JP2005053845A - Purification method of charge-transporting compound and electrophotographic photoreceptor - Google Patents
Purification method of charge-transporting compound and electrophotographic photoreceptor Download PDFInfo
- Publication number
- JP2005053845A JP2005053845A JP2003286813A JP2003286813A JP2005053845A JP 2005053845 A JP2005053845 A JP 2005053845A JP 2003286813 A JP2003286813 A JP 2003286813A JP 2003286813 A JP2003286813 A JP 2003286813A JP 2005053845 A JP2005053845 A JP 2005053845A
- Authority
- JP
- Japan
- Prior art keywords
- charge transporting
- transporting compound
- compound
- group
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
本発明は、電荷輸送性化合物の精製方法、及び該精製方法を用いて精製された電荷輸送性化合物を用いて形成された感光層を有する電子写真感光体に関する。 The present invention relates to a method for purifying a charge transporting compound, and an electrophotographic photoreceptor having a photosensitive layer formed using the charge transporting compound purified by using the purification method.
従来、電子写真感光体に用いられる光導電材料としては、セレン、硫化カドミウムおよび酸化亜鉛などの無機材料を使用した無機電子写真感光体が主に使用されてきた。他方、有機材料を用いた有機電子写真感光体は、高生産性や無公害性などの利点が注目され研究開発が活発に行われ、光導電性特性が無機電子写真感光体並みの物が数多く見出され、無機電子写真感光体に代わり近年主力で用いられるようになってきた。 Conventionally, inorganic electrophotographic photoreceptors using inorganic materials such as selenium, cadmium sulfide and zinc oxide have been mainly used as photoconductive materials used in electrophotographic photoreceptors. On the other hand, organic electrophotographic photoreceptors using organic materials have been actively researched and developed with the focus on advantages such as high productivity and non-pollution, and many photoconductive properties are similar to those of inorganic electrophotographic photoreceptors. In recent years, it has been found to be used as a mainstay in place of inorganic electrophotographic photoreceptors.
これらの電子写真感光体は、電気的および機械的特性の双方を満足するために、電荷発生層と電荷輸送層を積層した機能分離型の感光体として利用される場合が多い。 These electrophotographic photoreceptors are often used as function-separated photoreceptors in which a charge generation layer and a charge transport layer are laminated in order to satisfy both electrical and mechanical properties.
この際、初期は勿論、長時間使用した場合に於いても常に安定し高感度な電気的特性を発現するには、電荷輸送性化合物の構造及び純度が重要である。そこで電荷輸送性化合物は通常高純度な材料が要求され各種精製法が検討されている。通常は粗製品を再結晶法やシリカあるいはアルミナカラムを使用したカラム分離精製法あるいは活性炭処理法等が行なわれ、必要に応じて上記処理法を数回繰り返し行うまたは組み合わせて処理を行う等している。また電荷輸送性化合物を活性白土処理する方法が知られている(例えば、特許文献1〜5参照)。 At this time, the structure and purity of the charge transporting compound are important in order to express stable and highly sensitive electrical characteristics even when used for a long time as well as in the initial stage. Therefore, charge purification compounds usually require high-purity materials, and various purification methods are being studied. Usually, the crude product is subjected to recrystallization, column separation / purification using silica or alumina column, activated carbon treatment, etc., and if necessary, the treatment is repeated several times or combined for treatment. Yes. In addition, a method of treating a charge transporting compound with activated clay is known (see, for example, Patent Documents 1 to 5).
一方、電子写真感光体には該電子写真感光体に適用される電子写真プロセスに応じた感度、電気的特性、さらには光学的特性を備えていることが要求される。特に、繰り返し使用される感光体にあっては、その感光体表面には帯電、画像露光、トナー現像、紙への転写、クリーニング処理といった電気的、機械的外力が直接加えられるため、それらに対する耐久性が要求される。具体的には、摺擦による表面の磨耗や傷の発生に対する耐久性、帯電による表面劣化(例えば転写効率や滑り性の低下)、更には感度低下、電位低下等の電気特性の劣化に対する耐久性も要求される。 On the other hand, an electrophotographic photoreceptor is required to have sensitivity, electrical characteristics, and optical characteristics according to the electrophotographic process applied to the electrophotographic photoreceptor. In particular, in the case of a photoreceptor that is used repeatedly, the surface of the photoreceptor is subjected to electrical and mechanical external forces such as charging, image exposure, toner development, transfer to paper, and a cleaning process, so that the durability against them is increased. Sex is required. Specifically, durability against surface wear and scratches caused by rubbing, surface deterioration due to charging (for example, transfer efficiency and slipperiness drop), durability against deterioration of electrical characteristics such as sensitivity reduction and potential drop. Is also required.
一般に感光体の表面は薄い樹脂層であり、樹脂の特性が非常に重要である。上述の諸条件をある程度満足する樹脂として、近年アクリル樹脂やポリカーボネート樹脂などが実用化されているが、上述したような特性のすべてがこれらの樹脂で満足されるわけではなく、特に感光体の高耐久化を図る上で該樹脂の被膜硬度は十分高いとはいえない。これらの樹脂を表面層形成用の樹脂として用いた場合、繰り返し使用すると表面層に磨耗が生じ、さらに傷が発生する。 In general, the surface of the photoreceptor is a thin resin layer, and the characteristics of the resin are very important. In recent years, acrylic resins and polycarbonate resins have been put to practical use as resins that satisfy the above-mentioned conditions to some extent. However, not all of the above-mentioned characteristics are satisfied with these resins, and in particular, the high performance of the photoconductor. It cannot be said that the coating film hardness of the resin is sufficiently high for achieving durability. When these resins are used as the resin for forming the surface layer, the surface layer is worn and repeatedly damaged when used repeatedly.
更に、近年の有機電子写真感光体の高感度化に対する要求から、電荷輸送性化合物などの低分子量化合物を比較的大量に添加するようになってきた。しかしこの場合、それら低分子量物質の可塑剤的な作用により膜の強度は著しく低下するため、繰り返し使用すると表面層の磨耗や傷の発生は一層問題となる。またこの電子写真感光体を長期にわたって保存した場合、上記低分子量成分が析出してしまい、層分離が生じる。 Furthermore, due to the recent demand for higher sensitivity of organic electrophotographic photoreceptors, relatively large amounts of low molecular weight compounds such as charge transporting compounds have been added. However, in this case, since the strength of the film is remarkably reduced by the action of the plasticizer of these low molecular weight substances, the surface layer wear and scratches become even more problematic when used repeatedly. In addition, when the electrophotographic photosensitive member is stored for a long period of time, the low molecular weight component is precipitated, resulting in layer separation.
このような問題を解決するため、硬化性の樹脂を電荷輸送層用の樹脂として用いた感光体が知られている(例えば、特許文献6参照)。このように、硬化性の樹脂を用い硬化、架橋することによって電荷輸送層を形成すると、感光体の機械的強度は増し、繰り返し使用した時の耐削れ性及び耐傷性は向上する。しかしながら硬化性樹脂を用いても、低分子
量成分はあくまでも結着樹脂中において可塑剤として作用するため、先に述べたような析出や層分離の問題を根本的に解決することはできない。また有機電荷輸送性化合物と結着樹脂とで構成される電荷輸送層においては樹脂の構成により電荷輸送能は大きく変わり、例えば硬度を高くした硬化性樹脂では電荷輸送能を十分満足させるものは得られず、繰り返し使用すると残留電位の上昇が見られるなどの問題が生じる。電荷輸送能及び硬度を共に満足させるまでには至っていない。
In order to solve such a problem, a photoreceptor using a curable resin as a resin for a charge transport layer is known (for example, see Patent Document 6). Thus, when the charge transport layer is formed by curing and cross-linking using a curable resin, the mechanical strength of the photoreceptor increases, and the abrasion resistance and scratch resistance when used repeatedly are improved. However, even when a curable resin is used, since the low molecular weight component acts as a plasticizer in the binder resin, the problem of precipitation and layer separation as described above cannot be fundamentally solved. In addition, in a charge transport layer composed of an organic charge transporting compound and a binder resin, the charge transport ability varies greatly depending on the resin composition. For example, a curable resin having a high hardness can sufficiently satisfy the charge transport ability. However, there are problems such as an increase in residual potential when used repeatedly. Neither charge transport ability nor hardness has been satisfied.
また、電荷輸送層に炭素−炭素二重結合を有するモノマーを含有させ、電荷輸送性化合物の炭素−炭素二重結合と熱あるいは光のエネルギーによって反応させて、電荷輸送層硬化膜を形成した電子写真感光体も知られている(例えば、特許文献7及び8参照)。しかし、ここで記載されている電荷輸送性化合物はポリマー主骨格にペンダント状にモノマーを固定化させただけであり、上述した可塑的な作用を十分に排除出来てはおらず、機械的強度が十分ではない。また電荷輸送能を向上させるため電荷輸送性化合物の濃度を高くすると、架橋密度が低くなり十分な機械的強度を確保する事が出来ない。さらには重合時に必要とされる開始剤類の添加に伴う電子写真特性への悪影響も懸念される。 In addition, the charge transport layer contains a monomer having a carbon-carbon double bond, and reacts with the carbon-carbon double bond of the charge transport compound by heat or light energy to form a charge transport layer cured film. Photosensitive members are also known (see, for example, Patent Documents 7 and 8). However, the charge transporting compound described here only has a monomer immobilized on the polymer main skeleton in a pendant form, and does not sufficiently eliminate the plastic action described above, and has sufficient mechanical strength. is not. Further, if the concentration of the charge transporting compound is increased in order to improve the charge transporting ability, the crosslinking density is lowered and sufficient mechanical strength cannot be ensured. Furthermore, there is a concern about the adverse effect on the electrophotographic characteristics due to the addition of initiators required at the time of polymerization.
また別の解決手段として、熱可塑性高分子主鎖中に電荷輸送能を有する基を導入し電荷輸送層を形成させた電子写真感光体が知られている(例えば、特許文献9参照)。しかし、ここで記載されている電荷輸送層は、従来の分子分散型の電荷輸送層と比較して析出や層分離に対しては効果があり機械的強度は向上するが、熱可塑性樹脂であるためその機械的強度には限界があり、また樹脂の溶解性などを含めたハンドリングや生産性の面で十分であるとは言い難い。 As another solution, there is known an electrophotographic photosensitive member in which a charge transporting layer is formed by introducing a group having a charge transporting ability into a thermoplastic polymer main chain (see, for example, Patent Document 9). However, the charge transport layer described here is a thermoplastic resin, although it has an effect on precipitation and layer separation compared with the conventional molecular dispersion type charge transport layer, and the mechanical strength is improved. Therefore, its mechanical strength is limited, and it is difficult to say that it is sufficient in terms of handling and productivity including resin solubility.
そのような状況下、本発明者らは、高い機械的強度と高い電荷輸送能との両方を満足する感光体として、連鎖重合性官能基を有する特定の電荷輸送性化合物を電子線照射、紫外線または熱により架橋/硬化することにより形成した感光層を有する感光体を提供してきた(例えば、特許文献10〜15参照)。中でもこのような電荷輸送性化合物を架橋/硬化した膜を感光層の最も表面に位置する表面層に使用した感光体は特に良好な結果を示す。 Under such circumstances, the present inventors have used a specific charge transporting compound having a chain polymerizable functional group as a photoconductor that satisfies both high mechanical strength and high charge transporting ability, Alternatively, a photoreceptor having a photosensitive layer formed by crosslinking / curing by heat has been provided (see, for example, Patent Documents 10 to 15). In particular, a photoreceptor using a film obtained by crosslinking / curing such a charge transporting compound as the surface layer located on the outermost surface of the photosensitive layer shows particularly good results.
しかし、ここで記載されているような連鎖重合性官能基を有する電荷輸送性化合物を硬化した膜は、元の連鎖重合性官能基を有する電荷輸送性化合物自体のイオン化ポテンシャル(酸化電位)より高くなる。特に電荷輸送性化合物がトリフェニルアミン構造からなる連鎖重合性官能基を2つ以上有する電荷輸送性化合物である場合、硬化により連鎖重合性官能基が置換されているフェニル基がねじれるため特にイオン化ポテンシャルが高くなる傾向が強い。そこで、このような膜において低いイオン化ポテンシャルの化合物が不純物として含まれていると膜の電気的特性に悪影響を及ぼす。感光体の電気特性(例えば、残留電位の上昇や耐久時の電位変動など)は、使用される電荷輸送性化合物の純度に影響されるため、このような感光体において、充分精製された電荷輸送性化合物を使用することが重要である。 However, a film obtained by curing a charge transporting compound having a chain polymerizable functional group as described herein is higher than the ionization potential (oxidation potential) of the original charge transporting compound having a chain polymerizable functional group. Become. Especially when the charge transporting compound is a charge transporting compound having two or more chain-polymerizable functional groups having a triphenylamine structure, the phenyl group substituted with the chain-polymerizable functional group by curing is twisted, in particular ionization potential. Tend to be higher. Therefore, if such a film contains a compound having a low ionization potential as an impurity, the electrical characteristics of the film are adversely affected. Since the electrical characteristics of the photoreceptor (for example, increase in residual potential and potential fluctuation during durability) are affected by the purity of the charge transporting compound used, well-purified charge transport in such a photoreceptor. It is important to use sex compounds.
さらに、ここで記載されているような連鎖重合性官能基を有する電荷輸送性化合物は、構造上一般的に常温で液体の化合物が多いため、上述した再結晶による精製方法等、従来一般に電荷輸送性化合物の精製方法として使用されてきた精製方法が適用できない場合が多い。また、シリカゲルやアルミナ等の吸着剤を使用したカラム精製方法を適用したとしても、カラム精製条件の最適化が極めて難しく且つ再現性に問題があり、一定の品質の精製物を常に得るうえで満足のいく方法とはいえない。特に、連鎖性重合性官能基を有する電荷輸送性化合物は、シリカゲルやアルミナと長時間接すると重合してしまう事から、量産性及び一定の品質の精製物を常に提供するという点からも好ましくない。 Furthermore, charge transporting compounds having a chain-polymerizable functional group as described herein are generally liquid compounds at room temperature because of their structure, so that charge transport such as the purification method by recrystallization as described above is generally used. In many cases, a purification method that has been used as a purification method for a chemical compound cannot be applied. Even if a column purification method using an adsorbent such as silica gel or alumina is applied, it is extremely difficult to optimize column purification conditions and there is a problem with reproducibility, and it is satisfactory to always obtain a purified product of a certain quality. It is not a way to go. In particular, a charge transporting compound having a chain polymerizable functional group is not preferable from the viewpoint of always providing mass-produced products and a purified product having a certain quality because it polymerizes when contacted for a long time with silica gel or alumina. .
そこで、電子写真感光体における良好な感光層を形成するため、該感光層に使用する純
度の高い連鎖重合性官能基を有する電荷輸送性化合物を提供することが望まれていた。
本発明は、このような状況下為されたものであり、電子写真感光体に使用する連鎖重合性官能基を少なくとも1つ以上有し、かつトリフェニルアミン構造からなる電荷輸送性化合物を純度良く得ることができる電荷輸送性化合物の精製方法を提供することを課題とする。より詳しくは、感光体特性に悪影響を及ぼす不純物を良好に取り除くことができ、純度の高い電荷輸送性化合物の精製物を常に安定して得ることができ、量産性にも優れた電荷輸送性化合物の精製方法を提供することを課題とする。 The present invention has been made under such circumstances. A charge transporting compound having at least one chain-polymerizable functional group used in an electrophotographic photosensitive member and having a triphenylamine structure has high purity. It is an object of the present invention to provide a method for purifying a charge transporting compound that can be obtained. More specifically, impurities that adversely affect the photoreceptor characteristics can be removed well, a highly purified charge transport compound can always be obtained stably, and the charge transport compound has excellent mass productivity It is an object of the present invention to provide a purification method.
また、本発明は、このような精製方法を用いて精製された電荷輸送性化合物を使用して形成された感光層を有する、電子写真感光体を提供することも課題とする。 Another object of the present invention is to provide an electrophotographic photoreceptor having a photosensitive layer formed using a charge transporting compound purified by such a purification method.
そこで、本発明者らは鋭意研究を重ねた結果、下記の構成とすることで上記課題を解決することができることを見出した。 Therefore, as a result of intensive studies, the present inventors have found that the above problem can be solved by adopting the following configuration.
すなわち本発明は、以下のとおりである。
[1]下記一般式(1)で示されるトリフェニルアミン構造を有し、かつ連鎖重合性官能基を少なくとも1つ以上有する電荷輸送性化合物を有機溶媒に溶解させ、該電荷輸送性化合物含有有機溶媒を活性白土と酸性白土のシリカ・アルミナ系吸着剤及びシリカ・マグネシア系吸着剤の中から選ばれる少なくとも1種の吸着剤と接触させ、その後、吸着剤と該電荷輸送性化合物含有有機溶媒とを分離し、次に該電荷輸送性化合物有機溶媒から有機溶媒を除去することにより、電荷輸送性化合物の精製物を得ることを特徴とする電荷輸送性化合物の精製方法。
That is, the present invention is as follows.
[1] A charge transporting compound having a triphenylamine structure represented by the following general formula (1) and having at least one chain polymerizable functional group is dissolved in an organic solvent, and the charge transporting compound-containing organic The solvent is contacted with at least one adsorbent selected from silica / alumina adsorbents of active clay and acidic clay and silica / magnesia adsorbent, and then the adsorbent and the organic solvent containing the charge transporting compound And then removing the organic solvent from the charge-transporting compound organic solvent to obtain a purified product of the charge-transporting compound.
(式(1)中、Ar1、Ar2及びAr3はフェニル基を示し、いずれのフェニル基も窒素原子に対してパラ位に置換基を有する。)
[2]前記連鎖重合性官能基が、下記一般式(2)〜(6)のいずれかである[1]に記載の電荷輸送性化合物の精製方法。
(In the formula (1), Ar 1 , Ar 2 and Ar 3 represent phenyl groups, and each phenyl group has a substituent at the para position with respect to the nitrogen atom.)
[2] The method for purifying a charge transporting compound according to [1], wherein the chain polymerizable functional group is any one of the following general formulas (2) to (6).
[3]前記一般式(1)で示される電荷輸送性化合物は、20℃以上で液体である[1]又は[2]に記載の電荷輸送性化合物の精製方法。
[4]活性白土と接触させた後、更にシリカゲルまたはアルミナと接触させることを特徴とする[1]〜[3]の何れかに記載の電荷輸送性化合物の精製方法。
[5]前記一般式(1)で示される電荷輸送性化合物は、連鎖重合性官能基を少なくとも2つ以上有する[1]〜[4]の何れかに記載の電荷輸送性化合物の精製方法。
[6]前記一般式(1)で示される電荷輸送性化合物が、下記一般式(7)で示されることを特徴とする[1]〜[5]の何れかに記載の電荷輸送性化合物の精製方法。
[3] The method for purifying a charge transporting compound according to [1] or [2], wherein the charge transporting compound represented by the general formula (1) is liquid at 20 ° C. or higher.
[4] The method for purifying a charge transporting compound according to any one of [1] to [3], wherein the method is further contacted with silica gel or alumina after contacting with activated clay.
[5] The method for purifying a charge transporting compound according to any one of [1] to [4], wherein the charge transporting compound represented by the general formula (1) has at least two chain polymerizable functional groups.
[6] The charge transporting compound according to any one of [1] to [5], wherein the charge transporting compound represented by the general formula (1) is represented by the following general formula (7): Purification method.
(式(7)中、R1、R2及びR3はそれぞれ置換基を有してもよいアルキル基、アラルキル基またはアリール基を示し、それぞれ同じでも異なっても良い。x、y及びzはそれぞれ独立に0から3の整数を示す。P1、P2及びP3はそれぞれ連鎖重合性官能基を示す。a、b及びcはそれぞれ独立に0〜4の整数を示す。n、m及びlは0〜2の整数を示しn+m+lは少なくとも1以上の整数を示し、nとy、mとx及びlとzの積はそれぞれ0ではない。また、トリフェニルアミンのいずれのフェニル基も、窒素原子に対して
パラ位に置換基を有する。)
[7]前記一般式(1)で示される電荷輸送性化合物の酸化電位は、0.75(v)以上である[1]〜[6]の何れかに記載の電荷輸送性化合物の精製方法。
[8]導電性支持体上に設けられた感光層を有する電子写真感光体において、
前記感光層は、前記電子写真感光体の表面を形成し、単一の層で構成されるか、又は積み重ねられた複数の層で構成され、
単一の層で構成される前記感光層、又は複数の層で構成される前記感光層のうちの前記電子写真感光体の表面を形成する層は、[1]〜[7]の何れかの精製方法を用いて精製された電荷輸送性化合物を含有することを特徴とする電子写真感光体。
(In formula (7), R 1 , R 2 and R 3 each represents an alkyl group, an aralkyl group or an aryl group which may have a substituent, and may be the same or different. Each independently represents an integer of 0 to 3. P 1 , P 2 and P 3 each represent a chain polymerizable functional group, a, b and c each independently represent an integer of 0 to 4, n, m and l represents an integer of 0 to 2, and n + m + 1 represents an integer of at least 1 and the products of n and y, m and x, and l and z are not 0. In addition, any phenyl group of triphenylamine is (It has a substituent in the para position to the nitrogen atom.)
[7] The method for purifying a charge transporting compound according to any one of [1] to [6], wherein an oxidation potential of the charge transporting compound represented by the general formula (1) is 0.75 (v) or more. .
[8] In an electrophotographic photosensitive member having a photosensitive layer provided on a conductive support,
The photosensitive layer forms the surface of the electrophotographic photosensitive member and is composed of a single layer or a plurality of stacked layers,
The photosensitive layer composed of a single layer or the layer forming the surface of the electrophotographic photoreceptor among the photosensitive layers composed of a plurality of layers is any one of [1] to [7] An electrophotographic photoreceptor comprising a charge transporting compound purified by a purification method.
本発明により、純度の高い電荷輸送性化合物を常に安定して簡便に得ることができ、量産性にも優れた電荷輸送性化合物の精製方法を提供することができる。 According to the present invention, a highly pure charge transporting compound can always be obtained stably and simply, and a method for purifying a charge transporting compound excellent in mass productivity can be provided.
また、本発明の精製方法を用いて精製された電荷輸送性化合物を用いて電子写真感光体を形成することにより、電気特性及び耐久性に優れた電子写真感光体を提供することができる。 In addition, by forming an electrophotographic photoreceptor using the charge transporting compound purified using the purification method of the present invention, an electrophotographic photoreceptor excellent in electrical characteristics and durability can be provided.
以下、本発明を詳細に説明する。
<電荷輸送性化合物の精製方法について>
本発明の精製方法は、下記一般式(1)で示されるトリフェニルアミン構造を有し、かつ連鎖重合性官能基を少なくとも1つ以上有する電荷輸送性化合物を対象とする。
Hereinafter, the present invention will be described in detail.
<About purification method of charge transporting compound>
The purification method of the present invention is directed to a charge transporting compound having a triphenylamine structure represented by the following general formula (1) and having at least one chain polymerizable functional group.
(式(1)中、Ar1、Ar2及びAr3はフェニル基を示し、いずれのフェニル基も窒素原子に対してパラ位に置換基を有する。)
本発明において連鎖重合とは、高分子物の生成反応を大きく連鎖重合と逐次重合に分けた場合の前者の重合反応形態を示し、詳しくは例えば技報堂出版 三羽忠広著の「基礎 合成樹脂の化学(新版)」1995年7月25日(1版8刷)P.24に説明されているように、その形態が主にラジカルあるいはイオンをなどの中間体を経由して反応が進行する不飽和重合、開環重合そして異性化重合などのことをいう。本発明で連鎖重合性官能基とは、上述の反応形態が可能な官能基を意味する。中でも、特に不飽和重合が好ましい。
(In the formula (1), Ar 1 , Ar 2 and Ar 3 represent phenyl groups, and each phenyl group has a substituent at the para position with respect to the nitrogen atom.)
In the present invention, chain polymerization refers to the former polymerization reaction form when the polymer formation reaction is largely divided into chain polymerization and sequential polymerization. For details, see, for example, “Basic Chemistry Resin Chemistry” by Tadahiro Miwa. (New Edition) ”July 25, 1995 (1 edition, 8 prints) As described in 24, the form mainly refers to unsaturated polymerization, ring-opening polymerization, and isomerization polymerization in which the reaction proceeds via an intermediate such as a radical or ion. In the present invention, the chain polymerizable functional group means a functional group capable of the above-described reaction form. Of these, unsaturated polymerization is particularly preferred.
ここで、不飽和重合とは、ラジカル、イオンなどによって不飽和基、例えばC=C、C≡C、C=O、C=N、C≡Nなどが重合する反応をいう。主にはC=Cによる場合が大部分である。 Here, the unsaturated polymerization refers to a reaction in which an unsaturated group such as C═C, C≡C, C═O, C═N, C≡N, or the like is polymerized by radicals, ions, or the like. Most of the cases are due to C = C.
本発明の連鎖重合性官能基(中でも不飽和重合性官能基)の好ましい例としては、下記一般式(8)で示される基が挙げられる。 Preferable examples of the chain polymerizable functional group (especially unsaturated polymerizable functional group) of the present invention include a group represented by the following general formula (8).
上記式(8)中、Eは水素原子、フッ素、塩素及び臭素等のハロゲン原子、置換基を有してもよいメチル基、エチル基、プロピル基及びブチル基等のアルキル基、置換基を有してもよいベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、置換基を有してもよいフェニル基、ナフチル基、アンスリル基、ピレニル基、チオフェニル基及びフリル基等のアリール基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、CN基、ニトロ基、−COOR4又はCONR5R6を示す。Wは置換基を有しても良い2価のフェニレン、ナフチレン、アントラセニレン等のアリーレン基、置換基を有しても良いメチレン、エチレン、ブチレン等の2価のアルキレン基、−COO−、−CH2−、−O−、−OO−、−S−または−CONR7−を示す。 In the above formula (8), E has a hydrogen atom, a halogen atom such as fluorine, chlorine and bromine, an optionally substituted alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group, and a substituent. Aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group, furfuryl group and thienyl group, phenyl group, naphthyl group, anthryl group, pyrenyl group, thiophenyl group and furyl group which may have a substituent An alkoxy group such as an aryl group, a methoxy group, an ethoxy group, and a propoxy group, a CN group, a nitro group, —COOR 4 or CONR 5 R 6 . W is an arylene group such as divalent phenylene, naphthylene and anthracenylene which may have a substituent, a divalent alkylene group such as methylene, ethylene and butylene which may have a substituent, -COO-, -CH 2 -, - O -, - OO -, - S- or -CONR 7 - shows a.
上記R4、R5、R6及びR7は水素原子、フッ素、塩素、臭素及びヨウ素等のハロゲン原子、置換基を有してもよいメチル基、エチル基、プロピル基及びブチル基等のアルキル基、置換基を有してもよいベンジル基及びフェネチル基等のアラルキル基又は置換基を有してもよいフェニル基、ナフチル基及びアンスリル基等のアリール基を示し、R5とR6は互いに同一であっても異なっても良い。 R 4 , R 5 , R 6 and R 7 are hydrogen atoms, halogen atoms such as fluorine, chlorine, bromine and iodine, and alkyl groups such as methyl, ethyl, propyl and butyl groups which may have a substituent. An aralkyl group such as a benzyl group and a phenethyl group which may have a substituent, or an aryl group such as a phenyl group, a naphthyl group and an anthryl group which may have a substituent, and R 5 and R 6 are They may be the same or different.
また、fは0または1を示す。 F represents 0 or 1.
上記E及びWにおいて、有してもよい置換基としては、フッ素、塩素、臭素及びヨウ素等のハロゲン原子、ニトロ基、シアノ基、水酸基、メチル基、エチル基、プロピル基及びブチル基等のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェノキシ基及びナフトキシ基等のアリールオキシ基、ベンジル基、フェネチル基、ナフチルメチル基、フルフリル基、チエニル基等のアラルキル基又はフェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基等が挙げられる。 In the above E and W, the substituents which may be included are halogen atoms such as fluorine, chlorine, bromine and iodine, alkyl such as nitro group, cyano group, hydroxyl group, methyl group, ethyl group, propyl group and butyl group. Group, alkoxy group such as methoxy group, ethoxy group and propoxy group, aryloxy group such as phenoxy group and naphthoxy group, aralkyl group such as benzyl group, phenethyl group, naphthylmethyl group, furfuryl group and thienyl group or phenyl group, naphthyl group And aryl groups such as a group, anthryl group, and pyrenyl group.
上記一般式(8)で示される不飽和重合性官能基の具体例を以下の表1に示す。但しこれらに限定されるものではない。 Specific examples of the unsaturated polymerizable functional group represented by the general formula (8) are shown in Table 1 below. However, it is not limited to these.
尚、上記表1中、Rは置換基を有しても良いメチル基、エチル基、プロピル基及びブチル基等のアルキル基、置換基を有しても良いベンジル基、フェネチル基、ナフチルメチル基、フルフリル基及びチエニル基等のアラルキル基、置換基を有しても良いフェニル基、ナフチル基及びアンスリル基等のアリール基又は水素原子を示す。 In Table 1, R is an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group which may have a substituent, a benzyl group, a phenethyl group or a naphthylmethyl group which may have a substituent. , An aralkyl group such as a furfuryl group and a thienyl group, an aryl group such as a phenyl group, a naphthyl group and an anthryl group which may have a substituent, or a hydrogen atom.
また、本発明では、より好ましい不飽和重合性官能基である連鎖重合性官能基として、下記一般式(2)〜(6)で示されるものが挙げられる。さらにまた、最終的に硬化させ感光体の表面層として使用する場合まで考慮すると、特に好ましい連鎖重合性官能基は、中でも一般式(2)のアクリロイルオキシ基および一般式(3)のメタクリロイルオキシ基である。 Moreover, in this invention, what is shown by following General formula (2)-(6) is mentioned as a chain polymerizable functional group which is a more preferable unsaturated polymerizable functional group. Furthermore, in consideration of the case where it is finally cured and used as the surface layer of the photoreceptor, particularly preferred chain polymerizable functional groups are acryloyloxy groups of general formula (2) and methacryloyloxy groups of general formula (3). It is.
尚、上記一般式(1)における連鎖重合性官能基は、より好ましくは2以上であるとよい。 In addition, the chain polymerizable functional group in the general formula (1) is more preferably 2 or more.
また、上記一般式(1)において、Ar1、Ar2及びAr3のフェニル基が有してもよい置換基としては、フッ素、塩素、臭素及びヨウ素等のハロゲン原子、水酸基、メチル基、エチル基、プロピル基及びブチル基等のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基、フェノキシ基及びナフトキシ基等のアリールオキシ基、ベンジル基、フェネチル基、ナフチルメチル基、フルフリル基、チエニル基等のアラルキル基又はフェニル基、ナフチル基、アンスリル基及びピレニル基等のアリール基等が挙げられる。 In the above general formula (1), the phenyl group represented by Ar 1 , Ar 2 and Ar 3 may have a halogen atom such as fluorine, chlorine, bromine or iodine, a hydroxyl group, a methyl group, or ethyl. Group, alkyl group such as propyl group and butyl group, alkoxy group such as methoxy group, ethoxy group and propoxy group, aryloxy group such as phenoxy group and naphthoxy group, benzyl group, phenethyl group, naphthylmethyl group, furfuryl group, thienyl And an aralkyl group such as a group or an aryl group such as a phenyl group, a naphthyl group, an anthryl group and a pyrenyl group.
尚、上記一般式(1)で示される電荷輸送性化合物は20℃以上で液体であるが、このような状態の電荷輸送性化合物に対しても本発明の精製方法であれば、好ましく適用することができる。 The charge transporting compound represented by the general formula (1) is a liquid at 20 ° C. or higher, but the charge transporting compound in such a state is preferably applied to the purification method of the present invention. be able to.
また、上記一般式(1)の中でも、下記一般式(7)で示される電荷輸送性化合物が、電荷輸送特性等の電気特性や重合速度等の観点から特に好ましい。 Among the above general formula (1), the charge transporting compound represented by the following general formula (7) is particularly preferable from the viewpoints of electrical characteristics such as charge transport characteristics and polymerization rate.
上記式(7)中、R1、R2及びR3はそれぞれ置換基を有してもよいメチル基、エチル基、プロピル基及びブチル基等のアルキル基、メトキシ基、エトキシ基及びプロポキシ基等のアルコキシ基またはフェニル基またはナフチル基等のアリール基を示し、それぞれ
同じでも異なっても良い。x、y及びzはそれぞれ独立に0から3の整数を示す。P1、P2及びP3はそれぞれ連鎖重合性官能基を示す。特に上記一般式(2)〜(6)で示される連鎖重合性官能基であるとよい。a、b及びcはそれぞれ独立に0〜4の整数を示す。n、m及びlは0〜2の整数を示しn+m+lは少なくとも1以上の整数を示し、nとy、mとx及びlとzの積はそれぞれ0ではない。また、トリフェニルアミンのいずれのフェニル基も、窒素原子に対してパラ位に置換基を有する。
In the above formula (7), R 1 , R 2 and R 3 are each optionally substituted alkyl groups such as methyl, ethyl, propyl and butyl groups, methoxy groups, ethoxy groups and propoxy groups. Or an aryl group such as a phenyl group or a naphthyl group, which may be the same or different. x, y, and z each independently represent an integer of 0 to 3. P 1 , P 2 and P 3 each represent a chain polymerizable functional group. In particular, the chain polymerizable functional group represented by the general formulas (2) to (6) is preferable. a, b and c each independently represent an integer of 0 to 4; n, m and l represent integers of 0 to 2, n + m + 1 represents an integer of at least 1 and the products of n and y, m and x, and l and z are not 0, respectively. In addition, any phenyl group of triphenylamine has a substituent at the para position with respect to the nitrogen atom.
また、上記一般式(1)で示される電荷輸送性化合物の酸化電位は、0.75(v)以上であることが好ましい。それは、このような連鎖重合性官能基を有する電荷輸送性化合物を硬化した膜を最表面層に使用した感光体は、極めて削れにくい。従って、長期にわたり使用した場合放電等による酸化劣化を最表面層が極めて受けやすく、通常の低分子の電荷輸送性化合物を分散した膜に対し更に対酸化劣化性が要求される。最表面層が酸化されてしまうと、画像流れ等の画像欠陥や耐久時の電位変動等の電気的特性の悪化を引き起こすため酸化電位はモノマーの段階で少なくとも0.75(v)以上ある事が好ましい。 The oxidation potential of the charge transporting compound represented by the general formula (1) is preferably 0.75 (v) or more. That is, a photoconductor using a film obtained by curing a charge transporting compound having such a chain polymerizable functional group as the outermost surface layer is extremely difficult to scrape. Therefore, when used for a long period of time, the outermost surface layer is extremely susceptible to oxidative deterioration due to discharge or the like, and a film in which a normal low molecular charge transporting compound is dispersed is required to have further oxidative deterioration property. If the outermost surface layer is oxidized, the oxidation potential may be at least 0.75 (v) or more at the monomer stage because it causes image defects such as image flow and deterioration of electrical characteristics such as potential fluctuations during durability. preferable.
本発明で特に重要なのは上記一般式(1)で示される電荷輸送性化合物において、トリフェニルアミンのいずれのフェニル基も窒素原子に対してパラ位に置換基を有する、換言すれば、窒素原子に対しフェニル基のパラ位が水素原子で無いという事である。この点について以下で詳しく説明する。 Of particular importance in the present invention, in the charge transporting compound represented by the general formula (1), any phenyl group of triphenylamine has a substituent in the para position with respect to the nitrogen atom, in other words, at the nitrogen atom. On the other hand, the para position of the phenyl group is not a hydrogen atom. This point will be described in detail below.
本発明で精製に使用する活性白土もしくは酸性白土のシリカ・アルミナ系吸着剤、又はシリカ・マグネシア系吸着剤は一般的に酸性物質であり、芳香族アミン系の電子供与性化合物起因の不純物を吸着し易く且つ短時間で処理するのは好適である。従って短時間処理で精製効果が高い為、本発明の様な連鎖重合性官能基を有する電荷輸送性化合物が精製中に重合する危険性が極めて低く有効な精製方法である。しかし窒素原子に対しフェニル基のパラ位が水素原子である場合は、上記吸着剤と短時間でも接触すると分子間でパラ位同士の酸化カップリングが多少なりとも生じてしまう。このパラ位同士で酸化カップリングした化合物はベンジジン系化合物となるが、構造上元のトリフェニルアミン化合物に対してイオン化ポテンシャル(酸化電位)がかなり低い化合物となり、電荷輸送層中でキャリヤであるホールをトラップしてしまい残留電位の上昇、耐久時の電位変動あるいはメモリー特性に大きな悪影響を与える。更に先に述べた様に、連鎖重合性官能基を有する電荷輸送性化合物を硬化した膜は、元の連鎖重合性官能基を有する電荷輸送性化合物自体のイオン化ポテンシャルより更に高くなる。特にトリフェニルアミン化合物に2つ以上の連鎖重合性官能基を有した電荷輸送性化合物は硬化により3次元構造を取る事によりフェニル基がねじれ、特にこの傾向は顕著である。従って、低イオン化ポテンシャル化合物等の不純物のコンタミが硬化した膜では極めて少量でも上記電気特性に大きな悪影響を及ぼす。それに対し、窒素原子に対しフェニル基のパラ位に置換基を有する本発明で規定する電荷輸送性化合物を用いると、オルト位およびメタ位でのカップリングは立体的な理由と電子密度的な理由の何れか及び両方により反応が極めて起こりにくく、仮に起こったとしても生成したベンジジン化合物は先のパラ位でカップリングした化合物に比べ極めて微量であり且つ酸化電位(イオン化ポテンシャル)の低下は構造的に殆どなく(場合によってはフェニル基が元の化合物よりかなりねじれる事の影響で高くなる場合もある)電気的特性に悪影響を与える事は殆ど無い。従って窒素原子に対しフェニル基におけるパラ位が全て塞がっている特定の電荷輸送性化合物を用い、上述した特定の吸着剤と接触させると、極めて効率良く、かつ重合のリスクを極力抑えた一定の品質の精製化合物を簡便に安定して提供することができるのである。 The activated clay or acidic clay silica / alumina adsorbent or silica / magnesia adsorbent used for purification in the present invention is generally an acidic substance and adsorbs impurities derived from aromatic amine electron donating compounds. It is easy to do and it is suitable to process in a short time. Therefore, since the purification effect is high in a short time treatment, it is an effective purification method with a very low risk of polymerizing a charge transporting compound having a chain polymerizable functional group as in the present invention during purification. However, when the phenyl group para-position is a hydrogen atom with respect to the nitrogen atom, some oxidative coupling between para-positions occurs between molecules if the adsorbent is contacted for a short time. The compound oxidatively coupled at the para positions becomes a benzidine compound, but the structure has a much lower ionization potential (oxidation potential) than that of the original triphenylamine compound, and the hole serving as a carrier in the charge transport layer. Traps the residual potential, significantly increasing the residual potential, changing the potential during durability, or significantly affecting the memory characteristics. Further, as described above, the film obtained by curing the charge transporting compound having a chain polymerizable functional group has a higher ionization potential than the charge transporting compound itself having the original chain polymerizable functional group. In particular, a charge transporting compound having two or more chain polymerizable functional groups in a triphenylamine compound has a phenyl group twisted by taking a three-dimensional structure by curing, and this tendency is particularly remarkable. Therefore, even a very small amount of a contaminant-cured film such as a low ionization potential compound has a significant adverse effect on the electrical characteristics. On the other hand, when the charge transporting compound defined in the present invention having a substituent in the para position of the phenyl group with respect to the nitrogen atom is used, the coupling at the ortho position and the meta position is a steric reason and an electron density reason. The reaction is extremely difficult to occur due to either or both of the above, and even if it occurs, the benzidine compound produced is very small compared to the compound coupled at the previous para position, and the decrease in oxidation potential (ionization potential) is structurally There is almost no adverse effect on the electrical properties (although in some cases the phenyl group may be higher due to the significant twisting of the original compound). Therefore, using a specific charge transporting compound in which all the para-positions in the phenyl group are blocked with respect to the nitrogen atom, and contacting with the specific adsorbent described above, it is extremely efficient and has a certain quality that minimizes the risk of polymerization. The purified compound can be simply and stably provided.
本発明で使用される連鎖重合性官能基を少なくとも1つ以上有する一般式(1)で表されるトリフェニルアミン構造を有する電荷輸送性化合物の具体例を下記の表2−1と表2−2に示す。但し、これらに限定されるものではない。 Specific examples of the charge transporting compound having a triphenylamine structure represented by the general formula (1) having at least one chain polymerizable functional group used in the present invention are shown in Tables 2-1 and 2- below. It is shown in 2. However, it is not limited to these.
次に本発明の精製方法についてより詳しく説明する。 Next, the purification method of the present invention will be described in more detail.
上記一般式(1)で示される電荷輸送性化合物を有機溶媒に溶解させ、該電荷輸送性化合物含有有機溶媒を活性白土あるいは酸性白土等のシリカ・アルミナ系吸着剤及びシリカ・マグネシア系吸着剤の中から選ばれる少なくとも1種の吸着剤と接触させ、その後、吸着剤と該電荷輸送性化合物含有有機溶媒とを分離し、次に該電荷輸送性化合物含有有機溶媒から有機溶媒を除去することにより、不純物が取り除かれた電荷輸送性化合物の精製物を得る。 The charge transporting compound represented by the general formula (1) is dissolved in an organic solvent, and the organic solvent containing the charge transporting compound is made of silica / alumina adsorbent such as activated clay or acid clay and silica / magnesia adsorbent. By contacting with at least one adsorbent selected from among the following, separating the adsorbent and the organic solvent containing the charge transporting compound, and then removing the organic solvent from the organic solvent containing the charge transporting compound Then, a purified product of the charge transporting compound from which impurities are removed is obtained.
接触させる方法としては、上記電荷輸送性化合物を有機溶媒に溶解させ、粉状の上記吸着剤を添加して攪拌後、濾過により吸着剤を濾過後、濾液の溶媒を濃縮する方法や、上記電荷輸送性化合物を溶媒に溶解させ、粉状の上記吸着剤をカラム等に充填したところを通し、溶出液を濃縮する方法等が挙げられる。 As the method of contacting, the charge transporting compound is dissolved in an organic solvent, the adsorbent in powder form is added, and after stirring, the adsorbent is filtered by filtration, and then the solvent of the filtrate is concentrated. Examples thereof include a method of concentrating the eluate through a place where a transporting compound is dissolved in a solvent and the powdery adsorbent is packed in a column or the like.
本発明で規定する上記電荷輸送性化合物を溶解する有機溶媒及びカラム等で展開に使用
する有機溶媒としては、電荷輸送性化合物を溶解することができれば特に制限なく使用することができる。例えば炭化水素類、エステル類、エーテル類、ハロゲン化物類、アルコール類、酸アミド類、アルデヒド類、ニトリル類、ケトン類、芳香族ニトロ化合物類、アルキルスルホキシド類等いずれでもよい。その中でも特に好ましくは、トルエン、キシレン、シメン等の芳香族炭化水素類、クロロフォルム、ジクロロエタン、トリクロロエタン、クロロベンゼン等のハロゲン化合物類、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン化合物、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類、テトラヒドロフラン、ジオキサン等のエーテル類あるいは酢酸エチル、酢酸ブチル等のエステル類が挙げられ、単独でも混合して使用しても良い。
The organic solvent for dissolving the charge transporting compound defined in the present invention and the organic solvent used for development in a column or the like can be used without particular limitation as long as the charge transporting compound can be dissolved. For example, any of hydrocarbons, esters, ethers, halides, alcohols, acid amides, aldehydes, nitriles, ketones, aromatic nitro compounds, alkyl sulfoxides and the like may be used. Among them, particularly preferred are aromatic hydrocarbons such as toluene, xylene, and cymene, halogen compounds such as chloroform, dichloroethane, trichloroethane, and chlorobenzene, alcohols such as methanol, ethanol, propanol, and butanol, and ketones such as acetone and methyl ethyl ketone. Examples thereof include aliphatic hydrocarbons such as compounds, hexane, heptane and octane, ethers such as tetrahydrofuran and dioxane, and esters such as ethyl acetate and butyl acetate, which may be used alone or in combination.
本発明で使用できるシリカ・アルミナ系吸着剤である活性白土もしくは酸性白土、又はシリカ・マグネシア系吸着剤について以下に説明する。 The active clay or acidic clay or silica / magnesia type adsorbent, which is a silica / alumina type adsorbent that can be used in the present invention, will be described below.
酸性白土とは、モンモリロナイトを主成分とし、少量のクリストバル石が混入した物で主成分はシリカ/アルミナである。粉末あるいは粒状の市販品が使用でき、例えば水澤化学工業株式会社(商品名:ミズカエース)やキシダ化学株式会社製酸性白土等が挙げられ、その他一般に製造販売されているものも使用できる。 Acid clay is a substance in which montmorillonite is a main component and a small amount of cristobalite is mixed, and the main component is silica / alumina. Powdered or granular commercial products can be used, for example, Mizusawa Chemical Industry Co., Ltd. (trade name: Mizuka Ace), Kishida Chemical Co., Ltd. acid clay, etc., and other products that are generally manufactured and sold can also be used.
活性白土とは、カオリン、ベントナイト、パーライト、ボーキサイト、酸性白土等の天然鉱物及び酸性白土等を硫酸処理により活性化させた活性白土等が使用できる。好適には活性化された活性白土があげられ、日本活性白土株式会社(商品名:活性白土)や水澤化学工業株式会社(商品名:ガレオンアース、ガレオナイト)等が挙げられ、その他一般に製造販売されているものも使用できる。 As the activated clay, natural minerals such as kaolin, bentonite, perlite, bauxite, and acid clay, and activated clay obtained by activating acid clay with sulfuric acid treatment can be used. Preferred examples include activated activated clay, such as Nihon Activated Soil Co., Ltd. (trade name: Activated Soil), Mizusawa Chemical Industry Co., Ltd. (trade names: Galeon Earth, Galeonite), and others. You can also use it.
シリカ・マグネシア系吸着剤としては、例えば二酸化ケイ素と酸化マグネシウムを主成分とした多孔質吸着剤が挙げられ、水澤化学工業株式会社(商品名:ミズカライフ)等が挙げられ、その他一般に製造販売されているものも使用できる。上記吸着剤の中でも活性白土とシリカ・マグネシア系吸着剤が特に好ましい。 Examples of the silica / magnesia-based adsorbent include porous adsorbents mainly composed of silicon dioxide and magnesium oxide, Mizusawa Chemical Industry Co., Ltd. (trade name: Mizuka Life), and others. You can also use it. Among the adsorbents, activated clay and silica / magnesia adsorbent are particularly preferable.
上記吸着剤は処理する電荷輸送性化合物に対して5質量%以上が効果的であり、好ましくは10〜500質量%、特に好ましくは10〜200質量%である。処理温度は使用する溶媒が固化しない温度以上であれば良く、好ましくは5〜200℃、特に好ましくは20〜120℃である。接触時間は任意に選択できるが、5分以上が好ましく、5〜120分程度で十分効果が発現される。 The adsorbent is effective in an amount of 5% by mass or more, preferably 10 to 500% by mass, particularly preferably 10 to 200% by mass, based on the charge transporting compound to be treated. The treatment temperature should just be more than the temperature which the solvent to use does not solidify, Preferably it is 5-200 degreeC, Most preferably, it is 20-120 degreeC. Although contact time can be selected arbitrarily, 5 minutes or more are preferable and a sufficient effect is expressed in about 5 to 120 minutes.
上記吸着剤の接触処理は何れか一種と行えば良いが、場合によっては数種類を連続して並行処理してもよく、混合して処理してもよい。 The adsorbent contact treatment may be performed by any one type, but in some cases, several types may be processed in parallel or mixed and processed.
更に、上記吸着剤の接触処理前後に再結晶処理、活性炭処理、アルミナ処理あるいはシリカ処理等を組み合わせて行う事により更に効果が高くなる場合もある。中でも本発明では、活性白土の接触処理とシリカゲルまたはアルミナの接触処理を組み合わせて行うとよい。特に活性白土と接触させた後、更にシリカゲルまたはアルミナと接触させるとよい。 Further, the effect may be further enhanced by performing a combination of recrystallization treatment, activated carbon treatment, alumina treatment, or silica treatment before and after the adsorbent contact treatment. In particular, in the present invention, the contact treatment of activated clay and the contact treatment of silica gel or alumina may be performed in combination. In particular, after contacting with activated clay, it may be further contacted with silica gel or alumina.
また本発明では従来技術において酸性物質として挙げた塩酸水溶液やシリカゲル又は酸性アルミナでも精製を行い検討したが、シリカ・アルミナ系吸着剤である活性白土もしくは酸性白土、又はシリカ・マグネシア系吸着剤等の様な特異的な特性改善効果を見ることはできなかった。したがって、本願発明の効果は酸性物質としての精製効果ではなく、シリカ・アルミナ系吸着剤である活性白土もしくは酸性白土、又はシリカ・マグネシア系吸着剤等に有する固有の効果によるものであるといえる。
<電子写真感光体について>
本発明の電子写真感光体は、導電性支持体と、この導電性支持体上に感光層を有する構
成からなり、かつ上記の精製方法で得られた電荷輸送性化合物を用いて形成された感光層を有する。尚、本発明では、該電荷輸送性化合物を用いて形成する層が、特に該感光層中の最も表面に位置する表面層であるとより好ましい。表面層を有する電子写真感光体については、例えば特開平11−265085号公報、特開平2000−066424号公報あるいは特開平2000−066425号公報等に記載されている電子写真感光体を参考にすることができる。
Further, in the present invention, purification was carried out with hydrochloric acid aqueous solution, silica gel, or acidic alumina listed as the acidic substance in the prior art, but active clay or acidic clay, which is a silica / alumina adsorbent, or silica / magnesia adsorbent, etc. It was not possible to see such a specific characteristic improvement effect. Therefore, it can be said that the effect of the present invention is not due to the purification effect as an acidic substance, but due to the inherent effect of the active clay or acidic clay, which is a silica / alumina adsorbent, or a silica / magnesia adsorbent.
<About electrophotographic photoreceptor>
The electrophotographic photoreceptor of the present invention comprises a conductive support and a structure having a photosensitive layer on the conductive support, and is formed using the charge transporting compound obtained by the purification method described above. Having a layer. In the present invention, the layer formed using the charge transporting compound is more preferably a surface layer located on the outermost surface of the photosensitive layer. For the electrophotographic photosensitive member having a surface layer, for example, refer to the electrophotographic photosensitive member described in JP-A-11-265085, JP-A-2000-066424, JP-A-2000-066425, or the like. Can do.
以下に、本発明の電子写真感光体の好ましい態様を述べる。 The preferred embodiments of the electrophotographic photoreceptor of the present invention are described below.
感光層は電子写真感光体の表面を形成し、単一の層から構成されているか、又は積み重ねられた複数の層から構成されている。より具体的には、電荷発生物質と電荷輸送物質とを同一の層に含有する単一層から構成(以下、単層型ともいう)されているか、電荷発生物質を含有する電荷発生層と電荷輸送性化合物を含有する電荷輸送層とを積層させて構成(以下、積層型ともいう)されているか、あるいはこれらの層の上にさらに保護層を形成させて構成されている。尚、本発明では、積層型の感光層からなる感光体がより好ましい。 The photosensitive layer forms the surface of the electrophotographic photoreceptor and is composed of a single layer or a plurality of stacked layers. More specifically, the charge generation material and the charge transport material are composed of a single layer containing the charge generation material and the charge transport material (hereinafter also referred to as a single layer type), or the charge generation layer containing the charge generation material and the charge transport A charge transport layer containing a functional compound is laminated (hereinafter also referred to as a laminated type), or a protective layer is further formed on these layers. In the present invention, a photoreceptor composed of a laminated photosensitive layer is more preferable.
次に、本発明の電子写真感光体において、単一の層で構成される上記感光層、又は複数の層で構成される上記感光層のうちの上記電子写真感光体の表面を形成する層(以下、これらの層をまとめて表面層ともいう)は、上記の精製方法により精製された電荷輸送性化合物を使用することにより形成される。より詳しくは、該精製された電荷輸送性化合物を重合・架橋し、硬化膜を形成させることにより表面層を形成する。尚、ここで本発明でいう表面層は、より具体的には、感光層が上記単一層である場合には該層が相当し、該層の上にさらに保護層を形成させた場合には該保護層が相当する。また、感光層が上記積層型である場合には電荷輸送層が相当し、該電荷輸送層上にさらに保護層を形成させた場合には該保護層が相当する。 Next, in the electrophotographic photosensitive member of the present invention, the layer forming the surface of the electrophotographic photosensitive member among the photosensitive layer composed of a single layer or the photosensitive layer composed of a plurality of layers ( Hereinafter, these layers are collectively referred to as a surface layer) by using the charge transporting compound purified by the above purification method. More specifically, the surface layer is formed by polymerizing and crosslinking the purified charge transporting compound to form a cured film. The surface layer referred to in the present invention corresponds more specifically when the photosensitive layer is the above single layer, and when the protective layer is further formed on the layer. This protective layer corresponds. Further, when the photosensitive layer is of the above-described laminated type, a charge transport layer corresponds, and when a protective layer is further formed on the charge transport layer, the protective layer corresponds.
そして、上記のようにして得られた表面層を有する本発明の電子写真感光体は、電気特性及び耐久性に優れた電子写真感光体となる。 The electrophotographic photoreceptor of the present invention having the surface layer obtained as described above is an electrophotographic photoreceptor excellent in electrical characteristics and durability.
以下、本発明を実施例により説明する。
(実施例1)
以下の(A)工程により、表2に記載の化合物No.12の電荷輸送性化合物を合成し、精製した。
Hereinafter, the present invention will be described with reference to examples.
(Example 1)
By the following step (A), the compound Nos. Twelve charge transporting compounds were synthesized and purified.
(A)工程において、A−1の化合物(50g、0.41mol)、A−2の化合物(376g、1.24mol)、無水炭酸カリウム(180g)及び銅粉(400g)を1,2−ジクロロベンゼン(1.0kg)と共に180〜190℃で24時間加熱撹拌した。反応液を濾過後、減圧下で溶媒を除去した。残留物中の過剰のA−2の化合物を減圧蒸留により除去後、エタノール1.5kgに加え室温で撹拌しながら苛性ソーダ(100g)をゆっくり添加した。添加終了後そのまま室温で1時間撹拌後更に70〜80℃で10時間加熱撹拌を行った。反応液を水にあけ希塩酸で中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を除去した。残留物をトルエン/メチルエチルケトン混合溶媒を用い再結晶を行い、A−4の化合物を85g得た。 In step (A), the compound of A-1 (50 g, 0.41 mol), the compound of A-2 (376 g, 1.24 mol), anhydrous potassium carbonate (180 g) and copper powder (400 g) The mixture was stirred with chlorobenzene (1.0 kg) at 180 to 190 ° C. for 24 hours. After filtering the reaction solution, the solvent was removed under reduced pressure. Excess A-2 compound in the residue was removed by distillation under reduced pressure, and then added to 1.5 kg of ethanol, and caustic soda (100 g) was slowly added with stirring at room temperature. After completion of the addition, the mixture was stirred as it was at room temperature for 1 hour, and further heated and stirred at 70 to 80 ° C. for 10 hours. The reaction solution was poured into water, neutralized with dilute hydrochloric acid, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residue was recrystallized using a toluene / methyl ethyl ketone mixed solvent to obtain 85 g of a compound of A-4.
A−4の化合物(82g、0.21mol)、アクリル酸(38g、0.53mol)およびP−メトキシフェノール(260mg)をトルエン(400g)に溶解後P−トルエンスルホン酸(1水和物)(2.0g)を室温で添加した。その後油浴で加熱し脱水還流を7時間行った。反応液を氷水にあけ10%苛性ソーダで中和後酢酸エチルを用い抽出し、更に有機層を水洗して無水硫酸マグネシウムで乾燥した。その後溶媒を減圧下で留去して粗製品のA−5の化合物を98.5g得た。 A-4 compound (82 g, 0.21 mol), acrylic acid (38 g, 0.53 mol) and P-methoxyphenol (260 mg) were dissolved in toluene (400 g), and then P-toluenesulfonic acid (monohydrate) ( 2.0 g) was added at room temperature. Thereafter, the mixture was heated in an oil bath and dehydrated and refluxed for 7 hours. The reaction solution was poured into ice water, neutralized with 10% caustic soda and extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain 98.5 g of a crude product A-5 compound.
粗製品A−5の化合物(5g)をトルエン10mlに溶解し、そこへ活性白土(キシダ化学(株)製)5gを添加し30分間室温で攪拌処理した。活性白土を1μmの濾紙を使
用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品A−5の化合物(粘調液体)を4.8g得た。
The compound (5 g) of the crude product A-5 was dissolved in 10 ml of toluene, 5 g of activated clay (manufactured by Kishida Chemical Co., Ltd.) was added thereto, and the mixture was stirred for 30 minutes at room temperature. The activated clay was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.8 g of purified product A-5 compound (viscous liquid).
次に、得られた精製品A−5の化合物を用いて以下のように感光体を作製し、該感光体を評価した。 Next, using the compound of the obtained purified product A-5, a photoreceptor was prepared as follows, and the photoreceptor was evaluated.
ポリアミド樹脂(6−60−64−124元ナイロン共重合体)1部(質量部;以下同様)及び8−ナイロン樹脂(メトキシメチル化ナイロン、メトキシ化率約30%)3部をメタノール50部及びブタノール40部に溶解し、中間層用塗料を調整した。この塗料をアルミシシート上にマイヤーバーで塗布し、100℃で20分間乾燥して、0.65μmの中間層を形成した。 Polyamide resin (6-60-64-124 base nylon copolymer) 1 part (parts by mass; the same applies hereinafter) and 8-nylon resin (methoxymethylated nylon, methoxylation rate of about 30%) 3 parts 50 parts of methanol It melt | dissolved in 40 parts of butanol, and prepared the coating material for intermediate | middle layers. This paint was applied on an aluminum sheet with a Meyer bar and dried at 100 ° C. for 20 minutes to form a 0.65 μm intermediate layer.
CuKαのX線回折におけるブラック角2θ±0.2°において7.4°及び28.2°に強いピークを有するヒドロキシガリウムフタロシアニン結晶を3部、ポリビニルブチラ−ル(商品名エスレックBM2、積水化学(株)製)1.0部及びシクロヘキサノン35部を、φ1mmガラスビ−ズを用いたサンドミル装置で24時間分散して、その後に酢酸エチル60部を加えて電荷発生層用塗料を調製した。この塗料を上記の中間層の上にマイヤーバーで塗布して105℃で10分間乾燥し、膜厚0.12μmの電荷発生層を形成した。 Three parts of a hydroxygallium phthalocyanine crystal having strong peaks at 7.4 ° and 28.2 ° at a black angle of 2θ ± 0.2 ° in X-ray diffraction of CuKα, polyvinyl butyral (trade name S-REC BM2, Sekisui Chemical) 1.0 part and 35 parts of cyclohexanone (manufactured by Co., Ltd.) were dispersed in a sand mill using a φ1 mm glass bead for 24 hours, and then 60 parts of ethyl acetate was added to prepare a charge generation layer coating material. This paint was applied onto the above intermediate layer with a Meyer bar and dried at 105 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.12 μm.
次に、電荷輸送性化合物として実施例1で得られた精製品A−5の化合物を4.0部及びビスフェノールZ型ポリカーボネート(粘度平均分子量45,000)5.5部をモノクロロベンゼン38部に溶解し、電荷輸送層用塗料を調製した。この塗料を上記の電荷発生層の上に浸漬塗布方法で塗布して110℃で60分間乾燥し、膜厚18μmの電荷輸送層を形成し電子写真感光体を作製した。 Next, 4.0 parts of the purified product A-5 compound obtained in Example 1 as a charge transporting compound and 5.5 parts of bisphenol Z-type polycarbonate (viscosity average molecular weight 45,000) were added to 38 parts of monochlorobenzene. It melt | dissolved and the coating material for charge transport layers was prepared. This paint was applied onto the charge generation layer by a dip coating method and dried at 110 ° C. for 60 minutes to form a charge transport layer having a film thickness of 18 μm to produce an electrophotographic photosensitive member.
この感光体をレーザービームプリンター(Laser Jet4000:ヒューレットパッカード製)の改造機のシリンダーに貼り付けて常温常湿下(23℃、55%RH)(N/N)で、初期暗部電位(Vd)が−700(V)になるように帯電設定をし、これに波長780(nm)のレーザー光を照射して−700(V)の電位を−200(V)まで下げるのに必要な光量(EΔ500)を測定し感度とした。さらに、20(μJ/cm2)の光量を照射した場合の電位を残留電位(Vr)として初期特性を測定した。尚、その他の条件は、転写電流:+5.5μA、プロセススピード:96mm/secで行った。 This photoreceptor is attached to a cylinder of a laser beam printer (Laser Jet 4000: manufactured by Hewlett Packard), and the initial dark potential (Vd) is normal temperature and humidity (23 ° C., 55% RH) (N / N). The amount of light (EΔ500) required to set the charge to −700 (V) and irradiate it with laser light having a wavelength of 780 (nm) to lower the potential of −700 (V) to −200 (V). ) Was measured as sensitivity. Further, the initial characteristics were measured by setting the potential when the light amount of 20 (μJ / cm 2 ) was irradiated as the residual potential (Vr). The other conditions were as follows: transfer current: +5.5 μA, process speed: 96 mm / sec.
また、これらの感光体を暗部電位−700(V)、明部電位−200(V)になるように設定し直した後、低温低湿下(10℃、10%RH)(L/L)で連続1000枚の通紙耐久を行って、初期と1000枚後の暗部電位と明部電位の絶対値の変動量ΔVdとΔVlを測定した。それらの結果を下記表3に示す。 Further, after resetting these photoconductors to have a dark part potential of −700 (V) and a light part potential of −200 (V), they were subjected to low temperature and low humidity (10 ° C., 10% RH) (L / L). The durability of passing 1000 sheets continuously was measured, and the fluctuation amounts ΔVd and ΔVl of the absolute values of the dark part potential and the bright part potential after the initial and 1000 sheets were measured. The results are shown in Table 3 below.
また、アルミシート上に上記と同様に中間層及び電荷発生層を形成後、上記で得られた精製品A−5の化合物(60部)をモノクロロベンゼン30部およびジクロロメタン30部の混合溶媒中に溶解し、電荷輸送層用塗料を調整した、この塗料を電荷発生層上にマイヤーバーで塗布、50℃で10分間乾燥させた後に、加速電圧150KV、照射線量5Mradの条件で電子線を照射し、膜厚12μmの硬化型電荷輸送層を形成し、電子写真感光体を得た。この感光体を上記と同様に初期特性(EΔ500及びVr)を評価した。それらの結果を表3に示す。 Further, after forming the intermediate layer and the charge generation layer on the aluminum sheet in the same manner as above, the compound (60 parts) of the purified product A-5 obtained above was mixed in a mixed solvent of 30 parts of monochlorobenzene and 30 parts of dichloromethane. Dissolved and prepared a charge transport layer coating material. This coating material was applied onto the charge generation layer with a Meyer bar and dried at 50 ° C. for 10 minutes, and then irradiated with an electron beam under the conditions of an acceleration voltage of 150 KV and an irradiation dose of 5 Mrad. A curable charge transport layer having a thickness of 12 μm was formed to obtain an electrophotographic photosensitive member. The initial characteristics (EΔ500 and Vr) of this photoreceptor were evaluated in the same manner as described above. The results are shown in Table 3.
(実施例2)
実施例1の活性白土を酸性白土(水澤化学(株)製:商品名;ミズカエース#300)に代えた以外は実施例1と同様な方法で処理し、精製品A−5の化合物を4.6g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例3)
実施例1の活性白土をシリカ・マグネシア系吸着剤(水澤化学(株)製:商品名;ミズカライフP−1)に代えた以外は実施例1と同様な方法で処理し、精製品A−5の化合物を4.5g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例4)
シリカゲル(富士シリシア化学(株)製:商品名BW−200)40gをカラム(20mmΦ)に充填し、実施例1で得られた精製品A−5の化合物(4.0g)をトルエン20mlに溶解し、トルエンを展開溶媒に用い精製を行いさらなる精製品A−5の化合物(3.2g)得た。次に、この得られたさらなる精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例5)
シリカゲル(富士シリシア化学(株)製:商品名BW−200)40gをカラム(20mmΦ)に充填し、実施例1で得られた粗製品A−5の化合物(4.0g)をトルエン20mlに溶解し、トルエンを展開溶媒に用い精製を行った。展開液を一部濃縮後、そこへ活性白土(キシダ化学(株)製)2.0gを添加し30分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後、更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品A−5の化合物を2.8g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例6)
実施例3の使用溶媒をトルエンからエタノールに代えた以外は実施例3と同様な処理を行い、精製品A−5の化合物を4.2g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例7)
実施例1の使用溶媒をトルエンから酢酸エチルに代えた以外は実施例1と同様な処理を行い、精製品A−5の化合物を4.6g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例8)
実施例1の処理時間を30分から2時間に代えた以外は実施例1と同様な処理を行い、精製品A−5の化合物を4.7g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例9)
実施例1の処理温度を80℃に代えた以外は実施例1と同様な処理を行い、精製品A−5の化合物を4.7g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例10)
活性白土(キシダ化学(株)製)20gをカラム(20mmΦ)に充填し、実施例1で得られた粗製品A−5の化合物(4.0g)をトルエン20mlに溶解し、トルエンを展開溶媒に用い精製を行った。展開液を減圧下で除去し精製品A−5の化合物を2.8g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例11)
以下の(B)工程により、表2に記載の化合物No.36の電荷輸送性化合物を合成し、精製した。
(Example 2)
The compound of purified product A-5 was treated in the same manner as in Example 1 except that the activated clay in Example 1 was replaced with acid clay (trade name; Mizuka Ace # 300, manufactured by Mizusawa Chemical Co., Ltd.). 6 g was obtained. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 3)
The activated clay of Example 1 was treated in the same manner as in Example 1 except that the silica / magnesia-based adsorbent (manufactured by Mizusawa Chemical Co., Ltd .: trade name; Mizuka Life P-1) was used. 4.5 g of compound 5 was obtained. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
Example 4
40 g of silica gel (Fuji Silysia Chemical Co., Ltd .: trade name BW-200) is packed in a column (20 mmΦ), and the purified product A-5 compound (4.0 g) obtained in Example 1 is dissolved in 20 ml of toluene. Then, purification was performed using toluene as a developing solvent to obtain a further purified product A-5 compound (3.2 g). Next, the resulting further purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 5)
40 g of silica gel (manufactured by Fuji Silysia Chemical Co., Ltd .: trade name BW-200) was packed in a column (20 mmΦ), and the compound (4.0 g) of crude product A-5 obtained in Example 1 was dissolved in 20 ml of toluene. Then, purification was performed using toluene as a developing solvent. After partially concentrating the developing solution, 2.0 g of activated clay (manufactured by Kishida Chemical Co., Ltd.) was added thereto and stirred at room temperature for 30 minutes. The activated clay was filtered using 1 μm filter paper, and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 2.8 g of the purified product A-5 compound. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 6)
The same treatment as in Example 3 was carried out except that the solvent used in Example 3 was changed from toluene to ethanol to obtain 4.2 g of the compound of purified product A-5. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 7)
The same treatment as in Example 1 was carried out except that the solvent used in Example 1 was changed from toluene to ethyl acetate to obtain 4.6 g of the purified product A-5 compound. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 8)
The same treatment as in Example 1 was carried out except that the treatment time in Example 1 was changed from 30 minutes to 2 hours to obtain 4.7 g of the purified product A-5 compound. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
Example 9
Except having changed the processing temperature of Example 1 into 80 degreeC, the process similar to Example 1 was performed and 4.7g of compounds of refined product A-5 were obtained. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 10)
20 g of activated clay (manufactured by Kishida Chemical Co., Ltd.) is packed in a column (20 mmΦ), the compound (4.0 g) of crude product A-5 obtained in Example 1 is dissolved in 20 ml of toluene, and toluene is used as a developing solvent. And purified. The developing solution was removed under reduced pressure to obtain 2.8 g of the purified product A-5 compound. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 11)
By the following step (B), the compound Nos. 36 charge transporting compounds were synthesized and purified.
(B)工程において、B−1の化合物(500g、1.7mol)、B−2の化合物(80g、0.86mol)、無水炭酸カリウム(478g)及び銅粉(550g)を1,2−ジクロロベンゼン 2kgと共に180〜190℃で18時間加熱撹拌した。反応液を濾過後、減圧下で溶媒を除去し、残留物をアセトン/メタノール混合溶媒で2回再結晶を行い、B−3の化合物を510g得た。
DMF35gを0〜5℃に冷却後、オキシ塩化リン(184g、1.2mol)を、10℃を越えないようにゆっくり滴下した。滴下終了後15分そのまま撹拌後、B−3の化合物(500g、1.2mol)/DMF500g溶液をゆっくり滴下した。滴下終了後そのまま30分撹拌後室温に戻し1時間撹拌後、更に80〜85℃に加熱し4時間撹拌を行った。反応液を約15%の酢酸ナトリウム水溶液5kgにあけ12時間撹拌を行った。そ
れを中和後、トルエンを用い抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去し、残留物をシリカゲルカラムで精製を行い、B−4の化合物を378g得た。
In the step (B), the compound of B-1 (500 g, 1.7 mol), the compound of B-2 (80 g, 0.86 mol), anhydrous potassium carbonate (478 g) and copper powder (550 g) The mixture was stirred with 2 kg of chlorobenzene at 180 to 190 ° C. for 18 hours. After filtering the reaction solution, the solvent was removed under reduced pressure, and the residue was recrystallized twice with an acetone / methanol mixed solvent to obtain 510 g of the compound of B-3.
After cooling 35 g of DMF to 0-5 ° C., phosphorus oxychloride (184 g, 1.2 mol) was slowly added dropwise so as not to exceed 10 ° C. After completion of dropping, the mixture was stirred for 15 minutes as it was, and then a B-3 compound (500 g, 1.2 mol) / DMF 500 g solution was slowly added dropwise. After completion of dropping, the mixture was stirred for 30 minutes and then returned to room temperature. After stirring for 1 hour, the mixture was further heated to 80 to 85 ° C. and stirred for 4 hours. The reaction solution was poured into 5 kg of about 15% aqueous sodium acetate solution and stirred for 12 hours. After neutralizing it, extraction was performed using toluene, the organic layer was dried over anhydrous sodium sulfate, the solvent was removed, and the residue was purified with a silica gel column to obtain 378 g of the compound of B-4.
B−4の化合物(300g、0.67mol)及び1,1−ジフェニルメチルジエチルフォスフェート(205g、0.67mmol)を乾燥テトラヒドロフラン2kgに溶解し、そこに室温で油性水素化ナトリウム(約60%、29.7g、約0.74mol)をゆっくり添加した。添加終了後室温で30分間撹拌後、3時間加熱撹拌を行った。反応液を冷却後、水にあけトルエンで抽出し有機層を無水硫酸ナトリウムで乾燥後溶媒を除去した。残留物をシリカゲルカラムで精製を行い、B−5の化合物を211g得た。 The compound of B-4 (300 g, 0.67 mol) and 1,1-diphenylmethyldiethyl phosphate (205 g, 0.67 mmol) were dissolved in 2 kg of dry tetrahydrofuran, where oily sodium hydride (about 60%, 29.7 g, about 0.74 mol) was added slowly. After completion of the addition, the mixture was stirred at room temperature for 30 minutes and then heated and stirred for 3 hours. The reaction solution was cooled, poured into water, extracted with toluene, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed. The residue was purified with a silica gel column to obtain 211 g of the compound of B-5.
B−5の化合物(200g、0.34mol)をメチルセルソルブ2kgに加え室温で撹拌しながらナトリウムメチラート(70g)をゆっくり添加した。添加終了後そのまま室温で1時間撹拌後更に70〜80℃で12時間加熱撹拌を行った。反応液を水にあけ希塩酸で中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を除去した。残留物をシリカゲルカラムでカラム精製を行い、B−6の化合物を151g得た。 The compound of B-5 (200 g, 0.34 mol) was added to 2 kg of methyl cellosolve, and sodium methylate (70 g) was slowly added while stirring at room temperature. After completion of the addition, the mixture was stirred at room temperature for 1 hour and further heated and stirred at 70 to 80 ° C. for 12 hours. The reaction solution was poured into water, neutralized with dilute hydrochloric acid, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residue was purified with a silica gel column to obtain 151 g of the compound of B-6.
B−6の化合物(150g、0.29mol)及びトリエチルアミン(88g、0.88mol)を、乾燥テトラヒドロフラン1Kgに加え0〜5℃に冷却後、塩化アクリロイル(80g、0.88mol)をゆっくり滴下した。滴下終了後ゆっくり室温に戻し室温でそのまま6時間撹拌を行った。反応液を水にあけ中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後した。その後溶媒を減圧下で留去して粗製品のB−7の化合物を172g得た。
粗製品B−7の化合物(5g)をトルエン10mlに溶解し、そこへ活性白土(水澤化学(株)製:商品名;ガレオナイト#212)3gを添加し60分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後更に0.2μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品B−7の化合物(粘調液体)を4.7g得た。
次に、得られた精製品B−7の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例12)
実施例11の活性白土を酸性白土(水澤化学(株)製:商品名;ミズカエース#300)に代えた以外は実施例1と同様な方法で処理し、精製品B−7の化合物を4.4g得た。次に、得られた精製品B−7の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例13)
実施例11の活性白土をシリカ・マグネシア系吸着剤(水澤化学(株)製:商品名;ミズカライフP−1)に代えた以外は実施例1と同様な方法で処理し、精製品B−7の化合物を4.2g得た。次に、得られた精製品B−7の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例14)
酸化アルミナ(Merk(株)製:商品名;Aluminium oxide 90、activ acidic)40gをカラム(20mmΦ)に充填し、実施例12で得られた精製品B−7の化合物(4.0g)をトルエン20mlに溶解し、トルエン/酢酸エチル(10/1)混合溶媒を展開溶媒に用い精製を行いさらなる精製品B−7の化合物(3.0g)得た。次に、この得られたさらなる精製品B−7の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例15)
以下の(C)工程により、表2に記載の化合物No.1の電荷輸送性化合物を合成し、精製した。
The compound of B-6 (150 g, 0.29 mol) and triethylamine (88 g, 0.88 mol) were added to 1 kg of dry tetrahydrofuran and cooled to 0 to 5 ° C., and then acryloyl chloride (80 g, 0.88 mol) was slowly added dropwise. After completion of the dropwise addition, the temperature was slowly returned to room temperature and stirred at room temperature for 6 hours. The reaction solution was poured into water, neutralized, extracted with ethyl acetate, and the organic layer was dried over anhydrous sodium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain 172 g of a crude B-7 compound.
The compound (5 g) of the crude product B-7 was dissolved in 10 ml of toluene, and 3 g of activated clay (manufactured by Mizusawa Chemical Co., Ltd .: trade name: Galeonite # 212) was added thereto and stirred at room temperature for 60 minutes. The activated clay was filtered using a 1 μm filter paper, and then filtered using a 0.2 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.7 g of the purified product B-7 compound (viscous liquid).
Next, the obtained purified product B-7 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 12)
The compound of refined product B-7 was treated in the same manner as in Example 1 except that the activated clay in Example 11 was replaced with acid clay (made by Mizusawa Chemical Co., Ltd .: trade name; Mizuka Ace # 300). 4 g was obtained. Next, the obtained purified product B-7 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 13)
Except that the activated clay of Example 11 was replaced with a silica-magnesia-based adsorbent (manufactured by Mizusawa Chemical Co., Ltd .: trade name; Mizuka Life P-1), it was treated in the same manner as in Example 1, and purified product B- 4.2 g of 7 compound was obtained. Next, the obtained purified product B-7 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 14)
40 g of alumina oxide (manufactured by Merck Co., Ltd .: trade name; Aluminum oxide 90, activ acidic) was packed in a column (20 mmΦ), and the compound (4.0 g) of the purified product B-7 obtained in Example 12 was toluene. It melt | dissolved in 20 ml and refine | purified using the toluene / ethyl acetate (10/1) mixed solvent as a developing solvent, and the compound (3.0g) of the further purified product B-7 was obtained. Next, the obtained further purified product B-7 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 15)
By the following step (C), the compound Nos. One charge transporting compound was synthesized and purified.
(C)工程において、C−1の化合物(180g、0.62mol)、C−2の化合物(82g、0.416mol)、無水炭酸カリウム(135g)及び銅粉(110g)を1,2−ジクロロベンゼン(1.0kg)と共に180〜190℃で12時間加熱撹拌した。反応液を濾過後、減圧下で溶媒を除去した。残留物中の過剰のC−1の化合物を減圧蒸留により除去後、エタノール800gに加え室温で撹拌しながら苛性ソーダ(20g)をゆっくり添加した。添加終了後そのまま室温で1時間撹拌後更に70〜80℃で7時間加熱撹拌を行った。反応液を水にあけ希塩酸で中和後、酢酸エチルで抽出し有機層を無水硫酸ナトリウムで乾燥後、減圧下で溶媒を除去し、C−4の化合物を110g得た。 In step (C), C-1 compound (180 g, 0.62 mol), C-2 compound (82 g, 0.416 mol), anhydrous potassium carbonate (135 g) and copper powder (110 g) The mixture was stirred with chlorobenzene (1.0 kg) at 180 to 190 ° C. for 12 hours. After filtering the reaction solution, the solvent was removed under reduced pressure. Excess C-1 compound in the residue was removed by distillation under reduced pressure, and then added to 800 g of ethanol, and caustic soda (20 g) was slowly added while stirring at room temperature. After completion of the addition, the mixture was stirred as it was at room temperature for 1 hour, and further heated and stirred at 70 to 80 ° C. for 7 hours. The reaction mixture was poured into water, neutralized with dilute hydrochloric acid, extracted with ethyl acetate, the organic layer was dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure to obtain 110 g of C-4 compound.
C−4の化合物(100g:0.315mol)、アクリル酸(27g:0.375mol)およびP−メトキシフェノール(100mg)をトルエン(300g)に溶解後P−トルエンスルホン酸(1水和物)(0.8g)を室温で添加した。その後油浴で加熱し脱水還流を7時間行った。反応液を氷水にあけ10%苛性ソーダで中和後酢酸エチルを用い抽出し、更に有機層を水洗して無水硫酸マグネシウムで乾燥した。その後溶媒を減圧下で留去して粗製品C−5の化合物を112g得た。
粗製品C−5の化合物(5g)をトルエン10mlに溶解し、そこへ活性白土(キシダ化学(株)製)5gを添加し15分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し
精製品C−5の化合物(粘調液体)を4.7g得た。
次に、得られた精製品C−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例16)
実施例15の活性白土を酸性白土(水澤化学(株)製:商品名;ミズカエース#300)に代えた以外は実施例15と同様な方法で処理し、精製品C−5の化合物を4.4g得た。
A compound of C-4 (100 g: 0.315 mol), acrylic acid (27 g: 0.375 mol) and P-methoxyphenol (100 mg) were dissolved in toluene (300 g), and then P-toluenesulfonic acid (monohydrate) ( 0.8 g) was added at room temperature. Thereafter, the mixture was heated in an oil bath and dehydrated and refluxed for 7 hours. The reaction solution was poured into ice water, neutralized with 10% caustic soda and extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure to obtain 112 g of a crude product C-5 compound.
The compound (5 g) of the crude product C-5 was dissolved in 10 ml of toluene, 5 g of activated clay (manufactured by Kishida Chemical Co., Ltd.) was added thereto, and the mixture was stirred for 15 minutes at room temperature. The activated clay was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.7 g of purified product C-5 compound (viscous liquid).
Next, the obtained purified product C-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 16)
The compound of purified product C-5 was treated in the same manner as in Example 15 except that the activated clay in Example 15 was replaced with acid clay (trade name; Mizuka Ace # 300, manufactured by Mizusawa Chemical Co., Ltd.). 4 g was obtained.
次に、得られた精製品C−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例17)
実施例15の活性白土をシリカ・マグネシア系吸着剤(水澤化学(株)製:商品名;ミズカライフP−1)に代えた以外は実施例15と同様な方法で処理し、精製品C−5の化合物を4.3g得た。次に、得られた精製品C−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例18)
シリカゲル(富士シリシア化学(株)製:商品名BW−300)40gをカラム(20mmΦ)に充填し、実施例15で得られた精製品C−5の化合物(4.0g)をトルエン20mlに溶解し、トルエンを展開溶媒に用い更に精製を行い精製品C−5の化合物(3.5g)得た。次に、得られた精製品C−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例19)
表2に記載の化合物例No.7の粗製品を(5g)をトルエン10mlに溶解し、そこへ活性白土(水澤化学(株)製:商品名;ガレオナイト#212)1gを添加し60分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後更に0.2μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品(粘調液体)を4.7g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(実施例20)
表2に記載の化合物例No.15の粗製品を(5g)をトルエン10mlに溶解し、そこへ活性白土(水澤化学(株)製:商品名;ガレオナイト#212)5gを添加し60分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後更に0.2μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品(粘調液体)を4.5g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表3に示す。
(比較例1)
実施例1で得られた粗製品A−5の化合物(5g)をトルエン10mlに溶解し、そこへシリカゲル(富士シリシア化学(株)製:商品名BW−200)5gを添加し30分間室温で攪拌処理した。シリカゲルを1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品A−5の化合物を4.7g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
Next, the obtained purified product C-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 17)
The activated clay of Example 15 was treated in the same manner as in Example 15 except that the activated clay was replaced with a silica-magnesia-based adsorbent (manufactured by Mizusawa Chemical Co., Ltd .; trade name; Mizuka Life P-1). 4.3 g of compound 5 was obtained. Next, the obtained purified product C-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 18)
40 g of silica gel (Fuji Silysia Chemical Co., Ltd .: trade name BW-300) was packed in a column (20 mmΦ), and the purified product C-5 compound (4.0 g) obtained in Example 15 was dissolved in 20 ml of toluene. Further purification was performed using toluene as a developing solvent to obtain a purified product C-5 compound (3.5 g). Next, the obtained purified product C-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 3.
(Example 19)
Compound Example Nos. The crude product of No. 7 (5 g) was dissolved in 10 ml of toluene, and 1 g of activated clay (manufactured by Mizusawa Chemical Co., Ltd .: trade name; Galeonite # 212) was added thereto and stirred at room temperature for 60 minutes. The activated clay was filtered using a 1 μm filter paper, and then filtered using a 0.2 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.7 g of a purified product (viscous liquid). Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 3.
(Example 20)
Compound Example Nos. 15 crude products (5 g) were dissolved in 10 ml of toluene, and 5 g of activated clay (manufactured by Mizusawa Chemical Co., Ltd .: trade name: Galeonite # 212) was added thereto and stirred at room temperature for 60 minutes. The activated clay was filtered using a 1 μm filter paper, and then filtered using a 0.2 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.5 g of a purified product (viscous liquid). Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 3.
(Comparative Example 1)
The compound (5 g) of the crude product A-5 obtained in Example 1 was dissolved in 10 ml of toluene, and 5 g of silica gel (manufactured by Fuji Silysia Chemical Co., Ltd .: trade name BW-200) was added thereto for 30 minutes at room temperature. Stir processing was performed. The silica gel was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.7 g of the purified product A-5 compound. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(比較例2)
実施例1で得られた粗製品A−5の化合物(5g)をトルエン10mlに溶解し、そこへ酸化アルミナ(Merk(株)製:商品名;Aluminium oxide 90、activ acidic)5gを添加し30分間室温で攪拌処理した。酸化アルミナを1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品A−5の化合物を4.6g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例3)
実施例1で得られた粗製品A−5の化合物(5g)をトルエン10mlに溶解し、そこへ活性炭(武田薬品工業(株)製:商品名;精製白鷺P)5gを添加し30分間室温で攪拌処理した。活性炭を1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品A−5の化合物を4.6g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例4)
シリカゲル(富士シリシア化学(株)製:商品名BW−200)40gをカラム(20mmΦ)に充填し、実施例1で得られた粗製品A−5の化合物(4.0g)をトルエン20mlに溶解し、トルエンを展開溶媒に用い精製を行い、精製品A−5の化合物を3.4g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例5)
酸化アルミナ(Merk(株)製:商品名;Aluminium oxide 90、activ acidic)40gをカラム(20mmΦ)に充填し、実施例1で得られた粗製品A−5の化合物(4.0g)をトルエン20mlに溶解し、トルエン/酢酸エチル(10/1)混合溶媒を展開溶媒に用い精製を行い、精製品A−5の化合物を3.2g得た。次に、得られた精製品A−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。(比較例6)
実施例11で得られた粗製品B−7の化合物(5g)をトルエン10mlに溶解し、そこへシリカゲル(富士シリシア化学(株)製:商品名BW−200)3gを添加し60分間室温で攪拌処理した。シリカゲルを1μmの濾紙を使用し濾過後更に0.2μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品B−7の化合物(粘調液体)を4.7g得た。次に、得られた精製品B−7の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例7)
実施例11で得られた粗製品B−7の化合物(5g)をトルエン10mlに溶解し、そこへ酸化アルミナ(Merk(株)製:商品名;Aluminium oxide 90、activ acidic)3gを添加し60分間室温で攪拌処理した。酸化アルミナを1μmの濾紙を使用し濾過後更に0.2μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品B−7の化合物(粘調液体)を4.5g得た。次に、得られた精製品B−7の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例8)
シリカゲル(富士シリシア化学(株)製:商品名BW−200)40gをカラム(20mmΦ)に充填し、実施例11で得られた粗製品B−7の化合物(4.0g)をトルエン20mlに溶解し、トルエンを展開溶媒に用い精製を行い、精製品B−7の化合物を3.3g得た。次に、得られた精製品B−7の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例9)
酸化アルミナ(Merk(株)製:商品名;Al uminium oxide 90、activ acidic)40gをカラム(20mmΦ)に充填し、実施例11で得られた粗製品B−7の化合物(4.0g)をトルエン20mlに溶解し、トルエン/酢酸エチル(10/1)混合溶媒を展開溶媒に用い精製を行い、精製品B−7の化合物を3.0g得た。次に、得られた精製品B−7の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例10)
実施例15で得られた粗製品C−5の化合物(5g)をトルエン10mlに溶解し、そこへシリカゲル(富士シリシア化学(株)製:商品名BW−300)5gを添加し15分間室温で攪拌処理した。シリカゲルを1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品C−5の化合物を4.7g得た。次に、得られた精製品C−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例11)
シリカゲル(富士シリシア化学(株)製:商品名BW−300)40gをカラム(20mmΦ)に充填し、実施例15で得られた粗製品C−5の化合物(4.0g)をトルエン20mlに溶解し、トルエンを展開溶媒に用い精製を行い、精製品C−5の化合物を3.
5g得た。次に、得られた精製品C−5の化合物を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例12)
シリカゲル(富士シリシア化学(株)製:商品名BW−300)40gをカラム(20mmΦ)に充填し、表2に記載の化合物例No.7の粗製品4.0gをトルエン20mlに溶解し、トルエンを展開溶媒に用い精製を行い、精製品3.5g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例13)
シリカゲル(富士シリシア化学(株)製:商品名BW−300)40gをカラム(20mmΦ)に充填し、表2に記載の化合物例No.15の粗製品4.0gをトルエン20mlに溶解し、トルエンを展開溶媒に用い精製を行い、精製品3.3g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例14)
実施例1の合成において、3,4−キシリジン(A−1)をアニリンに代えた以外は同様な方法を用い、下記化合物(D−1)を合成し、粗製品を得た。
(Comparative Example 2)
The crude product A-5 compound (5 g) obtained in Example 1 was dissolved in 10 ml of toluene, and 5 g of alumina oxide (manufactured by Merck Co., Ltd .: trade name; Aluminum oxide 90, activ acidic) was added thereto. Stirred at room temperature for minutes. The alumina oxide was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.6 g of the purified product A-5 compound. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 3)
The compound (5 g) of the crude product A-5 obtained in Example 1 was dissolved in 10 ml of toluene, and 5 g of activated carbon (manufactured by Takeda Pharmaceutical Co., Ltd .: trade name; Purified Shirasagi P) was added thereto for 30 minutes at room temperature. And stirred. The activated carbon was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.6 g of the purified product A-5 compound. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 4)
40 g of silica gel (manufactured by Fuji Silysia Chemical Co., Ltd .: trade name BW-200) was packed in a column (20 mmΦ), and the compound (4.0 g) of crude product A-5 obtained in Example 1 was dissolved in 20 ml of toluene. Then, purification was performed using toluene as a developing solvent, and 3.4 g of the compound of purified product A-5 was obtained. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 5)
40 g of alumina oxide (Merck Co., Ltd .: trade name; Aluminum oxide 90, activ acidic) was packed in a column (20 mmΦ), and the compound (4.0 g) of the crude product A-5 obtained in Example 1 was toluene. It melt | dissolved in 20 ml and refine | purified using the toluene / ethyl acetate (10/1) mixed solvent as a developing solvent, and 3.2g of compounds of the refined product A-5 were obtained. Next, the obtained purified product A-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4. (Comparative Example 6)
The compound (5 g) of the crude product B-7 obtained in Example 11 was dissolved in 10 ml of toluene, and 3 g of silica gel (manufactured by Fuji Silysia Chemical Co., Ltd .: trade name BW-200) was added thereto for 60 minutes at room temperature. Stir processing was performed. The silica gel was filtered using a 1 μm filter paper and further filtered using a 0.2 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.7 g of the purified product B-7 compound (viscous liquid). Next, the obtained purified product B-7 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 7)
The crude product B-7 compound (5 g) obtained in Example 11 was dissolved in 10 ml of toluene, and 3 g of alumina oxide (Merck, Inc .: trade name; Aluminum oxide 90, activ acidic) was added thereto. Stirred at room temperature for minutes. The alumina oxide was filtered using a 1 μm filter paper and further filtered using a 0.2 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.5 g of purified product B-7 compound (viscous liquid). Next, the obtained purified product B-7 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 8)
40 g of silica gel (manufactured by Fuji Silysia Chemical Co., Ltd .: trade name BW-200) was packed in a column (20 mmΦ), and the compound (4.0 g) of the crude product B-7 obtained in Example 11 was dissolved in 20 ml of toluene. Then, purification was performed using toluene as a developing solvent to obtain 3.3 g of the purified product B-7 compound. Next, the obtained purified product B-7 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 9)
40 g of alumina oxide (manufactured by Merck Co., Ltd .: trade name; Aluminium oxide 90, activ acidic) was packed in a column (20 mmΦ), and the compound (4.0 g) of the crude product B-7 obtained in Example 11 was used. It melt | dissolved in 20 ml of toluene, it refine | purified using the toluene / ethyl acetate (10/1) mixed solvent as a developing solvent, and 3.0g of compounds of the refined product B-7 were obtained. Next, the obtained purified product B-7 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 10)
The crude product C-5 compound (5 g) obtained in Example 15 was dissolved in 10 ml of toluene, and 5 g of silica gel (Fuji Silysia Chemical Co., Ltd .: trade name BW-300) was added thereto for 15 minutes at room temperature. Stir processing was performed. The silica gel was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.7 g of the purified product C-5 compound. Next, the obtained purified product C-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 11)
40 g of silica gel (Fuji Silysia Chemical Co., Ltd .: trade name BW-300) was packed in a column (20 mmΦ), and the crude product C-5 compound (4.0 g) obtained in Example 15 was dissolved in 20 ml of toluene. Then, purification is performed using toluene as a developing solvent, and the compound of the purified product C-5 is obtained as 3.
5 g was obtained. Next, the obtained purified product C-5 was used as a photoreceptor in the same manner as in Example 1 for evaluation. The results are shown in Table 4.
(Comparative Example 12)
40 g of silica gel (Fuji Silysia Chemical Co., Ltd .: trade name BW-300) was packed in a column (20 mmΦ), and the compound example No. 4.0 g of the crude product 7 was dissolved in 20 ml of toluene and purified using toluene as a developing solvent to obtain 3.5 g of a purified product. Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 13)
40 g of silica gel (Fuji Silysia Chemical Co., Ltd .: trade name BW-300) was packed in a column (20 mmΦ), and the compound example No. 4.0 g of 15 crude product was dissolved in 20 ml of toluene and purified using toluene as a developing solvent to obtain 3.3 g of purified product. Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 14)
In the synthesis of Example 1, the following compound (D-1) was synthesized using the same method except that 3,4-xylidine (A-1) was replaced by aniline to obtain a crude product.
得られた粗製品(5g)をトルエン10mlに溶解し、そこへ活性白土(キシダ化学(株)製)5gを添加し30分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品(粘調液体)を4.7g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例15)
比較例14の活性白土を酸性白土(水澤化学(株)製:商品名;ミズカエース#300)に代えた以外は比較例14と同様な方法で処理し、精製品を4.5g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例16)
比較例14の活性白土をシリカ・マグネシア系吸着剤(水澤化学(株)製:商品名;ミズカライフP−1)に代えた以外は比較例14と同様な方法で処理し、精製品を4.4g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例17)
下記構造式(D−2)の粗製品(5g)をトルエン10mlに溶解し、そこへ活性白土(キシダ化学(株)製)5gを添加し30分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品(粘調液体)を4.7g得た。
The obtained crude product (5 g) was dissolved in 10 ml of toluene, 5 g of activated clay (manufactured by Kishida Chemical Co., Ltd.) was added thereto, and the mixture was stirred at room temperature for 30 minutes. The activated clay was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.7 g of a purified product (viscous liquid). Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 15)
Except that the activated clay in Comparative Example 14 was replaced with acid clay (manufactured by Mizusawa Chemical Co., Ltd .: trade name; Mizuka Ace # 300), the same treatment as in Comparative Example 14 was performed to obtain 4.5 g of a purified product. Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 16)
The refined product was treated in the same manner as in Comparative Example 14 except that the activated clay of Comparative Example 14 was replaced with a silica-magnesia-based adsorbent (manufactured by Mizusawa Chemical Co., Ltd .: trade name; Mizuka Life P-1). .4 g was obtained. Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 17)
A crude product (5 g) of the following structural formula (D-2) was dissolved in 10 ml of toluene, 5 g of activated clay (manufactured by Kishida Chemical Co., Ltd.) was added thereto, and the mixture was stirred for 30 minutes at room temperature. The activated clay was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.7 g of a purified product (viscous liquid).
次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例18)
比較例17の活性白土を酸性白土(水澤化学(株)製:商品名;ミズカエース#300
)に代えた以外は比較例17と同様な方法で処理し、精製品を4.5g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例19)
比較例17の活性白土をシリカ・マグネシア系吸着剤(水澤化学(株)製:商品名;ミズカライフP−1)に代えた以外は比較例17と同様な方法で処理し、精製品を4.3g得た。次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例20)
下記構造式(D−3)の粗製品(5g)をトルエン10mlに溶解し、そこへ活性白土(水澤化学(株)製:商品名;ガレオンアース#136)5gを添加し30分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品(粘調液体)を4.5g得た。
Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 18)
The activated clay of Comparative Example 17 was acid clay (Mizusawa Chemical Co., Ltd .: trade name; Mizuka Ace # 300)
) Was processed in the same manner as in Comparative Example 17 except that 4.5) was obtained. Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 19)
The purified white clay was treated in the same manner as in Comparative Example 17 except that the activated clay in Comparative Example 17 was replaced with a silica / magnesia-based adsorbent (manufactured by Mizusawa Chemical Co., Ltd .: trade name; Mizuka Life P-1). .3 g was obtained. Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 20)
A crude product (5 g) of the following structural formula (D-3) is dissolved in 10 ml of toluene, and 5 g of activated clay (produced by Mizusawa Chemical Co., Ltd .: trade name; Galeon Earth # 136) is added thereto and stirred at room temperature for 30 minutes. Processed. The activated clay was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.5 g of a purified product (viscous liquid).
次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。
(比較例21)
下記構造式(D−4)の粗製品(5g)をトルエン10mlに溶解し、そこへ活性白土(水澤化学(株)製:商品名;ガレオンアース#136)5gを添加し30分間室温で攪拌処理した。活性白土を1μmの濾紙を使用し濾過後更に0.5μmのメンブランフィルターを用い濾過した。濾液を減圧下で除去し精製品(粘調液体)を4.6g得た。
Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
(Comparative Example 21)
A crude product (5 g) of the following structural formula (D-4) was dissolved in 10 ml of toluene, and 5 g of activated clay (made by Mizusawa Chemical Co., Ltd .: trade name; Galeon Earth # 136) was added thereto and stirred at room temperature for 30 minutes. Processed. The activated clay was filtered using a 1 μm filter paper and further filtered using a 0.5 μm membrane filter. The filtrate was removed under reduced pressure to obtain 4.6 g of a purified product (viscous liquid).
次に、得られた精製品を用い、実施例1と同様に感光体にして評価した。その結果を表4に示す。 Next, using the obtained purified product, it was evaluated as a photoreceptor in the same manner as in Example 1. The results are shown in Table 4.
Claims (8)
以上有する請求項1〜4の何れか一項に記載の電荷輸送性化合物の精製方法。 The method for purifying a charge transporting compound according to any one of claims 1 to 4, wherein the charge transporting compound represented by the general formula (1) has at least two chain polymerizable functional groups.
前記感光層は、前記電子写真感光体の表面を形成し、単一の層で構成されるか、又は積み重ねられた複数の層で構成され、
単一の層で構成される前記感光層、又は複数の層で構成される前記感光層のうちの前記電子写真感光体の表面を形成する層は、請求項1〜7の何れかの精製方法を用いて精製された電荷輸送性化合物を含有することを特徴とする電子写真感光体。 In an electrophotographic photosensitive member having a photosensitive layer provided on a conductive support,
The photosensitive layer forms the surface of the electrophotographic photosensitive member and is composed of a single layer or a plurality of stacked layers,
The purification method according to any one of claims 1 to 7, wherein the layer forming the surface of the electrophotographic photoreceptor among the photosensitive layer constituted by a single layer or the photosensitive layer constituted by a plurality of layers is used. An electrophotographic photoreceptor comprising a charge transporting compound purified using
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003286813A JP2005053845A (en) | 2003-08-05 | 2003-08-05 | Purification method of charge-transporting compound and electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003286813A JP2005053845A (en) | 2003-08-05 | 2003-08-05 | Purification method of charge-transporting compound and electrophotographic photoreceptor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005053845A true JP2005053845A (en) | 2005-03-03 |
Family
ID=34366005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003286813A Withdrawn JP2005053845A (en) | 2003-08-05 | 2003-08-05 | Purification method of charge-transporting compound and electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005053845A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006121187A1 (en) * | 2005-05-10 | 2006-11-16 | Ricoh Company, Ltd. | Acrylic ester compound and manufacturing intermediate thereof, method for manufacturing acrylic ester compound, and latent electrostatic image bearing member, image forming method, image forming apparatus and process cartridge |
JP2006315983A (en) * | 2005-05-11 | 2006-11-24 | Ricoh Co Ltd | Acrylic acid ester compound, method for producing the same and production intermediate |
JP2006315961A (en) * | 2005-05-10 | 2006-11-24 | Ricoh Co Ltd | Acrylic acid ester compound, method for producing the same and production intermediate |
JP2006323208A (en) * | 2005-05-19 | 2006-11-30 | Ricoh Co Ltd | Electrophotographic photoreceptor, image forming method using same, image forming device, and process cartridge therefor |
JP2006337750A (en) * | 2005-06-02 | 2006-12-14 | Canon Inc | Electrophotographic apparatus |
JP2007033937A (en) * | 2005-07-27 | 2007-02-08 | Ricoh Co Ltd | Electrostatic latent image carrier, image forming apparatus, image forming method, and process cartridge |
US7528210B2 (en) | 2006-03-30 | 2009-05-05 | Sabic Innovative Plastics Ip B.V. | Method of purification of dihydric phenols |
US7541417B2 (en) | 2006-03-30 | 2009-06-02 | Sabic Innovative Plastics Ip B.V. | Process for the purification of dihydric phenols |
US7585603B2 (en) | 2005-06-24 | 2009-09-08 | Fuji Xerox Co., Ltd. | Curable resin composition, electrophotographic photoreceptor, process cartridge, and image-forming apparatus |
JP2010231200A (en) * | 2009-03-05 | 2010-10-14 | Ricoh Co Ltd | Electrophotographic photoreceptor, manufacturing method thereof, image formation method using the same, image forming apparatus, and process cartridge for image forming apparatus |
US7842444B2 (en) | 2006-03-28 | 2010-11-30 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, image forming apparatus and coating composition |
CN110554585A (en) * | 2018-05-31 | 2019-12-10 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
CN110554584A (en) * | 2018-05-31 | 2019-12-10 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
CN110554586A (en) * | 2018-05-31 | 2019-12-10 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
CN110554582A (en) * | 2018-05-31 | 2019-12-10 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic image forming apparatus |
CN110632832A (en) * | 2018-06-22 | 2019-12-31 | 佳能株式会社 | Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge |
-
2003
- 2003-08-05 JP JP2003286813A patent/JP2005053845A/en not_active Withdrawn
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006315961A (en) * | 2005-05-10 | 2006-11-24 | Ricoh Co Ltd | Acrylic acid ester compound, method for producing the same and production intermediate |
WO2006121187A1 (en) * | 2005-05-10 | 2006-11-16 | Ricoh Company, Ltd. | Acrylic ester compound and manufacturing intermediate thereof, method for manufacturing acrylic ester compound, and latent electrostatic image bearing member, image forming method, image forming apparatus and process cartridge |
US8623577B2 (en) | 2005-05-10 | 2014-01-07 | Ricoh Company, Ltd. | Acrylic ester compound and manufacturing intermediate thereof, method for manufacturing acrylic ester compound, and latent electrostatic image bearing member, image forming method, image forming apparatus and process cartridge |
JP4699803B2 (en) * | 2005-05-10 | 2011-06-15 | 株式会社リコー | Acrylic acid ester compound and production method and production intermediate thereof |
JP4699804B2 (en) * | 2005-05-11 | 2011-06-15 | 株式会社リコー | Acrylic acid ester compound and production method and production intermediate thereof |
JP2006315983A (en) * | 2005-05-11 | 2006-11-24 | Ricoh Co Ltd | Acrylic acid ester compound, method for producing the same and production intermediate |
JP2006323208A (en) * | 2005-05-19 | 2006-11-30 | Ricoh Co Ltd | Electrophotographic photoreceptor, image forming method using same, image forming device, and process cartridge therefor |
JP2006337750A (en) * | 2005-06-02 | 2006-12-14 | Canon Inc | Electrophotographic apparatus |
JP4612868B2 (en) * | 2005-06-02 | 2011-01-12 | キヤノン株式会社 | Electrophotographic equipment |
US7585603B2 (en) | 2005-06-24 | 2009-09-08 | Fuji Xerox Co., Ltd. | Curable resin composition, electrophotographic photoreceptor, process cartridge, and image-forming apparatus |
JP2007033937A (en) * | 2005-07-27 | 2007-02-08 | Ricoh Co Ltd | Electrostatic latent image carrier, image forming apparatus, image forming method, and process cartridge |
US7842444B2 (en) | 2006-03-28 | 2010-11-30 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, image forming apparatus and coating composition |
US7528210B2 (en) | 2006-03-30 | 2009-05-05 | Sabic Innovative Plastics Ip B.V. | Method of purification of dihydric phenols |
US7541417B2 (en) | 2006-03-30 | 2009-06-02 | Sabic Innovative Plastics Ip B.V. | Process for the purification of dihydric phenols |
JP2010231200A (en) * | 2009-03-05 | 2010-10-14 | Ricoh Co Ltd | Electrophotographic photoreceptor, manufacturing method thereof, image formation method using the same, image forming apparatus, and process cartridge for image forming apparatus |
CN110554585A (en) * | 2018-05-31 | 2019-12-10 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
CN110554584A (en) * | 2018-05-31 | 2019-12-10 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
CN110554586A (en) * | 2018-05-31 | 2019-12-10 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member |
CN110554582A (en) * | 2018-05-31 | 2019-12-10 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic image forming apparatus |
JP2019211549A (en) * | 2018-05-31 | 2019-12-12 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus |
JP7150485B2 (en) | 2018-05-31 | 2022-10-11 | キヤノン株式会社 | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus |
CN110554582B (en) * | 2018-05-31 | 2023-11-28 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic image forming apparatus |
CN110554586B (en) * | 2018-05-31 | 2023-11-28 | 佳能株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
CN110632832A (en) * | 2018-06-22 | 2019-12-31 | 佳能株式会社 | Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge |
CN110632832B (en) * | 2018-06-22 | 2023-12-22 | 佳能株式会社 | Electrophotographic photosensitive member, process for producing the same, electrophotographic apparatus, and process cartridge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005053845A (en) | Purification method of charge-transporting compound and electrophotographic photoreceptor | |
KR100848615B1 (en) | Electrophotographic photoreceptor and method of preparing the photoreceptor, and image forming method, image forming apparatus and process cartridge therefor using the photoreceptor | |
JP2000206715A (en) | Electrophotographic photoreceptor and process cartridge and electrophotographic device | |
JPH10212269A (en) | Process for preparing arylamine | |
JP2000206716A (en) | Electrophotographic photoreceptor and process cartridge and electrophotographic device | |
JP2010085832A (en) | Method of producing coating material for electrophotographic photoreceptor | |
JP4217360B2 (en) | Electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge | |
JP2000206717A (en) | Electrophotographic photoreceptor and process cartridge and electrophotographic device | |
JPH04319958A (en) | Electrophotography photosensitive body | |
WO2006057373A1 (en) | Electrophotographic photosensitive body | |
WO2004019136A1 (en) | Electrophotographic photoreceptor and electrophoto- graphic apparatus equipped with the same | |
EP1879850A1 (en) | Acrylic ester compound and manufacturing intermediate thereof, method for manufacturing acrylic ester compound, and latent electrostatic image bearing member, image forming method, image forming apparatus and process cartridge | |
JP2001117251A (en) | Organic electronic device and image forming device | |
JP6384111B2 (en) | Electrophotographic photosensitive member and electrophotographic image forming apparatus | |
JP2000206718A (en) | Electrophotographic photoreceptor and process cartridge and electrophotographic device | |
JP2017173684A (en) | Electrophotographic photoreceptor, and image forming apparatus and image forming method using the same | |
JP5737051B2 (en) | Electrophotographic photosensitive member and method for manufacturing the same, image forming method, image forming apparatus, and process cartridge | |
JP5737052B2 (en) | Electrophotographic photosensitive member and method for manufacturing the same, image forming method, image forming apparatus, and process cartridge | |
JP2001265033A (en) | Electrophotographic photoreceptor, and process cartridge and electrophotographic device each using the same | |
JP2006058822A (en) | Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus with the electrophotographic photoreceptor | |
JPH01146844A (en) | Production of squarylium compound | |
JP4138692B2 (en) | Electrophotographic photoreceptor | |
WO2023127784A1 (en) | Electrophotographic photoreceptor, coating liquid for electrophotographic photoreceptor layer formation, compound, electrophotographic photoreceptor cartridge, and image formation device | |
JP2013254136A (en) | Electrophotographic photoreceptor, electrophotographic image forming method, and electrophotographic image forming apparatus | |
JP6946845B2 (en) | Electrophotographic photosensitive member, manufacturing method of electrophotographic photosensitive member and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061107 |