JP2001009495A - Treatment of organic wastewater - Google Patents

Treatment of organic wastewater

Info

Publication number
JP2001009495A
JP2001009495A JP18392899A JP18392899A JP2001009495A JP 2001009495 A JP2001009495 A JP 2001009495A JP 18392899 A JP18392899 A JP 18392899A JP 18392899 A JP18392899 A JP 18392899A JP 2001009495 A JP2001009495 A JP 2001009495A
Authority
JP
Japan
Prior art keywords
treatment
sludge
phosphorus
phosphorus component
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18392899A
Other languages
Japanese (ja)
Other versions
JP4248086B2 (en
Inventor
Hisao Otake
久夫 大竹
Akio Kuroda
章夫 黒田
Junichi Kato
純一 加藤
Yoshiji Nishimoto
俶士 西本
Kenji Katsura
健治 桂
Susumu Hasegawa
進 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Shinko Pantec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd filed Critical Shinko Pantec Co Ltd
Priority to JP18392899A priority Critical patent/JP4248086B2/en
Publication of JP2001009495A publication Critical patent/JP2001009495A/en
Application granted granted Critical
Publication of JP4248086B2 publication Critical patent/JP4248086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To separate and recover a phosphorus component in a short time by separating wastewater after aeration-treatment into primary treatment water and sludge, concentrating the obtained sludge and heating the concentrated sludge under specified conditions to release phosphorus and separate into secondary treatment water containing the released phosphorus component and the secondary sludge free from phosphorus component. SOLUTION: Raw wastewater A is fed from an anaerobic treatment tank 7 to an aeration treatment tank 1 to subject to aerobic treatment by an aeration means 12. The aeration-treated liquid is separated into phosphorus component-concentrated sludge and primary treatment water (a) by a solid-liquid separation means 2. The obtained sludge is concentrated by a concentration means 3 to obtain primary sludge (x) and phosphorus component-free separated water, which is discharged together with the primary treatment water (a). The obtained primary sludge (x) is heated by passing through a heat exchanger 11 and then heated at 60-90 deg.C for 10-120 minutes using a heating means 10 in a phosphorus releasing tank 4 to release the phosphorus component. The heated sludge is separated into treated water secondary treatment water) (b) rich in the phosphorus component and secondary sludge (z) by a solid-liquid separation means 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水処理場、屎尿
処理場などの下水処理プロセス、または食品工場、化学
工場などから排出される有機性廃水を処理する方法にお
いて、低コスト、高収率でリン成分を分離、回収できる
リンの処理方法及び当該処理方法を採用した有機性廃水
の処理方法に関する。
The present invention relates to a low-cost, high-yield method for treating organic wastewater discharged from a sewage treatment process such as a sewage treatment plant, a human waste treatment plant, or a food factory or a chemical factory. The present invention relates to a method for treating phosphorus that can separate and recover phosphorus components by using the method, and a method for treating organic wastewater employing the treatment method.

【0002】[0002]

【従来の技術】如上の有機性廃水を処理するための方法
として、有機性廃水の生物学的消化により生じた、微生
物菌体を主体とする微生物バイオマス及び未処理の残存
汚泥からなる余剰汚泥を含んだ処理汚泥を沈殿槽などで
固液分離し、上澄として得られる処理水を適宜廃棄処理
する一方、余剰汚泥を海洋投棄または陸地埋立などによ
って処理する方法が広く採用されてきた。
2. Description of the Related Art As a method for treating organic wastewater, surplus sludge consisting of microbial biomass mainly composed of microbial cells and untreated residual sludge generated by biological digestion of organic wastewater is known. 2. Description of the Related Art A method has been widely adopted in which a treated sludge containing solids is separated into solid and liquid in a sedimentation tank or the like and treated water obtained as a supernatant is appropriately discarded, while excess sludge is treated by dumping in the ocean or land reclamation.

【0003】しかしながら、処理すべき有機性廃水によ
っては、このような処理により発生する処理水及び余剰
汚泥中に高含量でリン成分(すなわち、正リン酸(オル
トリン酸)、ポリリン酸、リン酸塩、リン酸エステル、
リンタンパク質、グリセロリン酸、リン脂質等)が多量
に含まれることがある。これらを廃棄することは環境汚
染の直接的な原因として問題視され、特に、かかるリン
成分を多量に含む処理水を湖沼などに排出すると水の富
栄養化に伴う植物プランクトンの著しい増殖を招くため
に好ましくない。
[0003] However, depending on the organic wastewater to be treated, a high content of phosphorus components (ie, orthophosphoric acid (orthophosphoric acid), polyphosphoric acid, phosphate) is contained in the treated water and excess sludge generated by such treatment. , Phosphate esters,
Phosphoproteins, glycerophosphate, phospholipids, etc.) in some cases. Disposal of these is regarded as a direct cause of environmental pollution, and in particular, when treated water containing such a large amount of phosphorus is discharged into lakes and marshes, phytoplankton remarkably grows due to eutrophication of water. Not preferred.

【0004】従って、沈殿装置からの処理水に下記のよ
うな凝集剤を添加してリン成分を低減した後に処理水が
排出されるというような手段が採られる場合もあった
が、大量の処理水にこのような凝集操作を施すには、大
規模の処理装置を付加せざるをえず、処理コスト、所要
時間、必要人員等の増加を招き、不利益をもたらす要因
となってしまう。また、凝集の効率も低く、リン成分の
除去が不充分に終わることもある。そして余剰汚泥中の
リン成分は除去する術のないまま投棄せざるをえない現
状にある。
Accordingly, there has been a case in which a method is employed in which the following coagulant is added to the treated water from the precipitation apparatus to reduce the phosphorus component and then the treated water is discharged. In order to perform such a coagulation operation on water, a large-scale processing apparatus must be added, which increases the processing cost, the required time, the required number of personnel, etc., and causes a disadvantage. In addition, the efficiency of aggregation is low, and the removal of the phosphorus component may be insufficiently completed. At present, phosphorus components in excess sludge must be discarded without any means to remove them.

【0005】ところで、従来より知られている、廃水中
に含まれるリンの除去プロセスとしては、凝集剤添加
法、晶析脱リン法、嫌気−好気活性汚泥法などが挙
げられる(下水道施設計画・設計指針と解説(後編)1
994年版、(社)日本下水道協会発行、第131〜1
36頁参照)。
[0005] Incidentally, conventionally known processes for removing phosphorus contained in wastewater include a flocculant addition method, a crystallization dephosphorization method, and an anaerobic-aerobic activated sludge method (sewerage facility planning).・ Design guidelines and explanations (Part 2) 1
994 edition, published by Japan Sewer Association, No. 131-1
See page 36).

【0006】の凝集剤添加法は、アルミニウムイオ
ン、鉄イオンなどの三価金属陽イオンが正リン酸イオン
と反応して難水溶性のリン酸塩を生成することを利用
し、硫酸アルミニウム等の凝集剤を廃水に混和して、難
溶性のリン酸塩から形成されるフロック(生物由来のフ
ロックも含む)が沈殿分離されるものである。この方法
では5〜20%程度の余剰汚泥の増加が認められてお
り、リン成分を多量に含む余剰汚泥の大量廃棄は、環境
保全が叫ばれている昨今、好ましいとはいい難い。
The coagulant addition method utilizes the fact that trivalent metal cations such as aluminum ions and iron ions react with orthophosphate ions to form poorly water-soluble phosphates. The flocculant is mixed with the wastewater, and the floc (including biologically derived floc) formed from the hardly soluble phosphate is precipitated and separated. According to this method, an increase in excess sludge of about 5 to 20% has been recognized, and it is hard to say that large-scale disposal of excess sludge containing a large amount of phosphorus component is preferable in recent years, as environmental conservation is being called for.

【0007】の晶析による方法とは、正リン酸イオン
とカルシウムイオンとの反応による難溶性のヒドロキシ
アパタイトの生成に基づくものであり、余剰汚泥の増加
を伴わない点では好ましいのであるが、アパタイト晶析
のために必要な条件を厳密にコントロールする必要があ
るので(例えば、前処理による炭酸イオン等晶析妨害物
質の除去、pH調整、温度調整等)、適用が限定され、ま
たコスト増大を招く原因を含んでいるので、やはり廃水
処理における手段として好ましい方法とはいえない。
The crystallization method is based on the formation of hardly soluble hydroxyapatite by the reaction of orthophosphate ions and calcium ions, and is preferable in that it does not involve an increase in excess sludge. Since the conditions required for crystallization must be strictly controlled (for example, removal of crystallization-interfering substances such as carbonate ions by pretreatment, pH adjustment, temperature adjustment, etc.), application is limited and cost increases. It is not a preferable method as a means in wastewater treatment because it includes the cause of inducing.

【0008】の嫌気−好気活性汚泥法は、嫌気状態で
エネルギー獲得のためにポリリン酸を正リン酸として放
出した微生物が、好気状態で正リン酸を過剰摂取・代謝
後ポリリン酸として蓄積することを利用した方法であ
り、廃水を嫌気槽、好気槽及び沈殿池における反復処理
に付して、余剰汚泥にリン成分を内包させ、処理水中の
リン成分を除去するものである。この方法で処理水から
有効にリン成分を除去できるが、余剰汚泥はリン成分に
富み、さらにその他種々の有機成分や重金属成分などが
含まれているのでその廃棄に問題を生じる。そして、リ
ン成分は例えば肥料やリン化合物製造等への有効利用の
可能性が考えれられるにも関わらず、かような雑多な成
分と混合した汚泥状態にあっては無駄に破棄するほかな
い。
In the anaerobic-aerobic activated sludge method, microorganisms that have released polyphosphoric acid as orthophosphoric acid in an anaerobic state for energy acquisition accumulate as polyphosphoric acid after excessive intake and metabolism of orthophosphoric acid in an aerobic state. In this method, wastewater is subjected to repeated treatment in an anaerobic tank, an aerobic tank, and a sedimentation basin so that excess sludge contains a phosphorus component and the phosphorus component in the treated water is removed. Although the phosphorus component can be effectively removed from the treated water by this method, the excess sludge is rich in the phosphorus component and contains various other organic components and heavy metal components. And although the phosphorus component may be effectively used for producing fertilizers and phosphorus compounds, for example, it is inevitably discarded in a sludge state mixed with such miscellaneous components.

【0009】そこで、生物学的処理により発生した汚泥
からリンを回収し、有効利用する目的で、汚泥を嫌気的
に処理することにより汚泥中のリン成分を溶出させ、そ
の溶出したリン成分を凝集剤を添加して回収する方法
(特開平9−267099号公報参照)が開発されてお
り、さらに最近になって、オゾン処理法(特開平9−9
4596号公報参照)、アルカリ添加法(特開平8−3
9096号公報参照)、機械的粉砕による方法(特開平
11−57791号公報参照)などにより汚泥中のリン
を回収する方法が提案されている。
Therefore, for the purpose of recovering phosphorus from the sludge generated by the biological treatment and effectively using the sludge, the sludge is anaerobically treated to elute the phosphorus component in the sludge, and the eluted phosphorus component is aggregated. A method for adding and recovering an agent has been developed (see JP-A-9-267099), and more recently, an ozone treatment method (see JP-A-9-26999).
No. 4596), an alkali addition method (Japanese Patent Laid-Open No. 8-3).
No. 9096), and a method of recovering phosphorus in sludge by a method of mechanical pulverization (see Japanese Patent Application Laid-Open No. 11-57791).

【0010】[0010]

【発明が解決しようとする課題】しかしながら、オゾン
処理法では薬品や廃棄物に起因した問題は少ないが、設
備費及びランニングコストが非常に高いので、経済的な
面から実用に供しうるとはいえない。そしてアルカリ添
加法によればアルカリ廃液が発生し、これの処理のため
にさらなる経費を必要とすることになる。また、汚泥を
嫌気的処理工程に曝すことにより微生物体内からリン成
分を放出させる工程を含む方法によれば、比較的低コス
トでリンを回収、再利用することが可能になったもの
の、長期の処理時間を要するうえ、リンの回収率が50
%程度と低く、またリン酸として回収されるために凝集
剤の添加量が多くなるものであった。そして機械的粉砕
による方法にあっては金属羽根を高速回転したり、ある
いはビーズを高速回転させるなど、特殊な装置が必要で
あってそのメインテナンスにもかなりのコストや時間を
要することになる。
However, in the ozone treatment method, although there are few problems caused by chemicals and wastes, facility costs and running costs are very high, so that it can be practically used from an economical point of view. Absent. According to the alkali addition method, an alkali waste liquid is generated, and further cost is required for treating the waste liquid. According to a method including a step of releasing phosphorus components from microorganisms by exposing sludge to an anaerobic treatment step, phosphorus can be collected and reused at a relatively low cost, Processing time is required, and the recovery rate of phosphorus is 50
%, And the amount of the coagulant added increases because it is recovered as phosphoric acid. In the method using mechanical pulverization, a special device such as rotating metal blades at a high speed or rotating beads at a high speed is required, and maintenance of the device requires considerable cost and time.

【0011】ところで、近年、湖沼、閉鎖性海域などの
CODの環境基準の達成率は、それぞれ40%、65%
と低くなっており、この原因はアオコやプランクトンな
どの内部発生物質にあると考えられている。このため、
富栄養化の原因となるチッ素、リンの総量排出規制につ
いて環境庁は平成11年2月に中央審議会へ諮問し、平
成12年3月にはこれらの規制に係る答申が行なわれる
予定となっており、有機性廃水に含まれるリン成分を効
率よく再利用可能に回収し、環境に対しても悪影響を及
ぼすことなく低コストにて実施し得る処理方法が希求さ
れ続けているところである。
In recent years, the achievement rates of the environmental standards of COD for lakes, marshes and closed sea areas have been 40% and 65%, respectively.
This is thought to be due to endogenous substances such as blue-green algae and plankton. For this reason,
The Environment Agency consulted the Central Council in February 1999 regarding the total emission control of nitrogen and phosphorus, which causes eutrophication, and a report on these regulations will be made in March 2000. There is a continuing need for a treatment method that efficiently and recyclably recovers the phosphorus component contained in the organic wastewater and that can be implemented at low cost without adversely affecting the environment.

【0012】さらにリン成分の需要に着目してみると、
現在我が国では年間90万トン以上(100億円以上に
相当)のリン鉱石が諸外国より輸入されている。しかし
ながら、その原産地では永年の消費によって高品位のリ
ン鉱石の採取が徐々に困難になってきており、今後安定
的に日本に供給されうるか否かは明らかでない。また、
アジア、欧米諸国等から年間約3000トン(4億円以
上に相当)のポリリン酸塩が日本に輸入されている現状
にあり、この輸入量は年々増大傾向にある。これはポリ
リン酸が、ATPの生産や、発ガン性を有するアスベス
トの代替物として期待されている鉱物繊維の製造の原料
となりうる他、トリポリリン酸は合成洗剤、洗浄剤、金
属イオン封鎖剤、食品添加剤の原料として、また、製
紙、染色、写真技術などに用いる試薬原料などにおいて
利用されるためであると考えられる。
Further focusing on the demand for the phosphorus component,
Currently, more than 900,000 tons (equivalent to more than 10 billion yen) of phosphorus ore are imported from other countries in Japan. However, it is becoming increasingly difficult to extract high-grade phosphate ore from its place of origin due to long-term consumption, and it is not clear whether it can be supplied to Japan in a stable manner in the future. Also,
Currently, about 3,000 tons (equivalent to more than 400 million yen) of polyphosphate are imported to Japan from Asia, Europe and the United States each year, and the amount of this import is increasing year by year. This is because polyphosphoric acid can be a raw material for the production of ATP and for the production of mineral fiber, which is expected to be a substitute for asbestos having carcinogenicity, and tripolyphosphoric acid is a synthetic detergent, detergent, sequestering agent, food It is considered that this is because it is used as a raw material of an additive and in a reagent raw material used for papermaking, dyeing, photographic technology and the like.

【0013】従って、このような国内での高い需要に応
えるべく、リン鉱石の主要成分であるリン酸塩(リン酸
カルシウム)を極めて高純度に含有する状態や、ポリリ
ン酸塩として高純度な状態で、有機性廃水由来のリン成
分を回収すれば、廃棄することによって環境汚染の原因
となっていた如上のリン成分が極めて有効に活用できる
こととなり、種々の産業界に対して多大な貢献がもたら
されるはずである。
Therefore, in order to meet such a high demand in Japan, phosphate (calcium phosphate), which is a main component of phosphate ore, is contained in extremely high purity, or in a state of high purity as polyphosphate, If the phosphorus component derived from organic wastewater is recovered, it will be possible to use phosphorus component, which caused environmental pollution by disposal, very effectively, which will greatly contribute to various industries. It is.

【0014】本発明は、このような現状に鑑みてなされ
たものであって、その目的は、有機廃水処理方法におい
て効率よく短時間でリン成分を分離回収でき、固体とし
て沈澱させる際の薬剤必要量を低減することができると
いう効果が達成され、リン成分の再利用に利する処理方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide an organic wastewater treatment method which can efficiently separate and recover a phosphorus component in a short time, and require a chemical agent for precipitation as a solid. It is an object of the present invention to provide a treatment method that achieves an effect of reducing the amount, and is advantageous in reusing the phosphorus component.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
の本願第一発明は、有機性廃水を処理する方法におい
て、(1)廃水が好気的処理に付される曝気処理工程、
(2)曝気処理後の廃水が一次処理水と汚泥とに分離さ
れる固液分離工程、(3)分離された汚泥が濃縮される
濃縮工程、(4)濃縮された汚泥よりリン成分を液相に
放出させるために60〜90℃で10〜120分間加熱
処理を行うリン放出工程、及び(5)放出されたリン成
分を含有する二次処理水と、リン成分が除去された二次
汚泥とに分離する固液分離工程を含むことを特徴とする
有機性廃水の処理方法である。この方法によって、曝気
処理工程(1)において廃水中の微生物内にリン成分が
蓄積され、この処理水は次の固液分離工程(2)によっ
て一次処理水と、リン成分が濃縮された汚泥とに分離さ
れ、さらに濃縮された(3)後、短時間加熱という、特
段の設備も試薬も必要としないリン放出工程(4)でこ
の濃縮汚泥からリン成分を液相に放出させて固液分離す
ることで小容量のリン成分高含有処理水(二次処理水)
とリン成分が除去された二次汚泥とに分離することが可
能となる。ここで放出されるリン成分は、主にポリリン
酸の形態となっているので、従来の方法に比較して、凝
集、沈殿させるために必要な金属塩などの凝集剤の必要
量が格段に低くなる。そして濃縮工程(3)で汚泥を低
容量とすることによって、続くリン放出工程(4)に必
要とされる槽の減容化が可能となる。そうすれば当該工
程での加熱に要するエネルギーの低減、その後の処理槽
の減容化にもつながり、設備・維持費を大幅に削減する
ことができる。
According to a first aspect of the present invention, there is provided a method for treating organic wastewater, comprising: (1) an aeration treatment step in which the wastewater is subjected to aerobic treatment;
(2) a solid-liquid separation step in which wastewater after aeration treatment is separated into primary treated water and sludge; (3) a concentration step in which separated sludge is concentrated; and (4) a phosphorus component from the concentrated sludge. A phosphorus release step of performing a heat treatment at 60 to 90 ° C. for 10 to 120 minutes to release into the phase, and (5) secondary treated water containing the released phosphorus component, and secondary sludge from which the phosphorus component has been removed And a solid-liquid separation step of separating the wastewater into organic wastewater. According to this method, the phosphorus component is accumulated in the microorganisms in the wastewater in the aeration treatment step (1), and this treated water is separated into the primary treatment water and the sludge in which the phosphorus component is concentrated in the next solid-liquid separation step (2). The concentrated sludge is then separated and further concentrated (3), and then heated for a short time. In a phosphorus releasing step (4) which does not require any special equipment or reagent, the phosphorus component is released from the concentrated sludge into a liquid phase and solid-liquid separation is performed. By doing so, a small volume of treated water with high phosphorus content (secondary treated water)
And secondary sludge from which the phosphorus component has been removed. Since the phosphorus component released here is mainly in the form of polyphosphoric acid, the required amount of a coagulant such as a metal salt required for coagulation and precipitation is significantly lower than in the conventional method. Become. By reducing the sludge volume in the concentration step (3), the volume of the tank required for the subsequent phosphorus release step (4) can be reduced. This leads to a reduction in the energy required for heating in the process and a reduction in the volume of the processing tank thereafter, so that equipment and maintenance costs can be significantly reduced.

【0016】本願第二発明は、本願第一発明における前
記濃縮工程(3)が浮上濃縮法によって行なわれること
を特徴とする。浮上濃縮は、汚泥に空気の気泡を付加す
ることで汚泥の見かけ比重を低減させて汚泥が浮上する
ことを利用するものである。例えば沈澱濃縮では濃縮率
に限界があり、汚泥濃度2%程度にまでしか濃縮しえな
いこと、さらに汚泥の滞留時間によっては微生物が嫌気
状態に曝されて前記の曝気処理工程(1)で体内蓄積さ
れていたリン成分が再度放出し、返流水中にリンが含ま
れることになり、水処理系のリン除去率が低下してしま
う可能性がある。従って、実質的に汚泥を好気的状態に
保つことができ、リン成分の再放出を防ぎつつ4%汚泥
濃度以上の十分な濃縮が実現され、上述の汚泥濃縮に伴
う利点を達成することが可能である浮上濃縮法が本発明
において好適に採用される。
The second invention of the present application is characterized in that the concentration step (3) in the first invention of the present application is performed by a floating concentration method. The flotation concentration utilizes the fact that sludge floats by adding an air bubble to the sludge to reduce the apparent specific gravity of the sludge. For example, in the case of sedimentation concentration, there is a limit to the concentration rate, and the concentration can be limited to only about 2% of the sludge concentration. Further, depending on the residence time of the sludge, microorganisms are exposed to an anaerobic state, and in the aeration treatment step (1), the internal The accumulated phosphorus component is released again, so that the return water contains phosphorus, and the phosphorus removal rate of the water treatment system may be reduced. Therefore, the sludge can be substantially kept in an aerobic state, sufficient concentration of 4% or more of the sludge concentration can be realized while preventing the re-release of the phosphorus component, and the advantages associated with the above-mentioned sludge concentration can be achieved. Possible flotation enrichment methods are preferably employed in the present invention.

【0017】本願第三発明は、前記濃縮工程(3)によ
って得られる汚泥と、リン放出工程(4)の後の処理液
との熱交換が行なわれ、しかして処理工程における熱の
回収効率が良好となりヒートロスが少ない方法を提供す
る。さらにこのように熱交換を実施すれば、リン放出後
に得られた処理液が冷却された後に固液分離工程(5)
に付されることになるため、この際の固液分離手段の選
択肢が広がるという利点も生じる。
In the third invention of the present application, heat exchange between the sludge obtained in the concentration step (3) and the treatment liquid after the phosphorus release step (4) is performed, and the heat recovery efficiency in the treatment step is reduced. Provide a method that is good and has little heat loss. Further, if the heat exchange is performed in this manner, the solid-liquid separation step (5) is performed after the treatment liquid obtained after the release of phosphorus is cooled.
Therefore, there is also an advantage that the options of the solid-liquid separation means at this time are expanded.

【0018】本願第四発明は、前記固液分離工程(5)
の後に、当該工程にて生じた二次処理水に対し、放出さ
れたリン成分を凝集剤の添加によって前記液相から沈殿
させるリン凝集工程(6)をさらに含むものである。こ
の方法によって成分を沈殿させたものを回収すれば、非
常に濃縮された固形成分としてリン成分が得られるの
で、肥料やリン化合物製造のために利用しやすく、運搬
取扱上も有利である。
The fourth invention of the present application is directed to the solid-liquid separation step (5).
After the step (2), the method further comprises a phosphorus coagulation step (6) of precipitating the released phosphorus component from the liquid phase by adding a coagulant to the secondary treatment water generated in the step. If the component precipitated by this method is recovered, the phosphorus component is obtained as a very concentrated solid component, so that it can be easily used for producing fertilizers and phosphorus compounds, and is advantageous in terms of transportation and handling.

【0019】本願第五発明の処理方法は、前記リン凝集
工程(6)が、pH8.0〜10.5の塩基性の条件下
に実施されるものである。このような条件において、リ
ン成分はリン酸成分及びポリリン酸成分ともに、固体と
して容易に分離可能な形状へと効率的に凝集する。
In the treatment method according to the fifth invention of the present application, the phosphorus aggregating step (6) is carried out under basic conditions of pH 8.0 to 10.5. Under such conditions, the phosphorus component efficiently coagulates both the phosphoric acid component and the polyphosphoric acid component into a form that can be easily separated as a solid.

【0020】本願第六発明の処理方法は、前記曝気処理
工程(1)の前に、嫌気的処理工程(7)をさらに含
む。この嫌気処理によって、微生物へのリン成分の過剰
摂取に先駆けて嫌気的汚泥分解と液相へのリン成分の放
出が行われるので、曝気処理におけるリン成分の過剰摂
取がさらに効率よく行われることになる。
The treatment method of the sixth invention of the present application further includes an anaerobic treatment step (7) before the aeration treatment step (1). By this anaerobic treatment, the anaerobic sludge decomposition and the release of the phosphorus component to the liquid phase are performed prior to the excessive intake of the phosphorus component to the microorganisms, so that the excess intake of the phosphorus component in the aeration treatment is performed more efficiently. Become.

【0021】[0021]

【発明の実施の形態】本発明の有機性廃水を処理する方
法において、汚泥が60〜90℃で10〜120分間、
好ましくは70〜80℃で20〜60分間加熱処理さ
れ、係る加熱処理によって汚泥中のリン成分が液相に放
出される。このような条件で加熱すると、後述の実施例
に明らかなように、リン成分を主にポリリン酸として放
出させることが可能となる。すると、従来の方法に従い
オルトリン酸やその他のリン酸誘導体等としてリン成分
が放出された場合に比較して、液相から沈澱としてリン
成分を回収するために必要な金属塩などの凝集剤の必要
量が格段に低減する。これは、リンの原子数に対する、
凝集剤が結合可能なフリーのリン酸残基数が、ポリリン
酸では少ないことによるものである。また、ポリリン酸
の金属塩の方が、リン酸の金属塩よりも大きな顆粒状の
沈澱塊を形成するので、その後の回収処理において、例
えば沈澱分離や遠心分離での所要時間を短縮し、容量を
減容化し、遠心分離の回転数を抑えることなどが可能と
なるので好都合である。上記処理温度が60℃より低い
とポリリン酸としてのリン成分の放出が困難であり、9
0℃を越えるとポリリン酸の放出後速やかにリン酸へと
分解されてしまうので回収のための凝集剤必要量が高ま
る上、加熱のコストも高沸するので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for treating organic wastewater of the present invention, sludge is treated at 60 to 90 ° C. for 10 to 120 minutes.
Preferably, heat treatment is performed at 70 to 80 ° C. for 20 to 60 minutes, and the phosphorus component in the sludge is released to the liquid phase by the heat treatment. When heating is performed under such conditions, it becomes possible to release the phosphorus component mainly as polyphosphoric acid, as will be apparent from the examples described later. Then, as compared with the case where the phosphorus component is released as orthophosphoric acid or other phosphoric acid derivatives according to the conventional method, a flocculant such as a metal salt necessary for recovering the phosphorus component as a precipitate from the liquid phase is required. The amount is significantly reduced. This is based on the number of phosphorus atoms,
This is because polyphosphoric acid has a small number of free phosphate residues to which a flocculant can bind. In addition, since the metal salt of polyphosphoric acid forms a larger granular sediment than the metal salt of phosphoric acid, in the subsequent recovery treatment, for example, the time required for precipitation separation or centrifugation is reduced, and the volume is reduced. This is advantageous because it is possible to reduce the volume and reduce the number of revolutions of centrifugation. If the treatment temperature is lower than 60 ° C., it is difficult to release the phosphorus component as polyphosphoric acid, and 9
If the temperature exceeds 0 ° C., polyphosphoric acid is decomposed into phosphoric acid immediately after release, so that the amount of a flocculant required for recovery is increased and the heating cost is undesirably high.

【0022】係るリン放出のための処理を行った後、処
理後の汚泥を、沈殿、濾過(膜分離を含む)、遠心等の
通常の手段で固液分離し、放出されたリン成分を含む液
相に、例えばポリ塩化アルミニウム、硫酸アルミニウ
ム、塩化第二鉄、硫酸第一鉄、塩化カルシウム、酸化カ
ルシウム、水酸化カルシウム、塩化マグネシウム、硫酸
マグネシウム、酸化マグネシウム、水酸化マグネシウム
等の凝集剤を添加して、リン成分を沈殿させるとよい。
如上の方法によるリン放出処理液から沈殿を生じさせる
ためには、従来法における同様の工程での凝集剤必要量
の半分以下を添加すれば十分であるので、コストの低減
だけでなく、金属含有化合物の産生量を抑制でき、環境
保全の観点からも好ましいと云える。沈殿後、得られた
固形成分を定法によって回収し、必要に応じて精製処理
を施し、肥料やリン化合物、その他種々の薬剤製造のた
めの原料に供することができる。
After performing the treatment for releasing phosphorus, the sludge after the treatment is separated into solid and liquid by ordinary means such as sedimentation, filtration (including membrane separation), and centrifugation, and contains the released phosphorus component. Add a coagulant such as polyaluminum chloride, aluminum sulfate, ferric chloride, ferrous sulfate, calcium chloride, calcium oxide, calcium hydroxide, magnesium chloride, magnesium sulfate, magnesium oxide, magnesium hydroxide, etc. to the liquid phase To precipitate the phosphorus component.
In order to cause precipitation from the phosphorus release treatment solution according to the above method, it is sufficient to add not more than half of the required amount of the flocculant in the same step as in the conventional method. It can be said that the production amount of the compound can be suppressed, which is preferable from the viewpoint of environmental conservation. After the precipitation, the obtained solid component is recovered by a conventional method, subjected to a purification treatment if necessary, and provided as a fertilizer, a phosphorus compound, and other raw materials for producing various drugs.

【0023】以下に、本発明の有機性廃水の処理方法に
おける実施の形態を図1及び2の概略フローに基づいて
説明する。
An embodiment of the method for treating organic wastewater of the present invention will be described below with reference to the schematic flow charts of FIGS.

【0024】すなわち、図1に示す方法では、原廃水A
を先ず嫌気処理槽7に付し、嫌気的消化せしめると共
に、微生物体内にポリリン酸の顆粒として貯留されてい
るリン成分を放出させる。この際リン成分は概ね、加水
分解されて正リン酸として液相へと放出されることにな
る。次いで、この処理液をエアポンプの曝気手段12を
備えた曝気処理槽1に付し、ここで好気的な微生物によ
る有機物の分解及び微生物によるリン成分の摂取(体内
貯留)を行う。嫌気処理で放出されたリン成分が、この
工程において微生物体内に濃縮されるのである。その
後、曝気処理液を固液分離手段2に付し、リン成分が濃
縮された汚泥と、一次処理水aとに分ける。この固液分
離手段2としては、従来より知られている沈殿、膜分離
を含めた濾過等が適宜に採用可能である。この汚泥の一
部は、適宜嫌気処理槽7に返送して、以下の工程に付さ
れる汚泥量を調節すると共に嫌気及び好気処理での有機
物の分解及び微生物によるリン成分の摂取を十分に行う
ようにしてもよい。
That is, in the method shown in FIG.
Is first applied to the anaerobic treatment tank 7 to cause anaerobic digestion and release the phosphorus component stored as polyphosphoric acid granules in the microorganism. At this time, the phosphorus component is generally hydrolyzed and released as orthophosphoric acid into the liquid phase. Next, this treatment liquid is applied to an aeration treatment tank 1 provided with an aeration means 12 of an air pump, where decomposition of organic substances by aerobic microorganisms and ingestion of phosphorus components by the microorganisms (storage in the body) are performed. The phosphorus component released in the anaerobic treatment is concentrated in the microorganisms in this step. After that, the aeration treatment liquid is applied to the solid-liquid separation means 2 to separate sludge in which the phosphorus component is concentrated and primary treatment water a. As the solid-liquid separation means 2, conventionally known filtration including precipitation and membrane separation can be appropriately employed. A part of this sludge is appropriately returned to the anaerobic treatment tank 7 to adjust the amount of sludge to be subjected to the following steps, and to sufficiently decompose organic substances in the anaerobic and aerobic treatments and take in phosphorus components by microorganisms. It may be performed.

【0025】次に、固液分離手段2から得られた汚泥
は、さらに濃縮して高濃度とするための濃縮手段3に付
される。濃縮手段3によって高濃度の汚泥を得ると、続
くリン放出以降の工程に要する装置の減容化やエネルギ
ーの低減を図ることができる。この濃縮手段3には、沈
殿、膜分離を含めた濾過、遠心、浮上濃縮等が利用可能
である。実質的に汚泥を好気的状態に保つことができ、
リン成分の再放出を防ぎつつ4%汚泥濃度以上の十分な
濃縮が実現されるので、濃縮手段3として浮上濃縮を採
用することが好ましい。浮上濃縮を実施する場合の好ま
しい条件は、汚泥容量の約4倍量の循環水を用いた循環
系において、係る循環水に対して約2〜3%の空気を溶
解させるというものである。濃縮手段3によって一次汚
泥xを得ると共に、リン成分を多含しない分離水は前記
一次処理水aと共に放流することができる。
Next, the sludge obtained from the solid-liquid separation means 2 is subjected to a concentration means 3 for further concentration to a high concentration. When a high concentration of sludge is obtained by the concentrating means 3, it is possible to reduce the volume of an apparatus and energy required for the process after the subsequent phosphorus release. As the concentration means 3, filtration including centrifugation, precipitation, membrane separation, centrifugation, flotation concentration and the like can be used. Can effectively keep the sludge aerobic,
Since sufficient concentration of 4% or more sludge concentration can be realized while preventing re-release of the phosphorus component, it is preferable to employ floating concentration as the concentration means 3. A preferred condition for carrying out the flotation concentration is to dissolve about 2-3% air in the circulating water in a circulating system using about 4 times the amount of circulating water of the sludge volume. While the primary sludge x is obtained by the concentrating means 3, the separated water containing no phosphorus component can be discharged together with the primary treated water a.

【0026】こうして得られた一次汚泥xを熱交換器1
1に通して加熱した後、汚泥に含まれる微生物からリン
成分を液相に放出させるために、次なるリン放出槽4に
おいて、ヒーター、スチーム発生装置などの加熱手段1
0を用いて60〜90℃で10〜120分間、好ましく
は70〜80℃で20〜60分間の加熱処理を行うこと
によって、リン成分を主にポリリン酸として微生物より
放出させる。ポリリン酸としてリン成分が放出される
と、液相から沈澱としてリン成分を回収するためのリン
凝集槽6での処理のために必要な金属塩などの凝集剤B
の必要量が、上述したように嫌気処理、オゾン処理、ア
ルカリ処理などにてリン酸として放出された場合に比較
して格段に低減する。ポリリン酸の金属塩が大きな顆粒
状の沈澱塊を形成するので、その後の回収処理、例えば
沈澱分離や遠心分離での所要時間や容量、回転数などを
低減させることができるので好都合である。
The primary sludge x thus obtained is transferred to the heat exchanger 1
After heating through the heating device 1, in order to release the phosphorus component from the microorganisms contained in the sludge to the liquid phase, in the next phosphorus release tank 4, heating means 1 such as a heater and a steam generator are used.
By performing heat treatment at 60 to 90 ° C. for 10 to 120 minutes, preferably at 70 to 80 ° C. for 20 to 60 minutes using 0, the phosphorus component is released mainly from microorganisms as polyphosphoric acid. When the phosphorus component is released as polyphosphoric acid, a coagulant B such as a metal salt necessary for the treatment in the phosphorus coagulation tank 6 for recovering the phosphorus component as a precipitate from the liquid phase.
Is significantly reduced as compared to the case where the required amount of phosphoric acid is released as phosphoric acid by anaerobic treatment, ozone treatment, alkali treatment or the like as described above. Since the metal salt of polyphosphoric acid forms a large granular sediment, the time required for subsequent recovery treatment, for example, sedimentation separation or centrifugation, the volume, the number of revolutions, and the like can be advantageously reduced.

【0027】このリン放出槽4における処理の終了後、
固液分離手段5によって比較的小容量のリン成分高含有
処理水(二次処理水)bと二次汚泥zとに分離する。こ
の固液分離手段としては、例えば、遠心分離、脱水機に
よる分離などが好適である。この二次処理水bは、従来
の廃水処理法にて生じる、リン成分を含む処理水よりも
格段にその容量が低減されているので、以下のようなリ
ン成分回収を目的としたリン凝集工程のための設備が、
非常に小規模なもので充分になる。
After completion of the treatment in the phosphorus release tank 4,
The solid-liquid separation means 5 separates the treated water (secondary treated water) b and the secondary sludge z having a relatively small volume and a high phosphorus content. As the solid-liquid separation means, for example, centrifugal separation, separation by a dehydrator and the like are suitable. Since the volume of the secondary treated water b is much smaller than that of treated water containing a phosphorus component, which is generated by a conventional wastewater treatment method, a phosphorus coagulation process for recovering the phosphorus component as described below is performed. Equipment for
Very small ones will suffice.

【0028】リン凝集工程では、晶析脱リンなどの従来
知られた方法も利用可能であるが、一般に、前記二次処
理水bをリン凝集槽6に導入し、上記のような凝集剤B
を攪拌下に添加して、リン成分を固形成分として凝集さ
せる。ここで、二次処理水bに含まれるリン成分は主と
してポリリン酸として得られているので、少量の凝集剤
Bを用いても回収の容易な顆粒状の固形成分に凝集させ
ることが可能となる。凝集剤Bを添加し、攪拌、沈殿後
に、以下の工程に従ってリン成分を回収する。凝集剤B
の添加量は、二次処理水bに含まれる全リン成分及びポ
リリン酸の量から遊離リン酸残基数を割り出して、これ
に足るモル数の量だけ用いることが最も好ましい。な
お、前記リン凝集槽6での凝集反応に際して固形成分と
してのリン成分の回収率を良好にするため、二次処理水
bは例えば、水酸化ナトリウム水溶液等の塩基性物質を
適量添加することでpH8以上、好ましくは8.0〜1
0.5、より好ましくは9〜10の塩基性に調整されて
いるとよい。
In the phosphorus coagulation step, a conventionally known method such as crystallization dephosphorization can be used, but generally, the secondary treatment water b is introduced into the phosphorus coagulation tank 6 and the coagulant B
Is added under stirring to coagulate the phosphorus component as a solid component. Here, since the phosphorus component contained in the secondary treatment water b is mainly obtained as polyphosphoric acid, it can be aggregated into a granular solid component that can be easily recovered even if a small amount of the coagulant B is used. . After adding the flocculant B, stirring and precipitating, the phosphorus component is recovered according to the following steps. Coagulant B
It is most preferable to determine the number of free phosphoric acid residues from the total amount of phosphorus components and polyphosphoric acid contained in the secondary treatment water b, and use only the amount of the number of moles that is sufficient. In order to improve the recovery rate of the phosphorus component as a solid component during the aggregation reaction in the phosphorus aggregation tank 6, the secondary treatment water b is prepared by adding an appropriate amount of a basic substance such as an aqueous sodium hydroxide solution. pH 8 or more, preferably 8.0-1
The basicity may be adjusted to 0.5, more preferably 9 to 10 basicity.

【0029】次いで固液分離手段8によって、リン成分
を実質的に含まない三次処理水cと固形リン成分yを得
る。この固形のリン成分yは、汚泥から分離されてお
り、原廃水に含まれていたその他の成分もほとんど含ん
でおらず、そして減容化されており、肥料や、合成洗
剤、洗浄剤、金属イオン封鎖剤、食品添加剤の原料とし
て、また、製紙、染色、写真技術などに用いる試薬原
料、リン化合物製造のための原料などに利用しやすいも
のとなっている。しかしながら、さらなるリン回収手段
9により、実質的に乾燥固体としてリン成分pを回収し
て、流通、運搬が最も容易な形態とすることが好まし
い。このリン回収手段9には例えば、凍結乾燥、脱水・
乾燥などの方法が挙げられる。
Next, the tertiary treated water c substantially free of the phosphorus component and the solid phosphorus component y are obtained by the solid-liquid separation means 8. This solid phosphorus component y is separated from the sludge, contains almost no other components contained in the raw wastewater, and is reduced in volume, and contains fertilizers, synthetic detergents, detergents, and metals. It is easy to use as a raw material for ion sequestering agents and food additives, as a raw material for reagents used in papermaking, dyeing, photographic technology, etc., and a raw material for producing phosphorus compounds. However, it is preferable that the phosphorus component p be recovered as a substantially dry solid by the additional phosphorus recovery means 9 so as to be in a form that is most easily distributed and transported. For example, freeze-drying, dehydration,
Drying and the like can be mentioned.

【0030】特に好ましい実施態様を示す図2では、前
記の濃縮手段3より得られた一次汚泥xとリン放出槽4
から得られる処理液との熱交換が、熱交換器11にて行
なわれる。そうすれば熱の回収効率が良好となり、ヒー
トロスが少ないという点で好都合である。さらに、この
ように熱交換を実施すれば、リン放出後に得られた処理
液が冷却された後に固液分離手段5に供されることにな
るため、固液分離手段5の耐熱性があまり要求されない
ことになり、繁用されている遠心分離器、膜分離器、ベ
ルトプレス、フィルタープレス等の脱水機等を広く利用
できる。特にベルトプレス型の脱水機の採用が企図され
る場合、高温による濾布のシュリンク等の不都合を回避
でき、膜の寿命も延長されうる。
In FIG. 2 showing a particularly preferred embodiment, the primary sludge x obtained from the enrichment means 3 and the phosphorus release tank 4 are shown.
Is exchanged with the processing liquid obtained from the heat exchanger 11. This is advantageous in that heat recovery efficiency is improved and heat loss is reduced. Further, if the heat exchange is performed as described above, the processing liquid obtained after the release of phosphorus is cooled and then supplied to the solid-liquid separation means 5, so that the heat resistance of the solid-liquid separation means 5 is very low. The dehydrator such as a centrifugal separator, a membrane separator, a belt press, a filter press and the like can be widely used. In particular, when the use of a belt press type dehydrator is intended, problems such as shrinkage of the filter cloth due to high temperature can be avoided, and the life of the membrane can be extended.

【0031】さらに、前記リン凝集槽6における処理工
程の実施前または実施後のいずれかにイオン交換クロマ
トグラフィー等を利用して、リン成分をリン酸イオンと
ポリリン酸イオンに、またはリン酸塩とポリリン酸塩と
に、すなわち、リン酸成分とポリリン酸成分とに分離す
ることで、それぞれ異なる用途に利用されると考えられ
る双方の成分の供給形態としてもよい。
Further, the phosphorus component is converted to phosphate ions and polyphosphate ions or to phosphate salts by using ion exchange chromatography or the like before or after the treatment step in the phosphorus flocculation tank 6. Separation into a polyphosphate, ie, a phosphoric acid component and a polyphosphoric acid component, may be a supply form of both components that are considered to be used for different purposes.

【0032】以上例示した本発明において、曝気処理槽
1、固液分離手段8、嫌気処理槽7のそれぞれの構造な
らびにこれらを結ぶ経路は特に限定されるものではな
く、本質的に、従来より利用されているものを用いるこ
とができる。本発明の装置のため、曝気処理槽1にはエ
アポンプ、ブロアなどの曝気手段12から送られる空気
を曝気処理槽1内に行き渡らせることができる散気装置
13を、そして嫌気処理槽7においては好ましくは攪拌
手段などを具備するものであればよい。またこれらの工
程における各々の条件等も、従来知られている好気的処
理方法、固液分離方法等に従って行うとよい(特開平9
−10791号明細書等を参照されたい)。
In the present invention exemplified above, the respective structures of the aeration treatment tank 1, the solid-liquid separation means 8, and the anaerobic treatment tank 7 and the paths connecting them are not particularly limited, and are essentially used conventionally. What has been done can be used. For the device of the present invention, the aeration tank 1 is provided with a diffuser 13 capable of distributing the air sent from the aeration means 12 such as an air pump and a blower into the aeration tank 1. Preferably, any device provided with a stirring means or the like may be used. Also, the conditions and the like in these steps may be performed according to conventionally known aerobic treatment methods, solid-liquid separation methods, and the like (Japanese Patent Application Laid-Open No.
-10791 and the like).

【0033】概略説明すると、曝気処理槽1における処
理は、常温下にて実施される。そして、固液分離手段2
としては、例えば、沈殿、膜分離を含む濾過等の手段が
選択される。これらのうち、設備及び維持費が安価です
み、且つ操作にも殆ど手間を必要としないことから沈殿
が好ましい。また固液分離手段8としては、例えば、沈
殿、濾過(膜分離を含む)または遠心等の手段を選択す
ることができる。これらのうち、特別に高価な装置や手
間を必要としないことから、沈殿または濾過が好まし
く、処理液の性状により分離が容易であれば、沈殿槽に
おける沈殿が最も好ましい。そして嫌気処理槽7におけ
る処理温度は特に限定されず、好ましくは常温下に行え
ばよい。ここで、嫌気処理槽7に攪拌手段を備えて、微
生物の周囲に放出されたリン成分が滞留してリン放出が
阻止されないようにすることが好ましい。
In brief, the processing in the aeration tank 1 is performed at normal temperature. And solid-liquid separation means 2
For example, means such as precipitation and filtration including membrane separation are selected. Of these, sedimentation is preferred because the equipment and maintenance costs are inexpensive and the operation requires little labor. Further, as the solid-liquid separation means 8, for example, means such as precipitation, filtration (including membrane separation), or centrifugation can be selected. Of these, sedimentation or filtration is preferable because no specially expensive equipment or labor is required, and sedimentation in a sedimentation tank is most preferable if separation is easy depending on the properties of the treatment liquid. The processing temperature in the anaerobic processing tank 7 is not particularly limited, and may be preferably performed at normal temperature. Here, it is preferable that the anaerobic treatment tank 7 is provided with stirring means so that the phosphorus component released around the microorganisms does not stay and the release of phosphorus is not prevented.

【0034】最終的にリン成分pとして回収されるリン
成分は、濃縮されているだけでなくかなり純化されてい
るので上述のように肥料、種々のリン化合物、薬剤の製
造等における原料のリン鉱石として再利用されるために
好適である。
Since the phosphorus component finally recovered as the phosphorus component p is not only concentrated but also considerably purified, as described above, the raw material phosphate ore in the production of fertilizers, various phosphorus compounds, chemicals, etc. It is suitable for being reused as.

【0035】[0035]

【実施例】以下に本発明の実施例を説明するが、本発明
の範囲はもとより、これら実施例によって限定的に解釈
されるべきものではない。
EXAMPLES Examples of the present invention will be described below, but should not be construed as limiting the scope of the present invention or these examples.

【0036】[実施例1]実験室内回分式嫌気好気活性
汚泥プロセスにて、1L容量の三角フラスコ中に、下水
処理場由来の活性汚泥500mlを入れ、次いで以下の
表1に示す組成を有する、リン成分を含有した有機性廃
水500mlを投入した。
[Example 1] In a laboratory batch anaerobic aerobic activated sludge process, 500 ml of activated sludge derived from a sewage treatment plant was placed in a 1 L Erlenmeyer flask, and then had the composition shown in Table 1 below. And 500 ml of organic wastewater containing a phosphorus component.

【0037】[0037]

【表1】 [Table 1]

【0038】この原廃水1Lに対して、嫌気処理を20
℃、pH7にて滞留時間2時間にわたって行い、続いて
20℃、曝気量20vvm(エアレーションポンプを使
用)、pH7にて滞留時間5時間にわたり好気処理を実
施した。この処理の間、液体をスターラーで攪拌し続
け、液量は1Lに維持するようにした。
An anaerobic treatment is applied to 1 L of this raw wastewater for 20 liters.
The aerobic treatment was carried out at 20 ° C. and an aeration amount of 20 vvm (using an aeration pump) at pH 7 and a residence time of 5 hours at pH 7 and a residence time of 2 hours. During this treatment, the liquid was continuously stirred with a stirrer so that the liquid volume was maintained at 1 L.

【0039】好気処理終了後に、汚泥を1mlずつエッ
ペンドルフチューブ25本に分取し、それぞれ5本ずつ
を50℃、60℃、70℃、80℃及び90℃に設定し
た恒温槽に静置した。20分毎に1チューブずつサンプ
リングし、各試料を8,000×gにて5分間遠心分離
してから、上清に含まれる全リン量、ポリリン酸量及び
リン酸量を以下の方法に従って定量した。 全リン量:過硫酸アンモニウム存在下に熱水分解(12
1℃、30分間)した後、下記方法によりリン酸として
定量 ポリリン酸量:1N塩酸の存在下に加熱分解(100
℃、7分間)した後、下記方法によりリン酸として定量 リン酸量:JISK0102によるモリブデン青(アス
コルビン酸還元)吸光光度法に基づくリン酸イオン量測
定 次いで、これらの上清中のリン成分が凝集沈殿によって
分離できるか否かを調べるため、塩化カルシウム(Ca
Cl2)を最終濃度が50mMとなるように添加し、
8,000×gにて5分間遠心分離することによって得
られる沈殿物の全リン量を上記全リン定量法により測定
した。
After completion of the aerobic treatment, 1 ml of the sludge was dispensed into 25 Eppendorf tubes, and each of the 5 sludges was allowed to stand in a thermostat set at 50 ° C., 60 ° C., 70 ° C., 80 ° C. and 90 ° C. . Sample one tube every 20 minutes, centrifuge each sample at 8,000 × g for 5 minutes, and determine the total amount of phosphorus, polyphosphate and phosphate in the supernatant according to the following method. did. Total phosphorus: Hydrothermal decomposition in the presence of ammonium persulfate (12
(1 ° C., 30 minutes), and then quantified as phosphoric acid by the following method. Polyphosphoric acid amount: Thermal decomposition (100) in the presence of 1N hydrochloric acid
(7 ° C., 7 minutes) and then quantified as phosphoric acid by the following method Phosphoric acid amount: Measurement of phosphate ion amount based on molybdenum blue (ascorbic acid reduction) absorption spectrophotometry according to JIS K0102 Then, the phosphorus components in these supernatants aggregate To determine whether separation can be achieved by precipitation, calcium chloride (Ca
Cl 2 ) to a final concentration of 50 mM,
The total phosphorus content of the precipitate obtained by centrifugation at 8,000 × g for 5 minutes was measured by the above total phosphorus determination method.

【0040】こうして得られた結果を図3に示す。図3
において、(a)は50℃、(b)は60℃、(c)は
70℃、(d)は80℃、(e)は90℃での加熱処理
による各定量値の経時変化を示し、(f)には、上記加
熱処理前の活性汚泥中のリン組成(:リン酸、:ポ
リリン酸及び:その他リン酸化合物量)を示す。
FIG. 3 shows the results thus obtained. FIG.
(A) is 50 ° C., (b) is 60 ° C., (c) is 70 ° C., (d) is 80 ° C., (e) is a change with time of each quantitative value by heat treatment at 90 ° C., (F) shows the phosphorus composition (: phosphoric acid,: polyphosphoric acid and: the amount of other phosphoric acid compounds) in the activated sludge before the heat treatment.

【0041】図3より、活性汚泥試料の加熱処理を50
℃で行った場合、汚泥から放出されるリン成分の量はす
べて少なく、しかもポリリン酸よりもリン酸として放出
される量が多いことが判る(図3(a))。この温度で
は、汚泥中のポリリン酸顆粒は殆ど遊離して来ないよう
であった。処理温度70℃では(図3(c))、加熱開
始後1時間で活性汚泥中に存在していたポリリン酸量
(図3(f)、)の約90%が遊離、放出されてい
た。そしてこの時点では、ポリリン酸の約20%に該当
する量が、リン酸にまで分解されている。加熱開始2時
間後に塩化カルシウムを添加して遠心分離を行うと、遊
離していた全リン量のほとんどが、沈殿物として回収で
きた。処理温度を90℃とすると(図3(e))、ポリ
リン酸の放出は急速に進行し、この条件下では約10分
で終了してしまう。この時点でリン酸に分解していた量
は約10%であった。ポリリン酸の放出が終了すると、
このポリリン酸は急速にリン酸へと分解され、加熱開始
2時間後には遊離したポリリン酸の約60%がリン酸に
なっていた。この時点で塩化カルシウムによる凝集沈殿
を行っても、回収できるリン成分の量は放出された量の
約20%程度に過ぎなかった。従って、本発明の方法を
90℃の温度で実施する場合には、放出されたポリリン
酸を速やかに凝集沈殿に付すことが好ましいことが示さ
れる。
FIG. 3 shows that the heat treatment of the activated sludge sample was performed for 50 hours.
It can be seen that when performed at ℃, the amount of phosphorus components released from the sludge is all small, and moreover, the amount released as phosphoric acid is larger than polyphosphoric acid (FIG. 3 (a)). At this temperature, the polyphosphoric acid granules in the sludge appeared to be hardly liberated. At a treatment temperature of 70 ° C. (FIG. 3 (c)), about 90% of the amount of polyphosphoric acid (FIG. 3 (f)) present in the activated sludge was released and released one hour after the start of heating. At this point, about 20% of polyphosphoric acid has been decomposed into phosphoric acid. When calcium chloride was added 2 hours after the start of heating and centrifugation was performed, most of the total amount of released phosphorus could be recovered as a precipitate. When the treatment temperature is 90 ° C. (FIG. 3 (e)), the release of polyphosphoric acid proceeds rapidly, and it ends in about 10 minutes under these conditions. At this time, the amount decomposed into phosphoric acid was about 10%. When the release of polyphosphoric acid ends,
This polyphosphoric acid was rapidly decomposed into phosphoric acid, and about 60% of the released polyphosphoric acid was phosphoric acid 2 hours after the start of heating. At this time, even if flocculation and precipitation were performed with calcium chloride, the amount of the phosphorus component that could be recovered was only about 20% of the released amount. Therefore, when the method of the present invention is carried out at a temperature of 90 ° C., it is indicated that it is preferable that the released polyphosphoric acid be subjected to flocculation and precipitation quickly.

【0042】[実施例2]実施例1で採取した試料につ
いて、可視光下及びDAPI(4’,6−ジアミジノ−
2−フェニルインドール)蛍光染色後紫外線照射下で鏡
検し、ポリリン酸顆粒の存在を調べた。加熱処理前の活
性汚泥試料(a)、70℃、60分間処理後の上清試料
(b)及びこの上清からの塩化カルシウム沈殿物(c)
を検体とした。ポリリン酸顆粒は、DAPI蛍光染色し
て紫外線(UV)を照射することにより、特異的に黄色
の発光を呈するので、容易に同定しうるものである。そ
の結果を図4に示す。加熱処理前の活性汚泥試料(図
4、(a))をDAPI染色後紫外線照射すると、黄色
のポリリン酸顆粒が認められた。尚、加熱前の上清につ
いて同様の観察を行っても、ポリリン酸顆粒は全く認め
られなかった。70℃、60分間処理後の上清試料(図
4、(b))と、この上清からの塩化カルシウム沈殿物
(図4、(c))についても黄色のポリリン酸顆粒が認
められた。従って、実施例1の定量法によるポリリン酸
が、ポリリン酸顆粒として存在していることが確認でき
た。
Example 2 The sample collected in Example 1 was examined under visible light and with DAPI (4 ', 6-diamidino-
(2-Phenylindole) After fluorescence staining, microscopic examination under ultraviolet irradiation was performed to examine the presence of polyphosphate granules. Activated sludge sample before heat treatment (a), supernatant sample after treatment at 70 ° C. for 60 minutes (b) and calcium chloride precipitate from this supernatant (c)
Was used as a sample. Polyphosphoric acid granules can be easily identified because they emit yellow light specifically when irradiated with ultraviolet light (UV) after DAPI fluorescence staining. FIG. 4 shows the results. When the activated sludge sample (FIG. 4, (a)) before the heat treatment was irradiated with ultraviolet light after DAPI staining, yellow polyphosphate granules were observed. In addition, even if the same observation was performed on the supernatant before heating, no polyphosphate granules were observed at all. Yellow polyphosphate granules were also observed in the supernatant sample (FIG. 4, (b)) after treatment at 70 ° C. for 60 minutes and the calcium chloride precipitate (FIG. 4, (c)) from this supernatant. Therefore, it was confirmed that polyphosphoric acid according to the quantitative method of Example 1 was present as polyphosphoric acid granules.

【0043】[実施例3]リン成分を凝集させて固形成
分として回収する際の至適pHを調べるために、実施例
1と同様の方法によって調製した活性汚泥(全リン酸
量:2.76ミリモル)を90℃にて15分間または1
20分間処理して、リン成分を液相に放出させた。この
上清を図5に示す種々のpH(7付近、7.5、8.
0、8.5または9.0)にトリス緩衝液を用いて調整
し、次いで塩化カルシウムを最終濃度50mMとなるよ
うに添加、攪拌した。沈降物として回収された全リン酸
量を定量した結果を図5に示す。この結果から、リン凝
集槽6においてリン成分を固形成分として回収するにあ
たり、そのpHを8以上の塩基性、好ましくは8.0〜
10.5に調整しておくと優れた効率でリン成分の回収
が成し遂げられることが明らかになった。
Example 3 Activated sludge (total phosphoric acid amount: 2.76) prepared in the same manner as in Example 1 to examine the optimum pH when the phosphorus component is aggregated and collected as a solid component Mmol) at 90 ° C. for 15 minutes or 1
After treatment for 20 minutes, the phosphorus component was released into the liquid phase. This supernatant was subjected to various pHs shown in FIG. 5 (around 7, 7.5, 8.
0, 8.5 or 9.0) using Tris buffer, and then calcium chloride was added to a final concentration of 50 mM and stirred. FIG. 5 shows the results of quantifying the total amount of phosphoric acid recovered as a sediment. From these results, when the phosphorus component is recovered as a solid component in the phosphorus coagulation tank 6, the pH is adjusted to a basicity of 8 or more, preferably 8.0 to 8.0.
It became clear that the recovery of the phosphorus component can be achieved with excellent efficiency by adjusting to 10.5.

【0044】[0044]

【発明の効果】本発明によって、有機性廃水中に含まれ
るリン成分を、短時間で小容量液体または固体状態に分
離回収でき、リンの再利用を容易にすることができると
いう効果が奏される。この際、リン成分がポリリン酸と
して濃縮されているので、必要とされる凝集剤の量は、
従来知られている方法よりも極めて少量で十分である。
According to the present invention, the phosphorus component contained in the organic wastewater can be separated and recovered into a small-capacity liquid or solid state in a short time, so that the phosphorus can be easily reused. You. At this time, since the phosphorus component is concentrated as polyphosphoric acid, the amount of the required flocculant is
A much smaller amount is sufficient than previously known methods.

【0045】本発明の方法は、特に試薬や高価な設備を
要さずリン成分の回収率も高いので、低コストの処理を
可能にするという点で有利なものである。
The method of the present invention is advantageous in that it enables low-cost treatment, since it requires no reagent or expensive equipment and has a high phosphorus component recovery rate.

【0046】また、本発明により、ヒートロスが少なく
経済性の高い汚泥処理方法においてリン成分を回収する
ことが可能になる。
Further, according to the present invention, it becomes possible to recover phosphorus components in a sludge treatment method which has a low heat loss and is highly economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性廃水の処理方法の一実施態様の
概略構成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a method for treating organic wastewater of the present invention.

【図2】本発明の有機性廃水の処理方法の特に好ましい
一実施態様の概略構成図である。
FIG. 2 is a schematic structural view of one particularly preferred embodiment of the method for treating organic wastewater of the present invention.

【図3】活性汚泥を50〜90℃の範囲の温度で処理し
た場合の、種々のリン成分の放出の経時的変化を示すグ
ラフである。
FIG. 3 is a graph showing the change over time of the release of various phosphorus components when activated sludge is treated at a temperature in the range of 50 to 90 ° C.

【図4】(a)活性汚泥、(b)70℃、60分間処理
後の上清及び(c)塩化カルシウムによる沈殿成分を可
視光と、DAPIでポリリン酸を蛍光染色して観察した
結果の顕微鏡写真(1000倍拡大)を示す図である。
FIG. 4 shows (a) activated sludge, (b) the supernatant after treatment at 70 ° C. for 60 minutes, and (c) the components precipitated by calcium chloride, which were observed by fluorescent staining of polyphosphoric acid with visible light and DAPI. It is a figure which shows a micrograph (1000 times magnification).

【図5】種々のpHでの凝集剤添加によるリン回収の効
率を示すグラフである。
FIG. 5 is a graph showing the efficiency of phosphorus recovery by adding a flocculant at various pHs.

【符号の説明】[Explanation of symbols]

1…曝気処理槽 2,5,8…固液分離手段 3…濃縮手段 4…リン放出槽 6…リン凝集槽 7…嫌気処理槽 9…リン回収手段 10…加熱手段 11…熱交換器 12…曝気手段 13…散気手段 A…原廃水 B…凝集剤 a…一次処理水 b…二次処理水 c…三次処理水 x…一次汚泥 y…固形リン成分 z…二次汚泥 p…リン成分 DESCRIPTION OF SYMBOLS 1 ... Aeration treatment tank 2, 5, 8 ... Solid-liquid separation means 3 ... Concentration means 4 ... Phosphorus release tank 6 ... Phosphorus coagulation tank 7 ... Anaerobic treatment tank 9 ... Phosphorus recovery means 10 ... Heating means 11 ... Heat exchanger 12 ... Aeration means 13 ... Aeration means A ... Raw wastewater B ... Coagulant a ... Primary treatment water b ... Secondary treatment water c ... Tertiary treatment water x ... Primary sludge y ... Solid phosphorus component z ... Secondary sludge p ... Phosphorus component

フロントページの続き (72)発明者 加藤 純一 広島県福山市南蔵王2−24−16 ニューエ ルディム増成104 (72)発明者 西本 俶士 兵庫県姫路市辻井7−17−1 (72)発明者 桂 健治 兵庫県神戸市西区井吹台西町1丁目5−3 −408 (72)発明者 長谷川 進 兵庫県神戸市西区井吹台東町4−17−1 Fターム(参考) 4D028 BD06 BD16 4D038 AA08 AB43 BB01 BB13 BB19 4D040 BB01 BB32 4D059 AA01 AA08 BF02 BF11 Continuing on the front page (72) Inventor Junichi Kato 2-24-16 Minamizao, Fukuyama-shi, Hiroshima New Erdim Extension 104 (72) Inventor Retsushi Nishimoto 77-1-1, Tsujii, Himeji-shi, Hyogo Kenji Katsura 1-5-3-408 Ibukidai Nishimachi, Nishi-ku, Kobe City, Hyogo Prefecture (72) Inventor Susumu Hasegawa 4-17-1, Ibukidai Higashicho, Nishi-ku, Kobe City, Hyogo Prefecture F-term (reference) 4D028 BD06 BD16 4D038 AA08 AB43 BB01 BB13 BB19 4D040 BB01 BB32 4D059 AA01 AA08 BF02 BF11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 有機性廃水を処理する方法において、以
下の工程すなわち、(1)廃水が好気的処理に付される
曝気処理工程、(2)曝気処理後の廃水が一次処理水と
汚泥とに分離される固液分離工程、(3)分離された汚
泥が濃縮される濃縮工程、(4)濃縮された汚泥よりリ
ン成分を液相に放出させるために60〜90℃で10〜
120分間加熱処理を行うリン放出工程、及び(5)放
出されたリン成分を含有する二次処理水と、リン成分が
除去された二次汚泥とに分離する固液分離工程を含むこ
とを特徴とする有機性廃水の処理方法。
In the method for treating organic wastewater, the following steps are carried out: (1) aeration treatment step in which wastewater is subjected to aerobic treatment; (2) wastewater after aeration treatment is treated as primary treated water and sludge. (3) a concentration step in which the separated sludge is concentrated; and (4) a concentration step at 60 to 90 ° C. for releasing the phosphorus component from the concentrated sludge to the liquid phase.
A phosphorus release step of performing a heat treatment for 120 minutes, and (5) a solid-liquid separation step of separating into secondary treated water containing the released phosphorus component and secondary sludge from which the phosphorus component has been removed. Organic wastewater treatment method.
【請求項2】 前記濃縮工程(3)が浮上濃縮法によっ
て実施される請求項1記載の処理方法。
2. The processing method according to claim 1, wherein the concentration step (3) is performed by a flotation concentration method.
【請求項3】 前記汚泥と、リン放出工程(4)後の処
理液との熱交換が行なわれる請求項1または2に記載の
処理方法。
3. The treatment method according to claim 1, wherein heat exchange is performed between the sludge and the treatment liquid after the phosphorus release step (4).
【請求項4】 前記固液分離工程(5)の後に、該工程
にて生じた二次処理水に対し、放出されたリン成分を凝
集剤の添加によって前記液相から沈殿させるリン凝集工
程(6)をさらに含む請求項1乃至3の何れかに記載の
処理方法。
4. A phosphorus coagulation step (5) in which, after the solid-liquid separation step (5), the released phosphorus component is precipitated from the liquid phase by adding a coagulant to the secondary treatment water generated in the step. The processing method according to any one of claims 1 to 3, further comprising (6).
【請求項5】 前記リン凝集工程(6)が、pH8.0
〜10.5の塩基性条件下に実施される請求項4記載の
処理方法。
5. The method according to claim 1, wherein the phosphorus aggregating step (6) is carried out at pH 8.0.
The treatment method according to claim 4, which is carried out under a basic condition of from 1 to 10.5.
【請求項6】 前記曝気処理工程(1)の前に、嫌気処
理工程(7)をさらに含む請求項1乃至5の何れかに記
載の処理方法。
6. The treatment method according to claim 1, further comprising an anaerobic treatment step (7) before the aeration treatment step (1).
JP18392899A 1999-06-29 1999-06-29 Organic wastewater treatment method Expired - Lifetime JP4248086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18392899A JP4248086B2 (en) 1999-06-29 1999-06-29 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18392899A JP4248086B2 (en) 1999-06-29 1999-06-29 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2001009495A true JP2001009495A (en) 2001-01-16
JP4248086B2 JP4248086B2 (en) 2009-04-02

Family

ID=16144271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18392899A Expired - Lifetime JP4248086B2 (en) 1999-06-29 1999-06-29 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4248086B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233894A (en) * 2001-02-06 2002-08-20 Hisao Otake Treatment method for sludge and organic waste water and treatment equipment for organic waste water
JP2004188380A (en) * 2002-12-13 2004-07-08 Hitachi Metals Ltd Method for recovering phosphorus from organic wastewater
KR101463987B1 (en) * 2005-08-02 2014-11-20 쿠리타 고교 가부시키가이샤 Method of treating organic waste water
CN112520852A (en) * 2020-04-08 2021-03-19 同济大学 Method for removing and recovering phosphorus in sewage
CN115594320A (en) * 2021-06-28 2023-01-13 中国石油化工股份有限公司(Cn) Method for treating oil refining waste alkali liquor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233894A (en) * 2001-02-06 2002-08-20 Hisao Otake Treatment method for sludge and organic waste water and treatment equipment for organic waste water
JP4527889B2 (en) * 2001-02-06 2010-08-18 久夫 大竹 Sludge and organic wastewater treatment method and organic wastewater treatment apparatus
JP2004188380A (en) * 2002-12-13 2004-07-08 Hitachi Metals Ltd Method for recovering phosphorus from organic wastewater
KR101463987B1 (en) * 2005-08-02 2014-11-20 쿠리타 고교 가부시키가이샤 Method of treating organic waste water
CN112520852A (en) * 2020-04-08 2021-03-19 同济大学 Method for removing and recovering phosphorus in sewage
CN112520852B (en) * 2020-04-08 2022-06-14 同济大学 Method for removing and recovering phosphorus in sewage
CN115594320A (en) * 2021-06-28 2023-01-13 中国石油化工股份有限公司(Cn) Method for treating oil refining waste alkali liquor

Also Published As

Publication number Publication date
JP4248086B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
Semerjian et al. High-pH–magnesium coagulation–flocculation in wastewater treatment
JP3307878B2 (en) Method and apparatus for treating organic wastewater
CN101186423A (en) Heat treatment-dehydration-fertilizer making method for town sewage and sludge
Levlin et al. Effects of phosphorus recovery requirements on Swedish sludge management
Li et al. Mining phosphorus from waste streams at wastewater treatment plants: a review of enrichment, extraction, and crystallization methods
Heinzmann et al. Induced magnesium ammonia phosphate precipitation to prevent incrustations and measures for phosphorus recovery
JP3499151B2 (en) Sludge treatment method and organic wastewater treatment method including the treatment method
Urdalen Phosphorus recovery from municipal wastewater
JP2001009495A (en) Treatment of organic wastewater
JP7226731B2 (en) Processing method of the object to be processed
JP4271334B2 (en) Sludge treatment method, organic wastewater treatment method including the treatment method, and organic wastewater treatment apparatus
Bogdan et al. Municipal wastewater as a source for phosphorus
JP2001025795A (en) Treatment method of sludge and treatment of organic waste water including the method
JP4527889B2 (en) Sludge and organic wastewater treatment method and organic wastewater treatment apparatus
JP3707272B2 (en) Sewage treatment method and apparatus
JP4259700B2 (en) Sludge aggregation method and water treatment method
JP4714350B2 (en) Organic wastewater treatment method
JPH10156391A (en) Treatment of phosphorus recovered from treated water of sewerage
JP3229806B2 (en) Human wastewater treatment equipment
JPS63258692A (en) Treatment of organic sewage
JP2011101852A (en) Phosphorus recovery method and phosphorus recovery equipment
JP2003211190A (en) Method for recovering phosphorus from sludge
Devatha et al. Recovery of phosphorus as struvite from the dewatered liquor through crystallization using seawater as magnesium source
Zhang et al. Composition characterization and transformation mechanism of dissolved organic phosphorus in wastewater treatment using 31P NMR spectroscopy
JP3962492B2 (en) How to remove phosphorus from refinery wastewater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term