JP2001013063A - Photometric apparatus - Google Patents

Photometric apparatus

Info

Publication number
JP2001013063A
JP2001013063A JP11187737A JP18773799A JP2001013063A JP 2001013063 A JP2001013063 A JP 2001013063A JP 11187737 A JP11187737 A JP 11187737A JP 18773799 A JP18773799 A JP 18773799A JP 2001013063 A JP2001013063 A JP 2001013063A
Authority
JP
Japan
Prior art keywords
light
unit
receiving
light transmitting
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11187737A
Other languages
Japanese (ja)
Other versions
JP2001013063A5 (en
JP4151162B2 (en
Inventor
Yoshio Tsunasawa
義夫 綱澤
Ichiro Oda
一郎 小田
Sadao Takeuchi
貞夫 竹内
Yasunobu Ito
康展 伊藤
Hisafumi Sakauchi
尚史 坂内
Manami Kobayashi
まなみ 小林
Takahiro Harada
高宏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP18773799A priority Critical patent/JP4151162B2/en
Publication of JP2001013063A publication Critical patent/JP2001013063A/en
Publication of JP2001013063A5 publication Critical patent/JP2001013063A5/ja
Application granted granted Critical
Publication of JP4151162B2 publication Critical patent/JP4151162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a photometric apparatus in which the position and the combination of light sending points and/or light receiving points operated simultaneously in the measurement of a plurality of parts on a specimen are changed without changing the connection of a light source of a wiring, of which measuring time is shortened and of which S/N ratio is enhanced. SOLUTION: In this photometric apparatus, a specimen 10 is irradiated with light, and light which is emitted to the outside after being transmitted through the specimen and/or after being reflected by the specimen is measured. The photometric apparatus is constituted in such a way that it is provided with a light sending and receiving part 11 which is provided with a plurality of light sending parts 12 used to shine the light at the specimen and which is provided with a plurality of light receiving parts 13 used to receive the emitted light and that it is provided with a computing and control part which controls the sending and receiving operation of the light with reference to the light sending and receiving parts 11. The computing and control part is provided with a plurality of control tables which decide the combination and the order of the light sending parts and/or the light receiving parts used to perform the sending and receiving operation of the light, and it controls the sending and receiving operation of the light according to the combination and the order of the light sending parts and/or the light receiving parts in the selected control tables.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光計測装置に関
し、被検体の散乱吸収の内部分布を光を用いて測定し、
生体の成分の経時的変化より組織の正常、異常を診断す
る装置に関し、脳内各部の血流の経時変化や酸素供給の
変化を測定する酸素モニターや循環器系障害診断等の医
療分野に適用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measurement device, which measures the internal distribution of scattering and absorption of an object using light,
Apparatus for diagnosing normal or abnormal tissue based on temporal changes in biological components.Applied to medical fields such as oxygen monitors that measure temporal changes in blood flow and changes in oxygen supply in various parts of the brain, and circulatory disorders. can do.

【0002】[0002]

【従来の技術】ヘモグロビンは血液中で酸素と結合した
り離れたりすることで酸素を運搬する役割を果たしてい
る。血液に含まれるヘモグロビンは血管の拡張・収縮に
応じて増減するため、この組織中のヘモグロビンの量を
測ることによって、血管の拡張・収縮を検出することが
知られている。また、ヘモグロビンの濃度は生体内部の
酸素代謝機能に対応することを利用して、光を用いて生
体内部を簡便に無侵襲で測定する生体計測が知られてい
る。ヘモグロビンの濃度は、可視光から近赤外領域の波
長の光を生体に照射し、生体を透過して得られる光の吸
収量から求められる。また、脳内では、血流再配分作用
によって活性化している部位には必要量以上の酸素供給
が行われ、酸素化されたオキシヘモグロビンの量が増加
している。したがって、オキシヘモグロビン及びデオキ
シヘモグロビンの動きの測定を、脳の活動の観察に応用
することができる。
2. Description of the Related Art Hemoglobin plays a role in transporting oxygen by binding to and separating from oxygen in blood. Since hemoglobin contained in blood increases or decreases in accordance with the expansion and contraction of blood vessels, it is known to detect the expansion and contraction of blood vessels by measuring the amount of hemoglobin in this tissue. In addition, there is known a living body measurement that simply and noninvasively measures the inside of a living body using light by utilizing the fact that the concentration of hemoglobin corresponds to the oxygen metabolizing function inside the living body. The concentration of hemoglobin is determined from the amount of light absorbed by irradiating a living body with light having a wavelength in the range from visible light to near-infrared light and transmitting through the living body. In the brain, oxygen is supplied in excess of a necessary amount to sites activated by the blood flow redistribution effect, and the amount of oxygenated oxyhemoglobin is increasing. Therefore, measurement of the movement of oxyhemoglobin and deoxyhemoglobin can be applied to observation of brain activity.

【0003】このとき酸素と結合しオキシヘモグロビン
となるか、酸素が離れデオキシヘモグロビンとなるかに
よってスペクトルが異なる。このスペクトルの違いを用
いて、オキシヘモグロビン及びデオキシヘモグロビンの
無侵襲定量測定が開発されている。このように、光計測
装置は、脳の血液量変化や酸素代謝の活性化状態を測定
し、運動や感覚や思考等の脳機能等の計測に適用するこ
とができ、計測結果を画像として表示することによっ
て、生体の脳機能診断や循環器系障害診断等の医療分野
への適用効果を高めることができる。光計測装置は、光
を被検体に照射する送光部、及び被検体から放出される
光を受光する受光部をそれぞれ複数備える構成によっ
て、被検体上の複数箇所の測定を行うことができる。ま
た、送光部と受光部の位置及び組み合わせを異ならせる
ことによって、被検体上の測定点の変更や、得られるデ
ータの深さ方向の変更を行うことができる。
At this time, the spectrum differs depending on whether it combines with oxygen to form oxyhemoglobin or separates oxygen to form deoxyhemoglobin. Using this difference in spectrum, non-invasive quantitative measurement of oxyhemoglobin and deoxyhemoglobin has been developed. In this way, the optical measurement device can measure changes in the blood volume of the brain and the activation state of oxygen metabolism, and can be applied to measurement of brain functions such as movement, sensation and thinking, and display the measurement results as images By doing so, it is possible to enhance the effect of application to the medical field such as diagnosis of brain function of a living body and diagnosis of circulatory system disorders. The optical measurement device can measure a plurality of locations on a subject by using a configuration including a plurality of light transmitting units that irradiate the subject with light and a plurality of light receiving units that receive light emitted from the subject. Further, by changing the positions and combinations of the light transmitting unit and the light receiving unit, it is possible to change the measurement point on the subject and change the depth direction of the obtained data.

【0004】このような複数の送光部及び受光部を備え
た光計測装置において、送光部と受光部の位置及び/又
は組み合わせを変更する構成として、従来、以下のよう
な方式が提案されている。一つの方式は、複数の送光部
に対して一つの光源を備え、光源と送光部との接続を順
次切り替えることによって、一測定時に一つの送光部の
みから光を被検体に照射するものが知られている。これ
によれば、複数の送光部から同時に光が照射されないた
め、他の送光部から照射された光(散乱・反射光)によ
る信号が混入しないため、測定信号の混信を防止するこ
とができる。
In such an optical measuring device having a plurality of light transmitting units and light receiving units, the following method has been conventionally proposed as a configuration for changing the position and / or combination of the light transmitting unit and the light receiving unit. ing. One method includes one light source for a plurality of light transmitting units, and sequentially switches the connection between the light source and the light transmitting unit, thereby irradiating the subject with light from only one light transmitting unit during one measurement. Things are known. According to this, since light is not emitted from a plurality of light transmitting units at the same time, signals due to light (scattered / reflected light) emitted from other light transmitting units are not mixed, so that it is possible to prevent interference of measurement signals. it can.

【0005】また、他の方式は、複数の送光部に対して
点灯周波数が異なる複数の光源を備え、同一の送光部か
ら周波数の異なる光を被検体に照射するものが知られて
いる。この構成では、受光した光信号の内から夫々光源
の周波数に同調するロックインアンプで増幅すること
で、目的信号成分を分離する。ロックインアンプによる
方式を行う構成としては、光源の周波数と同じ周波数に
よる同調し信号増幅する狭帯域同調回路と、同期整流を
行う同期整流回路とを組み合わせた構成が知られてい
る。
Another method is known in which a plurality of light transmitting units are provided with a plurality of light sources having different lighting frequencies, and the same light transmitting unit irradiates light with different frequencies to a subject. . In this configuration, the target signal component is separated by amplifying the received optical signal with a lock-in amplifier tuned to the frequency of the light source. As a configuration that uses a lock-in amplifier, a configuration is known in which a narrow-band tuning circuit that tunes and amplifies a signal at the same frequency as the frequency of the light source and a synchronous rectification circuit that performs synchronous rectification are combined.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ように光源と複数の送光部と間の接続を順次切り替える
構成では、同時には一つの送光部のみから光を照射する
ため、送光部から光を照射して行う測定をすべての送光
部について行うには、各送光部と光源との切り替え及び
測定を順次繰り返す必要があるため、測定時間が長くな
るという問題がある。また、測定時間が長くなると、生
体のオキシヘモグロビン及びデオキシヘモグロビンの変
化速度への対応が困難となり、測定精度の問題が生じる
こととなる。
However, in the configuration in which the connection between the light source and the plurality of light transmitting units is sequentially switched as described above, light is emitted from only one light transmitting unit at the same time. In order to perform the measurement performed by irradiating light from all the light transmitting units, it is necessary to sequentially switch between each light transmitting unit and the light source and repeat the measurement, and thus there is a problem that the measurement time becomes long. In addition, when the measurement time is long, it is difficult to cope with the changing speed of oxyhemoglobin and deoxyhemoglobin in the living body, which causes a problem of measurement accuracy.

【0007】また、各送光部における測定時間を短縮す
ることによっても全体の測定時間を短縮することはでき
るが、各送光部毎の測定における光源の点灯時間の割合
が小さくなるため、一連の測定時間に対する点灯時間の
時間割合が小さくなり、雑音対信号比(S/N)が小さ
くなる。
Although the overall measurement time can be reduced by reducing the measurement time in each light transmitting unit, the ratio of the lighting time of the light source in the measurement in each light transmitting unit is reduced. , The ratio of the lighting time to the measurement time is reduced, and the noise-to-signal ratio (S / N) is reduced.

【0008】一方、異なる周波数で変調しロックインア
ンプで分離する構成では、測定時間を短縮するには有利
である。しかしながら、一般に、被検体の形状や測定部
位に応じて送光点と受光点の配列位置を変更する必要が
ある。しかしながら、ロックインアンプの配線接続は送
光点と受光点の配列位置に対応して設定されているた
め、送光点と受光点の配列位置を被検体の形状や測定部
位に応じて変更することは困難であり、また、ロックイ
ンアンプの接続を被検体の形状や測定部位に応じて変更
することも困難である。
On the other hand, a configuration in which modulation is performed at different frequencies and separated by a lock-in amplifier is advantageous in shortening the measurement time. However, generally, it is necessary to change the arrangement position of the light transmitting point and the light receiving point according to the shape of the subject and the measurement site. However, since the wiring connection of the lock-in amplifier is set corresponding to the arrangement position of the light transmission point and the light reception point, the arrangement position of the light transmission point and the light reception point is changed according to the shape of the subject and the measurement site. It is also difficult to change the connection of the lock-in amplifier according to the shape of the subject and the measurement site.

【0009】そこで、本発明は前記した従来の問題点を
解決し、被検体の複数箇所の部位の測定において、同時
に動作する送光点及び/又は受光点の位置や組み合わせ
を、光源や配線の接続を切り替えることなく、測定目的
に応じた適切な組み合わせに自在に選択できる手段を与
えることを第1の目的とし、又、被検体の複数箇所の部
位の測定において、測定時間を短縮し、S/N比を向上
させることを第2の目的とする。
In view of the above, the present invention solves the above-mentioned conventional problems. In measuring a plurality of sites of a subject, the positions and combinations of light transmitting points and / or light receiving points operating simultaneously are determined by using light sources and wirings. A first object is to provide a means that can freely select an appropriate combination according to the measurement purpose without switching the connection. In addition, in measuring a plurality of portions of the subject, the measurement time can be reduced, A second object is to improve the / N ratio.

【0010】[0010]

【課題を解決するための手段】本発明は、被検体の複数
箇所の部位の測定において、同時に動作する送光点や受
光点の位置の変更や、同時に動作する送光点や受光点の
組み合わせの変更を、光源や配線の接続を切り替えるこ
となく行うために、送光部や受光部における送受光を制
御する制御テーブルをあらかじめ用意しておき、この制
御テーブルから所望の送受光制御を行うものを選択可能
とするものである。制御テーブルから所望の送受光制御
を選択することによって、光源や配線の接続を切り替え
ることなく、同時に動作する送光点や受光点の位置や組
み合わせを所望のものに変更することができる。本発明
の光計測装置の一形態は、被検体に光を照射し、被検体
中を透過及び/又は反射した後に外部に放出される光を
測定する光計測装置において、被検体に光を照射する複
数の送光部と放出される光を受光する複数の受光部とを
備えた送受光部と、この送受光部に対して光の送受光を
制御する制御部とを備える構成とする。そして、制御部
は、送受光を行う送光部及び/又は受光部の組み合わせ
と順序を定めた複数の制御テーブルを備え、選択した制
御テーブルの送光部及び/又は受光部の組み合わせと順
序に従って送受光制御を行う。
SUMMARY OF THE INVENTION The present invention relates to a method of measuring a plurality of portions of a subject by changing the positions of light-transmitting points and light-receiving points that operate at the same time, and combining the light-transmitting points and light-receiving points that operate simultaneously. In order to make the change without switching the connection of the light source and the wiring, a control table for controlling the light transmission and reception in the light transmission unit and the light reception unit is prepared in advance, and the desired light transmission and reception control is performed from this control table Can be selected. By selecting a desired light transmission / reception control from the control table, it is possible to change the positions and combinations of the light transmission points and light reception points that operate simultaneously, without switching the connection of the light source and the wiring. One embodiment of the optical measurement device of the present invention is an optical measurement device that irradiates a subject with light and measures light emitted to the outside after transmission and / or reflection in the subject. A light transmitting and receiving unit including a plurality of light transmitting units and a plurality of light receiving units that receive emitted light, and a control unit that controls transmission and reception of light to and from the light transmitting and receiving unit. The control unit includes a plurality of control tables that determine the combination and order of the light transmitting unit and / or the light receiving unit that transmits and receives light, and according to the combination and the order of the light transmitting unit and / or the light receiving unit of the selected control table. Transmission / reception control is performed.

【0011】制御テーブルは、送光部については、送受
光部に配列される複数の送光部の中から送光を同時に行
う送光部の組み合わせと動作順とを定め、受光部につい
ては、送受光部に配列される複数の受光部で受光して得
られる受光信号を有効データとする受光部の組み合わせ
と動作順とを定める。なお、送光部及び受光部の組み合
わせにおいて、全ての送光部あるいは全ての受光部を含
む組み合わせとすることができる。制御部は、複数の制
御テーブルを備え、選択した制御テーブルによって定め
られる組み合わせと動作順に従って、送光及び受光部で
受光して得られる受光信号を制御する。制御部は、あら
かじめ定めた複数の制御テーブルから所定の制御テーブ
ルを選択することによって、光源や配線の接続を切り替
えることなく、同時に動作する送光点や受光点の位置や
組み合わせを所望のものに変更することができる。
The control table determines, for the light transmitting unit, a combination of light transmitting units that simultaneously transmit light from a plurality of light transmitting units arranged in the light transmitting and receiving unit and an operation order. The combination of the light receiving units and the order of operation in which light receiving signals obtained by receiving light by the plurality of light receiving units arranged in the light transmitting and receiving unit are set as effective data are determined. The combination of the light transmitting unit and the light receiving unit may be a combination including all the light transmitting units or all the light receiving units. The control unit includes a plurality of control tables, and controls a light receiving signal obtained by receiving light by the light transmitting and receiving units according to a combination and an operation order determined by the selected control table. The control unit selects a predetermined control table from a plurality of predetermined control tables, thereby changing the positions and combinations of the light transmitting points and the light receiving points operating simultaneously without switching the connection of the light source and the wiring. Can be changed.

【0012】図1は本発明の光計測装置の一形態を説明
するための概略構成図である。図1において、光計測装
置1は、被検体10に光を照射する送光部12及び被検
体10からの光を受光する受光部13を含み、測定プロ
ーブを形成する送受光部11と、送光部12に光を送光
する発光部2と、受光部13で受光した光を光検出する
光検出部3と、発光部2及び光検出部3を制御する演算
・制御部4を備える。演算・制御部4は、発光部2を制
御して送光部12の送光を制御する発光制御部42、光
検出部3の受光信号を制御する光検出制御43と、発光
制御部42及び光検出制御43の制御形態を定める制御
テーブル41とを備える。制御テーブル41は例えば送
受光を行う送光部及び/又は受光部の組み合わせと順序
を定めた複数の制御テーブルを発光・光検出テーブル4
1a,発光テーブル41b,光検出テーブル41c等を
備える。各テーブルにおいて、発光にかかわる制御に関
しては、送受光部11に配列される複数の送光部12の
中から送光を同時に行う送光部の組み合わせと動作順と
を定め、光検出にかかわる制御に関しては、送受光部に
配列される複数の受光部で受光して得られる受光信号を
有効データとする受光部の組み合わせと動作順とを定め
る。
FIG. 1 is a schematic configuration diagram for explaining one embodiment of the optical measurement device of the present invention. In FIG. 1, the optical measurement device 1 includes a light transmitting / receiving unit 11 that irradiates a subject 10 with light and a light receiving unit 13 that receives light from the subject 10. The light emitting unit 2 includes a light emitting unit 2 that transmits light to the light unit 12, a light detecting unit 3 that detects light received by the light receiving unit 13, and a calculation / control unit 4 that controls the light emitting unit 2 and the light detecting unit 3. The arithmetic and control unit 4 controls the light emitting unit 2 to control the light transmission of the light transmitting unit 12, the light detection control 43 to control the light reception signal of the light detection unit 3, the light emission control unit 42, A control table 41 for determining a control mode of the light detection control 43. The control table 41 includes, for example, a plurality of control tables in which the combination and order of a light transmitting unit and / or a light receiving unit for transmitting and receiving light is determined.
1a, a light emitting table 41b, a light detecting table 41c, and the like. In each table, regarding the control related to light emission, a combination of light transmitting units that simultaneously transmit light from a plurality of light transmitting units 12 arranged in the light transmitting and receiving unit 11 and an operation order are determined, and control relating to light detection is performed. Regarding the above, the combination of the light receiving units and the operation order in which the light receiving signals obtained by receiving the light by the plurality of light receiving units arranged in the light transmitting and receiving unit are set as the effective data are determined.

【0013】発光制御部42は、発光・光検出テーブル
41aあるいは発光テーブル41bから受け取った送光
部の組み合わせと動作順に基づいて、送光部12の送光
を制御する。また、発光・光検出テーブル41aあるい
は光検出テーブル41cから受け取った受光部の組み合
わせと動作順に基づいて、受光部13で受光し光検出部
3に変換して得た受光信号を制御する。
The light emission control unit 42 controls the light transmission of the light transmission unit 12 based on the combination of the light transmission units received from the light emission / light detection table 41a or the light emission table 41b and the operation order. Further, based on the combination of the light receiving units received from the light emitting / light detecting table 41a or the light detecting table 41c and the operation order, the light receiving unit 13 controls the light receiving signal obtained by receiving the light and converting the light into the light detecting unit 3.

【0014】制御テーブルは、第1の態様では任意の送
光部及び受光部間の組み合わせで定めることができ、異
なる光源を2つ以上を同時に点灯させ、信号処理によっ
て、夫々の項減からの出力を分離する。また第2の態様
では、一対の送光部及び受光部間の組み合わせで設定す
ることができる。制御テーブルを設定する第2の態様
は、送光部と受光部で一対の送受光対を形成し、この送
受光対を単位として動作を行なう組み合わせを定めるも
のである。さらに、各第1の態様及び第2の態様におい
て、全送光部の送光を同時に行う第1の発光形態、一送
光部毎に順次送光を行う第2の発光形態、及び送光部の
組み合わせを順次変更する第3の発光形態等の各発光形
態とすることができる。
In the first embodiment, the control table can be determined by an arbitrary combination between the light transmitting unit and the light receiving unit. Two or more different light sources are turned on at the same time, and the signal processing reduces the respective terms. Separate the output. Further, in the second aspect, it can be set by a combination between a pair of the light transmitting unit and the light receiving unit. In a second mode of setting the control table, a pair of light transmitting and receiving pairs is formed by a light transmitting unit and a light receiving unit, and a combination for performing an operation in units of the light transmitting and receiving pairs is determined. Further, in each of the first mode and the second mode, a first light emitting mode in which light is transmitted from all the light transmitting sections simultaneously, a second light emitting mode in which light is transmitted sequentially for each light transmitting section, and light transmitting mode Each light emitting mode such as a third light emitting mode in which the combination of units is sequentially changed can be adopted.

【0015】第1の発光形態は、送光部は特定の受光部
と実質的に一義に対応し、特定の送光部は他の受光部に
実質的に干渉しない状態であり、特定の送光部と対応関
係にない受光部との距離が大きく、受光部で受光される
光量が実質的に無視できる程度に少ない場合に適用する
ことができる。この発光形態による測定は並列測定モー
ドとなり、全送光部の送光を同時に行うと共に全受光部
でそれぞれ測定を行って高速測定を行うことができる。
In the first light emission mode, the light transmitting section substantially corresponds to the specific light receiving section, and the specific light transmitting section does not substantially interfere with the other light receiving sections. The present invention can be applied to a case where the distance between the light unit and the light receiving unit that is not associated with each other is large, and the amount of light received by the light receiving unit is substantially negligible. The measurement by the light emission mode is a parallel measurement mode, in which the light transmission of all the light transmitting units is performed simultaneously, and the measurement is performed by all the light receiving units, respectively, thereby enabling high-speed measurement.

【0016】第2,3の発光形態は、送光部と受光部と
が互いに干渉する場合に適用するものである。第2の発
光形態は、送光部の送光を順に行って相互干渉を零とす
る形態である。この発光形態による測定はシーケンシャ
ル測定モードとなり、一送光部毎に送光を順次行って各
受光部で受光することによって、他の送光部からの光の
影響を無くすことができる。また、第3の発光形態は、
複数の送光部から送光し、複数の受光部で受光する形態
である。この発光形態による測定はマルチプレックス測
定モードとなり、複数の送光部と複数の受光部の組み合
わせで測定し、得られた検出信号を用いて所定の測定デ
ータを演算することによって、信号の混入を分離する。
このモードでは、シーケンシャルモードより測定時間を
短縮することができる。
The second and third light emitting modes are applied when the light transmitting unit and the light receiving unit interfere with each other. The second light emission mode is a mode in which light transmission of the light transmission unit is performed in order to reduce mutual interference to zero. The measurement in this light emission mode is a sequential measurement mode, in which light is sequentially transmitted for each light transmitting unit and received by each light receiving unit, so that the influence of light from other light transmitting units can be eliminated. Further, the third light emitting mode is as follows.
This is a mode in which light is transmitted from a plurality of light transmitting units and received by a plurality of light receiving units. The measurement based on this light emission mode is a multiplex measurement mode, in which measurement is performed using a combination of a plurality of light transmitting units and a plurality of light receiving units, and predetermined measurement data is calculated using the obtained detection signals, thereby mixing the signals. To separate.
In this mode, the measurement time can be shorter than in the sequential mode.

【0017】第1,2,3の発光形態は、任意の送光部
及び受光部間で組み合わせを定める第1の態様、及び、
一対の送光部及び受光部間で組み合わせを定める第2の
態様で適用することができる。本発明の制御テーブル
は、第1〜第3の発光形態や、送光部と受光部の組み合
わせに対応して種々に設定することができ、設定した複
数の制御テーブルから必要に応じて選択して使用するこ
とができる。この制御テーブルの設定及び選択におい
て、送受光部で配置される送光部と受光部の配置パター
ンに応じて行うことができる。また、制御テーブルにお
いて、送光を行う送光部を設定する他に、送光する波長
を設定することができる。これによって、送光部と受光
部の組み合わせに加えて送光部の波長についても組み合
わせ定めることができる。
The first, second, and third light emitting modes are a first mode in which a combination is determined between an arbitrary light transmitting section and an arbitrary light receiving section, and
The present invention can be applied in a second mode in which a combination is determined between a pair of a light transmitting unit and a light receiving unit. The control table of the present invention can be set variously in accordance with the first to third light emission modes and the combination of the light transmitting unit and the light receiving unit, and can be selected from a plurality of set control tables as needed. Can be used. The setting and selection of the control table can be performed in accordance with the arrangement pattern of the light transmitting and receiving units arranged in the light transmitting and receiving unit. Further, in the control table, in addition to setting the light transmitting unit for transmitting light, the wavelength for transmitting light can be set. Thus, in addition to the combination of the light transmitting unit and the light receiving unit, the combination of the wavelength of the light transmitting unit can be determined.

【0018】光計測装置による測定では、送光部と受光
部との距離、及び波長に応じて被検体から異なる測定デ
ータを得ることができることが知られており、本発明の
制御テーブルは送光部及び受光部に加えて波長を組み合
わせることによって対応することができる。一般に異な
る種類の複数の信号を同時に与えながら、共通の検出器
で検出する処理を必要回数行なった後、演算によって検
出信号から元の複数の信号を分離し復元するマルチプレ
ックス法が知られている。異なる種類の信号として複数
波長を用いたマルチプレックス法の典型例がフーリエ変
換法である。
It is known that, in the measurement by the optical measuring device, different measurement data can be obtained from the subject according to the distance between the light transmitting unit and the light receiving unit and the wavelength. This can be dealt with by combining wavelengths in addition to the unit and the light receiving unit. In general, a multiplex method is known, in which a plurality of signals of different types are simultaneously given, a process of detecting with a common detector is performed a required number of times, and then the original plurality of signals are separated and restored from the detected signal by calculation. . A typical example of a multiplex method using a plurality of wavelengths as different types of signals is a Fourier transform method.

【0019】フーリエ分光法では異なる多数の波長成分
を含む光を、干渉計(各フーリエ成分が得られるような
光学系)を通過させた後共通の検出器の入射し、フーリ
エ成分毎に受光した後、計算で逆フーリエ変換すること
で、元の波長成分に回復する手法が用いられる。この場
合、多数の波長成分を同時に検出器に入射するので、信
号の総量は隔日に増えるが、光が増えることでノイズが
連動して増えないことがフーリエ分光法が有効に使える
条件となる。通常、赤外域用の検出器は、入射信号が増
えてもノイズはあまり増えないという性質があるので、
フーリエ分光法は赤外域に一般的に使われる。
In Fourier spectroscopy, light containing a number of different wavelength components is passed through an interferometer (an optical system capable of obtaining each Fourier component), then enters a common detector, and is received for each Fourier component. Then, a method of performing an inverse Fourier transform by calculation to recover the original wavelength component is used. In this case, since a large number of wavelength components are simultaneously incident on the detector, the total amount of the signal increases every other day. However, it is a condition that the Fourier spectroscopy can be used effectively if the noise does not increase in conjunction with the increase in light. Usually, infrared detectors have the property that noise does not increase much even if the incident signal increases,
Fourier spectroscopy is commonly used in the infrared.

【0020】しかし、波長のもっと短い可視域や近赤外
域で使われる検出器は量子検出器と言われ、光信号の全
体が増えるとノイズも信号に応じて増えるという性質を
持つ。このため、この波長領域のフーリエ分光法は振る
であり利用実績が少ない。生体測定に使う近赤外域の検
出器も量子検出器であるので、多くの波長成分を重ねれ
入射させて測定する、「波長のマルチプレックス法」は
同様な欠点があり、せっかくの光量の増加がノイズによ
り相殺されてしまう。
However, a detector used in the visible region or near-infrared region having a shorter wavelength is called a quantum detector, and has a property that when the entire optical signal increases, noise increases in accordance with the signal. For this reason, the Fourier spectroscopy in this wavelength region is swinging and has not been widely used. Since the near-infrared detector used for biological measurement is also a quantum detector, the "wavelength multiplex method", which measures by overlapping and injecting many wavelength components, has the same drawback, and an increase in the amount of light Are offset by noise.

【0021】上述のように、量子的検出器を用いるマル
チプレックス法は、その利点がノイズの増加で相殺され
る場合が多いのであるが、本発明が課題とするのは「波
長のマルチプレックス法」ではなく、異なる場所に送光
部・受光部を配置する「位置のマルチプレックス法」で
ある。この場合には、送受光間の距離が大きい光検出信
号の強度は極めて小さくなる。そのため、同一の検出器
に送受光距離が大きな光検出信号と送受光距離が小さな
光検出信号とが重なって入射した場合にも、遠い光源か
らの光成分の混入量は少なくなり、バックグラウンドノ
イズが増えにくく、同時に受光する信号のうち、不要成
分の除去が容易となる。特に、送受光部中に配置する送
光部の個数が多い場合には、相互に離れた位置にある送
光部の個数が増加するため、本発明の光計測装置が適用
するマルチプレックス法による効果が大きくなる。
As described above, the advantage of the multiplex method using a quantum detector is often offset by an increase in noise. Is a "position multiplex method" in which a light transmitting unit and a light receiving unit are arranged at different locations. In this case, the intensity of the light detection signal having a large distance between transmission and reception is extremely small. Therefore, even when a light detection signal having a large transmission / reception distance and a light detection signal having a small transmission / reception distance are incident on the same detector at the same time, the amount of mixed light components from a distant light source is reduced, and background noise is reduced. And it is easy to remove unnecessary components from signals received at the same time. In particular, when the number of light transmitting units arranged in the light transmitting and receiving unit is large, the number of light transmitting units located apart from each other increases, so that the multiplex method applied by the optical measurement device of the present invention is used. The effect increases.

【0022】また、異なる波長を用いる場合には、上記
したように、各波長の検出信号の強度はほぼ同程度とな
ってS/N比の向上が望めないので、波長についてはシ
ーケンシャル測定モードを適用して順に切り替えると共
に、複数の送光部及び受光部を組み合わせる場所的マル
チプレックス法を適用組み合わせ手法がS/N比を向上
させるために有効である。また、本発明の制御テーブル
において、同時に動作させる送光部及び受光部の組み合
わせは以下の形態とすることができる。送受光部におい
て所定距離以上離れて配置される送光部を、同時に送光
を行う送光部の組み合わせとし、また、送受光部におい
て送光部から所定距離内の位置に配置される受光部を、
同時に受光して得られる受光信号を有効データとする受
光部の組み合わせとする。この所定距離は該距離だけ離
れて検出される光強度が所定値となる距離とする。生体
等の被検体は強度の散乱体であり、入射点からの距離が
10mm離れるとその光信号は約1/10となり、20
mmでは約1/100、30mmでは約1/1000とな
る。この特性を利用して、複数の送光部の内で一定の距
離以上離れている場合には、同時に送光しても相互干渉
の程度が低いため分離して光検出することができ、これ
らの送光部を同時に動作させることによって測定時間を
短縮することができる。また、送光部から所定距離内の
位置に配置される受光部を同時に受光し、得られる受光
信号を有効データとすることによって測定時間を短縮す
ることができる。上記の送光部の動作は、ある受光部に
対して所定距離内に配置される送光部は1つのみを送光
させ、複数の送光部は同時に送光しないという条件で表
すことができる。
Further, when different wavelengths are used, as described above, the intensity of the detection signal at each wavelength is almost the same, and it is not possible to expect an improvement in the S / N ratio. It is effective to improve the S / N ratio by applying the spatial multiplexing method of combining a plurality of light transmitting units and light receiving units and applying the spatial multiplexing method in order to improve the S / N ratio. In the control table of the present invention, the combination of the light transmitting unit and the light receiving unit that are operated simultaneously can be in the following forms. A light transmitting unit that is arranged at a predetermined distance or more in the light transmitting and receiving unit is a combination of light transmitting units that simultaneously transmit light, and a light receiving unit that is disposed at a position within a predetermined distance from the light transmitting unit in the light transmitting and receiving unit To
A combination of light receiving units that sets light receiving signals obtained by simultaneously receiving light as valid data. The predetermined distance is a distance at which the light intensity detected at a distance of the predetermined distance becomes a predetermined value. An object such as a living body is a strong scatterer. When the distance from the incident point is 10 mm, the optical signal becomes about 1/10, and
mm is about 1/100, and 30 mm is about 1/1000. By utilizing this characteristic, when a plurality of light transmitting units are apart from each other by a certain distance or more, even if the light is transmitted simultaneously, the degree of mutual interference is low, so that the light can be separated and detected. By simultaneously operating the light transmitting units, the measurement time can be reduced. In addition, the measurement time can be shortened by simultaneously receiving the light receiving units arranged within a predetermined distance from the light transmitting unit and using the obtained light receiving signal as valid data. The operation of the light transmitting unit described above can be expressed on the condition that only one light transmitting unit disposed within a predetermined distance to a certain light receiving unit transmits light, and a plurality of light transmitting units do not transmit light at the same time. it can.

【0023】また、送光を同時に行う送光部の組み合わ
せと送光を行う順序を決める制御テーブル、及び同時に
受光して得られる受光信号を有効とする受光部の組み合
わせのテーブルは、測定目的あるいは送受光部を被検体
のは配置する送光点と受光点の距離に応じて、操作者が
変更または選択できる操作画面上に表示されるテーブル
とすることができる。また、測定目的に応じた多数の送
光部制御テーブル、又は測定目的に応じた送光部と受光
部の組み合わせのテーブルを記憶する記憶部を有し、操
作者が予め記憶したテーブルの一つを選択することがで
きる。
The control table for determining the combination of light transmitting units that simultaneously transmit light and the order in which the light is transmitted, and the table of the combination of light receiving units for validating the light receiving signal obtained by simultaneously receiving light are used for measurement purposes or The transmitting and receiving unit may be a table displayed on an operation screen that can be changed or selected by the operator according to the distance between the transmitting and receiving points at which the subject is arranged. Further, it has a storage unit for storing a large number of light transmission unit control tables according to the measurement purpose, or a table of a combination of the light transmission unit and the light reception unit according to the measurement purpose, and one of the tables stored in advance by the operator. Can be selected.

【0024】本発明の光計測装置によれば、制御テーブ
ル内に動作を行う送光部及び/又は受光部の組み合わせ
と順序を定めるたものを用意し、この中から選択するこ
とによって、光源や配線の接続を切り替えることなく、
同時に動作する送光点及び/又は受光点の位置や組み合
わせの変更行うことができ、多種の送光及び/又は受光
を行うことができ、被検体に取り付ける送光部と受光部
の配列パターンに対応して測定することができる。ま
た、光源や配線の接続切り替えを要さないため、被検体
の複数箇所の部位の測定において、測定時間を短縮する
ことができる。また、検出する光強度が大きく、雑音と
なる干渉成分が小さくなるように送光部及び/又は受光
部の組み合わせを設定することによって、S/N比を向
上させることができる。
According to the optical measuring apparatus of the present invention, a control table is provided which determines the combination and order of the light-sending and / or light-receiving parts to be operated, and by selecting from these, the light source and the light source are selected. Without switching the wiring connection,
The position and combination of the light transmitting point and / or light receiving point that operate simultaneously can be changed, and various kinds of light transmitting and / or light receiving can be performed. Can be measured correspondingly. Further, since it is not necessary to switch the connection of the light source and the wiring, the measurement time can be reduced in measuring a plurality of portions of the subject. In addition, the S / N ratio can be improved by setting the combination of the light transmitting unit and / or the light receiving unit such that the light intensity to be detected is large and the interference component that becomes noise is small.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を、図
を参照しながら詳細に説明する。はじめに、図1に示し
た本発明の光計測装置の一形態の概略構成図を用いて、
本発明の制御テーブルを用いた各動作を説明する。図
2,3,4は、任意の送光部及び受光部の組み合わせを
定める第1の態様を説明する図であり、それぞれ第1,
2,3の発光形態を説明している。また、図5,6,7
は、一対の送光部及び受光部間で組み合わせを定める第
2の態様を説明する図であり、それぞれ第1,2,3の
発光形態を説明している。ここで、第1の発光形態は同
時送光によって並列測定を行うものであり、第2の発光
形態は順次送光によってシーケンシャル測定を行うもの
であり、第3の発光形態は複数の送光及び受光によって
マルチプレックス測定を行うものである。なお、図2,
3,4において、a,b,cは送光部を示し、A,B,
Cは受光部を示している。
Embodiments of the present invention will be described below in detail with reference to the drawings. First, using the schematic configuration diagram of one embodiment of the optical measurement device of the present invention shown in FIG.
Each operation using the control table of the present invention will be described. FIGS. 2, 3, and 4 are diagrams illustrating a first mode for determining an arbitrary combination of a light transmitting unit and a light receiving unit.
A few light emission modes are described. In addition, FIGS.
FIG. 4 is a diagram illustrating a second mode in which a combination is determined between a pair of a light transmitting unit and a light receiving unit, and illustrates first, second, and third light emission modes, respectively. Here, the first light emitting mode is for performing parallel measurement by simultaneous light transmission, the second light emitting mode is for performing sequential measurement by sequentially transmitting light, and the third light emitting mode is for performing a plurality of light transmitting and transmitting operations. The multiplex measurement is performed by receiving light. FIG. 2,
In 3, 4, a, b, and c indicate light transmitting units, and A, B,
C indicates a light receiving unit.

【0026】また、図2(d)において、○印は光源を
点灯させること、Dは暗信号用として光源を点灯させな
いことを意味する。また、図2(e)における○印は検
出信号を有効とすることを意味する。図3(e)及びて
図3(f)も同様である。
In FIG. 2 (d), a circle means that the light source is turned on, and D means that the light source is not turned on for a dark signal. In FIG. 2E, a circle indicates that the detection signal is valid. 3 (e) and 3 (f) are the same.

【0027】はじめに、任意の送光部及び受光部の組み
合わせを定める第1の態様について、図2,3,4を用
いて説明する。第1の態様は、送光部と受光部の組み合
わせは任意とする場合である。
First, a first mode for determining an arbitrary combination of a light transmitting unit and a light receiving unit will be described with reference to FIGS. The first mode is a case where the combination of the light transmitting unit and the light receiving unit is arbitrary.

【0028】第1の発光形態では、送光部と受光部との
送受光関係が実質的に一義に定まり、ある送光部からの
送光は他の受光部に影響を与えないことを前提としてい
る。例えば、送光部a,b,cに対して受光部A,B,
Cがそれぞれ対応している場合には、送光部aの送光は
受光部Aでのみ検出され、検出部B,Cでは実質的に検
出されない。第1の発光形態は同時送光によって並列測
定を行う形態である。図2(a)において、送光部a,
b,cは同時に送光を行う。実線の矢印は送光部aから
受光部A,B,Cへの送光を示し、破線の矢印は送光部
bから受光部A,B,Cへの送光を示し、一点鎖線の矢
印は送光部cから受光部A,B,Cへの送光を示してい
る。また、図2(b)は各送光部a,b,cの送光のシ
ーケンス(時間変化)を示し、図2(cは受光部A,
B,Cの受光のシーケンス(時間変化)を示している。
この形態では、例えば、受光部Aは他の送光部b,cか
ら送光される光の干渉を受けず、実質的に送光部aから
の送光のみを受光する。
In the first light emitting mode, it is assumed that the light transmitting / receiving relationship between the light transmitting unit and the light receiving unit is substantially unified, and that light transmitted from one light transmitting unit does not affect other light receiving units. And For example, for the light transmitting units a, b, c, the light receiving units A, B,
When C corresponds to each other, the light transmitted by the light transmitting unit a is detected only by the light receiving unit A, and is not substantially detected by the detecting units B and C. The first light emission mode is a mode in which parallel measurement is performed by simultaneous light transmission. In FIG. 2A, the light transmitting units a,
b and c transmit light simultaneously. A solid arrow indicates light transmission from the light transmitting unit a to the light receiving units A, B, and C, a dashed arrow indicates light transmission from the light transmitting unit b to the light receiving units A, B, and C. Indicates light transmission from the light transmitting unit c to the light receiving units A, B, and C. FIG. 2B shows a light transmission sequence (time change) of each of the light transmitting units a, b, and c, and FIG.
The sequence (time change) of light reception of B and C is shown.
In this embodiment, for example, the light receiving unit A does not receive the interference of the light transmitted from the other light transmitting units b and c, and substantially receives only the light transmitted from the light transmitting unit a.

【0029】送光部及び受光部を第1の発光態様で動作
させるために、図2(d),(e)に示す制御テーブル
を用いることができる。図2(d)に示す制御テーブル
は送光部a,b,cの制御テーブルであり、4ステップ
分(ステップ1から4、及びステップ5から8)を1サ
イクルとし、各ステップ毎に送光部a,b,cから送光
する制御例を示している。なお、ステップ1,5に示す
Dは、暗信号の測定のために光源を点灯しない状態を示
している。図2(e)に示す制御テーブルは受光部A,
B,Cの制御テーブルであり、図2(d)の送光に対し
て、各ステップ毎に送光部a,b,cから受光を行う制
御例を示している。制御テーブルは、各サイクルを単位
として繰り返すことができる。
The control tables shown in FIGS. 2D and 2E can be used to operate the light transmitting section and the light receiving section in the first light emitting mode. The control table shown in FIG. 2D is a control table for the light transmitting units a, b, and c, and four steps (steps 1 to 4 and steps 5 to 8) constitute one cycle, and light transmission is performed for each step. An example of control for transmitting light from the units a, b, and c is shown. D shown in steps 1 and 5 indicates a state in which the light source is not turned on to measure the dark signal. The control table shown in FIG.
2B is a control table for B and C, and shows a control example in which light is received from the light transmitting units a, b, and c for each step with respect to the light transmission in FIG. The control table can be repeated with each cycle as a unit.

【0030】第2の発光形態は順次送光によってシーケ
ンシャル測定を行う形態である。第2の発光態様では、
送光部と受光部との送受光関係は一義に定まらず、ある
送光部からの送光は複数の受光部に影響を与えることを
前提としている。例えば、送光部a(b,c)から送光
した光は各受光部A,B,Cで検出される。なお、図3
(a)において、実線の矢印は送光部aの送光を示し、
破線の矢印は送光部bの送光を示し、一点鎖線の矢印は
送光部cからの送光を示している。また、図3(b)は
各送光部a,b,cの送光のシーケンス(時間変化)を
示し、図3(c)は受光部A,B,Cの受光のシーケン
ス(時間変化)を示している。図3(b),(c)によ
れば、受光部A,B,Cは送光部a,b,cから送光さ
れる毎に受光する。このとき、送光部a,b,cは順に
送光しているため、送光時の送光部と対応する受光部の
光信号を検出することによって、他の送光による干渉を
防ぐことができる。図3(d)は対応する受光部の検出
信号を示している。
The second light emission mode is a mode in which sequential measurement is performed by sequentially transmitting light. In the second light emission mode,
The light transmission and reception relationship between the light transmitting unit and the light receiving unit is not uniquely defined, and it is assumed that light transmission from a certain light transmitting unit affects a plurality of light receiving units. For example, light transmitted from the light transmitting units a (b, c) is detected by each of the light receiving units A, B, and C. Note that FIG.
In (a), a solid arrow indicates light transmission of the light transmitting unit a,
Dashed arrows indicate light transmission from the light transmitting unit b, and dashed-dotted arrows indicate light transmission from the light transmitting unit c. FIG. 3B shows a light transmission sequence (time change) of each of the light transmitting units a, b, and c, and FIG. 3C shows a light reception sequence (time change) of the light receiving units A, B, and C. Is shown. According to FIGS. 3B and 3C, the light receiving units A, B, and C receive light every time light is transmitted from the light transmitting units a, b, and c. At this time, since the light transmitting units a, b, and c transmit light in order, by detecting the optical signal of the light receiving unit corresponding to the light transmitting unit at the time of transmitting light, it is possible to prevent interference by other light transmitting units. Can be. FIG. 3D shows a detection signal of the corresponding light receiving unit.

【0031】送光部及び受光部を第2の発光態様で動作
させるために、図3(e),(f)に示す制御テーブル
を用いることができる。図3(e)に示す制御テーブル
は送光部a,b,cの制御テーブルであり、4ステップ
分(ステップ1から4、及びステップ5から8)を1サ
イクルとし、各ステップでは1つの送光部から送光する
制御例を示している。なお、ステップ1,5に示すD
は、暗信号を測定するために送光を行わない状態を示し
ている。また、図3(f)に示す制御テーブルは受光部
A,B,Cの制御テーブルであり、送光部の制御テーブ
ルと対応するステップ及び受光部において受光を行う制
御例を示している。制御テーブルは、各サイクルを単位
として繰り返すことができる。
The control tables shown in FIGS. 3E and 3F can be used to operate the light transmitting unit and the light receiving unit in the second light emitting mode. The control table shown in FIG. 3E is a control table for the light transmitting units a, b, and c, and one cycle includes four steps (steps 1 to 4 and steps 5 to 8). 4 shows an example of control for transmitting light from an optical unit. Note that D shown in steps 1 and 5
Indicates a state in which light transmission is not performed to measure a dark signal. The control table shown in FIG. 3F is a control table for the light receiving units A, B, and C, and shows steps corresponding to the control table of the light transmitting unit and a control example in which light is received by the light receiving unit. The control table can be repeated with each cycle as a unit.

【0032】第3の発光形態は複数の送光及び受光によ
ってマルチプレックス測定を行う形態である。第3の発
光態様は、第2の発光態様と同様に、送光部と受光部と
の送受光関係は一義に定まらず、ある送光部からの送光
は複数の受光部に影響を与えることを前提としている。
例えば、送光部a(b,c)から送光した光は各受光部
A,B,Cで検出される。なお、図4(a)において、
実線の矢印は送光部aの送光を示し、破線の矢印は送光
部bの送光を示し、一点鎖線の矢印は送光部cからの送
光を示している。図4(b)は各送光部a,b,cの送
光のシーケンス(時間変化)を示し、図4(c)は受光
部A,B,Cの受光のシーケンス(時間変化)を示して
いる。図4(b),(c)によれば、送光部を種々に組
み合わせて同時に送光し、受光部は同時に複数の送光部
からの送光を受光する。例えば、図4(b),(c)の
第1のステップでは、送光部a,bが同時に送光し、受
光部A,B,Cはこの2つの送光を受光する。なお、図
4(c)中の小文字a,b,cは受光した光の送光部を
表している。
The third light emission mode is a mode in which multiplex measurement is performed by transmitting and receiving a plurality of light beams. In the third light-emitting mode, similarly to the second light-emitting mode, the light transmission / reception relationship between the light transmitting unit and the light receiving unit is not uniquely defined, and light transmission from a certain light transmitting unit affects a plurality of light receiving units. It is assumed that
For example, light transmitted from the light transmitting units a (b, c) is detected by each of the light receiving units A, B, and C. In FIG. 4A,
A solid arrow indicates light transmission of the light transmitting unit a, a dashed arrow indicates light transmission of the light transmitting unit b, and an alternate long and short dash line arrow indicates light transmission from the light transmitting unit c. FIG. 4B shows a light transmission sequence (time change) of each of the light transmitting units a, b, and c, and FIG. 4C shows a light reception sequence (time change) of the light receiving units A, B, and C. ing. According to FIGS. 4B and 4C, light transmitting units are variously combined and light is transmitted simultaneously, and the light receiving unit receives light transmitted from a plurality of light transmitting units at the same time. For example, in the first step in FIGS. 4B and 4C, the light transmitting units a and b transmit light at the same time, and the light receiving units A, B and C receive the two light transmissions. Note that lowercase letters a, b, and c in FIG. 4C represent light transmitting units of received light.

【0033】受光部Aは時間順に送光部c及びa、b及
びc、a及びb、・・・からの送光を受光する。対応す
る送光部と受光部の光信号を、aA,bA,cA,・・
・等で表すと、受光部Aで受光される光信号A(c
a),A(bc),A(ab)は、順に図4(d)に示
される式で表される。従って、図4(d)に示される式
によれば、光信号aA,bA,cAはこの連立方程式を
解くことによって求めることができる。送光部及び受光
部を第3の発光態様で動作させるために、図4(e),
(f)に示す制御テーブルを用いることができる。図4
(e)に示す制御テーブルは送光部a,b,cの制御テ
ーブルであり、4ステップ分(ステップ1から4、及び
ステップ5から8)を1サイクルとし、各ステップ毎に
同時に送光する送光部の組み合わせを定め、順次変更す
る。また、図4(f)に示す制御テーブルは受光部A,
B,Cの制御テーブルであり、送光部の制御テーブルと
対応するステップ及び受光部において受光を行う制御例
を示している。制御テーブルは、各サイクルを単位とし
て繰り返すことができる。
The light receiving section A receives light transmitted from the light transmitting sections c and a, b and c, a and b,... In order of time. The optical signals of the corresponding light transmitting unit and light receiving unit are represented by aA, bA, cA,.
· When expressed as, etc., the optical signal A (c
a), A (bc), and A (ab) are sequentially expressed by the equations shown in FIG. Therefore, according to the equation shown in FIG. 4D, the optical signals aA, bA, and cA can be obtained by solving the simultaneous equations. In order to operate the light transmitting unit and the light receiving unit in the third light emitting mode, FIG.
The control table shown in (f) can be used. FIG.
The control table shown in (e) is a control table for the light transmitting units a, b, and c. The light transmitting units a, b, and c are used as one cycle, and light is transmitted simultaneously for each step in one cycle. The combination of the light transmitting units is determined and changed sequentially. Further, the control table shown in FIG.
6 is a control table of B and C, showing a control example of receiving light in a light receiving unit and steps corresponding to the control table of the light transmitting unit. The control table can be repeated with each cycle as a unit.

【0034】次に、一対の送光部及び受光部間で組み合
わせを定める第2の態様について、図5,6,7を用い
て説明する。第2の態様は、送光部と受光部の組み合わ
せをあらかじめ定める場合であり、特定の送光部と受光
部とを組み合わせて送受光対を形成する。従って、第2
の態様は、第1の態様において送光部と受光部を特定の
関係に定めた特例である。第1の発光形態では、送受光
対間の関係が実質的に一義に定まり、ある送受光対は他
の送受光対に影響を与えないことを前提としている。例
えば、送光部aと受光部Aで送受光対CH1を構成し、
送光部bと受光部Bで送受光対CH2を構成し、送光部
c受光部Cで送受光対CH3を構成する場合には、送受
光対CH3の受光部Cは送光部cの送光のみを検出し、
送光部a,bの送光を検出しない。
Next, a second mode for determining a combination between a pair of light transmitting unit and light receiving unit will be described with reference to FIGS. The second mode is a case where a combination of a light transmitting unit and a light receiving unit is determined in advance, and a specific light transmitting unit and a specific light receiving unit are combined to form a light transmitting and receiving pair. Therefore, the second
Is a special case in which the light transmitting unit and the light receiving unit are determined to have a specific relationship in the first embodiment. In the first light-emitting mode, it is assumed that the relationship between the light transmitting and receiving pair is substantially uniquely defined, and that a certain light transmitting and receiving pair does not affect other light transmitting and receiving pairs. For example, a light transmitting / receiving pair CH1 is configured by the light transmitting unit a and the light receiving unit A,
When the light transmitting / receiving part CH2 is constituted by the light transmitting part b and the light receiving part B, and the light transmitting / receiving pair CH3 is constituted by the light transmitting part c and the light receiving part C, the light receiving part C of the light transmitting / receiving pair CH3 is the light transmitting part c. Detects only light transmission,
The light transmission of the light transmitting units a and b is not detected.

【0035】第1の発光形態において、同時送光によっ
て並列測定を行う。図5(a)において、送受光対CH
1,CH2,CH3は同時に送光・受光を行う。図5
(b)は各送受光対CH1,CH2,CH3の送光・受
光シーケンス(時間変化)を示している。この形態で
は、例えば、送受光対CH1は他の送受光対CH2,c
h3からの干渉を受けず、実質的に送受光対CH1のみ
で送光・受光を行う。第1の発光形態で動作させるため
に、図5(c)に示す制御テーブルを用いることができ
る。図5(c)に示す制御テーブルは、送受光対CH
1,CH2,CH3の制御テーブルであり、1ステップ
分を1サイクルとし、各送受光対で送光・受光を行う制
御例を示している。
In the first light emission mode, parallel measurement is performed by simultaneous light transmission. In FIG. 5A, the transmission / reception pair CH
1, CH2 and CH3 simultaneously transmit and receive light. FIG.
(B) shows the light transmission / reception sequence (time change) of each light transmission / reception pair CH1, CH2, CH3. In this embodiment, for example, the light transmitting / receiving pair CH1 is different from the other light transmitting / receiving pair CH2, c
Light transmission and reception are performed substantially only by the transmission / reception pair CH1 without receiving interference from h3. In order to operate in the first light emission mode, a control table shown in FIG. 5C can be used. The control table shown in FIG.
This is a control table of CH1, CH2, and CH3, and shows a control example in which one step corresponds to one cycle, and each light transmitting and receiving pair transmits and receives light.

【0036】第2の発光形態において、順次送光によっ
てシーケンシャル測定を行う。第2の発光態様では、送
受光対間の関係が一義に定まらず、ある送受光対は複数
の送受光対に影響を与えることを前提としている。第2
の発光形態において、同時送光によって並列測定を行
う。図6(a)において、送受光対CH1,CH2,C
H3は順次送光によってシーケンシャル測定を行う。図
6(b)は各送受光対CH1,CH2,CH3の動作の
シーケンス(時間変化)を示している。各送受光対CH
1,CH2,CH3は、各送光部a,b,cと各受光部
A,B,Cとの間で順に送光・受光を行う。このとき、
送光部a,b,cは順に送光しているため、各送受光対
CH1,CH2,CH3でのみ送光・受光が行われ、他
の送受光対間送の干渉を防ぐことができる。送受光対を
第2の発光態様で動作させるために、図6(c)に示す
制御テーブルを用いることができる。図6(c)に示す
制御テーブルは、送受光対CH1,CH2,CH3の制
御テーブルであり、送受光対分のステップ数を1サイク
ルとし、各ステップでは1つの送受光対にみが送光・受
光を行う。制御テーブルは、各サイクルを単位として繰
り返すことができる。
In the second light emission mode, sequential measurement is performed by sequentially transmitting light. In the second light emitting mode, it is assumed that the relationship between the light transmitting and receiving pair is not uniquely defined, and that a certain light transmitting and receiving pair affects a plurality of light transmitting and receiving pairs. Second
In the light emission mode, parallel measurement is performed by simultaneous light transmission. In FIG. 6A, the light transmitting / receiving pair CH1, CH2, C
H3 performs sequential measurement by transmitting light sequentially. FIG. 6B shows the operation sequence (time change) of each of the light transmitting / receiving pairs CH1, CH2, CH3. Transmitting / receiving pair CH
1, CH2, and CH3 sequentially transmit and receive light between the light transmitting units a, b, and c and the light receiving units A, B, and C, respectively. At this time,
Since the light transmitting units a, b, and c sequentially transmit light, light transmission and reception are performed only in each of the light transmitting and receiving pairs CH1, CH2, and CH3, and interference between other light transmitting and receiving pairs can be prevented. . A control table shown in FIG. 6C can be used to operate the light transmitting / receiving pair in the second light emitting mode. The control table shown in FIG. 6C is a control table for the light transmitting / receiving pair CH1, CH2, and CH3. The number of steps for the light transmitting / receiving pair is one cycle, and in each step, only one light transmitting / receiving pair transmits light.・ Receive light. The control table can be repeated with each cycle as a unit.

【0037】第3の発光形態において、複数の送光及び
受光によってマルチプレックス測定を行う。第3の発光
態様は、第2の発光態様と同様に、送受光対間の関係が
一義に定まらず、ある送受光対は複数の送受光対に影響
を与えることを前提としている。図7(a)において、
送受光対CH1,CH2,CH3は、複数の送受光対を
組み合わせを変えながら送光して順次測定する。図7
(b)は各送受光対CH1,CH2,CH3の動作のシ
ーケンス(時間変化)を示している。送受光対を種々に
組み合わせて同時に送光・受光する。例えば、図7
(b)の第1のステップでは送受光対CH1,CH2が
同時に送光・受光し、第2のステップでは送受光対CH
1,CH3が同時に送光・受光する。
In the third light emission mode, multiplex measurement is performed by transmitting and receiving a plurality of lights. In the third light emitting mode, similarly to the second light emitting mode, the relationship between the light transmitting and receiving pairs is not uniquely defined, and it is assumed that a certain light transmitting and receiving pair affects a plurality of light transmitting and receiving pairs. In FIG. 7A,
The light transmitting and receiving pairs CH1, CH2, and CH3 are sequentially measured by transmitting light while changing the combination of a plurality of light transmitting and receiving pairs. FIG.
(B) shows the operation sequence (time change) of each light transmitting / receiving pair CH1, CH2, CH3. The light transmitting and receiving pairs are variously combined to simultaneously transmit and receive light. For example, FIG.
In the first step (b), the light transmitting / receiving pair CH1 and CH2 transmit and receive light simultaneously, and in the second step, the light transmitting / receiving pair CH1
1 and CH3 transmit and receive light simultaneously.

【0038】各送受光対CH1,CH2,CH3で検出
した光信号は、前記図4(d)と同様の連立方程式で表
され、この連立方程式を解くことによって送受光対CH
1,CH2,CH3の信号を求めることができる。送受
光対を第3の発光態様で動作させるために、図7(d)
に示す制御テーブルを用いることができる。図7(c)
に示す制御テーブルは、送受光対CH1,CH2,CH
3の制御テーブルであり、送受光対の各組み合わせを1
ステップとし、動作させる送受光対の全ての組み合わせ
を実施する全ステップを1サイクルとする。制御テーブ
ルは、各サイクルを単位として繰り返すことができる。
なお、動作させる送受光対の全ての組み合わせは、配置
間隔等の送受光対の配置位置や、測定対象位置と送光受
光対との位置関係や、解の個数と連立方程式の式数との
関係等から定める。次に、本発明の光計測装置のより詳
細な構成例、及び動作例について説明する。なお、動作
例は特定の送光部と受光部とを組み合わせて形成する送
受光対を用いた第2の態様について説明する。図8は本
発明の光計測装置の構成例を示す図である。図8に示す
光計測装置1の概略は、前記した図1と同様である。送
受光部11は、送光部12と受光部13をそれぞれ複数
個備えて測定プローブを形成し、被検体(図示していな
い)に取り付けられる。
An optical signal detected by each of the light transmitting / receiving pairs CH1, CH2, and CH3 is represented by a simultaneous equation similar to that shown in FIG. 4D.
1, CH2 and CH3 signals can be obtained. In order to operate the light transmitting / receiving pair in the third light emitting mode, FIG.
Can be used. FIG. 7 (c)
The control table shown in FIG.
3 is a control table in which each combination of a light transmitting / receiving pair is set to 1
All steps for implementing all combinations of the light transmitting and receiving pairs to be operated are defined as one cycle. The control table can be repeated with each cycle as a unit.
Note that all combinations of the light transmitting and receiving pairs to be operated include the arrangement positions of the light transmitting and receiving pairs such as the arrangement intervals, the positional relationship between the measurement target position and the light transmitting and receiving pairs, and the number of solutions and the number of equations of the simultaneous equations. Determined from relationships. Next, a more detailed configuration example and an operation example of the optical measurement device of the present invention will be described. In the operation example, a second embodiment using a light transmitting / receiving pair formed by combining a specific light transmitting unit and a light receiving unit will be described. FIG. 8 is a diagram showing a configuration example of the optical measurement device of the present invention. The outline of the optical measurement device 1 shown in FIG. 8 is the same as that of FIG. 1 described above. The light transmitting and receiving unit 11 includes a plurality of light transmitting units 12 and a plurality of light receiving units 13 to form a measurement probe, and is attached to a subject (not shown).

【0039】発光部2は、第1発光素子22a〜第n発
光素子22nを備えた発光素子部22によって複数個の
光源を構成する。各発光素子は異なる波長(λaからλ
n)を発光する構成とすることができ、発光素子駆動部
21及び光スイッチ23によって送光部12への発光を
制御し、これによって送光部12から被検体への送光を
制御する。なお、発光素子部22と光スイッチ23との
間は光結合器24を介して光学的に結合される。光検出
器3は、受光部13で受光した光を検出して検出信号を
出力する光検出器31(第1光検出器31aから第m光
検出器31m)と、検出信号を積分する積分器32(第
1積分32aから第m積分器32m)と、積分したアナ
ログ信号をディジタル信号に変換するA/D変換器33
(第1A/D変換器33aから第mA/D変換器33
m)とを備える。また、演算・制御部4は、制御テーブ
ルを格納する制御テーブル部41と、該制御テーブルに
従って発光部2を制御する発光制御部42と、光検出部
3で求めた検出信号を演算して、測定データを求める演
算部43を備える。制御テーブル41は、送受光対の組
み合わせと順序を定めた複数の制御テーブルを格納す
る。
The light emitting section 2 forms a plurality of light sources by the light emitting element section 22 having the first to n-th light emitting elements 22a to 22n. Each light emitting element has a different wavelength (λa to λ
The light emission to the light transmitting unit 12 is controlled by the light emitting element driving unit 21 and the optical switch 23, thereby controlling the light transmission from the light transmitting unit 12 to the subject. The light emitting element unit 22 and the optical switch 23 are optically coupled via an optical coupler 24. The light detector 3 includes a light detector 31 (first to m-th light detectors 31a to 31m) that detects light received by the light receiving unit 13 and outputs a detection signal, and an integrator that integrates the detection signal. 32 (first integration 32a to m-th integrator 32m) and A / D converter 33 for converting the integrated analog signal into a digital signal
(From the first A / D converter 33a to the mA / D converter 33)
m). Further, the arithmetic and control unit 4 calculates a control table unit 41 for storing a control table, a light emission control unit 42 for controlling the light emitting unit 2 according to the control table, and a detection signal obtained by the light detection unit 3, An arithmetic unit 43 for obtaining measurement data is provided. The control table 41 stores a plurality of control tables in which the combinations of light transmission and reception pairs and the order are determined.

【0040】以下、図9の制御テーブルの図、及び図1
0から図13の送受光対の関係図を用いて、前記した第
1,2,3の発光形態について説明する。図9(a)及
び図10は第1の発光形態を示している。図10におい
て、被検体10に対して送光部12a〜12fと受光部
13a〜13fを取り付け、送光部12a(〜12f)
と受光部13a(〜13f)とでそれぞれ送受光対CH
1(〜CH6)を構成する。なお、図10において、各
送受光対CH1の端部に示す丸印は発光部を示し、矩形
印は光検出部を示している。図9(a)に示す制御テー
ブルは、ステップ1(ステップ8)からステップ7(ス
テップ14)の7つのステップ(発光を行なわないステ
ップ1,ステップ8を含む)を1サイクルとし、各ステ
ップでは送受光対CH1〜CH6を動作させる。
The control table shown in FIG. 9 and FIG.
The first, second, and third light emission modes will be described with reference to the relationship diagrams of the light transmission / reception pairs from 0 to FIG. FIG. 9A and FIG. 10 show a first light emitting mode. In FIG. 10, light transmitting units 12a to 12f and light receiving units 13a to 13f are attached to the subject 10, and the light transmitting units 12a (to 12f) are attached.
And the light receiving / receiving unit 13a (up to 13f).
1 (〜CH6). In FIG. 10, a circle at the end of each light transmitting / receiving pair CH1 indicates a light emitting unit, and a rectangular mark indicates a light detecting unit. In the control table shown in FIG. 9A, seven steps (including step 1 and step 8 in which light emission is not performed) from step 1 (step 8) to step 7 (step 14) are defined as one cycle. The light receiving pairs CH1 to CH6 are operated.

【0041】第1の発光形態は、送受光対間の相互干渉
は実質的に無視することができ、各送受光対の送光部は
同時点灯する。また、各送受光対は独立して測定するこ
とができ、並列して測定することができる。図9(b)
及び図11は第2の発光形態を示している。図11にお
いて、送光部12a(〜12f)と受光部13a(〜1
3f)で形成される複数個の送受光対によって送受光部
11を構成して測定プローブとし、被検体10に取り付
ける。図11中の送受光部11において、白丸○は送光
部12を示し、黒丸●は受光部13を示している。図9
(b)に示す制御テーブルは、ステップ1(ステップ
8)からステップ7(ステップ14)の7つのステップ
(発光を行なわないステップ1,ステップ8を含む)を
1サイクルとし、各ステップでは送受光対CH1〜CH
6の何れか1つの送受光対を動作させる。
In the first light emitting mode, mutual interference between the light transmitting and receiving pairs can be substantially ignored, and the light transmitting portions of each light transmitting and receiving pair are simultaneously turned on. In addition, each transmitting / receiving pair can be measured independently, and can be measured in parallel. FIG. 9B
FIG. 11 shows a second light emitting mode. In FIG. 11, a light transmitting unit 12a (up to 12f) and a light receiving unit 13a (up to 1
The light transmitting / receiving unit 11 is constituted by a plurality of light transmitting / receiving pairs formed in 3f) and is used as a measurement probe, and is attached to the subject 10. In the light transmitting and receiving unit 11 in FIG. 11, a white circle indicates the light transmitting unit 12, and a black circle indicates the light receiving unit 13. FIG.
The control table shown in (b) has seven steps (including Step 1 and Step 8 in which no light is emitted) from Step 1 (Step 8) to Step 7 (Step 14) as one cycle. CH1-CH
6 is operated.

【0042】第2の発光形態は、送受光対間の相互干渉
を考慮し、各送受光対の送光部は同時に1つのみを点灯
して受光する動作を順次繰り返す。図9(c)及び図1
2は第3の発光形態を示している。第3の発光形態にお
いて、送受光対の構成は前記した図11は第2の発光形
態と同様とすることができ、図12において、送光部1
2a(〜12f)と受光部13a(〜13f)で複数個
の送受光対を形成する。図9(c)に示す制御テーブル
は、ステップ1(ステップ8)からステップ7(ステッ
プ14)の7つのステップ(発光を行なわないステップ
1,ステップ8を含む)を1サイクルとし、各ステップ
では送受光対CH1〜CH6の中から選択した複数を含
む送受光対の組み合わせで動作を行う。図12(a)〜
(f)は、それぞれ図9(c)の制御テーブルのステッ
プ2(ステップ9)からステップ7(ステップ14)に
対応している。例えば、図12(a)は制御テーブルの
ステップ2(ステップ9)に対応し、送受光対CH1と
CH3を同時に動作させる。第3の発光形態は、送受光
対間の相互干渉を考慮し、各送受光対の送光部は同時に
複数個を点灯して複数の受光部で受光する動作を順次繰
り返し、得られた光信号を演算して測定データを求め
る。
In the second light emission mode, in consideration of mutual interference between the light transmitting and receiving pairs, the light transmitting unit of each light transmitting and receiving pair repeatedly turns on only one at a time and sequentially receives light. FIG. 9 (c) and FIG.
Reference numeral 2 denotes a third light emitting mode. In the third light emitting mode, the configuration of the light transmitting and receiving pair in FIG. 11 can be the same as that in the second light emitting mode.
A plurality of light transmitting / receiving pairs are formed by 2a (up to 12f) and the light receiving unit 13a (up to 13f). In the control table shown in FIG. 9C, seven steps (including Step 1 and Step 8 in which no light emission is performed) from Step 1 (Step 8) to Step 7 (Step 14) are defined as one cycle. The operation is performed by a combination of a light transmitting / receiving pair including a plurality of light receiving pairs CH1 to CH6. FIG.
(F) corresponds to Step 2 (Step 9) to Step 7 (Step 14) of the control table of FIG. 9C, respectively. For example, FIG. 12A corresponds to step 2 (step 9) of the control table, and the light transmitting and receiving pairs CH1 and CH3 are simultaneously operated. In the third light emitting mode, in consideration of the mutual interference between the light transmitting and receiving pairs, the light transmitting unit of each light transmitting and receiving pair simultaneously turns on a plurality of light and sequentially repeats the operation of receiving light by the plurality of light receiving units. The signal is calculated to obtain measurement data.

【0043】前記は1波長について説明しているが、送
光する光として波長を異ならせることができる。図13
は異なる波長を用いた場合の制御データ例を示してお
り、λ1〜λ3の3波長の例を示している。波長と送受
光対との組み合わせにおいて、同一の送受光対の組み合
わせ内で波長を順に切り替え、また、同一ステップ内で
は同一波長の光を送光する。
Although the above describes one wavelength, the wavelength of the light to be transmitted can be different. FIG.
Shows an example of control data when different wavelengths are used, and shows an example of three wavelengths λ1 to λ3. In the combination of the wavelength and the light transmitting and receiving pair, the wavelength is sequentially switched within the same combination of the light transmitting and receiving pair, and the light of the same wavelength is transmitted in the same step.

【0044】次に、送光部と受光部の他の配置例と、該
配置における制御テーブル例について図14,15を用
いて説明する。図14(a)は送光部(二重丸)と受光
部(一重丸)とを90度で交差する格子状に配列した例
であり、それぞれ8個の送光部と受光部を備える。ま
た、図14(b)は送光部(二重丸)と受光部(一重
丸)とを60度配列の格子状に配列した例であり、専用
の送光部と受光部とをそれぞれ6個と、送光部と受光部
とを兼用したものを2個備える。なお、送光部と受光部
とを兼用する構成は、2重のファイバーで構成すること
ができる。
Next, another example of the arrangement of the light transmitting unit and the light receiving unit and an example of a control table in the arrangement will be described with reference to FIGS. FIG. 14A shows an example in which a light transmitting unit (double circle) and a light receiving unit (single circle) are arranged in a grid pattern that intersects at 90 degrees, each having eight light transmitting units and eight light receiving units. FIG. 14B shows an example in which a light transmitting unit (double circle) and a light receiving unit (single circle) are arranged in a 60-degree grid pattern. And two units that also serve as a light transmitting unit and a light receiving unit. In addition, the structure which doubles as a light transmission part and a light reception part can be comprised by a double fiber.

【0045】図15は図14(a)に示す90度の格子
配列例であり、aからhの8個の送光部と、AからIの
9個の受光部を備える。なお、図中のaA,aB等は、
検出関係にある送光部と受光部との組み合わせを示して
いる。生体等の強度の散乱体であり、入射点からの距離
が離れると光信号の強度は急激に減少する。この特性を
利用して、複数の送光部の内で一定の距離以上離れてい
る場合には、同時に送光しても相互干渉の程度が低いた
め分離して光検出することができる。図15において、
隣接する送光部と受光部との距離をrとすると、該距離
rより離れた位置にある送光部と受光部とでは、受光す
る光信号の強度は極めて小さくなる。
FIG. 15 shows an example of the 90-degree grid arrangement shown in FIG. 14A, which includes eight light transmitting units a to h and nine light receiving units A to I. Note that aA, aB, etc. in the figure are:
It shows a combination of a light transmitting unit and a light receiving unit in a detection relationship. It is a scatterer of a strength such as a living body, and the intensity of an optical signal rapidly decreases as the distance from the incident point increases. By utilizing this characteristic, when a plurality of light transmitting units are apart from each other by a predetermined distance or more, even if the light is transmitted simultaneously, the degree of mutual interference is low, so that the light can be separated and detected. In FIG.
Assuming that the distance between the adjacent light transmitting unit and the light receiving unit is r, the intensity of the light signal received by the light transmitting unit and the light receiving unit located at a position apart from the distance r is extremely small.

【0046】そこで、制御テーブルは、ある受光部に対
して所定距離内に配置される送光部は1つのみを送光さ
せ、複数の送光部は同時に送光しないという条件の下
に、同時に動作させる送受光対を定める。図15(b)
に示す制御テーブルにおいて、第1サイクルでは送光部
a,eから送光し、受光部A,B、及び受光部D,E,
G,Hで受光する。また、第2サイクルでは送光部b,
fから送光し、受光部C,D、及び受光部D,F,I,
H,で受光する。これらの送光部と受光部の関係は、上
記に条件を満足するものである。上記の制御テーブルに
よって、同一サイクルで複数の送受光対を動作させるこ
とによって、測定時間を短縮することができる。図15
(c)の制御テーブルは、各サイクルでは1つの送受光
対を動作させるものであり、この場合には全送光部(a
〜h)からの送光を完了するまでに8サイクルを要す
る。これに対して、図15(b)の制御テーブルによれ
ば、4サイクルで完了させることができ、測定時間を短
縮することができる。
Therefore, the control table indicates that only one light transmitting unit disposed within a predetermined distance from a certain light receiving unit transmits light, and a plurality of light transmitting units do not transmit light at the same time. A transmitting and receiving pair to be operated simultaneously is determined. FIG. 15 (b)
In the control table shown in FIG. 7, in the first cycle, light is transmitted from the light transmitting units a and e, and the light receiving units A and B and the light receiving units D, E,
Light is received at G and H. In the second cycle, the light transmitting units b,
f, light receiving units C and D, and light receiving units D, F, I,
H, light is received. The relationship between the light transmitting unit and the light receiving unit satisfies the above conditions. By operating a plurality of light transmitting and receiving pairs in the same cycle by the above control table, the measurement time can be reduced. FIG.
The control table of (c) operates one light transmitting / receiving pair in each cycle. In this case, all the light transmitting units (a
It takes eight cycles to complete the light transmission from (h) to (h). On the other hand, according to the control table of FIG. 15B, it can be completed in four cycles, and the measurement time can be shortened.

【0047】また、測定プローブを構成する送受光部の
他の構成例について、図16を用いて説明する。前記し
た例では送受光部を1つの測定プローブ内に形成する例
であるが、複数の分離した測定プローブとすることもで
きる。図16において、測定プローブ14,14’のそ
れぞれに送受光部を形成し、被検体(図示していない)
に光干渉を起こさない距離Lだけ離して取り付ける。制
御テーブルは、上記した測定プローブの取付け条件を考
慮して定めておき、該制御テーブルを選択して測定を行
う。また、他の構成例として、光干渉を起こさない距離
によって送受光対の組み合わせを定める代りに、送光部
と受光部との間における光干渉の程度を測定し、該測定
値に基づいて設定することができる。この光干渉の程度
を測定は、生体と同等の散乱係数μs’と吸収係数μa
を持つ測定試料を標準ファントムとして用意し、この標
準ファントムを測定することによって行うことができ
る。また、測定した光干渉の程度に基づいて送受光対の
組み合わせを定めるプログラムを内臓することによっ
て、制御テーブルの自動設定を行うことができる。
Another example of the structure of the light transmitting and receiving unit constituting the measuring probe will be described with reference to FIG. Although the above-described example is an example in which the light transmitting / receiving unit is formed in one measurement probe, a plurality of separate measurement probes may be used. In FIG. 16, a light transmitting / receiving section is formed on each of the measurement probes 14 and 14 ′, and a subject (not shown) is formed.
At a distance L that does not cause optical interference. The control table is determined in consideration of the mounting condition of the measurement probe described above, and the control table is selected to perform the measurement. Further, as another configuration example, instead of determining the combination of the light transmitting and receiving pair based on the distance that does not cause optical interference, the degree of light interference between the light transmitting unit and the light receiving unit is measured, and the setting is performed based on the measured value. can do. The degree of the light interference is measured by measuring the scattering coefficient μs ′ and the absorption coefficient μa equivalent to those of a living body.
The measurement can be performed by preparing a measurement sample having the following as a standard phantom and measuring the standard phantom. The control table can be automatically set by incorporating a program for determining the combination of the light transmitting and receiving pairs based on the measured degree of optical interference.

【0048】[0048]

【発明の効果】以上説明したように、本発明の光計測装
置によれば、被検体の複数箇所の部位の測定において、
同時に動作する送光点及び/又は受光点の位置や組み合
わせの変更を、光源や配線の接続を切り替えることなく
行うことができる。また、被検体の複数箇所の部位の測
定において、測定時間を短縮し、S/N比を向上させる
ことができる。
As described above, according to the optical measurement apparatus of the present invention, in measuring a plurality of parts of a subject,
It is possible to change the positions and combinations of the light transmitting points and / or light receiving points that operate simultaneously without switching the connection of the light source and the wiring. Further, in measuring a plurality of portions of the subject, the measurement time can be reduced and the S / N ratio can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光計測装置の一形態を説明するための
概略構成図である。
FIG. 1 is a schematic configuration diagram for explaining one embodiment of an optical measurement device of the present invention.

【図2】任意の送光部及び受光部の組み合わせを定める
第1の態様において第1の発光形態を説明する図であ
る。
FIG. 2 is a diagram illustrating a first light emission mode in a first mode in which an arbitrary combination of a light transmitting unit and a light receiving unit is determined.

【図3】任意の送光部及び受光部の組み合わせを定める
第1の態様において第2の発光形態を説明する図であ
る。
FIG. 3 is a diagram illustrating a second light emission mode in a first mode in which an arbitrary combination of a light transmitting unit and a light receiving unit is determined.

【図4】任意の送光部及び受光部の組み合わせを定める
第1の態様において第3の発光形態を説明する図であ
る。
FIG. 4 is a diagram illustrating a third light emitting mode in a first mode in which a combination of an arbitrary light transmitting unit and a light receiving unit is determined.

【図5】一対の送光部及び受光部間で組み合わせを定め
る第2の態様において第1の発光形態を説明する図であ
る。
FIG. 5 is a diagram illustrating a first light emitting mode in a second mode in which a combination is determined between a pair of a light transmitting unit and a light receiving unit.

【図6】一対の送光部及び受光部間で組み合わせを定め
る第2の態様において第2の発光形態を説明する図であ
る。
FIG. 6 is a diagram illustrating a second light emitting mode in a second mode in which a combination is determined between a pair of a light transmitting unit and a light receiving unit.

【図7】一対の送光部及び受光部間で組み合わせを定め
る第2の態様において第3の発光形態を説明する図であ
る。
FIG. 7 is a diagram illustrating a third light emitting mode in a second mode in which a combination is determined between a pair of a light transmitting unit and a light receiving unit.

【図8】本発明の光計測装置の構成例を示す図である。FIG. 8 is a diagram showing a configuration example of an optical measurement device of the present invention.

【図9】制御テーブルを説明するための図である。FIG. 9 is a diagram for explaining a control table.

【図10】送受光対の関係を説明するための図である。FIG. 10 is a diagram for explaining the relationship between a light transmitting and receiving pair.

【図11】送受光対の関係を説明するための図である。FIG. 11 is a diagram for explaining the relationship between a light transmitting and receiving pair.

【図12】送受光対の関係を説明するための図である。FIG. 12 is a diagram for explaining the relationship between a light transmitting and receiving pair.

【図13】送受光対の関係を説明するための図である。FIG. 13 is a diagram for explaining a relationship between a light transmitting and receiving pair.

【図14】送光部と受光部の他の配置例を説明するため
の図である。
FIG. 14 is a diagram illustrating another example of the arrangement of the light transmitting unit and the light receiving unit.

【図15】送光部と受光部の他の配置例における制御テ
ーブルを説明するための図である。
FIG. 15 is a diagram for explaining a control table in another arrangement example of the light transmitting unit and the light receiving unit.

【図16】測定プローブを構成する送受光部の他の構成
例を説明するための図である。
FIG. 16 is a diagram for explaining another configuration example of the light transmitting / receiving unit constituting the measurement probe.

【符号の説明】[Explanation of symbols]

1…光計測装置、2…発光部、3…光検出部、4…演算
・制御部、10…被検体、11…送受光部、12…送光
部、13…受光部、14,14’…測定プローブ、21
…発光素子駆動部、22…発光素子部、23…光スイッ
チ、24…光結合器、31…光検出器、32…積分器、
33…A/D変換器、41…制御テーブル、42…発光
制御部、43…光検出制御部、43a…発光テーブル、
43b…光検出テーブル、43c…発光・光検出テーブ
ル。
DESCRIPTION OF SYMBOLS 1 ... Light measuring device, 2 ... Light emission part, 3 ... Light detection part, 4 ... Calculation / control part, 10 ... Subject, 11 ... Light transmission / reception part, 12 ... Light transmission part, 13 ... Light reception part, 14, 14 ' ... Measuring probe, 21
.., Light emitting element driving section, 22 light emitting element section, 23 optical switch, 24 optical coupler, 31 photodetector, 32 integrator,
33 A / D converter, 41 control table, 42 light emission control unit, 43 light detection control unit, 43a light emission table,
43b: Light detection table, 43c: Light emission / light detection table.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 貞夫 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内 (72)発明者 伊藤 康展 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内 (72)発明者 坂内 尚史 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内 (72)発明者 小林 まなみ 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内 (72)発明者 原田 高宏 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所内 Fターム(参考) 2G059 AA03 AA06 BB12 CC18 EE01 EE02 GG09 KK03 MM10 4C038 KK01 KL07 KX01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Sadao Takeuchi 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto, Kyoto Prefecture Inside Shimadzu Corporation (72) Inventor Yasushi Ito 1 Nishinokyo Kuwaharacho, Nakagyo-ku, Kyoto, Kyoto Shimazu Corporation Inside the factory (72) Inventor Naofumi Sakauchi 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto, Kyoto, Japan Inside Shimadzu Corporation (72) Inventor Manami Kobayashi 1 Nishinokyo Kuwahara-cho, Nakagyo-ku, Kyoto, Kyoto Shimazu Corporation (72) Invention Person Takahiro Harada 1 Kuwabaracho, Nishinokyo, Nakagyo-ku, Kyoto-shi F-term in Shimadzu Corporation (reference) 2G059 AA03 AA06 BB12 CC18 EE01 EE02 GG09 KK03 MM10 4C038 KK01 KL07 KX01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被検体に光を照射し、被検体中を透過及
び/又は反射した後に外部に放出される光を測定する光
計測装置において、被検体に光を照射する複数の送光部
と放出される光を受光する複数の受光部とを備えた送受
光部と、前記送受光部に対して光の送受光を制御する制
御部とを備え、前記制御部は、送受光を行う送光部及び
/又は受光部の組み合わせと順序を定めた複数の制御テ
ーブルを備え、選択された制御テーブルに定められた送
光部及び/又は受光部の組み合わせと順序に従って送受
光制御を行うことを特徴とする光計測装置。
1. An optical measurement device for irradiating a subject with light and measuring light emitted to the outside after transmitting and / or reflecting through the subject, a plurality of light transmitting units for irradiating the subject with light. And a plurality of light receiving / receiving sections each including a plurality of light receiving sections for receiving emitted light; and a control section for controlling transmission and reception of light to and from the light transmission / reception section, and the control section performs light transmission and reception. Providing a plurality of control tables in which a combination and an order of a light transmitting unit and / or a light receiving unit are determined, and performing light transmitting and receiving control in accordance with a combination and an order of the light transmitting unit and / or the light receiving unit defined in the selected control table. An optical measurement device characterized by the above-mentioned.
【請求項2】 前記制御テーブルが定める送光部の組み
合わせは、同じ時間ステップに送光する異なる2以上の
送光部を有し、それぞれの送光部からの出力を信号処理
部の計算により分離抽出することを特徴とする請求項1
記載の光計測装置。
2. The combination of light transmitting units defined by the control table has two or more different light transmitting units that transmit light at the same time step, and outputs from each light transmitting unit are calculated by a signal processing unit. 2. The method according to claim 1, wherein the extraction is performed separately.
The optical measurement device according to the above.
【請求項3】 前記制御テーブルが定める送光部及び/
又は受光部の組み合わせは、送受光部における送光部と
受光部の配置位置に基づいて定めることを特徴とする請
求項1,又は2記載の光計測装置。
3. A light transmitting unit and / or a light transmitting unit defined by the control table.
The optical measurement device according to claim 1, wherein the combination of the light receiving units is determined based on the arrangement positions of the light transmitting unit and the light receiving unit in the light transmitting and receiving unit.
【請求項4】 送光を同時に行う送光部の組み合わせと
送光を行う順序を決める前記制御テーブルは、操作者が
変更または選択できる操作画面上に表示されるテーブル
であることを特徴とする請求項1,2,又は3記載の光
計測装置。
4. The control table for determining a combination of light transmitting units for simultaneously transmitting light and an order for transmitting light is a table displayed on an operation screen that can be changed or selected by an operator. The optical measuring device according to claim 1.
【請求項5】 同時に受光して得られる受光信号を有効
とする受光部の組み合わせのテーブルは、操作者が変更
または選択できる操作画面上に表示されるテーブルであ
ることを特徴とする請求項1,2,又は3記載の光計測
装置。
5. The table of a combination of light receiving units for validating a light receiving signal obtained by simultaneously receiving light is a table displayed on an operation screen that can be changed or selected by an operator. , 2, or 3.
【請求項6】 測定目的に応じた多数の送光部制御テー
ブル、又は測定目的に応じた送光部と受光部の組み合わ
せのテーブルを記憶する記憶部を有し、操作者が予め記
憶したテーブルの一つを選択することができることを特
徴とする請求項5,又は6記載の光計測装置。
6. A table which has a storage unit for storing a large number of light transmission unit control tables corresponding to the measurement purpose or a table of a combination of the light transmission unit and the light reception unit according to the measurement purpose, and which is stored in advance by the operator. 7. The optical measuring device according to claim 5, wherein one of the following can be selected.
【請求項7】 前記制御テーブルは、送光部及び/又は
受光部の組み合わせを、一送光部と一受光部を含む送受
光対を組み合わせの単位として定め、送光部及び/又は
受光部の順序を、同時を含む動作の時間的順番として定
めることを特徴とする請求項1,又は2記載の光計測装
置。
7. The control table defines a combination of a light transmitting unit and / or a light receiving unit as a unit of combination of a light transmitting and receiving pair including one light transmitting unit and one light receiving unit, and the light transmitting unit and / or the light receiving unit 3. The optical measurement device according to claim 1, wherein the order of the operations is determined as a temporal order of operations including simultaneous operations.
JP18773799A 1999-07-01 1999-07-01 Optical measuring device Expired - Lifetime JP4151162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18773799A JP4151162B2 (en) 1999-07-01 1999-07-01 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18773799A JP4151162B2 (en) 1999-07-01 1999-07-01 Optical measuring device

Publications (3)

Publication Number Publication Date
JP2001013063A true JP2001013063A (en) 2001-01-19
JP2001013063A5 JP2001013063A5 (en) 2006-02-09
JP4151162B2 JP4151162B2 (en) 2008-09-17

Family

ID=16211321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18773799A Expired - Lifetime JP4151162B2 (en) 1999-07-01 1999-07-01 Optical measuring device

Country Status (1)

Country Link
JP (1) JP4151162B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209342A (en) * 2007-02-28 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical coherence tomography device and interference signal measuring method therefor, variable wavelength light generating device and method therefor, and interference signal measuring device and method therefor
JP2012032204A (en) * 2010-07-29 2012-02-16 Shimadzu Corp Light measuring equipment
JP2012254230A (en) * 2011-06-10 2012-12-27 Shimadzu Corp Optical measuring instrument
JP2016067815A (en) * 2014-10-01 2016-05-09 株式会社島津製作所 Optical measurement apparatus and optical measurement method
JP2017055840A (en) * 2015-09-14 2017-03-23 株式会社島津製作所 Optical measurement device
WO2017208840A1 (en) * 2016-05-30 2017-12-07 セイコーエプソン株式会社 Biological information acquisition device and biological information acquisition method
WO2019117366A1 (en) * 2017-12-14 2019-06-20 (주)이노진 Blood-based in vitro diagnostic device and diagnostic method
KR102601403B1 (en) * 2022-12-13 2023-11-14 주식회사 디앤씨바이오테크놀로지 Apparatus and method for analyzing urine with curved urine test strip
KR102640246B1 (en) * 2022-10-17 2024-02-27 주식회사 디앤씨바이오테크놀로지 Apparatus and method for analyzing urine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209342A (en) * 2007-02-28 2008-09-11 Nippon Telegr & Teleph Corp <Ntt> Optical coherence tomography device and interference signal measuring method therefor, variable wavelength light generating device and method therefor, and interference signal measuring device and method therefor
JP2012032204A (en) * 2010-07-29 2012-02-16 Shimadzu Corp Light measuring equipment
JP2012254230A (en) * 2011-06-10 2012-12-27 Shimadzu Corp Optical measuring instrument
JP2016067815A (en) * 2014-10-01 2016-05-09 株式会社島津製作所 Optical measurement apparatus and optical measurement method
JP2017055840A (en) * 2015-09-14 2017-03-23 株式会社島津製作所 Optical measurement device
WO2017208840A1 (en) * 2016-05-30 2017-12-07 セイコーエプソン株式会社 Biological information acquisition device and biological information acquisition method
US11172853B2 (en) 2016-05-30 2021-11-16 Seiko Epson Corporation Biological information acquisition device and biological information acquisition method
WO2019117366A1 (en) * 2017-12-14 2019-06-20 (주)이노진 Blood-based in vitro diagnostic device and diagnostic method
KR102640246B1 (en) * 2022-10-17 2024-02-27 주식회사 디앤씨바이오테크놀로지 Apparatus and method for analyzing urine
WO2024085599A1 (en) * 2022-10-17 2024-04-25 주식회사 디앤씨바이오테크놀로지 Urine analysis device and method
KR102601403B1 (en) * 2022-12-13 2023-11-14 주식회사 디앤씨바이오테크놀로지 Apparatus and method for analyzing urine with curved urine test strip

Also Published As

Publication number Publication date
JP4151162B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
Chance et al. Phase measurement of light absorption and scatter in human tissue
JP3845776B2 (en) Absorbent concentration measuring device in blood
US9237850B2 (en) System and method for noninvasively monitoring conditions of a subject
US5983122A (en) Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
CN102641126B (en) For the sensor of the blood characteristics of non-intruding monitor person under inspection, equipment and method
US6775565B1 (en) Imaging apparatus for displaying concentration ratios
EP1327418B1 (en) Organism optical measurement instrument
JP4006826B2 (en) Biological light measurement device
WO2004046696A1 (en) Composite spectral measurement method and its spectral detection instrument
MXPA06011619A (en) Photoplethysmography with a spatially homogenous multi-color source.
JP2000155090A (en) Imaging device for blood vessel
JP2001013063A (en) Photometric apparatus
JP2008064675A (en) Light measuring apparatus
JP3125321B2 (en) Blood oxygen level measurement device
JPH06245938A (en) Optical measuring instrument
JP3365397B2 (en) Multi-channel optical measuring device
JP2001033381A (en) Light application method and apparatus for measuring organism
JPWO2005041771A1 (en) Biological optical measurement device
KR20140096773A (en) A pyramidal skin autofluorescence measurement apparatus for detecting reflected light
JP2006187641A (en) Optical measuring device and optical measuring method
JP4817808B2 (en) Biological light measurement device
US8712492B2 (en) Photon density wave based determination of physiological blood parameters
JP2000107157A (en) Device for measuring oxygen saturation
JPH04332535A (en) Instrument for measuring concentration of bilirubin in blood
JP2000210291A (en) Blood vessel imaging device and method and device for measuring spatial distribution of pulse wave signals

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20020605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Ref document number: 4151162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

EXPY Cancellation because of completion of term