JP2001012662A - Flexible pipe covered by resin - Google Patents

Flexible pipe covered by resin

Info

Publication number
JP2001012662A
JP2001012662A JP11183133A JP18313399A JP2001012662A JP 2001012662 A JP2001012662 A JP 2001012662A JP 11183133 A JP11183133 A JP 11183133A JP 18313399 A JP18313399 A JP 18313399A JP 2001012662 A JP2001012662 A JP 2001012662A
Authority
JP
Japan
Prior art keywords
resin
resin layer
flexible tube
nail
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11183133A
Other languages
Japanese (ja)
Inventor
Hiroshi Higuchi
裕思 樋口
Masahiro Yamada
昌弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP11183133A priority Critical patent/JP2001012662A/en
Publication of JP2001012662A publication Critical patent/JP2001012662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the inspection of the existence/absence of the hole made by the strike in of a nail, without hurting a flexibility and durability by forming a resin layer by polyolefin system resin with the tensile elastic rate of a specific range. SOLUTION: A flexible pipe 3 covered by a resin is formed by covering a corrugated pipe 1 made of for example thin stainless steel by a resin layer 2. Here, the resin layer 2 is formed by polyolefin system resin whose tensile elastic rate is 590-1400 kg/cm2, for example ethylene-acrylic ester copolymer and made by mixing properly the additive such as an anti-weathering material, fire retardant agent, anti-oxidant and colorant. In the polyolefin system resin with the tensile elastic rate of this range, when a hole is made on a metal flexible pipe 1 by striking the nail in, while ensuring a flexibility sufficiently, the end of broken resin layer 2 hardly blocks the clearance between the resin layer 2 and nail. Therefore, it is easy inspect the existence/absence of the hole made by the strike in of the nail without hurting the flexibility and durability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属製可撓管を樹
脂層で被覆してある樹脂被覆可撓管に関する。
The present invention relates to a resin-coated flexible tube in which a metal flexible tube is covered with a resin layer.

【0002】[0002]

【従来の技術】上記樹脂被覆可撓管は、例えば建物内の
ガス配管等に使用され、可撓性を確保するために薄肉化
した金属製可撓管の耐久性を補うべく、その金属製可撓
管を樹脂層で被覆してある。そして、このような樹脂被
覆可撓管を使用して内装材の内側等に隠れるように配管
してあると、内装材の外側から誤って釘などをその配管
に打ち込んで、薄肉の金属製可撓管に孔を明けてしまう
ことがあり、釘打ちなどを伴う内装工事を行った後は、
例えば、配管内に圧力を加えたときのその圧力の降下度
合いなどを調べて、孔明きの有無を検査している。とこ
ろが、従来の樹脂被覆可撓管は、金属製可撓管を被覆し
ている樹脂層を復元性や密着性が高い樹脂で形成してあ
るので、金属製可撓管に孔が明いていても、破れた樹脂
層の端部がその樹脂層と釘などとの隙間を塞ぐように変
形し易く、管内流体の樹脂層の外側への漏れ出しが少な
くなって、孔明きの有無を検査しにくくなる問題があ
る。この為、例えば特開平9−314048号公報に記
載されているように、樹脂被覆可撓管の可撓性を確保し
ながら、釘などを打ち込んで金属製可撓管に孔を明けて
しまったときに、破れた樹脂層の端部がその樹脂層と釘
などとの隙間を塞ぎにくくなるように、ショアデュロメ
ータ硬さ(D形)が18〜37の塩化ビニル樹脂で形成し
た樹脂層で金属製可撓管を被覆した樹脂被覆可撓管が提
案されている。
2. Description of the Related Art The above-mentioned resin-coated flexible tube is used, for example, for gas pipes in buildings, and is made of a metal-made flexible tube which is thinned in order to ensure flexibility. The flexible tube is covered with a resin layer. If such a resin-coated flexible tube is used to pipe the inside of the interior material so as to hide it, a nail or the like may be accidentally driven into the piping from the outside of the interior material, and a thin metal pipe may be used. A hole may be formed in the flexible tube, and after performing interior work involving nailing,
For example, the presence or absence of perforation is inspected by examining the degree of pressure drop when pressure is applied to the piping. However, in the conventional resin-coated flexible tube, since the resin layer covering the metal flexible tube is formed of a resin having high resilience and adhesion, a hole is formed in the metal flexible tube. Also, the end of the torn resin layer is easily deformed so as to close the gap between the resin layer and the nail, etc., and the leakage of the fluid in the pipe to the outside of the resin layer is reduced. There is a problem that becomes difficult. For this reason, as described in, for example, Japanese Patent Application Laid-Open No. 9-314048, while securing the flexibility of the resin-coated flexible tube, a nail or the like is driven into the metal flexible tube to make a hole. When the metal layer is formed of a vinyl chloride resin having a Shore durometer hardness (D type) of 18 to 37, the metal layer is formed so that the end of the broken resin layer does not easily block the gap between the resin layer and the nail. A resin-coated flexible tube coated with a flexible tube has been proposed.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記提案の
樹脂被覆可撓管は、樹脂層を塩素を含む塩化ビニル樹脂
で形成しているので、焼却時にダイオキシンなどを含む
有害ガスを発生する欠点があり、また、塩化ビニル樹脂
に含まれる塩素から発生した塩化水素が金属製可撓管を
腐食させ易いので、耐久性を損なうおそれもある。本発
明は上記実情に鑑みてなされたものであって、可撓性や
耐久性を損なうことなく、釘などが打ち込まれて明いた
孔の有無を検査し易くし、しかも、焼却時の有害ガスの
発生を防止できるようにすることを目的とする。
However, in the resin-coated flexible tube proposed above, since the resin layer is formed of a vinyl chloride resin containing chlorine, there is a disadvantage that harmful gas containing dioxin and the like is generated during incineration. In addition, since hydrogen chloride generated from chlorine contained in the vinyl chloride resin easily corrodes the metal flexible tube, the durability may be impaired. The present invention has been made in view of the above circumstances, and makes it easy to inspect the presence or absence of a hole that has been driven into a nail without impairing flexibility and durability. It is an object of the present invention to be able to prevent the occurrence of the problem.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明の特
徴構成は、金属製可撓管を樹脂層で被覆してある樹脂被
覆可撓管であって、前記樹脂層を、引張り弾性率(kg
/cm2)が590〜1500のポリオレフィン系樹脂で
形成してある点にある。つまり、樹脂層を形成するポリ
オレフィン系樹脂は塩素などのハロゲン族元素を含まな
いので、塩化水素などの腐食性ガスが発生するおそれが
少なく、また、焼却時にダイオキシンなどを含む有害ガ
スが発生するおそれも少ない。また、樹脂層を形成する
ポリオレフィン系樹脂の引張り弾性率(kg/cm2)が
590未満の場合は、釘などを打ち込んで金属製可撓管
に孔を明けてしまったときに、破れた樹脂層の端部がそ
の樹脂層と釘などとの隙間を塞ぎ易く、引張り弾性率
(kg/cm2)が1500を越える場合は、可撓性を充
分確保できず、引張り弾性率(kg/cm2)が590〜
1500の範囲では、可撓性を充分確保しながら、釘な
どを打ち込んで金属製可撓管に孔を明けてしまったとき
に、破れた樹脂層の端部がその樹脂層と釘などとの隙間
を塞ぎにくくなる。従って、可撓性や耐久性を損なうこ
となく、釘などが打ち込まれて明いた孔の有無を検査し
易くなり、しかも、焼却時の有害ガスの発生を防止でき
る。
According to a first aspect of the present invention, there is provided a resin-coated flexible tube in which a metal flexible tube is covered with a resin layer, wherein the resin layer has a tensile modulus of elasticity. (kg
/ Cm 2 ) of 590 to 1500. That is, since the polyolefin-based resin forming the resin layer does not contain a halogen group element such as chlorine, there is little possibility that corrosive gas such as hydrogen chloride is generated, and there is a possibility that harmful gas containing dioxin or the like is generated at the time of incineration. Also less. Further, when the tensile elastic modulus (kg / cm 2 ) of the polyolefin resin forming the resin layer is less than 590, when the hole is made in the metal flexible tube by driving a nail or the like, the broken resin is used. The edge of the layer is easy to close the gap between the resin layer and the nail, etc.
When (kg / cm 2 ) exceeds 1500, sufficient flexibility cannot be ensured, and the tensile modulus (kg / cm 2 ) is 590 to 590.
In the range of 1500, when a nail or the like is punched into a metal flexible tube while securing sufficient flexibility, the end portion of the torn resin layer is formed between the resin layer and the nail or the like. It becomes difficult to close the gap. Therefore, it is easy to inspect the presence or absence of a hole that has been driven into by nails or the like without impairing flexibility and durability, and it is possible to prevent generation of harmful gas during incineration.

【0005】請求項2記載の発明の特徴構成は、前記ポ
リオレフィン系樹脂が、引張り弾性率(kg/cm2)が
590〜1400のエチレン−アクリル酸エチル共重合
体である点にある。つまり、引張り弾性率(kg/c
2)が590〜1400のエチレン−アクリル酸エチル
共重合体で形成した樹脂層で金属製可撓管を被覆した樹
脂被覆可撓管は、可撓性や耐久性を損なうことなく、釘
などが打ち込まれて明いた孔の有無を検査し易くなり、
しかも、焼却時の有害ガスの発生を防止できる。その
上、エチレン−アクリル酸エチル共重合体は、難燃性、
強度、低温脆性、耐油性の点でも優れているので好まし
い。
A feature of the invention according to claim 2 is that the polyolefin resin is an ethylene-ethyl acrylate copolymer having a tensile modulus (kg / cm 2 ) of 590 to 1400. That is, the tensile modulus (kg / c
m 2 ) is a resin-coated flexible tube obtained by coating a metal flexible tube with a resin layer formed of an ethylene-ethyl acrylate copolymer having a 590 to 1400, without impairing the flexibility and durability of the resin-coated flexible tube. Is easier to inspect for the presence of a hole
Moreover, the generation of harmful gases during incineration can be prevented. Moreover, ethylene-ethyl acrylate copolymer is flame-retardant,
It is preferable because it is excellent in strength, low-temperature brittleness, and oil resistance.

【0006】請求項3記載の発明の特徴構成は、前記ポ
リオレフィン系樹脂が、引張り弾性率(kg/cm2)が
700〜1500のエチレン−酢酸ビニル共重合体であ
る点にある。つまり、引張り弾性率(kg/cm2)が7
00〜1500のエチレン−酢酸ビニル共重合体で形成
した樹脂層で金属製可撓管を被覆した樹脂被覆可撓管
は、可撓性や耐久性を損なうことなく、釘などが打ち込
まれて明いた孔の有無を検査し易くなり、しかも、焼却
時の有害ガスの発生を防止できる。その上、エチレン−
酢酸ビニル共重合体は、難燃性、強度、低温脆性の点で
も優れているので好ましい。
A feature of the invention according to claim 3 is that the polyolefin resin is an ethylene-vinyl acetate copolymer having a tensile modulus (kg / cm 2 ) of 700 to 1500. That is, the tensile modulus (kg / cm 2 ) is 7
A resin-coated flexible tube in which a metal flexible tube is coated with a resin layer formed of a copolymer of ethylene and vinyl acetate of No. 00 to 1500, without being impaired in flexibility or durability, is exposed to nails or the like without being damaged. It is easy to inspect the presence or absence of the hole, and furthermore, generation of harmful gas at the time of incineration can be prevented. In addition, ethylene-
Vinyl acetate copolymers are preferred because they are also excellent in flame retardancy, strength, and low-temperature brittleness.

【0007】請求項4記載の発明の特徴構成は、前記ポ
リオレフィン系樹脂が、引張り弾性率(kg/cm2)が
590〜1400のエチレン−アクリル酸エチル共重合
体と、引張り弾性率(kg/cm2)が700〜1500
のエチレン−酢酸ビニル共重合体とをブレンドしたもの
である点にある。つまり、引張り弾性率(kg/cm2)
が590〜1400のエチレン−アクリル酸エチル共重
合体と、引張り弾性率(kg/cm2)が700〜150
0のエチレン−酢酸ビニル共重合体とをブレンドしたポ
リオレフィン系樹脂で樹脂層を形成して、可撓性や耐久
性を損なうことなく、釘などが打ち込まれて明いた孔の
有無を検査し易くなり、しかも、焼却時の有害ガスの発
生を防止できる樹脂被覆可撓管を製造することができ
る。その上、難燃性、強度、低温脆性、耐油性の程度を
調整し易い。
According to a fourth aspect of the present invention, the polyolefin resin is composed of an ethylene-ethyl acrylate copolymer having a tensile modulus (kg / cm 2 ) of 590 to 1400, and a tensile modulus (kg / cm 2 ). cm 2 ) is 700 to 1500
And ethylene-vinyl acetate copolymer. That is, tensile modulus (kg / cm 2 )
And an ethylene-ethyl acrylate copolymer having a tensile modulus (kg / cm 2 ) of 700 to 150
Forming a resin layer with a polyolefin resin blended with an ethylene-vinyl acetate copolymer of No. 0, it is easy to inspect the presence or absence of a hole that has been driven into a nail without impairing flexibility and durability. In addition, a resin-coated flexible tube capable of preventing generation of harmful gas at the time of incineration can be manufactured. In addition, it is easy to adjust the degree of flame retardancy, strength, low temperature brittleness, and oil resistance.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。 〔第1実施形態〕図1は、金属製可撓管の一例としての
薄肉ステンレス鋼(SUS304)製のコルゲート管1を
樹脂層2で被覆してある都市ガスやプロパンガスなどの
燃料ガス用配管に使用する樹脂被覆可撓管3を示す。前
記樹脂層2は、引張り弾性率(kg/cm2)が590〜
1400のポリオレフィン系樹脂であるエチレン−アク
リル酸エチル共重合体で形成してあり、耐候剤、難燃
剤、酸化防止剤、着色剤、酸化防止剤などの添加剤を適
宜配合してある。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 shows a fuel gas pipe such as a city gas or a propane gas in which a thin stainless steel (SUS304) corrugated pipe 1 as an example of a metal flexible pipe is covered with a resin layer 2. 1 shows a resin-coated flexible tube 3 used for the present invention. The resin layer 2 has a tensile modulus of elasticity (kg / cm 2 ) of 590 to 590.
It is formed of an ethylene-ethyl acrylate copolymer as a polyolefin resin of No. 1400, and additives such as a weathering agent, a flame retardant, an antioxidant, a coloring agent, and an antioxidant are appropriately compounded.

【0009】〔第2実施形態〕第1実施形態で示したエ
チレン−アクリル酸エチル共重合体で形成してある樹脂
層2に代えて、引張り弾性率(kg/cm2)が700〜
1500のポリオレフィン系樹脂であるエチレン−酢酸
ビニル共重合体で形成した樹脂層2でコルゲート管1を
被覆して、樹脂被覆可撓管3を構成しても良い。その他
の構成は第1実施形態と同様である。
[Second Embodiment] Instead of the resin layer 2 formed of the ethylene-ethyl acrylate copolymer shown in the first embodiment, a tensile elastic modulus (kg / cm 2 ) of 700 to 700 is used.
The corrugated tube 1 may be covered with a resin layer 2 formed of an ethylene-vinyl acetate copolymer which is a polyolefin resin of 1500 to form a resin-coated flexible tube 3. Other configurations are the same as those of the first embodiment.

【0010】〔第3実施形態〕第1実施形態で示したエ
チレン−アクリル酸エチル共重合体で形成してある樹脂
層2に代えて、引張り弾性率(kg/cm2)が590〜
1400のエチレン−アクリル酸エチル共重合体と、引
張り弾性率(kg/cm2)が700〜1500のエチレ
ン−酢酸ビニル共重合体とをブレンドしたポリオレフィ
ン系樹脂で形成した樹脂層2でコルゲート管1を被覆し
て、樹脂被覆可撓管3を構成しても良い。その他の構成
は第1実施形態と同様である。
[Third Embodiment] Instead of the resin layer 2 formed of the ethylene-ethyl acrylate copolymer shown in the first embodiment, a tensile elastic modulus (kg / cm 2 ) of 590 to 590 is used.
A corrugated tube 1 comprising a resin layer 2 formed of a polyolefin resin blended with an ethylene-ethyl acrylate copolymer of 1400 and an ethylene-vinyl acetate copolymer having a tensile modulus (kg / cm 2 ) of 700 to 1500 To form the resin-coated flexible tube 3. Other configurations are the same as those of the first embodiment.

【0011】〔その他の実施形態〕 1.本発明による樹脂被覆可撓管は、給水用や給湯用の
配管、冷暖房用の熱媒配管、冷温水用配管、蒸気配管な
どに使用するものであっても良い。 2.本発明による樹脂被覆可撓管は、銅管やアルミ管な
どの軟質金属製可撓管を樹脂層で被覆したものであって
も良い。 3.本発明による樹脂被覆可撓管は、コルゲート加工や
蛇腹加工を施していない銅管やアルミ管などの軟質金属
製可撓管を樹脂層で被覆したものであっても良い。
[Other Embodiments] The resin-coated flexible tube according to the present invention may be used for water supply or hot water supply piping, cooling / heating heating medium piping, cold / hot water piping, steam piping, or the like. 2. The resin-coated flexible tube according to the present invention may be a flexible tube made of a soft metal such as a copper tube or an aluminum tube covered with a resin layer. 3. The resin-coated flexible tube according to the present invention may be a flexible tube made of a soft metal such as a copper tube or an aluminum tube that has not been subjected to corrugation or bellows processing, covered with a resin layer.

【0012】[0012]

【実施例】〔第1実施例〕薄肉ステンレス鋼(SUS3
04)製コルゲート管1を使用して、第1実施形態で示
した樹脂被覆可撓管としての引張り弾性率(kg/c
2)が594、1028、1387の各エチレン−アク
リル酸エチル共重合体(EEA)で形成してある樹脂層2
を被覆した呼び径20Aの樹脂被覆可撓管3(以下、実
施例1,2,3という)と、引張り弾性率(kg/cm2)
が582、1436の各エチレン−アクリル酸エチル共
重合体(EEA)で形成してある樹脂層2を被覆した比較
用の呼び径20Aの樹脂被覆可撓管3(以下、比較例
1,2という)と、塩化ビニル樹脂(PVC)で形成して
ある樹脂層2を被覆した従来の呼び径20Aの樹脂被覆
可撓管3(以下、従来例という)とを、ガス用ステンレス
鋼フレキシブル管(フレキ管)標準仕様書(平成10年7
月 社団法人日本ガス協会発行)に規定する寸法で製作
した。[表1]は、それらの性能試験の比較結果を示
す。
[First Embodiment] Thin stainless steel (SUS3)
04) Using the corrugated tube 1 made of resin, the tensile elastic modulus (kg / c) as the resin-coated flexible tube shown in the first embodiment
m 2 ) is a resin layer 2 formed of each of ethylene-ethyl acrylate copolymer (EEA) of 594, 1028 and 1387
And a resin-coated flexible tube 3 having a nominal diameter of 20 A (hereinafter, referred to as Examples 1, 2, and 3) and a tensile modulus of elasticity (kg / cm 2 ).
Is a resin-coated flexible tube 3 having a nominal diameter of 20A for comparison and coated with a resin layer 2 formed of each of ethylene-ethyl acrylate copolymers (EEA) of 582 and 1436 (hereinafter referred to as Comparative Examples 1 and 2). ) And a conventional resin-coated flexible tube 3 (hereinafter, referred to as a conventional example) having a nominal diameter of 20A and covered with a resin layer 2 formed of a vinyl chloride resin (PVC). Pipe) standard specifications (1998
(Published by the Japan Gas Association). [Table 1] shows the comparison results of those performance tests.

【0013】[0013]

【表1】 [Table 1]

【0014】[表1]中の各性能試験の内容を以下に説
明する。釘打ち試験は、実施例1,2,3と比較例1,
2と従来例との各10本について、釘4を樹脂被覆可撓
管3に打ち込んだときに、樹脂層2の端部がその樹脂層
2と釘4との隙間を塞ぎ易いか否かを調べるもので、図
2に示すように、樹脂被覆可撓管3の両端をキャップ
6,7で気密に塞いで、コルゲート管1の内部とバッフ
ァータンクTとに亘って3kPaの加圧空気を10リット
ル以上充填し、その樹脂被覆可撓管3に釘4を貫通する
まで打ち込んだときのコルゲート管1内部の1分間の圧
力降下量を、キャップ7に接続した圧力計8で計測し
た。[表1]中、圧力降下量が10本全部について0.
15kPa以上の場合は◎で示し、10本中の一部につい
て0.15kPa以上の場合は○で示し、10本全部につ
いて0.15kPa未満の場合は×で示してある。
The contents of each performance test in Table 1 will be described below. The nailing test was performed in Examples 1, 2 and 3 and Comparative Examples 1 and 2.
2 and the conventional example, whether or not the end of the resin layer 2 is likely to close the gap between the resin layer 2 and the nail 4 when the nail 4 is driven into the resin-coated flexible tube 3. As shown in FIG. 2, both ends of the resin-coated flexible tube 3 are air-tightly closed with caps 6 and 7, and pressurized air of 3 kPa is applied to the inside of the corrugated tube 1 and the buffer tank T by 10 kPa. The amount of pressure drop for one minute inside the corrugated tube 1 when the resin-filled flexible tube 3 was filled until the nail 4 penetrated was measured by a pressure gauge 8 connected to the cap 7. In [Table 1], the pressure drop amount was set to 0.
In the case of 15 kPa or more, it is indicated by ◎, and in some of the 10 lines, it is indicated by ○, in the case of 0.15 kPa or more, and in the case of less than 0.15 kPa, the cross is indicated by x.

【0015】ねじり試験、耐候性試験、難燃性試験、冷
熱サイクル試験、被覆密着性の検査、可とう性試験、屈
曲試験、耐溶液性試験の各々は、ガス用ステンレス鋼フ
レキシブル管(フレキ管)標準仕様書(平成10年7月
社団法人日本ガス協会発行)に規定するもので、実施例
1,2,3と比較例1,2と従来例との各3本について
各試験を実施し、3本全部について標準仕様を満たして
いる場合は◎で示し、3本中の一部について標準仕様を
満たしていない場合は○で示し、3本全部について標準
仕様を満たしていない場合は×で示してある。
Each of a torsion test, a weather resistance test, a flame retardancy test, a thermal cycle test, a coating adhesion test, a flexibility test, a bending test, and a solution resistance test is performed using a stainless steel flexible pipe for gas (flexible pipe). ) Standard specifications (July 1998
Each test was conducted for each of Examples 1, 2 and 3, Comparative Examples 1 and 2, and a conventional example, and all three met the standard specifications. Indicates that some of the three do not meet the standard specifications, and indicates that all three do not meet the standard specifications.

【0016】[表1]から、樹脂層2を形成するエチレ
ン−アクリル酸エチル共重合体(EEA)の引張り弾性率
(kg/cm2)が590未満の場合は、釘4を打ち込ん
でコルゲート管1に孔5を明けてしまったときに、破れ
た樹脂層2の端部がその樹脂層2と釘4との隙間を塞ぎ
易く、引張り弾性率(kg/cm2)が1400を越える
場合は、可撓性を充分確保できず、引張り弾性率(kg
/cm2)が590〜1400の範囲では、可撓性を充分
確保しながら、釘4を打ち込んでコルゲート管1に孔5
を明けてしまったときに、破れた樹脂層2の端部がその
樹脂層2と釘4との隙間を塞ぎにくいことが分かる。
According to Table 1, the tensile modulus of the ethylene-ethyl acrylate copolymer (EEA) forming the resin layer 2 is shown.
When (kg / cm 2 ) is less than 590, when the nail 4 is driven into the corrugated tube 1 to form the hole 5, the end of the torn resin layer 2 is formed between the resin layer 2 and the nail 4. If the gap is easily closed and the tensile elastic modulus (kg / cm 2 ) exceeds 1400, sufficient flexibility cannot be secured, and the tensile elastic modulus (kg / cm 2 )
/ Cm 2 ) is in the range of 590 to 1400, the nail 4 is driven into the corrugated tube 1 with a hole 5 while securing sufficient flexibility.
It can be seen that the end of the torn resin layer 2 is unlikely to close the gap between the resin layer 2 and the nail 4 when dawn.

【0017】〔第2実施例〕薄肉ステンレス鋼(SUS
304)製コルゲート管1を使用して、第2実施形態で
示した樹脂被覆可撓管としての引張り弾性率(kg/c
2)が729、1152、1473の各エチレン−酢酸
ビニル共重合体(EVA)で形成してある樹脂層2を被覆
した呼び径20Aの樹脂被覆可撓管3(以下、実施例
4,5,6という)と、引張り弾性率(kg/cm2)が6
74、1536の各エチレン−酢酸ビニル共重合体(E
VA)で形成してある樹脂層2を被覆した比較用の呼び
径20Aの樹脂被覆可撓管3(以下、比較例3,4とい
う)と、塩化ビニル樹脂(PVC)で形成してある樹脂層
2を被覆した従来の呼び径20Aの樹脂被覆可撓管3
(以下、従来例という)とを、ガス用ステンレス鋼フレキ
シブル管(フレキ管)標準仕様書(平成10年7月 社団
法人日本ガス協会発行)に規定する寸法で製作した。
[表2]は、それらの性能試験の比較結果を示す。
Second Embodiment Thin stainless steel (SUS)
304), the tensile elastic modulus (kg / c) of the resin-coated flexible tube shown in the second embodiment using the corrugated tube 1 made of
m 2 ) is a resin-coated flexible tube 3 having a nominal diameter of 20 A coated with a resin layer 2 formed of each of ethylene-vinyl acetate copolymers (EVA) of 729, 1152 and 1473 (hereinafter referred to as Examples 4 and 5). , 6) and a tensile modulus of elasticity (kg / cm 2 ) of 6
74, 1536 ethylene-vinyl acetate copolymers (E
VA), a resin-coated flexible tube 3 having a nominal diameter of 20 A (hereinafter referred to as Comparative Examples 3 and 4) coated with a resin layer 2 formed of VA, and a resin formed of a vinyl chloride resin (PVC). Conventional resin-coated flexible tube 3 having a nominal diameter of 20 A coated with a layer 2
(Hereinafter referred to as a conventional example) were manufactured with dimensions specified in a stainless steel flexible pipe (flexible pipe) standard specification for gas (issued by the Japan Gas Association in July 1998).
[Table 2] shows the comparison results of those performance tests.

【0018】[0018]

【表2】 [Table 2]

【0019】[表2]中の各性能試験の内容は、第1実
施例で示したものと同様であるので、その説明は省略す
る。[表2]から、樹脂層2を形成するエチレン−酢酸
ビニル共重合体(EVA)の引張り弾性率(kg/cm2)
が700未満の場合は、釘4を打ち込んでコルゲート管
1に孔5を明けてしまったときに、破れた樹脂層2の端
部がその樹脂層2と釘4との隙間を塞ぎ易く、引張り弾
性率(kg/cm2)が1500を越える場合は、可撓性
を充分確保できず、引張り弾性率(kg/cm2)が70
0〜1500の範囲では、可撓性を充分確保しながら、
釘4を打ち込んでコルゲート管1に孔5を明けてしまっ
たときに、破れた樹脂層2の端部がその樹脂層2と釘4
との隙間を塞ぎにくいことが分かる。
The contents of each performance test in [Table 2] are the same as those shown in the first embodiment, and the description thereof will be omitted. From Table 2, the tensile modulus (kg / cm 2 ) of the ethylene-vinyl acetate copolymer (EVA) forming the resin layer 2 is shown.
Is less than 700, when the nail 4 is driven into the hole 5 in the corrugated pipe 1, the end of the torn resin layer 2 is likely to close the gap between the resin layer 2 and the nail 4, and the tension is pulled. When the elastic modulus (kg / cm 2 ) exceeds 1500, sufficient flexibility cannot be secured, and the tensile elastic modulus (kg / cm 2 ) is 70.
In the range of 0 to 1500, while ensuring sufficient flexibility,
When the nail 4 is driven into the hole 5 in the corrugated pipe 1, the end of the torn resin layer 2 is separated from the resin layer 2 by the nail 4.
It can be seen that it is difficult to close the gap with.

【図面の簡単な説明】[Brief description of the drawings]

【図1】樹脂被覆可撓管の断面図FIG. 1 is a sectional view of a resin-coated flexible tube.

【図2】釘打ち試験の試験方法を示す側面図FIG. 2 is a side view showing a test method of a nailing test.

【符号の説明】[Explanation of symbols]

1 金属製可撓管 2 樹脂層 1 Flexible metal tube 2 Resin layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H111 AA03 BA01 BA15 BA34 CA44 CA52 CB03 DA26 DB11 DB18 4F100 AB01A AB04 AK03B AK68B AK70B AL05B BA02 DA11A DA13 GB90 JK07B JK14 JK17A YY00B  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3H111 AA03 BA01 BA15 BA34 CA44 CA52 CB03 DA26 DB11 DB18 4F100 AB01A AB04 AK03B AK68B AK70B AL05B BA02 DA11A DA13 GB90 JK07B JK14 JK17A YY00B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属製可撓管を樹脂層で被覆してある樹
脂被覆可撓管であって、 前記樹脂層を、引張り弾性率(kg/cm2)が590〜
1500のポリオレフィン系樹脂で形成してある樹脂被
覆可撓管。
1. A resin-coated flexible tube in which a metal flexible tube is covered with a resin layer, wherein the resin layer has a tensile modulus of elasticity (kg / cm 2 ) of 590 to 590.
A resin-coated flexible tube made of 1500 polyolefin resin.
【請求項2】 前記ポリオレフィン系樹脂が、引張り弾
性率(kg/cm2)が590〜1400のエチレン−ア
クリル酸エチル共重合体である請求項1記載の樹脂被覆
可撓管。
2. The resin-coated flexible tube according to claim 1, wherein the polyolefin resin is an ethylene-ethyl acrylate copolymer having a tensile modulus (kg / cm 2 ) of 590 to 1400.
【請求項3】 前記ポリオレフィン系樹脂が、引張り弾
性率(kg/cm2)が700〜1500のエチレン−酢
酸ビニル共重合体である請求項1記載の樹脂被覆可撓
管。
3. The resin-coated flexible tube according to claim 1, wherein the polyolefin-based resin is an ethylene-vinyl acetate copolymer having a tensile modulus (kg / cm 2 ) of 700 to 1500.
【請求項4】 前記ポリオレフィン系樹脂が、引張り弾
性率(kg/cm2)が590〜1400のエチレン−ア
クリル酸エチル共重合体と、引張り弾性率(kg/c
2)が700〜1500のエチレン−酢酸ビニル共重合
体とをブレンドしたものである請求項1記載の樹脂被覆
可撓管。
4. An ethylene-ethyl acrylate copolymer having a tensile modulus (kg / cm 2 ) of 590 to 1400 and a tensile modulus (kg / c)
m 2) ethylene is 700 to 1500 - a resin-coated flexible tube according to claim 1, wherein is obtained by blending a vinyl acetate copolymer.
JP11183133A 1999-06-29 1999-06-29 Flexible pipe covered by resin Pending JP2001012662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11183133A JP2001012662A (en) 1999-06-29 1999-06-29 Flexible pipe covered by resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11183133A JP2001012662A (en) 1999-06-29 1999-06-29 Flexible pipe covered by resin

Publications (1)

Publication Number Publication Date
JP2001012662A true JP2001012662A (en) 2001-01-16

Family

ID=16130385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11183133A Pending JP2001012662A (en) 1999-06-29 1999-06-29 Flexible pipe covered by resin

Country Status (1)

Country Link
JP (1) JP2001012662A (en)

Similar Documents

Publication Publication Date Title
US20180148922A1 (en) Expansion Joint Seal System
WO1999035202A1 (en) Insulation protection tape
CN109843391A (en) Intumescent back-fire relief band construction
CN107532751A (en) Smog and sound barriers for building penetration portion
JP2001012662A (en) Flexible pipe covered by resin
JP3877466B2 (en) Resin-coated flexible tube
JP2001027368A (en) Resin-coated flexible pipe
JP2000320739A (en) Resin-covered flexible tube
JP2000304167A (en) Resin coating flexible pipe
JP2006335780A (en) Flame-retardant resin composition and resin-coated metal pipe
JP2006232954A (en) Flame-retardant resin composition and metal pipe coated with resin
WO2021251021A1 (en) Waterproof sheet
CN105609166A (en) Electric wire and cable
Song et al. Barrier properties of two pipeline coatings
JP2013007421A (en) Reinforced composite pipe
US8544225B2 (en) Remodeling cable protecting plate
JP2003056762A (en) Resin coated metal pipe
Baskaran et al. Understanding low-sloped roofs under hurricane Charley from field to practice
JP2000352482A (en) Resin covered flexible pipe
JPH105692A (en) Resin-coated flexible steel pipe
JP2012052641A (en) Sound insulation member for piping
JP5507986B2 (en) Compression caulking fitting
JPS6327189Y2 (en)
JP2019019883A (en) Corrosion prevention structure, corrosion prevention construction method, and member for corrosion prevention structure
JP2008174686A (en) Self-adhesive tape for protecting aerial distribution line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080612