JP2001010809A - Method and apparatus for carefully selecting carbon nano-fiber - Google Patents

Method and apparatus for carefully selecting carbon nano-fiber

Info

Publication number
JP2001010809A
JP2001010809A JP11215716A JP21571699A JP2001010809A JP 2001010809 A JP2001010809 A JP 2001010809A JP 11215716 A JP11215716 A JP 11215716A JP 21571699 A JP21571699 A JP 21571699A JP 2001010809 A JP2001010809 A JP 2001010809A
Authority
JP
Japan
Prior art keywords
magnetic
slurry
drum
metal catalyst
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11215716A
Other languages
Japanese (ja)
Other versions
JP3363113B2 (en
Inventor
Kanichi Ito
寛一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP21571699A priority Critical patent/JP3363113B2/en
Publication of JP2001010809A publication Critical patent/JP2001010809A/en
Application granted granted Critical
Publication of JP3363113B2 publication Critical patent/JP3363113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To select/separate carbon nano-fibers which have grown up on catalyst fragments as nuclei made of a magnetic metal by thermally decomposing ethylene, etc., in the presence of a metal catalyst comprising a magnetic substance such as iron and then by making obtained solid products pass through a magnetic separator. SOLUTION: Ethylene, carbon monoxide or the like is thermally decomposed in the presence of a metal catalyst containing a magnetic substance such as iron and/or nickel, and thermally decomposed products 4 containing formed carbon nano-fibers 3 are fed into a separation vessel 5 where liquid is stored, followed by being agitated together with a surfactant 6 so as to form slurry. The slurry is fed on the top of a drum 18 rotating in the direction of an arrow 17 around the peripheral surface of a fixed cylindrical magnet 16 having a defective part in a drum-type magnetic separator 7. Magnetic substances in the slurry are adsorbed on the drum 18 and are rotated toward the defective part of the magnet 16, in which the magnetic substances are desorbed from the drum 18, are washed by means of a spray nozzle 26 and are stored as magnetic slurry in a storage tank 20. Nonmagnetic slurry 11 is made to stay in a storage tank 19. Carbon nano-fibers 3 are separated and recovered through a filter 9 from the magnetic slurry and separated liquid 10 is returned to the separation vessel 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、水素吸蔵材など
に用いられるカーボンナノファイバーの精選方法及び装
置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for finely selecting carbon nanofibers used as a hydrogen storage material.

【0002】[0002]

【従来の技術】鉄やニッケルなどの金属触媒を用いてエ
チレンなどのハイドロカーボンガスや一酸化炭素などを
熱分解して得られるカーボンナノファイバーが、最近水
素吸蔵合金以上に水素ガスを吸蔵するという驚異的な実
験結果が発表され、水素貯蔵材料として注目されてい
る。この水素吸蔵のメカニズムは完全に明らかにされて
はいないが、水素吸蔵合金は比重が重く繰り返し使用で
粉化するなどの欠点があるので、合金と同等以上の貯蔵
性能が安定的に証明されれば、燃料電池などの水素貯蔵
材料として活用できるので、現在各所でその性能が追試
されている。
2. Description of the Related Art Carbon nanofibers obtained by thermally decomposing a hydrocarbon gas such as ethylene or carbon monoxide using a metal catalyst such as iron or nickel have recently absorbed hydrogen gas more than a hydrogen storage alloy. Astonishing experimental results have been announced and are attracting attention as hydrogen storage materials. Although the mechanism of hydrogen storage has not been fully elucidated, hydrogen storage alloys have the drawbacks of heavy specific gravity and powdering due to repeated use. For example, it can be used as a hydrogen storage material for fuel cells and the like.

【0003】また、現在リチュームイオン二次電池の陰
極に使用されているカーボンのリチュームイオン吸蔵能
力は電池の容量を左右する重要な因子なので、この陰極
にカーボンナノファイバーを用いることによってリチュ
ームイオンの吸蔵能力を増やすことができれば、電池容
量の飛躍的向上が期待できる。
[0003] Further, the capacity of carbon, which is currently used for the cathode of a lithium ion secondary battery, to absorb lithium, is an important factor influencing the capacity of the battery. If capacity can be increased, a dramatic improvement in battery capacity can be expected.

【0004】しかしながらカーボンナノファイバーは熱
分解生成物なので、これ以外の構造を持ったカーボンや
ハイドロカーボンなどの好ましくない異物の生成・混在
は避けられない。これらの異物が混在することにより、
単位体積ないし単位重量当りの吸蔵容量は当然減少する
ので、カーボンナノファイバーのみを分離精選するプロ
セスが必要になるが、従来そのようなプロセスは存在し
なかった。
[0004] However, since carbon nanofibers are pyrolysis products, generation and mixing of undesirable foreign substances such as carbon and hydrocarbons having other structures cannot be avoided. By mixing these foreign substances,
Since the storage capacity per unit volume or unit weight is naturally reduced, a process of separating and selecting only carbon nanofibers is required, but such a process has not existed conventionally.

【0005】[0005]

【発明が解決しようとする課題】以上に鑑みこの発明
は、製造された熱分解生成物から好ましくない異物を除
去精選し、単位体積ないし単位重量当りの水素ガスやリ
チュームイオンなどの吸蔵能力を高めることを目的とす
る。
SUMMARY OF THE INVENTION In view of the above, the present invention removes undesired foreign substances from a produced pyrolysis product and carefully selects the same to increase the storage capacity of hydrogen gas and lithium ions per unit volume or unit weight. The purpose is to:

【0006】[0006]

【課題を解決するための手段】この発明は、カーボンナ
ノファイバーが鉄やニッケルなどの強磁性体に付着して
形成されている点に着目してなされたものである。すな
わち請求項1に記載の発明は、鉄やニッケル等の磁性体
を含む金属触媒を用いてエチレンや一酸化炭素などを熱
分解して得られた固体生成物を、磁気分離機を通すこと
により、磁性金属の触媒片を核として成長したカーボン
ナノファイバーを磁力で分離することを特徴とする、カ
ーボンナノファイバーの精選方法である。
Means for Solving the Problems The present invention has been made by paying attention to the fact that carbon nanofibers are formed by adhering to a ferromagnetic material such as iron or nickel. That is, the invention according to claim 1 is to pass a solid product obtained by thermally decomposing ethylene, carbon monoxide, and the like using a metal catalyst containing a magnetic substance such as iron or nickel, by passing through a magnetic separator. A method for selectively selecting carbon nanofibers, comprising separating magnetically grown carbon nanofibers using magnetic metal catalyst pieces as nuclei.

【0007】また請求項2に記載の発明は、鉄やニッケ
ル等の磁性体を含む金属触媒を用いてエチレンや一酸化
炭素などを熱分解して得られた固体生成物を、界面活性
剤と共に液中で攪拌して生成物を分散せしめる分散槽
と、該分散槽のスラリーから磁性スラリーを分離する磁
気分離機と、分離された磁性スラリーから固体粒子を分
離する濾過機とで構成したことを特徴とする、カーボン
ナノファイバーの精選装置である。
[0007] The invention according to claim 2 provides a solid product obtained by thermally decomposing ethylene or carbon monoxide using a metal catalyst containing a magnetic substance such as iron or nickel together with a surfactant. A dispersion tank that disperses the product by stirring in a liquid, a magnetic separator that separates a magnetic slurry from a slurry in the dispersion tank, and a filter that separates solid particles from the separated magnetic slurry. The feature is a selective device for carbon nanofiber.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を実施
例にもとずき図面を参照して説明する。図1はドラム型
磁気分離機を用いた実施例、図2は超電導磁気分離機を
用いた実施例、図3はカーボンナノファイバーの模式
図、をそれぞれ示す。なお、図2、図3において、図1
と同じ符号を付した部分は同一又は相当部分を示す。
Embodiments of the present invention will be described below with reference to the drawings based on embodiments. FIG. 1 shows an embodiment using a drum-type magnetic separator, FIG. 2 shows an embodiment using a superconducting magnetic separator, and FIG. 3 shows a schematic diagram of carbon nanofibers. 2 and 3, FIG.
The same reference numerals denote the same or corresponding parts.

【0009】図3の模式図に示すようにカーボンナノフ
ァイバー3は、微細な金属触媒片1を核にして偏平な炭
素片2がほぼG=0.34ナノメートルの隙間をもって
成長した、太さD=10〜数百ナノメートル、長さL=
数ミクロン,程度の微小な炭素繊維である。微細な金属
触媒片1の生成過程は、原料ガスが触媒金属と接触して
堆積した炭素が金属内に拡散し、金属面に生成する炭化
物の体積変化に基ずく応力で触媒表面が破損崩壊して微
粒子になるものと推定されているが、いずれにせよ金属
触媒は消耗し、電子顕微鏡による観察結果では、図3に
示すような微細な金属触媒片1を核として規則的な形態
をもったカーボンナノファイバー3が形成されている。
As shown in the schematic diagram of FIG. 3, the carbon nanofibers 3 are formed by growing flat carbon pieces 2 with a gap of approximately G = 0.34 nm with the fine metal catalyst pieces 1 as nuclei. D = 10 to several hundred nanometers, length L =
It is a fine carbon fiber of several microns. In the process of forming the fine metal catalyst pieces 1, the carbon deposited on contact of the raw material gas with the catalyst metal diffuses into the metal, and the catalyst surface is broken and collapsed by stress based on the volume change of the carbide generated on the metal surface. In any case, the metal catalyst is depleted, and according to the results of observation with an electron microscope, the metal catalyst has a regular shape with the fine metal catalyst piece 1 as a nucleus as shown in FIG. Carbon nanofibers 3 are formed.

【0010】しかしながらカーボンナノファイバー3
は、エチレンなどのハイドロカーボンガスや一酸化炭素
などを550℃〜600℃程度の比較的低温下で還元性
熱分解によって製造されるものであるから、これらの条
件においては目的とするカーボンナノファイバー以外の
形態のカーボンやハイドロカーボンなどの同時生成・混
在を防止することは困難である。
However, carbon nanofiber 3
Is produced by reductive pyrolysis of a hydrocarbon gas such as ethylene or carbon monoxide at a relatively low temperature of about 550 ° C. to 600 ° C., so that under these conditions, the target carbon nanofiber is produced. It is difficult to prevent simultaneous generation and mixing of carbon and hydrocarbons in other forms.

【0011】この発明は図1に示すように、熱分解で生
成したカーボンナノファイバー3を含む熱分解生成物4
を、まず水などの液体を蓄えた分散槽5に供給して界面
活性剤6と共に攪拌羽根15で攪拌し、生成物の固体粒
子を液中に単離分散せしめてスラリー化した後に、周知
のドラム型磁気分離機7に供給する。
According to the present invention, as shown in FIG. 1, a pyrolysis product 4 containing carbon nanofibers 3 generated by pyrolysis is used.
Is supplied to a dispersion tank 5 storing a liquid such as water, and stirred with a stirring blade 15 together with a surfactant 6. The solid particles of the product are isolated and dispersed in the liquid to form a slurry. It is supplied to the drum type magnetic separator 7.

【0012】ドラム型磁気分離機7は図示のように、一
部欠損した円筒型の固定磁石16の外周を矢印17方向
に回転するドラム18と、非磁性スラリー貯槽19、磁
性スラリー貯槽20、スプレーノズル26などで構成さ
れており、ドラム18の頂部に供給されたスラリー中の
磁性体はドラム上に吸着されて回転し、固定磁石16の
欠損部で脱着すると共にスプレーノズル26で洗浄され
てドラムを離脱し、磁性スラリーとして磁性スラリー貯
槽20内に蓄えられ、磁力の影響を受けない非磁性スラ
リー11は非磁性スラリー貯槽19内に滞留する。
As shown in the figure, a drum type magnetic separator 7 includes a drum 18 which rotates the outer periphery of a partially fixed cylindrical fixed magnet 16 in the direction of an arrow 17, a non-magnetic slurry storage tank 19, a magnetic slurry storage tank 20, and a sprayer. The magnetic material in the slurry supplied to the top of the drum 18 is adsorbed on the drum, rotates, is desorbed at the defective portion of the fixed magnet 16, is washed by the spray nozzle 26, and is cleaned by the spray nozzle 26. The non-magnetic slurry 11 which is stored as a magnetic slurry in the magnetic slurry storage tank 20 and is not affected by the magnetic force stays in the non-magnetic slurry storage tank 19.

【0013】磁性スラリー8は周知の中空糸膜などで構
成されるフィルター9によって固形磁性体すなわちカー
ボンナノファイバー3が分離回収され、分離液10は分
散槽5に戻される。また、非磁性スラリー11はフィル
ター12によって固形非磁性体すなわち異物13と分離
液14とに分離され、分離液14は分散槽5に戻され
る。
The magnetic slurry 8 is separated and recovered from the solid magnetic material, ie, the carbon nanofibers 3 by a filter 9 composed of a known hollow fiber membrane or the like, and the separated liquid 10 is returned to the dispersion tank 5. The non-magnetic slurry 11 is separated into a solid non-magnetic substance, that is, a foreign substance 13 and a separation liquid 14 by a filter 12, and the separation liquid 14 is returned to the dispersion tank 5.

【0014】図2は、その他の実施例として周知の超電
導磁気分離機7’を用いた場合の構成を示す。図1の例
と同様に熱分解生成物4は分散槽5内で界面活性剤6と
共に攪拌されて液中に分散してスラリー化した後に、周
知の超電導磁気分離機7’に供給される。
FIG. 2 shows a configuration in which a well-known superconducting magnetic separator 7 'is used as another embodiment. As in the example of FIG. 1, the thermal decomposition product 4 is stirred with a surfactant 6 in a dispersion tank 5 to be dispersed in a liquid to form a slurry, and then supplied to a well-known superconducting magnetic separator 7 '.

【0015】超電導磁気分離機7’は図示のように、網
目状金属材22を囲む超電導磁石21と冷凍機23で構
成されている。該網目状金属材22は周知の高勾配磁気
型のウール状磁性金属で構成するとよい。非磁性スラリ
ー11は網目状金属材22を通過後フィルター12によ
って固形非磁性体すなわち異物13と分離液14とに分
離され、分離液14は分散槽5に戻される。一方、網目
状金属材22で捕捉された磁性体は一旦磁気を切った後
に逆洗して22から離脱させ、磁性体を含む磁性スラリ
ー8はフィルター9によって固形磁性体すなわちカーボ
ンナノファイバー3が分離回収され、分離液10は逆洗
液の貯槽24に戻される。図中25は逆洗液の補給液を
示す。
The superconducting magnetic separator 7 'is composed of a superconducting magnet 21 surrounding a mesh-like metal member 22 and a refrigerator 23 as shown. The mesh-like metal material 22 may be made of a well-known high gradient magnetic wool-like magnetic metal. The non-magnetic slurry 11 is separated into a solid non-magnetic material, that is, a foreign substance 13 and a separation liquid 14 by the filter 12 after passing through the mesh-like metal material 22. The separation liquid 14 is returned to the dispersion tank 5. On the other hand, the magnetic material captured by the mesh-like metal material 22 is once cut off the magnetism, backwashed and separated from the magnetic material, and the magnetic slurry 8 containing the magnetic material is separated from the solid magnetic material, ie, the carbon nanofibers 3 by the filter 9. The recovered liquid 10 is returned to the backwashing liquid storage tank 24. In the drawing, reference numeral 25 denotes a replenisher of the backwashing liquid.

【0016】[0016]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0017】鉄やニッケルなどの強磁性体に付着して形
成されるカーボンナノファイバーのみが選別分離され、
従来不可能だった異物除去が可能となる。したがって本
発明によって精選されたカーボンナノファイバーは、単
位体積ないし単位重量当りの水素ガスやリチュームイオ
ンなどの吸蔵能力が著しく高くなり、燃料電池の水素貯
蔵材料やリチュームイオン二次電池の陰極材料など、付
加価値の高い工業材料として利用できる。
Only carbon nanofibers formed by adhering to ferromagnetic materials such as iron and nickel are sorted and separated,
It is possible to remove foreign substances that were not possible conventionally. Therefore, the carbon nanofiber selected according to the present invention has a remarkably high occlusion capacity of hydrogen gas or lithium ion per unit volume or unit weight, such as a hydrogen storage material for a fuel cell or a cathode material for a lithium ion secondary battery. It can be used as a high value-added industrial material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ドラム型磁気分離機を用いた本発明の実施例を
示す図である。
FIG. 1 is a diagram showing an embodiment of the present invention using a drum type magnetic separator.

【図2】超電導磁気分離機を用いた本発明の実施例を示
す図である。
FIG. 2 is a diagram showing an embodiment of the present invention using a superconducting magnetic separator.

【図3】カーボンナノファイバーの模式図を示す。FIG. 3 shows a schematic diagram of a carbon nanofiber.

【符号の説明】[Explanation of symbols]

1 金属触媒片 2 炭素片 3 カーボンナノファイバー 4 熱分解生成物 5 分散槽 6 界面活性剤 7 ドラム型磁気分離機 7’超電導磁気分離機 8 磁性スラリー 9、12 フィルター 11 非磁性スラリー 13 異物 15 攪拌羽根 16 固定磁石 18 ドラム 21 超電導磁石 22 網目状金属材 23 冷凍機 DESCRIPTION OF SYMBOLS 1 Metal catalyst piece 2 Carbon piece 3 Carbon nanofiber 4 Thermal decomposition product 5 Dispersion tank 6 Surfactant 7 Drum type magnetic separator 7'Superconducting magnetic separator 8 Magnetic slurry 9, 12 Filter 11 Non-magnetic slurry 13 Foreign material 15 Stirring Blade 16 Fixed magnet 18 Drum 21 Superconducting magnet 22 Reticulated metal material 23 Refrigerator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉄やニッケル等の磁性体を含む金属触媒
を用いてエチレンや一酸化炭素などを熱分解して得られ
た固体生成物を、磁気分離機を通すことにより、磁性金
属の触媒片を核として成長したカーボンナノファイバー
を磁力で分離することを特徴とする、カーボンナノファ
イバーの精選方法。
1. A solid product obtained by thermally decomposing ethylene, carbon monoxide or the like using a metal catalyst containing a magnetic substance such as iron or nickel is passed through a magnetic separator to form a magnetic metal catalyst. A method for selecting carbon nanofibers, which comprises separating magnetically grown carbon nanofibers using pieces as nuclei.
【請求項2】 鉄やニッケル等の磁性体を含む金属触媒
を用いてエチレンや一酸化炭素などを熱分解して得られ
た固体生成物を、界面活性剤と共に液中で攪拌して生成
物を分散せしめる分散槽と、該分散槽のスラリーから磁
性スラリーを分離する磁気分離機と、分離された磁性ス
ラリーから固体粒子を分離する濾過器とで構成したこと
を特徴とする、カーボンナノファイバーの精選装置。
2. A solid product obtained by thermally decomposing ethylene, carbon monoxide or the like using a metal catalyst containing a magnetic substance such as iron or nickel is stirred together with a surfactant in a liquid to obtain a product. , A magnetic separator that separates the magnetic slurry from the slurry in the dispersion tank, and a filter that separates solid particles from the separated magnetic slurry, characterized in that the carbon nanofiber Selection equipment.
JP21571699A 1999-06-24 1999-06-24 Method and apparatus for selecting carbon nanofiber Expired - Fee Related JP3363113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21571699A JP3363113B2 (en) 1999-06-24 1999-06-24 Method and apparatus for selecting carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21571699A JP3363113B2 (en) 1999-06-24 1999-06-24 Method and apparatus for selecting carbon nanofiber

Publications (2)

Publication Number Publication Date
JP2001010809A true JP2001010809A (en) 2001-01-16
JP3363113B2 JP3363113B2 (en) 2003-01-08

Family

ID=16677002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21571699A Expired - Fee Related JP3363113B2 (en) 1999-06-24 1999-06-24 Method and apparatus for selecting carbon nanofiber

Country Status (1)

Country Link
JP (1) JP3363113B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099740A1 (en) * 2005-03-25 2006-09-28 Institut National De La Recherche Scientifique Methods and apparatuses for purifying carbon filamentary structures
JP2008044840A (en) * 2006-08-10 2008-02-28 Semes Co Ltd Carbon nanotube trap device and system and method of manufacturing carbon nanotube using the same
JP2011025391A (en) * 2009-07-29 2011-02-10 Sumitomo Heavy Industries Fine Tech Co Ltd Rotary drum type abrasive grain recovery device
US7927567B2 (en) 2004-12-20 2011-04-19 Sharp Kabushiki Kaisha Adsorbent, porous filter, air cleaning device, method of cleaning air, and method of manufacturing porous filter
WO2016080179A1 (en) * 2014-11-19 2016-05-26 株式会社日立製作所 Magnetic separation device and raw water treatment apparatus
CN112957871A (en) * 2021-02-24 2021-06-15 江苏工程职业技术学院 Automatic processing apparatus of machinery production waste gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927567B2 (en) 2004-12-20 2011-04-19 Sharp Kabushiki Kaisha Adsorbent, porous filter, air cleaning device, method of cleaning air, and method of manufacturing porous filter
WO2006099740A1 (en) * 2005-03-25 2006-09-28 Institut National De La Recherche Scientifique Methods and apparatuses for purifying carbon filamentary structures
JP2008044840A (en) * 2006-08-10 2008-02-28 Semes Co Ltd Carbon nanotube trap device and system and method of manufacturing carbon nanotube using the same
JP4594966B2 (en) * 2006-08-10 2010-12-08 セメス株式会社 Carbon nanotube trap apparatus and carbon nanotube production system and method using the same
US7935175B2 (en) 2006-08-10 2011-05-03 Semes Co., Ltd. Apparatus for trapping carbon nanotube and system and method for producing the carbon nanotube
JP2011025391A (en) * 2009-07-29 2011-02-10 Sumitomo Heavy Industries Fine Tech Co Ltd Rotary drum type abrasive grain recovery device
WO2016080179A1 (en) * 2014-11-19 2016-05-26 株式会社日立製作所 Magnetic separation device and raw water treatment apparatus
JP2016097325A (en) * 2014-11-19 2016-05-30 株式会社日立製作所 Magnetic separator and raw water treatment equipment
US10343938B2 (en) 2014-11-19 2019-07-09 Hitachi, Ltd. Magnetic separation device and raw water treatment apparatus
CN112957871A (en) * 2021-02-24 2021-06-15 江苏工程职业技术学院 Automatic processing apparatus of machinery production waste gas

Also Published As

Publication number Publication date
JP3363113B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP3100962B1 (en) Method and apparatus for producing carbon nanofiber
Ruiz-Cornejo et al. Synthesis and applications of carbon nanofibers: a review
JP2682486B2 (en) Method for purifying carbon nanotubes
Saito et al. Growth and structure of graphitic tubules and polyhedral particles in arc-discharge
Yu et al. Electric field-induced synthesis of dendritic nanostructured α-Fe for electromagnetic absorption application
CA2575479C (en) Methods and apparatuses for purifying carbon filamentary structures
JP2015516653A (en) Magnetic separation of electrochemical cell materials
WO2005113433A1 (en) Cladophora-form carbon, process for producing the same and production apparatus therefor
WO2013161317A1 (en) Method for purifying multilayered carbon nanotubes
EP2816144B1 (en) Carbon fiber and method for producing same
JP2001010809A (en) Method and apparatus for carefully selecting carbon nano-fiber
JP2007145713A (en) Short nanotube
Pillai et al. Purification of multi-walled carbon nanotubes
JP2005314204A (en) Method of manufacturing carbon nanotube, and composition containing carbon nanotube
CN101728049A (en) Synthetic method and equipment of magnetic liquid taking carbon coated metal nano particles as magnetic carriers
Zhang et al. Ultra-microtome for the preparation of TEM specimens from battery cathodes
Sheng et al. Thin‐Walled Carbon Nanocages: Direct Growth, Characterization, and Applications
Chen et al. Preparation of carbon microcoils by catalytic decomposition of acetylene using nickel foam as both catalyst and substrate
JP2007126338A (en) Carbon nano material, method for producing the same, and metal fine particle-carrying carbon nano material and method for producing the same
KR20140147691A (en) Method and apparatus for separating graphene, and method and apparatus for forming graphene layer
CN115427350A (en) Graphene oxide substance composition and electrode comprising same
JP6970183B2 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and its manufacturing method
JP5241543B2 (en) Method for removing iron-based impurities in vapor grown carbon fiber
Shi et al. Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation
Caudillo et al. Ferromagnetic behavior of carbon nanospheres encapsulating silver nanoparticles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees