JP2001012855A - Bottom electrode of dc electric furnace and its manufacture - Google Patents

Bottom electrode of dc electric furnace and its manufacture

Info

Publication number
JP2001012855A
JP2001012855A JP11181387A JP18138799A JP2001012855A JP 2001012855 A JP2001012855 A JP 2001012855A JP 11181387 A JP11181387 A JP 11181387A JP 18138799 A JP18138799 A JP 18138799A JP 2001012855 A JP2001012855 A JP 2001012855A
Authority
JP
Japan
Prior art keywords
electrode
iron
refractory material
electric furnace
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11181387A
Other languages
Japanese (ja)
Inventor
Naohiko Ogino
荻野直彦
Akitaka Ikefuchi
池淵明孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP11181387A priority Critical patent/JP2001012855A/en
Publication of JP2001012855A publication Critical patent/JP2001012855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)
  • Discharge Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent local heating due to a current concentration, to prolong an electrode using period and to facilitate a maintenance by installing a solid electrode made of a composite material obtained by filling a magnesia refractory material as an aggregate with an iron-based alloy as a matrix at a bottom of a DC electric furnace. SOLUTION: An anode is made of an iron-base alloy 10 as a matrix and obtained by filling an MgO aggregate 11 as a refractory material. In this case, since an area occupying the alloy is relatively large, its self-heating due to an electrode concentration is prevented, thereby preventing local fusing. Since the alloy 10 is eroded as number of times of charging is increased but a steel of a residue of molten steel compensates it, its lifetime can be prolonged. In the case of a conventional magnesia carbon electrode, a molten steel component is retained on a surface of a furnace bottom so as to disturb an adherence of the magnesia carbon, but by such a this electrode structure, an eroded portion is supplemented by the dissolved iron component retained at the bottom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は直流電気炉の炉底電
極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottom electrode of a DC electric furnace.

【0002】[0002]

【従来の技術】従来、直流電気炉の炉底電極として、複
数のスチール製コンタクトピンからなる電極を空冷する
タイプの空冷式マルチピン型、1本の太い鋼棒からなる
電極を水冷するタイプの水冷式ビレット型が用いられて
きた。これらタイプの炉底電極はスチールの導電性がよ
く、発熱が少ないという点で優れているが、冷却しても
溶湯によりスチールが溶損していくため寿命が短く、炉
底改修頻度が大きくなってしまう。その対策として、ス
チール電極に対して1桁以上も寿命を長くできるマグネ
シアカーボンを炉底の銅板上に広く敷き詰める導電レン
ガ型電極が用いられている。
2. Description of the Related Art Conventionally, as a bottom electrode of a DC electric furnace, an air-cooled multi-pin type in which an electrode composed of a plurality of steel contact pins is air-cooled, and a water-cooled type in which an electrode composed of a single thick steel rod is water-cooled. Type billet molds have been used. These types of bottom electrodes are excellent in that steel has good conductivity and generates less heat, but even when cooled, the steel melts away due to the molten metal, so the life is short, and the frequency of hearth repairs increases. I will. As a countermeasure, a conductive brick electrode in which magnesia carbon, which can extend the life by one digit or more compared to a steel electrode, is widely spread on a copper plate at the furnace bottom is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、マグネシアカ
ーボン電極は、スチールに比して導電性が低いので、抵
抗を抑えるために大面積に敷き詰める必要があるととも
に、大電流を流したときに電流集中を起こしやすく、こ
のためホットスポットを形成し、局部的にマグネシアカ
ーボンが溶断し易いという問題があった。
However, since the magnesia carbon electrode has lower conductivity than steel, it must be spread over a large area in order to suppress the resistance, and when a large current is applied, the current is concentrated. Therefore, there is a problem that a hot spot is formed and magnesia carbon is easily melted locally.

【0004】本発明は上記課題を解決するためのもの
で、電流集中による局部加熱を防止し、電極使用期間を
長くし、かつメンテナンスを容易にすることを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to prevent local heating due to current concentration, prolong the electrode use period, and facilitate maintenance.

【0005】[0005]

【課題を解決するための手段】本発明は、通電性を確保
して電流集中を起こりにくくし、かつ、対溶鋼浸食性を
付与するため、鉄基合金をマトリックスとし、マグネシ
ア(MgO)系等の耐火材料を骨材として充填した複合
体からなる固体電極を炉底に据えつけたことを特徴とす
る。また、本発明の炉底電極製造方法は、鉄基合金と耐
火材料の粉末複合体をプレスした後、鍛造して固体電極
とすることを特徴とする。また、本発明の炉底電極製造
方法は、鉄基合金と耐火材料の複合混合物を溶融し、鋳
込んだ後急冷して固体電極とすることを特徴とする。ま
た、本発明の炉底電極製造方法は、鉄基合金と耐火材料
の粉体をプレスした後、焼結して固体電極とすることを
特徴とする。また、本発明の炉底電極製造方法は、鉄基
合金と耐火材料の不定形混合物を直接炉底に施工し、自
己焼結により固体電極とすることを特徴とする。
According to the present invention, an iron-based alloy is used as a matrix, and a magnesia (MgO) or the like is used in order to secure current conduction so that current concentration hardly occurs and to provide erosion resistance to molten steel. Characterized in that a solid electrode made of a composite filled with the refractory material as an aggregate is mounted on the furnace bottom. Further, a method of manufacturing a furnace bottom electrode according to the present invention is characterized in that a powder composite of an iron-based alloy and a refractory material is pressed and then forged to form a solid electrode. Further, the method for manufacturing a furnace bottom electrode according to the present invention is characterized in that a composite mixture of an iron-based alloy and a refractory material is melted, cast and rapidly cooled to obtain a solid electrode. Further, the method of manufacturing a furnace bottom electrode according to the present invention is characterized in that a powder of an iron-based alloy and a refractory material is pressed and then sintered to form a solid electrode. Further, the method for manufacturing a furnace bottom electrode according to the present invention is characterized in that an amorphous mixture of an iron-based alloy and a refractory material is directly applied to the furnace bottom and solidified by self-sintering.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は本発明の炉底電極が使用される直流
電気炉を説明する図、図2は炉底電極の断面図である。
直流電気炉1は上部に1本の炭素(グラファイト)製陰
極2、炉底には鉄基合金をマトリックスとし、マグネシ
ア系骨材を充填して構成した陽極3が設置され、その周
囲にはスタンプ材4が敷設されている。陰極2と陽極3
との間には、直流電源5により、例えば200〜300
Vの電圧を印加し、炉内に入れたスクラップ6を通し
て、例えば100KA程度の大電流を流してスクラップ
を発熱させ溶融する。
Embodiments of the present invention will be described below. FIG. 1 is a view for explaining a DC electric furnace using the bottom electrode of the present invention, and FIG. 2 is a sectional view of the bottom electrode.
A DC electric furnace 1 is provided with a carbon (graphite) cathode 2 at the upper part, an anode 3 composed of a matrix of an iron-based alloy and filled with magnesia-based aggregate at the furnace bottom, and a stamp around the anode. Lumber 4 is laid. Cathode 2 and anode 3
Between 200 and 300, for example,
A voltage of V is applied, and a large current of, for example, about 100 KA flows through the scrap 6 placed in the furnace to generate heat and melt the scrap.

【0007】図2に示すように、陽極3は鉄基合金10
をマトリックスとし、耐火材料としてMgO骨材を充填
したものであり、鉄基合金の占める面積が比較的大きい
ために電流集中にともなう自己発熱を防止し、局部的な
溶断の発生を防ぐことができる。もちろん、チャージ回
数が増えるにつれて鉄基合金10が溶損していくが、溶
湯の残り部分のスチールがこれを補填してくれるので、
長寿命化を図ることができる。従来のマグネシアカーボ
ン電極の場合、溶損した分はMgO、タール−ピッチか
らなる熱間補修材で補修することが行われているが、ど
うしても溶融スチール成分が炉底表面に残ってこれがマ
グネシアカーボンの付着をじゃましていたが、本発明の
電極構造は、炉底に残る溶融鉄成分が溶損した部分を補
ってくれるメリットがある。
As shown in FIG. 2, the anode 3 is made of an iron-based alloy 10
Is a matrix and is filled with MgO aggregate as a refractory material.Since the area occupied by the iron-based alloy is relatively large, self-heating due to current concentration can be prevented, and local fusing can be prevented. . Of course, as the number of charges increases, the iron-based alloy 10 melts down, but the steel in the rest of the melt compensates for this,
The service life can be extended. In the case of a conventional magnesia carbon electrode, the melted portion is repaired with a hot repair material consisting of MgO and tar-pitch, but the molten steel component remains on the furnace bottom surface and this Although it has hindered the adhesion, the electrode structure of the present invention has an advantage that the molten iron component remaining at the furnace bottom compensates for the eroded portion.

【0008】炉底電極の製法を例示すれば以下のような
ものである。 鍛造法 例えば、鉄粉、マグネシア粉、カーボンを容積比で4:
4:2程度の割合で混合し、一旦プレスした後、鍛造し
て緻密化する。 アーク溶融法 アーク中で鉄或いはその合金とマグネシアの複合混合物
を溶融し、鋳込んで急冷する。 焼結法 鉄或いはその合金とマグネシアを粉体にして混合し、プ
レスした後、熱処理して焼結体とする。 粉体スタンプ施工法 不定形(粉体)混合物で炉底にスタンプ材と同様に敷設
し、ガスを抜き緻密化する。その後、溶湯による加熱で
自己焼結させる。この場合、混合物に流動性と保形性を
与えるために、タール、ピッチ等を添加してもよい。
The following is an example of a method for manufacturing a furnace bottom electrode. Forging method For example, iron powder, magnesia powder, and carbon are mixed in a volume ratio of 4:
4: Mix at a ratio of about 2, press once, forge and densify. Arc melting method A complex mixture of iron or its alloy and magnesia is melted in an arc, cast and quenched. Sintering method Iron or its alloy and magnesia are powdered, mixed, pressed, and then heat-treated to obtain a sintered body. Powder stamping method Laminate the furnace bottom with an amorphous (powder) mixture in the same manner as the stamp material, and remove gas to make it denser. Thereafter, self-sintering is performed by heating with a molten metal. In this case, tar, pitch and the like may be added in order to impart fluidity and shape retention to the mixture.

【0009】なお、炉底電極の骨材として混入する材料
は、マグネシアに限らず、ジルコニア、アルミナ、酸化
カルシウム、ジルコン等の一般の耐火材料を用いること
ができる。
The material mixed as the aggregate of the furnace bottom electrode is not limited to magnesia, but may be a general refractory material such as zirconia, alumina, calcium oxide, and zircon.

【0010】図3は本発明の炉底電極の例を示す図であ
る。この例は、カーボン無しのケースで、スチール10
とMgO骨材11が混在し、黒い筋状の部分は気孔12
である。
FIG. 3 is a diagram showing an example of a furnace bottom electrode according to the present invention. This example shows a case without carbon,
And MgO aggregate 11 are mixed.
It is.

【0011】[0011]

【発明の効果】以上のように本発明によれば、鉄基合金
をマトリックスとし、耐火材料を骨材として充填した複
合体からなる固体電極を炉底に据え付けるようにしたの
で、電流集中が防止され、その結果、局部過熱が防止さ
れて電極使用期間を長くすることができる。また、溶湯
の残りが補修層を形成してくれるので安定性が増し、ま
た、特別な冷却の必要がなく、メンテナンスが容易とな
る。
As described above, according to the present invention, a solid electrode made of a composite in which an iron-based alloy is used as a matrix and a refractory material is used as an aggregate is mounted on the furnace bottom, so that current concentration is prevented. As a result, local overheating is prevented, and the electrode usage period can be extended. In addition, since the rest of the molten metal forms a repair layer, the stability is increased, and there is no need for special cooling, thereby facilitating maintenance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の炉底電極が使用される直流電気炉を
説明する図である。
FIG. 1 is a diagram illustrating a DC electric furnace in which a furnace bottom electrode of the present invention is used.

【図2】 炉底電極の断面図である。FIG. 2 is a sectional view of a furnace bottom electrode.

【図3】 本発明の炉底電極の例を示す図である。FIG. 3 is a diagram showing an example of a furnace bottom electrode of the present invention.

【符号の説明】[Explanation of symbols]

1…電気炉1、2…炭素製陰極、3…陽極、4…スタン
プ材、5…直流電源、6…スクラップ、10…鉄基合
金、11…MgO、12…気孔。
DESCRIPTION OF SYMBOLS 1 ... Electric furnace 1, 2 ... Carbon cathode, 3 ... Anode, 4 ... Stamp material, 5 ... DC power supply, 6 ... Scrap, 10 ... Iron-base alloy, 11 ... MgO, 12 ... Pores.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K084 AA00 AA01 CA08 CA09 CA10 CC07 4K045 AA04 BA02 BA10 RB02 RB08 4K063 AA03 AA04 AA12 BA02 BA13 CA05 FA53 FA64 FA73 FA76 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3K084 AA00 AA01 CA08 CA09 CA10 CC07 4K045 AA04 BA02 BA10 RB02 RB08 4K063 AA03 AA04 AA12 BA02 BA13 CA05 FA53 FA64 FA73 FA76

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄基合金をマトリックスとし、耐火材料
を骨材として充填した複合体からなる固体電極を炉底に
据え付けたことを特徴とする直流電気炉の炉底電極。
1. A furnace bottom electrode for a DC electric furnace, wherein a solid electrode made of a composite filled with an iron-based alloy as a matrix and a refractory material as an aggregate is mounted on the furnace bottom.
【請求項2】 鉄基合金と耐火材料の粉末複合体をプレ
スした後、鍛造して固体電極とする直流電気炉の炉底電
極製造方法。
2. A method of manufacturing a bottom electrode of a DC electric furnace, wherein a powder composite of an iron-based alloy and a refractory material is pressed and then forged into a solid electrode.
【請求項3】 鉄基合金と耐火材料の複合混合物を溶融
し、鋳込んだ後急冷して固体電極とする直流電気炉の炉
底電極製造方法。
3. A method for manufacturing a bottom electrode of a DC electric furnace, in which a composite mixture of an iron-based alloy and a refractory material is melted, cast and rapidly cooled to form a solid electrode.
【請求項4】 鉄基合金と耐火材料の粉体をプレスした
後、焼結して固体電極とする直流電気炉の炉底電極製造
方法。
4. A method for manufacturing a bottom electrode of a DC electric furnace, wherein a powder of an iron-based alloy and a refractory material is pressed and then sintered to form a solid electrode.
【請求項5】 鉄基合金と耐火材料の不定形混合物を直
接炉底に施工し、自己焼結により固体電極とする直流電
気炉の炉底電極製造方法。
5. A method for manufacturing a bottom electrode of a DC electric furnace in which an amorphous mixture of an iron-based alloy and a refractory material is directly applied to a furnace bottom to form a solid electrode by self-sintering.
JP11181387A 1999-06-28 1999-06-28 Bottom electrode of dc electric furnace and its manufacture Pending JP2001012855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11181387A JP2001012855A (en) 1999-06-28 1999-06-28 Bottom electrode of dc electric furnace and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11181387A JP2001012855A (en) 1999-06-28 1999-06-28 Bottom electrode of dc electric furnace and its manufacture

Publications (1)

Publication Number Publication Date
JP2001012855A true JP2001012855A (en) 2001-01-19

Family

ID=16099858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11181387A Pending JP2001012855A (en) 1999-06-28 1999-06-28 Bottom electrode of dc electric furnace and its manufacture

Country Status (1)

Country Link
JP (1) JP2001012855A (en)

Similar Documents

Publication Publication Date Title
JP4792105B2 (en) Cathode for aluminum electrolysis cell with non-flat slot configuration
JPS6128914B2 (en)
ZA200505248B (en) Cathode systems for elecrtolytically obtaining aluminium
US20100096258A1 (en) Reduced voltage drop anode assembly for aluminum electrolysis cell, method of manufacturing anode assemblies and aluminum electrolysis cell
CN201527174U (en) Cold crucible vacuum induction melting equipment with auxiliary heat source
SE415394B (en) BOTTEN CONTACT AT DC LIGHT REAR OVEN
JPS5922150B2 (en) Pellet and similar melting furnace
US3671655A (en) Electrical transfer type plasma arc melting furnace
JP2001012855A (en) Bottom electrode of dc electric furnace and its manufacture
GB2131528A (en) Improved method of operating a DC arc furnace and an improved furnace for use in the method
DE4129756C2 (en) Metallurgical vessel for a DC arc device
JP2545169B2 (en) DC arc furnace operation method
DE4022720A1 (en) UNDERWAY OF A DC ARC FURNACE
CN2235108Y (en) Electrode structure at bottom of direct current arc furnace
JP2607762B2 (en) Refractory structure of DC electric furnace anode block
CN217110400U (en) Bottom electrode structure of direct current arc furnace
EP0414759B1 (en) Wear-resistant electrode for direct current arc furnaces
JPH0379990A (en) Dc electric furnace and bottom electrode thereof
JP2680353B2 (en) How to repair the bottom electrode
CN207331020U (en) A kind of electroslag remelting cold start-up arc initiation device
US3671656A (en) Electrode contact device
JPH0441275B2 (en)
US3305357A (en) Method of making a ai-si-mn-li anode for high temperature galvanic cell
JP2962150B2 (en) Bottom electrode for DC arc furnace
JP2624419B2 (en) DC arc furnace power supply method