕著になる。以上のようにこれまでの精製法で
は電気特性を安定して満足させることが困難であった。
2. Description of the Related Art A high-purity material is required for an electrophotographic photosensitive member in order to stabilize electrical characteristics from an early stage to after a long use. Among them, for polymer materials, purification of monomer raw materials, purification of chemicals used in the polymerization process, solvent washing after polymerization, alkali washing, acid washing, washing with pure water, and the like are performed. There is also known a method of repeating reprecipitation in which a solution dissolved in a good solvent is injected into a poor solvent. However, it is generally difficult to purify the polymer after it has been polymerized as compared with a low-molecular material, and the electrophotographic characteristics often cannot be satisfied. Particularly, in the case of a polymer material used for the charge transport layer of the photoreceptor, a trace amount of impurities affects the charge transport ability to generate a residual potential of the photoreceptor, cause a decrease in sensitivity, and change the charging characteristics. Or In particular, when a charge-transporting polymer material having a charge-transporting ability is used for the charge-transporting layer, the effect becomes more remarkable. As described above, it has been difficult to stably satisfy the electric characteristics by the conventional refining method.

【0003】例えば、特開平9−59365号公報に
は、電荷輸送性樹脂を再沈殿により精製する方法が開示
されているが、この方法によって低分子量成分は除去で
きるが、残留電位が発生するような樹脂からこの方法で
その発生源となる不純物を完全に除去することは困難で
ある。また、特開平9−59389号公報には、有機電
子デバイス用樹脂を溶解可能な溶剤に溶解させ、酸性物
質または塩基性物質と接触させて精製する方法が開示さ
れている。そして、酸性物質の例として活性白土の使用
も挙げられているが、その実施例についての記載はな
く、また、他の酸性物質との相違についても述べられて
いない。特開平7−56365号公報には、電子写真感
光体用電荷輸送材料を活性白土及び/または活性炭を使
用して精製する方法が開示されているが、これは低分子
電荷輸送材料及びその原料に関するもので、高分子材料
については言及されていない。処理温度も20〜60℃
の範囲と述べられているが、これは低分子材料との関連
で述べられていることである。
For example, Japanese Patent Application Laid-Open No. 9-59365 discloses a method for purifying a charge-transporting resin by reprecipitation. This method can remove low-molecular-weight components, but may cause residual potential. It is difficult to completely remove impurities as a source from such a resin by this method. Also, Japanese Patent Application Laid-Open No. 9-59389 discloses a method in which a resin for an organic electronic device is dissolved in a solvent capable of being dissolved, and the resin is contacted with an acidic substance or a basic substance for purification. The use of activated clay is also mentioned as an example of the acidic substance, but there is no description of the example, and no description is given of the difference from other acidic substances. JP-A-7-56365 discloses a method for purifying a charge transport material for an electrophotographic photoreceptor using activated clay and / or activated carbon, which relates to a low molecular charge transport material and its raw material. However, there is no mention of a polymer material. Processing temperature is also 20-60 ° C
This is what is described in the context of low molecular weight materials.

【0004】[0004]

【発明が解決しようとする課題】電子写真感光体に使用
される高分子材料中に感光体特性を劣化させるような不
純物を含有せず、特に残留電位の発生が少ない、極めて
純度の高い感光体用高分子材料を提供し、もって、良好
な帯電性を有し、残留電位が小さく、感度に優れ、ま
た、疲労時の特性変化が少ない、耐久性に優れた電子写
真感光体を提供する。
SUMMARY OF THE INVENTION A high-purity photoreceptor which does not contain impurities that degrade the photoreceptor characteristics in a polymer material used for an electrophotographic photoreceptor, and in particular, generates little residual potential. The present invention provides an electrophotographic photoreceptor having good chargeability, low residual potential, excellent sensitivity, and little change in characteristics upon fatigue, and excellent durability.

【0005】[0005]

【課題を解決するための手段】本発明はこのような状況
に鑑み、感光体用の高分子材料を量産化できる手法で、
電気的特性を満足できる方法について鋭意検討を重ねた
結果、活性白土を使用した吸着処理による方法が電気的
特性を向上させることを見いだした。さらに、この手法
が感光体の電荷輸送層用の高分子材料において良好な効
果を示すことを見いだした。さらに、電荷輸送性高分子
において良好な効果を示すことを見いだした。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention provides a method for mass-producing a polymer material for a photoreceptor.
As a result of intensive studies on methods that can satisfy the electrical characteristics, it has been found that the method of adsorption treatment using activated clay improves the electrical characteristics. Furthermore, it has been found that this method shows a good effect on a polymer material for a charge transport layer of a photoreceptor. Furthermore, it has been found that the charge transporting polymer exhibits a good effect.

【0006】請求項1の発明は、電子写真感光体用の高
分子材料を有機溶媒中に溶解させ、該溶液を活性白土と
接触させることを特徴とする電子写真感光体用高分子材
料の精製法である。
According to a first aspect of the present invention, a polymer material for an electrophotographic photosensitive member is dissolved in an organic solvent, and the solution is contacted with activated clay. Is the law.

【0007】電子写真感光体用の高分子材料としては支
持体から表面層までの構成要素の内、分子量が2000
以上の有機高分子材料を指す。具体的には電荷輸送層中
にバインダーとして使用される熱可塑性樹脂やバインダ
ー機能と電荷輸送機能を合わせ持った電荷輸送性高分子
材料、あるいは保護層として使用される熱可塑性樹脂、
電荷発生層中にバインダーとして使用される熱可塑性樹
脂、それらの層に添加される有機高分子材料等があげら
れる。これらを可溶性の溶媒に溶解させ、粉状あるいは
粒状の活性白土を添加して撹拌し、その後、ろ過によっ
て分離した後、溶媒を除けば良い。
A polymer material for an electrophotographic photosensitive member has a molecular weight of 2000 among components from a support to a surface layer.
It refers to the above organic polymer materials. Specifically, a thermoplastic resin used as a binder in the charge transport layer or a charge transporting polymer material having both a binder function and a charge transport function, or a thermoplastic resin used as a protective layer,
Examples include thermoplastic resins used as binders in the charge generation layer, and organic polymer materials added to those layers. These may be dissolved in a soluble solvent, powdered or granular activated clay may be added and stirred, then separated by filtration, and the solvent may be removed.

【0008】活性白土としては一般に製造されているも
のを使用できる。例えば、日本活性白土株式会社や水澤
化学工業株式会社等で製造販売されている活性白土を使
用できる。これらは、水分量や粉末度や遊離酸の程度や
見掛け比重等により種々の品種があるがいずれの品種も
使用することができる。一般に粉状の活性白土としては
水分が12%以下又は5%以下で200メッシュ通過が
80%以上の粉末度で遊離酸が2.5mgKOH/g以
下であり見掛け比重が0.40〜0.80の物が好適に
使用される。また、粒状の活性白土としては水分が12
%以下又は5%以下で15〜30メッシュ、30〜60
メッシュ、8〜16メッシュの粉末度であり、遊離酸が
2.5mgKOH/g以下であり見掛け比重が0.50
〜0.80の物が好適に使用される。また、活性白土の
原料としても使用されるモンモリロナイトやハロイサイ
ト等の粘土鉱物酸性白土を使用することもできる。しか
しながら、不純物除去効果は活性白土の方が優れてい
る。
As the activated clay, those generally produced can be used. For example, activated clay which is manufactured and sold by Japan Activated Clay Co., Ltd. or Mizusawa Chemical Industry Co., Ltd. can be used. There are various varieties of these, depending on the water content, fineness, degree of free acid, apparent specific gravity, etc., and any of them can be used. In general, powdered activated clay has a moisture content of 12% or less or 5% or less, a fineness of 80% or more when passed through a 200 mesh, a free acid of 2.5 mg KOH / g or less, and an apparent specific gravity of 0.40 to 0.80. Are preferably used. In addition, moisture is 12 as granular activated clay.
15-30 mesh, 30-60 at less than 5% or 5%
Mesh, fineness of 8 to 16 mesh, free acid of 2.5 mg KOH / g or less and apparent specific gravity of 0.50
~ 0.80 are preferably used. In addition, clay mineral acid clay such as montmorillonite and halloysite which are also used as a raw material of activated clay can be used. However, the activated clay has an excellent effect of removing impurities.

【0009】処理方法としては粉状品の場合、高分子材
料を溶解させた液体と混合撹拌して接触させることによ
り精製を行い、ろ過機によって液体と廃白土を分離すれ
ば良い。また、粒状品は吸着塔に充填し、高分子材料を
溶解させた液体を通過、接触させることによって精製を
行うことができる。
As a treatment method, in the case of a powdery product, purification may be performed by mixing and stirring with a liquid in which a polymer material is dissolved, and then contacting the liquid, and the liquid and waste clay may be separated by a filter. Further, the granular product can be purified by filling it in an adsorption tower, passing through and contacting a liquid in which a polymer material is dissolved.

【0010】処理温度は0℃〜300℃で任意に選択で
きるが、好ましくは0℃〜200℃である。接触時間は
任意に選択できるが、一般に5分以上が好ましい。さら
に、好ましくは10分以上300分以下である。接触時
間が短すぎると効果が発現せず、長過ぎると高分子鎖の
切断等の副作用が起こり高分子自体の劣化を引き起こ
す。特に処理温度が60℃以上の場合は接触時間は10
分以上180分以下が好ましい。
[0010] The treatment temperature can be arbitrarily selected from 0 ° C to 300 ° C, but is preferably from 0 ° C to 200 ° C. The contact time can be arbitrarily selected, but is generally preferably 5 minutes or more. Further, it is preferably 10 minutes or more and 300 minutes or less. If the contact time is too short, the effect will not be exhibited, and if it is too long, side effects such as breaking of the polymer chain will occur, causing deterioration of the polymer itself. In particular, when the processing temperature is 60 ° C. or more, the contact time is 10
The time is preferably from 180 minutes to 180 minutes.

【0011】接触後のろ過は冷却後に行っても高温時に
行っても良いが、高分子材料溶解液の粘度は高いため、
使用溶媒や設備の許す範囲で高温で行った方が効率が良
い。可溶性の溶媒としては高分子材料を溶かすものであ
れば特に制限は無い。例えば炭化水素類、エステル類、
エーテル類、ハロゲン化物類、アルコール類、酸アミド
類、アルデヒド類、ニトリル類、ケトン類、芳香族ニト
ロ化合物類、アルキルスルホキシド類等いずれでもよ
い。
The filtration after the contact may be performed after cooling or at a high temperature. However, since the viscosity of the polymer solution is high,
It is more efficient to perform at a high temperature as long as the solvent and equipment allow. There is no particular limitation on the soluble solvent as long as it can dissolve the polymer material. For example, hydrocarbons, esters,
It may be any of ethers, halides, alcohols, acid amides, aldehydes, nitriles, ketones, aromatic nitro compounds, alkyl sulfoxides and the like.

【0012】因に、本発明では上記従来技術において酸
性物質として挙げられている塩酸水溶液やシリカゲル又
は酸性アルミナでの検討を行ったが、活性白土の様な特
異的な特性改善効果を見ることはできなかった。したが
って、本願発明の効果は酸性物質としての精製効果では
なく、活性白土に有する固有の効果によるものである。
According to the present invention, an aqueous solution of hydrochloric acid, silica gel or acidic alumina, which has been cited as an acidic substance in the prior art, was examined. could not. Therefore, the effect of the present invention is not due to the refining effect as an acidic substance, but to the inherent effect of activated clay.

【0013】請求項2の発明は、電子写真感光体用の高
分子材料を有機溶媒中に溶解させ、該溶液を65℃以上
で活性白土と接触させることを特徴とする電子写真感光
体用高分子材料の精製法である。
According to a second aspect of the present invention, a polymer material for an electrophotographic photosensitive member is dissolved in an organic solvent, and the solution is contacted with activated clay at a temperature of 65 ° C. or higher. This is a method for purifying molecular materials.

【0014】前記請求項1について記載した処理方法で
は一部の不純物を除くことができるが、長時間処理して
も大きな改善効果は望めない。室温付近の温度では長時
間接触させても、繰り返し何回も接触させても、活性白
土の量を多くしても最初の効果以上の改善が見られな
い。むしろ、電気特性を劣化させてしまう場合が多い。
しかしながら、処理温度を65℃以上にすることで室温
付近ではできなかった特性改善がさらに可能となる。処
理温度は好ましくは65℃〜200℃であり、更に好ま
しくは70℃〜150℃である。
According to the processing method of the first aspect, some impurities can be removed, but a large improvement effect cannot be expected even if the processing is performed for a long time. At a temperature near room temperature, even if the contact is made for a long time, repeatedly, and even if the amount of activated clay is increased, no improvement beyond the initial effect is observed. Rather, the electrical characteristics often deteriorate.
However, by setting the processing temperature to 65 ° C. or higher, it is possible to further improve characteristics that could not be achieved near room temperature. The treatment temperature is preferably from 65C to 200C, more preferably from 70C to 150C.

【0015】請求項3の発明は、電子写真感光体用の高
分子材料を誘電率8以下の有機溶媒中に溶解させ、該溶
液を65℃以上で活性白土と接触させることを特徴とす
る電子写真感光体用高分子材料の精製法である。
The invention according to claim 3 is characterized in that a polymer material for an electrophotographic photosensitive member is dissolved in an organic solvent having a dielectric constant of 8 or less, and the solution is contacted with activated clay at 65 ° C. or more. This is a method for purifying polymer materials for photographic photoreceptors.

【0016】活性白土による精製では高分子材料を合成
する時にモノマー時より混入していた不純物あるいは重
合時に混入する不純物が物理吸着及び化学吸着によって
除去されると予想されるがこれらの不純物は極性の強い
物質であると予想される。したがって、高分子材料を溶
解させる溶媒はできるだけ非極性のものが効果が大き
い。具体的には溶媒の誘電率が20℃あるいは25℃で
8以下の溶媒が好ましい。さらに処理温度を考慮すると
常圧下では沸点が65℃以上のものが好ましい。
In the purification using activated clay, it is expected that impurities that have been mixed in from the monomer when synthesizing the polymer material or impurities that have been mixed in during the polymerization are removed by physical adsorption and chemical adsorption. Expected to be a strong substance. Therefore, a non-polar solvent that dissolves the polymer material is as effective as possible. Specifically, a solvent having a dielectric constant of 8 or less at 20 ° C. or 25 ° C. is preferable. Further, considering the processing temperature, those having a boiling point of 65 ° C. or more under normal pressure are preferable.

【0017】誘電率が8以下の溶媒としては例えば、ト
ルエン、テトロヒドロフラン、酢酸エチル、クロロホル
ム等が挙げられ、さらに沸点65℃以上の条件に当ては
まるものとしては例えば、トルエン、テトロヒドロフラ
ン、酢酸エチル等が挙げられる。
Examples of the solvent having a dielectric constant of 8 or less include toluene, tetrahydrofuran, ethyl acetate, chloroform, and the like. Further, the solvent which satisfies the condition of a boiling point of 65 ° C. or more includes, for example, toluene, tetrahydrofuran, acetic acid and the like. Ethyl and the like.

【0018】請求項4の発明は、電子写真感光体用の高
分子材料が電荷輸送層に使用される高分子材料である場
合である請求項1又は請求項2又は請求項3記載の電子
写真感光体用高分子材料の精製法である。
According to a fourth aspect of the present invention, there is provided the electrophotographic apparatus according to the first or second or third aspect, wherein the polymer material for the electrophotographic photosensitive member is a polymer material used for the charge transport layer. This is a method for purifying a polymer material for a photoreceptor.

【0019】電荷輸送層に使用される高分子材料として
は低分子電荷輸送材を分散させるために使用されるバイ
ンダー樹脂が主なものである。具体的には、ポリカーボ
ネート、ポリエステル、ポリアリーレン、ポリウレタ
ン、ポリスチレン、エポキシ樹脂、メタクリル樹脂、ア
クリル樹脂、ポリエチレン、塩化ビニル樹脂、酢酸ビニ
ル樹脂、フェノール樹脂、ポリ塩化ビニリデン、ポリシ
ラン、シリコン樹脂、ポリビニルブチラール、ポリビニ
ルホルマール、ポリアクリルアミド、フェノキシ樹脂、
アルキッド樹脂、ポリビニルカルバゾール等が挙げられ
る。また、バインダーでなくとも電荷輸送層中に含有さ
れる可塑剤やレベリング剤や酸化防止剤等の添加剤とし
て使用される高分子材料、シリコンオイル等についても
適用できる。
As the polymer material used for the charge transport layer, a binder resin used for dispersing a low-molecular charge transport material is mainly used. Specifically, polycarbonate, polyester, polyarylene, polyurethane, polystyrene, epoxy resin, methacrylic resin, acrylic resin, polyethylene, vinyl chloride resin, vinyl acetate resin, phenolic resin, polyvinylidene chloride, polysilane, silicon resin, polyvinyl butyral, Polyvinyl formal, polyacrylamide, phenoxy resin,
Alkyd resin, polyvinyl carbazole and the like can be mentioned. In addition, the present invention can be applied to a polymer material, a silicone oil, and the like which are used as additives such as a plasticizer, a leveling agent, and an antioxidant contained in the charge transporting layer, instead of the binder.

【0020】請求項5の発明は、電子写真感光体用の高
分子材料が電荷輸送層に使用される電荷輸送性高分子材
料である場合である請求項1又は請求項2又は請求項3
記載の電子写真感光体用高分子材料の精製法である。
The invention of claim 5 is the case where the polymer material for the electrophotographic photosensitive member is a charge transporting polymer material used for the charge transport layer.
A method for purifying a polymer material for an electrophotographic photosensitive member according to the above.

【0021】電荷輸送性高分子材料としては、低分子電
荷輸送材を用いなくともホール、あるいは電子を電界下
で輸送できる材料であり、そのような機能を有する樹脂
であれば特に制限無く適用できる。例えば、アリールア
ミン骨格やベンジジン骨格やヒドラゾン骨格やカルバゾ
ール骨格やスチルベン骨格やピラゾリン骨格等を有する
ポリカーボネート、ポリエステル、ポリウレタン、ポリ
エーテル、ポリシロキサン、アクリル樹脂等の高分子材
料やポリシラン骨格を有する高分子材料等を挙げること
ができる。前者の具体的な例としては特開平01−00172
8、特開平01−009964、特開平01-013061、特開平01−01
9049、特開平01−241559、特開平04−011627、特開平04
−175337、特開平04−183719、特開平04−225014、特開
平04−230767、特開平04−320420、特開平05−232727、
特開平05−310904、特開平06−234836、特開平06−2348
37、特開平06−234838、特開平06−234839、特開平06−
234840、特開平06−234841、特開平06−239049、特開平
06−236050、特開平06−236051、特開平06−295077、特
開平07−056374、特開平08−176293、特開平08−20882
0、特開平08−211640、特開平08−253568、特開平08−2
69183、特開平09−062019、特開平09−043883、特開平0
9−71642、特開平09−87376、特開平09−104746、特開
平09−110974、特開平09−110976、特開平09−157378、
特開平09−221544、特開平09−227669、特開平09−2353
67、特開平09−241369、特開平09−268226、特開平09−
272735、特開平09−302084、特開平09−302085、特開平
09−328539号公報等に記載の電荷輸送性高分子材料が挙
げられる。また後者の具体例としては例えば特開昭63−
285552、特開平05−19497、特開平05−70595号公報等に
記載のポリシリレン重合体が例示される。
The charge transporting polymer material is a material capable of transporting holes or electrons under an electric field without using a low molecular charge transport material, and any resin having such a function can be used without any particular limitation. . For example, polymer materials such as polycarbonate, polyester, polyurethane, polyether, polysiloxane, and acrylic resin having an arylamine skeleton, a benzidine skeleton, a hydrazone skeleton, a carbazole skeleton, a stilbene skeleton, and a pyrazoline skeleton, and a polymer material having a polysilane skeleton. And the like. A specific example of the former is disclosed in JP-A-01-00172.
8, JP 01-009964, JP 01-013061, JP 01-01
9049, JP 01-241559, JP 04-011627, JP 04
-175337, JP 04-183719, JP 04-225014, JP 04-230767, JP 04-320420, JP 05-232727,
JP 05-310904, JP 06-234836, JP 06-2348
37, JP-A-06-234838, JP-A-06-234839, JP-A-06-348
234840, JP 06-234841, JP 06-239049, JP
06-236050, JP 06-236051, JP 06-295077, JP 07-056374, JP 08-176293, JP 08-20882
0, JP 08-211640, JP 08-253568, JP 08-2
69183, JP 09-062019, JP 09-043883, JP 0
9-71642, JP-A-09-87376, JP-A-09-104746, JP-A-09-110974, JP-A-09-110976, JP-A-09-157378,
JP-A-09-221544, JP-A-09-227669, JP-A-09-2353
67, JP-A-09-241369, JP-A-09-268226, JP-A-09-268
272735, JP-A-09-302084, JP-A-09-302085, JP-A-09-302085
And a charge transporting polymer material described in JP-A-09-328539. As a specific example of the latter, for example,
285552, JP-A-05-19497, JP-A-05-70595 and the like are exemplified.

【0022】請求項6の発明は、請求項1〜5で示され
たいずれかの精製法で処理された高分子材料を含有する
ことを特徴とする電子写真感光体である。対象となる電
子写真感光体は、導電性支持体上に感光層を設けたも
の、感光層を電荷発生層と電荷輸送層とに分けたもの、
感光層の表面に保護層を設けたものなど、従来知られて
いる有機電子写真感光体のすべてである。
According to a sixth aspect of the present invention, there is provided an electrophotographic photosensitive member containing a polymer material which has been treated by any of the purification methods described in the first to fifth aspects. The subject electrophotographic photoreceptor is provided with a photosensitive layer on a conductive support, the photosensitive layer is divided into a charge generation layer and a charge transport layer,
All known organic electrophotographic photoreceptors, such as those having a protective layer provided on the surface of the photosensitive layer.

【0023】[0023]

【発明の実施の形態】以下実施例に基づきより詳細に説
明する。 (使用ポリマーの製造例1)電荷輸送能を有するジオー
ルとして以下に示す構造のN−{4−[2,2−ビス
(4−ヒドロキシフェニル)ビニル]フェニル}−N,
N−ビス(4−トリル)アミン2.69部と共重合ジオ
ールとしての2,2−ビス(4−ヒドロキシ−3−メチ
ルフェニル)プロパン1.97部と分子量調節剤として
の4−tert−ブチルフェノール0.024部を撹拌
反応容器に入れ、窒素気流下で水酸化ナトリウム2.6
6部とナトリウムハイドロサルファイト0.1部を水4
5部に溶解させた液を加えて溶解させた。その後、7℃
まで冷却し、ホスゲンの3量体であるビス(トリクロロ
メチル)カーボネート2.16部をジクロロメタン40
部に溶解させた液を撹拌しながら一気に加え、その後1
5分撹拌した後トリエチルアミン0.01部を加えて2
7℃で60分撹拌反応させた。その後、ジクロロメタン
40部を加えて有機層を分液した。この有機層を水洗し
た後、不溶物をろ過によって除き、さらに2回水洗し、
その後2%の塩酸水溶液で洗浄し、最後に水で3回洗浄
した。この有機層を多量のメタノール中に滴下して黄色
のポリカーボネート樹脂を析出させ、以下に示すランダ
ム共重合ポリカーボネート樹脂4.48部を得た。この
物の分子量をゲルパーミエーションクロマトグラフィー
により測定したところポリスチレン換算の分子量は、数
平均分子量で52800、重量平均分子量で13980
0であった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on embodiments. (Preparation Example 1 of Polymer Used) N- {4- [2,2-bis (4-hydroxyphenyl) vinyl] phenyl} -N having the following structure as a diol having charge transporting ability
2.69 parts of N-bis (4-tolyl) amine, 1.97 parts of 2,2-bis (4-hydroxy-3-methylphenyl) propane as a copolymerized diol, and 4-tert-butylphenol as a molecular weight regulator 0.024 parts was placed in a stirred reaction vessel, and sodium hydroxide 2.6 was added under a nitrogen stream.
6 parts and 0.1 part of sodium hydrosulfite in water 4
The solution dissolved in 5 parts was added and dissolved. Then 7 ° C
And 2.16 parts of bis (trichloromethyl) carbonate, a trimer of phosgene, were added to dichloromethane 40
The solution dissolved in the part is added all at once with stirring, and then
After stirring for 5 minutes, 0.01 part of triethylamine was added and 2 parts were added.
The mixture was stirred and reacted at 7 ° C. for 60 minutes. Thereafter, 40 parts of dichloromethane was added, and the organic layer was separated. After washing the organic layer with water, the insoluble matter is removed by filtration, and further washed twice with water.
Thereafter, the substrate was washed with a 2% aqueous hydrochloric acid solution, and finally, washed three times with water. The organic layer was dropped into a large amount of methanol to precipitate a yellow polycarbonate resin, thereby obtaining 4.48 parts of a random copolymer polycarbonate resin shown below. When the molecular weight of this product was measured by gel permeation chromatography, the molecular weight in terms of polystyrene was 52800 in number average molecular weight and 13980 in weight average molecular weight.
It was 0.

【0024】[0024]

【化1】 Embedded image

【0025】(使用ポリマーの製造例2)電荷輸送能を
有するジオールとして製造例1と同様のN−{4−
[2,2−ビス(4−ヒドロキシフェニル)ビニル]フ
ェニル}−N,N−ビス(4−トリル)アミン2.7部
と共重合ジオールとしての1,1−ビス(4−ヒドロキ
シフェニル)シクロヘキサン1.99部と分子量調節剤
としての4−tert−ブチルフェノール0.023部
を撹拌反応容器に入れ、窒素気流下で水酸化ナトリウム
3.27部とナトリウムハイドロサルファイト0.1部
を水33部に溶解させた液を加えて溶解させた。その
後、12℃まで冷却し、ホスゲンの3量体であるビス
(トリクロロメチル)カーボネート2.31部をジクロ
ロメタン37部に溶解させた液を撹拌しながら一気に加
え、その後15分撹拌した後トリエチルアミン0.01
部を加えて25℃で60分撹拌反応させた。その後、4
−tert−ブチルフェノール0.02部を加えてさら
に27℃で120分撹拌反応させた。その後、ジクロロ
メタン37部を加えて有機層を分液した。この有機層を
3%の水酸化ナトリウム水溶液、水洗、2%の塩酸水溶
液の順で洗浄し、さらに水で3回洗浄した。この有機層
を多量のメタノール中に滴下して黄色のポリカーボネー
ト樹脂を析出させ、以下に示すランダム共重合ポリカー
ボネート樹脂4.81部を得た。この物の分子量をゲル
パーミエーションクロマトグラフィーにより測定したと
ころポリスチレン換算の分子量は、数平均分子量で44
200、重量平均分子量で160800であった。
(Preparation Example 2 of Polymer Used) As a diol having charge transporting ability, N- {4-
2.7 parts of [2,2-bis (4-hydroxyphenyl) vinyl] phenyl} -N, N-bis (4-tolyl) amine and 1,1-bis (4-hydroxyphenyl) cyclohexane as a copolymerized diol 1.99 parts and 0.023 part of 4-tert-butylphenol as a molecular weight regulator were placed in a stirred reaction vessel, and 3.27 parts of sodium hydroxide and 0.1 part of sodium hydrosulfite were added to 33 parts of water under a nitrogen stream. Was added and dissolved. Thereafter, the mixture was cooled to 12 ° C., and a solution prepared by dissolving 2.31 parts of bis (trichloromethyl) carbonate, a trimer of phosgene, in 37 parts of dichloromethane was added at a stretch with stirring. 01
The reaction was stirred at 25 ° C. for 60 minutes. Then 4
0.02 parts of -tert-butylphenol was added, and the mixture was further stirred and reacted at 27 ° C for 120 minutes. Thereafter, 37 parts of dichloromethane was added, and the organic layer was separated. The organic layer was washed with a 3% aqueous solution of sodium hydroxide, water, and a 2% aqueous solution of hydrochloric acid in that order, and further three times with water. The organic layer was dropped into a large amount of methanol to precipitate a yellow polycarbonate resin, thereby obtaining the following random copolymerized polycarbonate resin (4.81 parts). When the molecular weight of this product was measured by gel permeation chromatography, the molecular weight in terms of polystyrene was 44 as a number average molecular weight.
200 and weight average molecular weight was 160,800.

【0026】[0026]

【化2】 Embedded image

【0027】(使用ポリマーの製造例3)ビス(トリク
ロロメチル)カーボネートの代わりにホスゲンを使用す
る他は製造例1と同様にして電荷輸送性高分子樹脂を得
た。この物の分子量をゲルパーミエーションクロマトグ
ラフィーにより測定したところポリスチレン換算の分子
量は、数平均分子量で35000、重量平均分子量で1
48600であった。 (使用ポリマーの製造例4)製造例1において4−te
rt−ブチルフェノール0.016部を使用し、トリエ
チルアミンを加えて27℃で60分撹拌反応させた後
に、再度4−tert−ブチルフェノール0.02部を
加えて更に27℃で120分撹拌反応させる他は同様に
して製造例1と同様のランダム共重合ポリカーボネート
樹脂を得た。この物の分子量をゲルパーミエーションク
ロマトグラフィーにより測定したところポリスチレン換
算の分子量は、数平均分子量で34900、重量平均分
子量で85400であった。 (使用ポリマーの製造例5)モノマーとしての1,1−
ビス(4−ヒドロキシフェニル)シクロヘキサン5.3
7部と分子量調節剤としての4−tert−ブチルフェ
ノール0.03部を撹拌反応容器に入れ、窒素気流下で
水酸化ナトリウム3.2部とナトリウムハイドロサルフ
ァイト0.02部を水60部に溶解させた液を加えて加
熱溶解させた。その後、9℃まで冷却し、ホスゲンの3
量体であるビス(トリクロロメチル)カーボネート3.
56部をジクロロメタン53.2部に溶解させた液を撹
拌しながら滴下し、その後15分撹拌した後、水酸化ナ
トリウム0.8部を加え、さらに10分後にトリエチル
アミン0.01部を加えて30℃で60分撹拌反応させ
た。その後、4−tert−ブチルフェノール0.03
部を加えてさらに30℃で60分撹拌反応させた。その
後、ジクロロメタン300部を加えて有機層を分液し
た。この有機層を5%の水酸化ナトリウム水溶液で洗浄
した後、2%の塩酸水溶液で3回洗浄し、さらに水で4
回洗浄した。この有機層を多量のメタノール中に滴下し
て無色のポリカーボネート樹脂を析出させ、下記構造の
ポリカーボネートZ5.77部を得た。この物の分子量
をゲルパーミエーションクロマトグラフィーにより測定
したところポリスチレン換算の分子量は、数平均分子量
で57100、重量平均分子量で119900であっ
た。
(Production Example 3 of Polymer Used) A charge-transporting polymer resin was obtained in the same manner as in Production Example 1 except that phosgene was used instead of bis (trichloromethyl) carbonate. When the molecular weight of this product was measured by gel permeation chromatography, the molecular weight in terms of polystyrene was 35,000 in number average molecular weight and 1 in weight average molecular weight.
48600. (Production Example 4 of used polymer)
Using 0.016 parts of rt-butylphenol, adding triethylamine and performing a stirring reaction at 27 ° C. for 60 minutes, then adding 0.02 parts of 4-tert-butylphenol again and performing a stirring reaction at 27 ° C. for 120 minutes. Similarly, the same random copolymer polycarbonate resin as that of Production Example 1 was obtained. When the molecular weight of this product was measured by gel permeation chromatography, the molecular weight in terms of polystyrene was 34900 in number average molecular weight and 85400 in weight average molecular weight. (Production Example 5 of used polymer) 1,1- as a monomer
Bis (4-hydroxyphenyl) cyclohexane 5.3
7 parts and 0.03 part of 4-tert-butylphenol as a molecular weight regulator were put into a stirred reaction vessel, and 3.2 parts of sodium hydroxide and 0.02 parts of sodium hydrosulfite were dissolved in 60 parts of water under a nitrogen stream. The solution was added and dissolved by heating. Thereafter, the mixture was cooled to 9 ° C.
2. bis (trichloromethyl) carbonate, which is a monomer
A solution prepared by dissolving 56 parts in 53.2 parts of dichloromethane was added dropwise with stirring. After stirring for 15 minutes, 0.8 parts of sodium hydroxide was added, and 10 minutes later, 0.01 parts of triethylamine was added. The mixture was stirred and reacted at 60 ° C. for 60 minutes. Then, 4-tert-butylphenol 0.03
The reaction mixture was further stirred at 30 ° C. for 60 minutes. Thereafter, 300 parts of dichloromethane was added, and the organic layer was separated. The organic layer is washed with a 5% aqueous sodium hydroxide solution, then three times with a 2% aqueous hydrochloric acid solution, and further washed with water for 4 times.
Washed twice. The organic layer was dropped into a large amount of methanol to precipitate a colorless polycarbonate resin, thereby obtaining 5.77 parts of a polycarbonate Z having the following structure. When the molecular weight of this product was measured by gel permeation chromatography, the molecular weight in terms of polystyrene was 57100 in number average molecular weight and 119900 in weight average molecular weight.

【0028】[0028]

【化3】 Embedded image

【0029】実施例1 上記製造例1で得られたポリマー1部をジクロロメタン
(誘電率9.1)40部に溶解させ、活性白土(関東化
学社製)0.2部を加えて25℃で30分撹拌した後、
ろ過して分離し、2回水洗した後ジクロロメタン溶液を
多量のメタノール中に滴下してポリマーを析出させ、分
離後乾燥して活性白土処理品を得た。この物を使用して
以下に示す手順で感光体を作製した。 (感光体作製方法1)アルミ板上にメタノール/ブタノ
ール混合溶媒に溶解したポリアミド樹脂(CM−800
0:東レ社製)溶液をドクターブレードで塗布し、自然
乾燥して0.3μmの中間層を設けた。この上に電荷発
生物質として下記式で表されるビスアゾ化合物をシクロ
ヘキサノンと2−ブタノンの混合溶媒中でボールミルに
より粉砕し、得られた分散液をドクターブレードで塗布
し、自然乾燥して0.5μmの電荷発生層を形成した。
Example 1 One part of the polymer obtained in Production Example 1 was dissolved in 40 parts of dichloromethane (dielectric constant: 9.1), and 0.2 parts of activated clay (manufactured by Kanto Chemical Co., Ltd.) was added. After stirring for 30 minutes,
After filtration and separation, washing with water twice, a dichloromethane solution was dropped into a large amount of methanol to precipitate a polymer, which was separated and dried to obtain an activated clay treated product. Using this product, a photoreceptor was prepared in the following procedure. (Photoreceptor Production Method 1) A polyamide resin (CM-800) dissolved in a methanol / butanol mixed solvent on an aluminum plate
0: manufactured by Toray Industries Co., Ltd.) solution was applied with a doctor blade and air-dried to form a 0.3 μm intermediate layer. On this, a bisazo compound represented by the following formula as a charge generating material was pulverized by a ball mill in a mixed solvent of cyclohexanone and 2-butanone, and the obtained dispersion was applied with a doctor blade, air-dried, and then 0.5 μm Was formed.

【0030】[0030]

【化4】 Embedded image

【0031】次に、電荷輸送性高分子材料として上記処
理品をジクロロメタンに溶解し、この溶液を前記電荷発
生層上にドクターブレードで塗布し、自然乾燥し、次い
で120℃で20分間乾燥して厚さ20μmの電荷輸送
層を形成して感光体を作製した。 (初期特性評価)かくしてつくられた感光体について市
販の静電複写紙試験装置[(株)川口電機製作所製SP
428型]を用いて暗所で−6KVのコロナ放電を20
秒間行って帯電せしめた後、感光体の表面電位Vm (−
V)を測定し、更に20秒間暗所に放置した後、表面電
位V0 (−V)を測定した。次いで、タングステンラン
プ光を感光体表面での照度が5.3 luxになるように3
0秒間照射した後、残留電位V30(−V)を測定し、同
時にV0 が1/2になるまでの時間(秒)を求め、露光
量E1/2 (lux・sec)を算出した。 (チャージ疲労特性評価法)上記のようにして初期特性
を求めた後、露光照度が53 luxになるように光照射し
ながら15分間放電電流が−28μAになるように放置
した後、初期特性と同様にして表面電位Vm (−V)、
表面電位V0 (−V)、残留電位V30(−V)、露光量
1/2 (lux・sec)を求めた。
Next, the above treated product as a charge transporting polymer material is dissolved in dichloromethane, and this solution is applied on the charge generation layer with a doctor blade, air-dried, and then dried at 120 ° C. for 20 minutes. A 20 μm-thick charge transport layer was formed to prepare a photoreceptor. (Evaluation of initial characteristics) A commercially available electrostatic copying paper tester [SP manufactured by Kawaguchi Electric Works, Ltd.]
428 type] and a corona discharge of -6 KV in a dark place for 20 times.
After charging for 2 seconds, the surface potential V m of the photoreceptor (−
V) was measured and left in a dark place for further 20 seconds, and then the surface potential V 0 (−V) was measured. Next, a tungsten lamp light was applied to the photosensitive member so that the illuminance on the surface of the photosensitive member became 5.3 lux.
After irradiation for 0 seconds, the residual potential V 30 (−V) was measured, and at the same time, the time (second) until V 0 became 1 / was obtained, and the exposure amount E 1/2 (lux · sec) was calculated. . (Evaluation Method of Charge Fatigue Characteristics) After the initial characteristics were determined as described above, the device was allowed to stand at a discharge current of −28 μA for 15 minutes while irradiating light so that the exposure illuminance became 53 lux. Similarly, the surface potential V m (−V),
The surface potential V 0 (−V), the residual potential V 30 (−V), and the exposure amount E 1/2 (lux · sec) were determined.

【0032】それらの結果を表−1に比較例とともに示
す。 比較例1 製造例1で得られた電荷輸送性高分子材料をそのまま用
いる他は実施例1と同様にして感光体を作製し、評価し
た。 比較例2 製造例1で得られた電荷輸送性高分子材料1部をテトラ
ヒドロフラン35部に溶解させ、3時間加熱還流させた
後に、多量のメタノール中に滴下して析出させる再沈殿
処理を行った。この処理を行った物を用いる他は実施例
1と同様にして感光体を作製し、評価した。
The results are shown in Table 1 together with Comparative Examples. Comparative Example 1 A photoconductor was prepared and evaluated in the same manner as in Example 1 except that the charge transporting polymer material obtained in Production Example 1 was used as it was. Comparative Example 2 One part of the charge-transporting polymer material obtained in Production Example 1 was dissolved in 35 parts of tetrahydrofuran, heated under reflux for 3 hours, and then reprecipitated by dropping into a large amount of methanol for precipitation. . A photoreceptor was prepared and evaluated in the same manner as in Example 1 except that the material subjected to this treatment was used.

【0033】[0033]

【表1】 [Table 1]

【0034】以上の結果からわかるように活性白土で処
理した電荷輸送性高分子材料を使用した場合は、酸洗浄
のみのものや再沈殿を繰り返した場合に比べて残留電位
が初期評価でも疲労後の評価でも小さくなっており電子
写真感光体用高分子材料の精製法として効果があること
がわかる。また、このような処理をした電荷輸送性高分
子材料を使用した電子写真感光体は初期特性も良く耐久
性にも優れることがわかる。 実施例2 製造例2で得られた電荷輸送性高分子材料1部をジクロ
ロメタン40部に溶解させ、活性白土(関東化学社製)
0.2部を加えて25℃で30分撹拌した後、ろ過して
分離し、2回水洗した後ジクロロメタン溶液を多量のメ
タノール中に滴下してポリマーを析出させ、分離後乾燥
して活性白土処理品を得た。この物を用いて実施例1と
同様にして感光体を作製し、評価した。それらの結果を
表−2に比較例とともに示す。 比較例3 製造例2で得られた電荷輸送性高分子材料をそのまま用
いる他は実施例1と同様にして感光体を作製し、評価し
た。 比較例4 活性白土の代わりにシリカゲル(和光純薬工業社製ワコ
ーゲル C−300)を用いる他は実施例2と同様にし
てシリカゲル処理品を得た。この物を用いて実施例1と
同様にして感光体を作製し、評価した。 比較例5 活性白土の代わりに酸性アルミナ(Merck社製アルミナ
90酸性)を用いる他は実施例2と同様にして酸性アル
ミナ処理品を得た。この物を用いて実施例1と同様にし
て感光体を作製し、評価した。 比較例6 活性白土の代わりに中性アルミナ(Merck社製アルミナ
90中性)を用いる他は実施例2と同様にして中性アル
ミナ処理品を得た。この物を用いて実施例1と同様にし
て感光体を作製し、評価した。 比較例7 活性白土の代わりに塩基性アルミナ(Merck社製アルミ
ナ90塩基性)を用いる他は実施例2と同様にして塩基
性アルミナ処理品を得た。この物を用いて実施例1と同
様にして感光体を作製し、評価した。
As can be seen from the above results, when the charge-transporting polymer material treated with activated clay was used, the residual potential was lower in the initial evaluation and after fatigue than in the case of only acid washing or repeated reprecipitation. It can be seen that the evaluation is small, and that the method is effective as a method for purifying a polymer material for an electrophotographic photosensitive member. Further, it can be seen that the electrophotographic photoreceptor using the thus-treated charge transporting polymer material has good initial characteristics and excellent durability. Example 2 1 part of the charge transporting polymer material obtained in Production Example 2 was dissolved in 40 parts of dichloromethane, and activated clay (manufactured by Kanto Chemical Co., Ltd.)
After adding 0.2 parts and stirring at 25 ° C. for 30 minutes, the mixture was filtered and separated, washed twice with water, and then a dichloromethane solution was dropped into a large amount of methanol to precipitate a polymer. A processed product was obtained. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 2 together with Comparative Examples. Comparative Example 3 A photoconductor was prepared and evaluated in the same manner as in Example 1 except that the charge transporting polymer material obtained in Production Example 2 was used as it was. Comparative Example 4 A silica gel-treated product was obtained in the same manner as in Example 2, except that silica gel (Wako Gel C-300 manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of activated clay. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Comparative Example 5 An acidic alumina-treated product was obtained in the same manner as in Example 2 except that acidic alumina (Alumina 90 acid manufactured by Merck) was used instead of activated clay. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Comparative Example 6 A neutral alumina-treated product was obtained in the same manner as in Example 2 except that neutral alumina (Alumina 90 neutral manufactured by Merck) was used instead of activated clay. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Comparative Example 7 A basic alumina-treated product was obtained in the same manner as in Example 2 except that basic alumina (alumina 90 basic manufactured by Merck) was used instead of activated clay. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1.

【0035】[0035]

【表2】 [Table 2]

【0036】以上の結果からわかるように活性白土で処
理した別の電荷輸送性高分子材料を使用した場合におい
ても、無処理に比べて残留電位が初期評価でも疲労後の
評価でも小さくなっており電子写真感光体用高分子材料
の精製法として効果があることがわかる。又、活性白土
以外の吸着剤として知られるシリカゲルや酸性アルミ
ナ、中性アルミナ、塩基性アルミナでは同様の効果は得
られず、活性白土特有の効果であることがわかる。ま
た、このような処理をした電荷輸送性高分子材料を使用
した電子写真感光体は初期特性も良く耐久性にも優れる
ことがわかる。 実施例3 製造例3で得られたポリマー5部をトルエン(誘電率
2.24)120部に溶解させ、活性白土1部を加えて
25℃で30分撹拌した後、ろ過して分離し、トルエン
溶液をメタノール中に滴下してポリマーを析出させ、分
離後乾燥して活性白土処理品を得た。この物を用いて実
施例1と同様にして感光体を作製し、評価した。それら
の結果を表−3に比較例とともに示す。 実施例4 製造例3で得られたポリマー5部をトルエン120部に
溶解させ、活性白土1部を加えて2時間加熱還流した
後、ろ過して分離し、トルエン溶液をメタノール中に滴
下してポリマーを析出させ、分離後乾燥して活性白土処
理品を得た。この物を用いて実施例1と同様にして感光
体を作製し、評価した。それらの結果を表−3に比較例
とともに示す。 実施例5 加熱還流時間を30分間とした他は実施例4と同様にし
て活性白土処理品を得た。この物を用いて実施例1と同
様にして感光体を作製し、評価した。それらの結果を表
−3に比較例とともに示す。 比較例8 製造例3で得られたポリマーをそのまま用いる他は実施
例1と同様にして感光体を作製し、評価した。 比較例9 製造例3で得られたポリマー5部をジクロロメタン15
0部に溶解させ、アセトン中に滴下してポリマーを析出
させた。分離後この再沈殿操作を2回繰り返して、再沈
殿処理品を得た。この物を用いて実施例1と同様にして
感光体を作製し、評価した。 比較例10 製造例3で得られたポリマーの活性白土処理を2回行う
他は実施例3と同様にして処理し、感光体を作製し、評
価した。 比較例11 製造例3で得られたポリマーの活性白土処理を3回行う
他は実施例3と同様にして処理し、感光体を作製し、評
価した。 比較例12 製造例3で得られたポリマー5部をトルエン120部に
溶解させ、2%塩酸水溶液150部で2回洗浄し、その
後3回水洗した。その後トルエン層を分離し、メタノー
ル中に滴下してポリマーを析出させ、分離後乾燥して酸
洗浄処理品を得た。この物を用いて実施例1と同様にし
て感光体を作製し、評価した。
As can be seen from the above results, even when another charge transporting polymer material treated with activated clay is used, the residual potential is smaller in both the initial evaluation and the evaluation after fatigue than in the case of no treatment. It can be seen that the method is effective as a method for purifying a polymer material for an electrophotographic photosensitive member. In addition, silica gel, acidic alumina, neutral alumina, and basic alumina, which are known as adsorbents other than activated clay, cannot achieve the same effect, indicating that the effect is specific to activated clay. Further, it can be seen that the electrophotographic photoreceptor using the thus-treated charge transporting polymer material has good initial characteristics and excellent durability. Example 3 5 parts of the polymer obtained in Production Example 3 was dissolved in 120 parts of toluene (dielectric constant: 2.24), 1 part of activated clay was added, and the mixture was stirred at 25 ° C. for 30 minutes. The toluene solution was dropped into methanol to precipitate a polymer, which was separated and dried to obtain a product treated with activated clay. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Table 3 shows the results together with Comparative Examples. Example 4 5 parts of the polymer obtained in Production Example 3 was dissolved in 120 parts of toluene, 1 part of activated clay was added, and the mixture was heated under reflux for 2 hours, separated by filtration, and the toluene solution was dropped into methanol. The polymer was precipitated, separated and dried to obtain a treated activated clay product. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Table 3 shows the results together with Comparative Examples. Example 5 An activated clay-treated product was obtained in the same manner as in Example 4 except that the heating reflux time was changed to 30 minutes. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Table 3 shows the results together with Comparative Examples. Comparative Example 8 A photoconductor was prepared and evaluated in the same manner as in Example 1, except that the polymer obtained in Production Example 3 was used as it was. Comparative Example 9 5 parts of the polymer obtained in Production Example 3 was
0 parts, and dropped into acetone to precipitate a polymer. After the separation, this reprecipitation operation was repeated twice to obtain a reprecipitated product. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Comparative Example 10 A photoconductor was prepared and evaluated in the same manner as in Example 3, except that the activated clay treatment of the polymer obtained in Production Example 3 was performed twice. Comparative Example 11 A photoconductor was prepared and evaluated in the same manner as in Example 3 except that the activated clay treatment of the polymer obtained in Production Example 3 was performed three times. Comparative Example 12 5 parts of the polymer obtained in Production Example 3 was dissolved in 120 parts of toluene, washed twice with 150 parts of a 2% hydrochloric acid aqueous solution, and then washed three times with water. Thereafter, the toluene layer was separated, and dropped into methanol to precipitate a polymer. The polymer was separated and dried to obtain an acid-washed product. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1.

【0037】[0037]

【表3】 [Table 3]

【0038】以上の結果からわかるように活性白土で処
理した電荷輸送性高分子材料を使用した場合は、無処理
の場合に比べて残留電位が初期評価でも疲労後の評価で
も小さくなっており電子写真感光体用高分子材料の精製
法として効果があることがわかる。また、トルエンの還
流温度(約110℃)で処理することにより残留電位は
一段と低下し、大きな精製効果があることがわかる。ま
た、このような処理をした電荷輸送性高分子材料を使用
した電子写真感光体は初期特性も良く耐久性にも優れる
ことがわかる。 実施例6 製造例4で得られたポリマー5部をトルエン120部に
溶解させ、予め200℃で3時間乾燥させた活性白土1
部を加えて25℃で120分撹拌した後、ろ過して分離
し、トルエン溶液をメタノール中に滴下してポリマーを
析出させ、分離後乾燥して活性白土処理品を得た。この
物を用いて実施例1と同様にして感光体を作製し、評価
した。それらの結果を表−4に比較例とともに示す。 実施例7 製造例4で得られたポリマー5部をトルエン120部に
溶解させ、活性白土1部を加えて5時間加熱還流した
後、ろ過して分離し、トルエン溶液をメタノール中に滴
下してポリマーを析出させ、分離後乾燥して活性白土処
理品を得た。この物を用いて実施例1と同様にして感光
体を作製し、評価した。それらの結果を表−4に比較例
とともに示す。 実施例8 製造例4で得られたポリマー5部をトルエン120部に
溶解させ、活性白土1部を加えて15分間加熱還流した
後、ろ過して分離し、トルエン溶液をメタノール中に滴
下してポリマーを析出させ、分離後乾燥して活性白土処
理品を得た。この物を用いて実施例1と同様にして感光
体を作製し、評価した。それらの結果を表−4に比較例
とともに示す。 実施例9 製造例4で得られたポリマー5部をテトラヒドロフラン
(誘電率7.58)120部に溶解させ、活性白土1部
を加えて15分間加熱還流した後、ろ過して分離し、テ
トラヒドロフラン溶液をメタノール中に滴下してポリマ
ーを析出させ、分離後乾燥して活性白土処理品を得た。
この物を用いて実施例1と同様にして感光体を作製し、
評価した。それらの結果を表−4に比較例とともに示
す。 実施例10 製造例4で得られたポリマー5部を1,2−ジクロロエ
タン(誘電率10.45)150部に溶解させ、活性白
土1部を加えて15分間加熱還流した後、ろ過して分離
し、トルエン溶液をメタノール中に滴下してポリマーを
析出させ、分離後乾燥して活性白土処理品を得た。この
物を用いて実施例1と同様にして感光体を作製し、評価
した。それらの結果を表−4に比較例とともに示す。 比較例13 製造例4で得られたポリマーをそのまま用いる他は実施
例1と同様にして感光体を作製し、評価した。 比較例14 製造例4で得られたポリマー5部をトルエン120部に
溶解させ、モレキュラシーブス5Aを2.5部加えて室
温で3時間撹拌した後、ろ過して分離し、トルエン溶液
をメタノール中に滴下してポリマーを析出させ、分離後
乾燥してゼオライト処理品を得た。この物を用いて実施
例1と同様にして感光体を作製し、評価した。 比較例15 製造例4で得られたポリマー5部をトルエン120部に
溶解させ、活性炭2.5部を加えて130分間加熱還流
した後、ろ過して分離し、トルエン溶液をメタノール中
に滴下してポリマーを析出させ、分離後乾燥して活性炭
処理品を得た。この物を用いて実施例1と同様にして感
光体を作製し、評価した。
As can be seen from the above results, when the charge transporting polymer material treated with activated clay is used, the residual potential is smaller in both the initial evaluation and the evaluation after fatigue than in the case of no treatment. It can be seen that the method is effective as a method for purifying a polymer material for a photoreceptor. Further, the treatment at the reflux temperature of toluene (about 110 ° C.) further reduces the residual potential, indicating that there is a great purification effect. Further, it can be seen that the electrophotographic photoreceptor using the thus-treated charge transporting polymer material has good initial characteristics and excellent durability. Example 6 5 parts of the polymer obtained in Production Example 4 was dissolved in 120 parts of toluene, and the activated clay 1 was dried at 200 ° C. for 3 hours in advance.
After stirring at 25 ° C for 120 minutes, the mixture was filtered and separated, and a toluene solution was dropped into methanol to precipitate a polymer. The polymer was separated and dried to obtain a treated activated clay product. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Table 4 shows the results together with Comparative Examples. Example 7 5 parts of the polymer obtained in Production Example 4 was dissolved in 120 parts of toluene, 1 part of activated clay was added, and the mixture was heated and refluxed for 5 hours, separated by filtration, and the toluene solution was added dropwise to methanol. The polymer was precipitated, separated and dried to obtain a treated activated clay product. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Table 4 shows the results together with Comparative Examples. Example 8 5 parts of the polymer obtained in Production Example 4 was dissolved in 120 parts of toluene, 1 part of activated clay was added, and the mixture was heated under reflux for 15 minutes, separated by filtration, and the toluene solution was added dropwise to methanol. The polymer was precipitated, separated and dried to obtain a treated activated clay product. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Table 4 shows the results together with Comparative Examples. Example 9 5 parts of the polymer obtained in Production Example 4 was dissolved in 120 parts of tetrahydrofuran (dielectric constant: 7.58), 1 part of activated clay was added, and the mixture was heated and refluxed for 15 minutes. Was dropped into methanol to precipitate a polymer, which was separated and dried to obtain a treated product of activated clay.
Using this product, a photoconductor was prepared in the same manner as in Example 1,
evaluated. Table 4 shows the results together with Comparative Examples. Example 10 5 parts of the polymer obtained in Production Example 4 was dissolved in 150 parts of 1,2-dichloroethane (dielectric constant: 10.45), 1 part of activated clay was added, and the mixture was heated under reflux for 15 minutes, and then separated by filtration. Then, a toluene solution was dropped into methanol to precipitate a polymer, which was separated and dried to obtain a treated product of activated clay. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Table 4 shows the results together with Comparative Examples. Comparative Example 13 A photoconductor was prepared and evaluated in the same manner as in Example 1, except that the polymer obtained in Production Example 4 was used as it was. Comparative Example 14 5 parts of the polymer obtained in Production Example 4 was dissolved in 120 parts of toluene, 2.5 parts of Molecular Sieves 5A was added, the mixture was stirred at room temperature for 3 hours, separated by filtration, and the toluene solution was dissolved in methanol. To precipitate a polymer, which was separated and dried to obtain a zeolite-treated product. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1. Comparative Example 15 5 parts of the polymer obtained in Production Example 4 was dissolved in 120 parts of toluene, 2.5 parts of activated carbon was added, the mixture was heated under reflux for 130 minutes, separated by filtration, and the toluene solution was added dropwise to methanol. Then, the polymer was precipitated, separated and dried to obtain a product treated with activated carbon. Using this product, a photoreceptor was prepared and evaluated in the same manner as in Example 1.

【0039】[0039]

【表4】 [Table 4]

【0040】以上の結果からわかるように活性白土で処
理した電荷輸送性高分子材料を使用した場合、無処理に
比べて残留電位が初期評価でも疲労後の評価でも小さく
なっており電子写真感光体用高分子材料の精製法として
効果があることがわかる。また、トルエンの還流温度
(約110℃)及びテトラヒドロフランの還流温度(約
66℃)及び1,2−ジクロロエタンの還流温度(約8
3℃)で処理することにより残留電位は一段と低下し、
大きな精製効果があることがわかる。しかしながら、誘
電率が8より小さいトルエン、テトラヒドロフランを溶
媒に用いた場合に比べ、誘電率が8より大きい1,2−
ジクロロエタンを用いた場合は効果が小さい。また、実
施例7の処理品の分子量を測定したところ数平均分子量
が18000、重量平均分子量が64200であり、処
理前の分子量に比べて小さくなっていることがわかっ
た。実施例8の処理品の分子量を測定したところ数平均
分子量が35500、重量平均分子量が89300であ
り、処理前の分子量と変化がないことがわかる。このよ
うに加熱時の処理時間はあまり長すぎると分子鎖の切断
をまねくおそれがあるが、適当な時間内で処理すること
により切断等を伴わないで精製が可能であることを示
す。又、活性白土以外の吸着剤として知られるゼオライ
トや活性炭では同様の効果は得られず、活性白土特有の
効果であることがわかる。また、このような処理をした
電荷輸送性高分子材料を使用した電子写真感光体は初期
特性も良く耐久性にも優れることがわかる。 実施例11 製造例5で得られたポリマー5部をトルエン120部に
溶解させ、活性白土2.5部を加えて30分間加熱還流
した後、ろ過して分離し、トルエン溶液をメタノール中
に滴下してポリマーを析出させ、分離後乾燥して活性白
土処理品を得た。この物を10部とN−[4−(2,2
−ジフェニルビニル)フェニル]−N,N−ジフェニル
アミン9部をジクロロメタンに溶解して電荷輸送層の塗
工液として使用する他は感光体作製方法1と同様にして
感光体を作製した。この感光体を実施例1と同様にして
評価した。それらの結果を表−5に比較例とともに示
す。 比較例16 製造例5で得られたポリマーをそのまま使用する他は実
施例9と同様に感光体を作製し、評価した。
As can be seen from the above results, when the charge transporting polymer material treated with activated clay was used, the residual potential was smaller both in the initial evaluation and in the evaluation after fatigue as compared with the case of no treatment, and the electrophotographic photosensitive member was reduced. It is found that the method is effective as a method for purifying a polymer material for use. The reflux temperature of toluene (about 110 ° C.), the reflux temperature of tetrahydrofuran (about 66 ° C.), and the reflux temperature of 1,2-dichloroethane (about 8 ° C.)
3 ° C.), the residual potential is further reduced,
It can be seen that there is a great purification effect. However, as compared with the case where toluene or tetrahydrofuran having a dielectric constant smaller than 8 is used as a solvent, 1,2-
The effect is small when dichloroethane is used. Further, when the molecular weight of the treated product of Example 7 was measured, it was found that the number average molecular weight was 18,000 and the weight average molecular weight was 64200, which was smaller than the molecular weight before the treatment. When the molecular weight of the treated product of Example 8 was measured, the number average molecular weight was 35,500 and the weight average molecular weight was 89,300, indicating that there was no change from the molecular weight before the treatment. As described above, if the treatment time at the time of heating is too long, there is a risk that the molecular chains may be cut. However, it is shown that by performing the treatment within an appropriate time, purification can be performed without cutting. In addition, zeolite or activated carbon, which is known as an adsorbent other than activated clay, cannot achieve the same effect, indicating that the effect is specific to activated clay. Further, it can be seen that the electrophotographic photoreceptor using the thus-treated charge transporting polymer material has good initial characteristics and excellent durability. Example 11 5 parts of the polymer obtained in Production Example 5 was dissolved in 120 parts of toluene, 2.5 parts of activated clay was added, and the mixture was heated under reflux for 30 minutes, separated by filtration, and the toluene solution was dropped into methanol. Then, a polymer was precipitated, separated and dried to obtain a product treated with activated clay. 10 parts of this product and N- [4- (2,2
-Diphenylvinyl) phenyl] -N, N-diphenylamine was prepared in the same manner as in Photoreceptor Preparation Method 1, except that 9 parts of the same were dissolved in dichloromethane and used as a coating solution for the charge transport layer. This photoreceptor was evaluated in the same manner as in Example 1. The results are shown in Table 5 together with Comparative Examples. Comparative Example 16 A photoconductor was prepared and evaluated in the same manner as in Example 9, except that the polymer obtained in Production Example 5 was used as it was.

【0041】[0041]

【表5】 [Table 5]

【0042】以上のように電荷輸送層中のバインダー樹
脂の場合も活性白土による処理が有効な精製効果を有
し、そのような処理をされた電子写真感光体用高分子材
料を使用することにより帯電安定性に優れ、残留電位が
少なく、高感度で、それらの耐久性に優れる感光体が得
られることがわかる。
As described above, also in the case of the binder resin in the charge transport layer, the treatment with activated clay has an effective purification effect, and by using the polymer material for an electrophotographic photoreceptor thus treated, It can be seen that a photoreceptor having excellent charge stability, low residual potential, high sensitivity, and excellent durability thereof can be obtained.

【0043】[0043]

【発明の効果】以上のように電子写真感光体用の高分子
材料を活性白土で処理することにより効果的に残留電位
発生源となる不純物を取り除く事ができる。また、その
際、65℃以上に加熱して処理することによりさらに効
果的に精製でき、さらに誘電率が8以下の溶媒を使用し
て65℃以上に加熱して処理することによりさらに効果
的な精製が可能になる。これらの精製法は電子写真感光
体用高分子材料に広く適用でき、特に、電荷輸送層中に
含まれる高分子材料、及び電荷輸送性高分子材料の精製
に好適に適用される。これらの処理によりこれまで精製
が困難で使用できなかった高分子材料を電子写真用の材
料として使用できる純度まで容易に精製できるようにな
る。また、このような処理をして純度の優れた材料を用
いることにより帯電性に優れ、残留電位の発生が少な
く、高感度で、それらの特性の変化が少ない高耐久な電
子写真感光体を提供する事ができる。
As described above, by treating a polymer material for an electrophotographic photosensitive member with activated clay, impurities serving as a source of residual potential can be effectively removed. Further, at that time, it is possible to purify more effectively by heating at 65 ° C. or more, and further effective by heating to 65 ° C. or more using a solvent having a dielectric constant of 8 or less. Purification becomes possible. These purification methods can be widely applied to polymer materials for electrophotographic photoreceptors, and are particularly suitably applied to purification of polymer materials contained in the charge transport layer and charge transport polymer materials. These processes make it possible to easily purify a polymer material which has been difficult to purify and which cannot be used until now to a purity which can be used as a material for electrophotography. In addition, by using such a material having a high purity, a highly durable electrophotographic photoreceptor having excellent chargeability, low generation of residual potential, high sensitivity, and little change in those characteristics is provided. You can do it.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 正臣 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 河村 慎一 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 李 洪国 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 鈴鹿 進 神奈川県川崎市幸区堀川町66番2 保土谷 化学工業株式会社内 (72)発明者 諸岡 勝宏 神奈川県川崎市幸区堀川町66番2 保土谷 化学工業株式会社内 Fターム(参考) 2H068 AA13 AA20 AA21 BB26 BB49 EA04 EA05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaomi Sasaki 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company (72) Inventor Shinichi Kawamura 1-3-6 Nakamagome, Ota-ku, Tokyo Stock Inside Ricoh Company (72) Inventor Lee Hongkook 1-3-6 Nakamagome, Ota-ku, Tokyo Stock Company Inside Ricoh Company (72) Susumu Suzuka 66-2 Horikawa-cho, Sai-ku, Kawasaki City, Kanagawa Prefecture Hodoya Chemical Industry Co., Ltd. In-company (72) Inventor Katsuhiro Morooka 66-2 Horikawa-cho, Saisaki-ku, Kawasaki-shi, Kanagawa F-term (reference) 2H068 AA13 AA20 AA21 BB26 BB49 EA04 EA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電子写真感光体用の高分子材料を有機溶
媒中に溶解させ、該溶液を活性白土と接触させることを
特徴とする電子写真感光体用高分子材料の精製法。
1. A method for purifying a polymer material for an electrophotographic photosensitive member, comprising dissolving a polymer material for an electrophotographic photosensitive member in an organic solvent, and bringing the solution into contact with activated clay.
【請求項2】 電子写真感光体用の高分子材料を有機溶
媒中に溶解させ、該溶液を65℃以上で活性白土と接触
させることを特徴とする電子写真感光体用高分子材料の
精製法。
2. A method for purifying a polymer material for an electrophotographic photosensitive member, comprising: dissolving a polymer material for an electrophotographic photosensitive member in an organic solvent; and bringing the solution into contact with activated clay at 65 ° C. or higher. .
【請求項3】 電子写真感光体用の高分子材料を誘電率
8以下の有機溶媒中に溶解させ、該溶液を65℃以上で
活性白土と接触させることを特徴とする電子写真感光体
用高分子材料の精製法。
3. A high-density electrophotographic photosensitive member comprising: dissolving a polymer material for an electrophotographic photosensitive member in an organic solvent having a dielectric constant of 8 or less, and contacting the solution with activated clay at 65 ° C. or more. A method for purifying molecular materials.
【請求項4】 電子写真感光体用の高分子材料が電荷輸
送層に使用される高分子材料である場合である請求項1
又は請求項2又は請求項3記載の電子写真感光体用高分
子材料の精製法。
4. The method according to claim 1, wherein the polymer material for the electrophotographic photosensitive member is a polymer material used for the charge transport layer.
4. The method for purifying a polymer material for an electrophotographic photosensitive member according to claim 2 or claim 3.
【請求項5】 電子写真感光体用の高分子材料が電荷輸
送層に使用される電荷輸送性高分子材料である場合であ
る請求項1又は請求項2又は請求項3記載の電子写真感
光体用高分子材料の精製法。
5. The electrophotographic photoreceptor according to claim 1, wherein the polymer material for the electrophotographic photoreceptor is a charge transporting polymer material used for a charge transport layer. Purification method for polymer materials.
【請求項6】 請求項1〜5で示されたいずれかの精製
法で処理された高分子材料を含有することを特徴とする
電子写真感光体。
6. An electrophotographic photoreceptor comprising a polymer material processed by any of the purification methods described in claim 1.
JP11187394A 1999-07-01 1999-07-01 Method for purifying polymer material for electrophotographic photoreceptor, and electrophotographic photoreceptor. Pending JP2001013698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11187394A JP2001013698A (en) 1999-07-01 1999-07-01 Method for purifying polymer material for electrophotographic photoreceptor, and electrophotographic photoreceptor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11187394A JP2001013698A (en) 1999-07-01 1999-07-01 Method for purifying polymer material for electrophotographic photoreceptor, and electrophotographic photoreceptor.

Publications (1)

Publication Number Publication Date
JP2001013698A true JP2001013698A (en) 2001-01-19

Family

ID=16205270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11187394A Pending JP2001013698A (en) 1999-07-01 1999-07-01 Method for purifying polymer material for electrophotographic photoreceptor, and electrophotographic photoreceptor.

Country Status (1)

Country Link
JP (1) JP2001013698A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202680A (en) * 2002-01-09 2003-07-18 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2005062426A (en) * 2003-08-11 2005-03-10 Mitsubishi Chemicals Corp Method for manufacturing material for electrophotographic photoreceptor, material for electrophotographic photoreceptor, and electrophotographic photoreceptor using the same
US10185237B2 (en) 2013-07-12 2019-01-22 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, image forming apparatus, and polyarylate resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202680A (en) * 2002-01-09 2003-07-18 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2005062426A (en) * 2003-08-11 2005-03-10 Mitsubishi Chemicals Corp Method for manufacturing material for electrophotographic photoreceptor, material for electrophotographic photoreceptor, and electrophotographic photoreceptor using the same
US10185237B2 (en) 2013-07-12 2019-01-22 Mitsubishi Chemical Corporation Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, image forming apparatus, and polyarylate resin

Similar Documents

Publication Publication Date Title
US4665000A (en) Photoresponsive devices containing aromatic ether hole transport layers
DE3882818T2 (en) Polyarylamine compounds.
JPH04226168A (en) Preparation of light-genarating pigment
WO2005054957A1 (en) Electrophotographic photoreceptor, method of image formation, image formation apparatus and process cartridge for image formation apparatus
DE1472925A1 (en) Electrophotographic material
WO2015005442A1 (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, image formation device, and polyarylate resin
CN113625534B (en) Electrophotographic photoreceptor, image forming apparatus, and coating liquid for forming photosensitive layer
JP2002542515A (en) Electrophotographic photoconductor containing fluorenyl-azine derivative as charge transfer additive
KR101086184B1 (en) Electrophotographic photoconductor and method for manufacturing same
JP2005053845A (en) Purification method of charge-transporting compound and electrophotographic photoreceptor
JP2010085832A (en) Method of producing coating material for electrophotographic photoreceptor
JP2001013698A (en) Method for purifying polymer material for electrophotographic photoreceptor, and electrophotographic photoreceptor.
KR100522609B1 (en) Organophotoreceptor with a plurality of photoconductive layers
JP5866994B2 (en) Electrophotographic photoreceptor, image forming method, image forming apparatus, and process cartridge
WO2017159727A1 (en) Polycarbonate resin, method for producing polycarbonate resin, coating liquid, electrophotographic photoreceptor, and electrophotography device
JP6384111B2 (en) Electrophotographic photosensitive member and electrophotographic image forming apparatus
JP6662416B2 (en) Polyarylate resin and electrophotographic photoreceptor using the same
JP4138692B2 (en) Electrophotographic photoreceptor
JP6354506B2 (en) Electrophotographic photosensitive member, electrophotographic photosensitive member cartridge, and image forming apparatus
JP6569394B2 (en) Electrophotographic photoreceptor and method for producing polyarylate resin
JP2004240047A (en) Electrophotographic photoreceptor and process cartridge and image forming apparatus having the electrophotographic photoreceptor
JP2564198B2 (en) Electrophotographic photoreceptor
JP2006220819A (en) Image forming apparatus
JP2006259371A (en) Image forming apparatus
JP2001288271A (en) Method for purifying polymer material having charge transporting ability and electrophotographic photoconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050901