JP2001009451A - Method of removing sulfate ion in salt water - Google Patents

Method of removing sulfate ion in salt water

Info

Publication number
JP2001009451A
JP2001009451A JP11188594A JP18859499A JP2001009451A JP 2001009451 A JP2001009451 A JP 2001009451A JP 11188594 A JP11188594 A JP 11188594A JP 18859499 A JP18859499 A JP 18859499A JP 2001009451 A JP2001009451 A JP 2001009451A
Authority
JP
Japan
Prior art keywords
solid
slurry
exchange resin
ion
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11188594A
Other languages
Japanese (ja)
Inventor
Terumi Matsuoka
輝美 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP11188594A priority Critical patent/JP2001009451A/en
Publication of JP2001009451A publication Critical patent/JP2001009451A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To smoothly perform continuous operation and to reduce the time required for treatment by continuously transporting a zirconium hydroxide- carrying ion exchange resin in a slurry to circulate and performing simultaneously the adsorption reaction and the desorption reaction of sulfate ion in a sulfate ion-containing salt water. SOLUTION: The absorbed sulfate ion is desorbed from the zirconium hydroxide-carrying ion exchange resin in a desorption reaction vessel 1. The zirconium hydroxidecarrying ion exchange resin slurry regenerated therein is sent to a prestage separator 5 of a solid-liquid separation device 20. Solid- liquid separation-cleaning-transportation to the adsorption reactor 7 are carried out in the prestage separator 5. Sulfate ion is adsorbed and removed from the salt water in the adsorption reactor 7 and the zirconium hydroxide-carrying ion exchange resin slurry on which sulfate ion is absorbed is sent to a poststage separator 8 of the solid-liquid separation device 20. In the poststage separator 8, each process of solid-liquid separation-cleaning-transportation to the adsorption reaction vessel 1 are continuously carried out in this order. As a result, the time required for treating is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は塩水の硫酸イオン除
去処理法に関し、詳しくは、硫酸イオンを含有する塩水
から水酸化ジルコニウム担持イオン交換樹脂を用いて硫
酸イオンを吸着除去し、硫酸イオンを吸着した水酸化ジ
ルコニウム担持イオン交換樹脂を脱着処理再生して再使
用する塩水の硫酸イオン除去処理法であり、特に、水酸
化ジルコニウム担持イオン交換樹脂を破砕等損傷するこ
となく搬送しながら循環使用することにより、吸脱着の
連続処理時間が短縮化され、効率的に且つ小型処理設備
で処理可能な塩水の硫酸イオン除去処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing sulfate ions from salt water, and more particularly, to adsorption and removal of sulfate ions from salt water containing sulfate ions using a zirconium hydroxide-supported ion exchange resin. This is a method for removing sulfate ions from salted water by desorbing, regenerating and reusing the zirconium hydroxide-supported ion-exchange resin.In particular, the zirconium hydroxide-supported ion-exchange resin is circulated and used while being transported without damage such as crushing. Accordingly, the present invention relates to a method for removing a sulfate ion of salt water which can shorten the continuous treatment time of adsorption and desorption, and can be treated efficiently and with a small treatment facility.

【0002】[0002]

【従来の技術】塩水を電気分解する場合、塩水中の硫酸
イオンが電解性能に悪影響を与えることが知られいる。
このため従来から電気分解に際し、塩水中の硫酸イオン
を除去することが行われている。例えば、特開昭60−
44056号、特開昭60−228691号及び特開平
3−153522号公報では、塩水から硫酸イオンを除
去するイオン交換法が提案されている。即ち、特開昭6
0−44056号公報記載の方法は、重合状ジルコニウ
ム含水酸化物をマクロボーラスな陽イオン交換樹脂に担
持させて充填塔方式により塩水中の硫酸イオンを除去す
る方法である。また、特開平3−153522号公報記
載の方法は、含水率の低い水酸化ジルコニウムを陽イオ
ン交換樹脂に担持することなく、硫酸イオンを含有する
塩水とスラリー状で直接接触させ硫酸イオンを吸着し、
さらに別の反応槽で硫酸イオンを吸着した水酸化ジルコ
ニウムをアルカリ水性液と接触させ硫酸イオンを脱着再
生して使用する方法である。更に、特開昭60−228
691号公報記載の方法は、硫酸イオンを含有する塩水
を希釈し、陰イオン交換樹脂で硫酸イオンを吸着し、硫
酸イオンを吸着した陰イオン交換樹脂を濃塩水で脱着す
る方法である。
2. Description of the Related Art When electrolyzing salt water, it is known that sulfate ions in the salt water adversely affect electrolysis performance.
For this reason, conventionally, sulfate ions in salt water have been removed during electrolysis. For example, JP-A-60-
JP-A-44056, JP-A-60-228691 and JP-A-3-153522 propose an ion exchange method for removing sulfate ions from salt water. That is,
The method described in Japanese Patent Publication No. 0-44056 is a method in which a polymeric hydrated zirconium oxide is supported on a macrobolic cation exchange resin to remove sulfate ions in salt water by a packed tower method. Further, the method described in Japanese Patent Application Laid-Open No. 3-153522 discloses a method in which zirconium hydroxide having a low water content is not directly carried on a cation exchange resin, but is directly brought into contact with salt water containing sulfate ions in a slurry state to adsorb sulfate ions. ,
In this method, zirconium hydroxide having sulfate ions adsorbed therein is contacted with an aqueous alkali solution in another reaction tank to desorb and regenerate sulfate ions for use. Further, JP-A-60-228
The method described in Japanese Patent No. 691 is a method of diluting salt water containing sulfate ions, adsorbing sulfate ions with an anion exchange resin, and desorbing the anion exchange resin adsorbing sulfate ions with concentrated salt water.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の方法は
いずれも、再生効率が低い、処理経費が嵩む、処理設備
費が増大する、操作が煩雑である等の各種の問題を有し
ていた。このため、出願人は、先に特開平8−6751
4号公報で、これらの問題点を解消して経済的で工業性
の高い硫酸イオン含有塩水の処理法を提案した。提案方
法は、粒状の陽イオン交換樹脂に水酸化ジルコニウムを
担持して吸着剤として用い、所定の流動状態で吸着剤と
塩水等の溶液とを接触させて吸脱着処理する。この方法
は、従来法に比して接触効率が著しく高く、吸着率及び
再生効率が向上することから塩損失等が少なく運転コス
トが低減され、工業的実用性に優れる。また、吸着剤の
水酸化ジルコニウム担持粒状イオン交換樹脂を、機械的
手段と接することなく流体流通等により流動状態にする
ことから、破砕等が殆ど生じず吸着剤のロスも極めて少
ないことも工業的に優れるものである。また、粒状イオ
ン交換樹脂が易破砕性であることから、上記の優れた流
動化を併せて提案し、効果的な流動接触により吸脱着率
を向上させることができるものである。しかし、水酸化
ジルコニウム担持粒状イオン交換樹脂は処理槽に保持し
た状態で、被処理塩水、脱着反応液、洗浄液等の液の排
出と供給を繰返して行なうことから処理に時間を要する
こと、処理時間は処理量との兼合いで所定となり短縮化
が図れないこと、連続的操作をするためには多数の処理
槽を併設して順次操作工程を切換え移行させるスイッチ
方式を採らねばならず設備費が嵩むこと等が考察され、
先の上記提案方法の工業性をより高めるため、それらの
改良を更に検討した。
However, all of the above methods have various problems such as low regeneration efficiency, high processing cost, increased processing equipment cost, and complicated operation. . For this reason, the applicant has previously disclosed in JP-A-8-6751.
No. 4 proposes an economical and highly industrial method for treating sulfate ion-containing salt water by solving these problems. In the proposed method, zirconium hydroxide is supported on a granular cation exchange resin and used as an adsorbent, and the adsorbent is brought into contact with a solution such as salt water in a predetermined fluid state to perform adsorption / desorption treatment. According to this method, the contact efficiency is remarkably higher than that of the conventional method, and the adsorption rate and the regeneration efficiency are improved, so that the salt loss and the like are small, the operation cost is reduced, and the method is excellent in industrial practicality. In addition, since the zirconium hydroxide-supported particulate ion exchange resin as an adsorbent is made into a fluid state by a fluid flow or the like without contacting mechanical means, crushing hardly occurs and the loss of the adsorbent is extremely small. It is excellent. Further, since the granular ion exchange resin is easily crushable, the above-mentioned excellent fluidization is also proposed, and the adsorption and desorption rate can be improved by effective fluid contact. However, since the zirconium hydroxide-supported particulate ion exchange resin is repeatedly held in the treatment tank, and the discharge and supply of the salt water to be treated, the desorption reaction liquid, the washing liquid, etc. are repeatedly performed, the treatment requires a long time, and the treatment time is long. In order to perform continuous operation, it is necessary to adopt a switch system in which a large number of processing tanks are provided in parallel and the operation process is switched sequentially, and equipment costs are incurred. It is considered that it is bulky,
In order to further improve the industriality of the above-mentioned proposed methods, further studies were made on their improvement.

【0004】即ち、本発明は、上記特開平8−6751
4号提案の水酸化ジルコニウム担持イオン交換樹脂を吸
着剤に用いる硫酸イオン含有塩水から硫酸イオンの除去
法において、設備費を増大することなく円滑な連続操作
を可能とすると共に、処理時間の短縮化を図ることを目
的とする。発明者らは、上記目的のため、先ず、上記プ
ロセスの特性を再検討すると同時に使用する水酸化ジル
コニウムを担持するイオン交換樹脂の性状についても再
検討した。即ち、使用する易破砕性のイオン交換樹脂に
ついては、その破砕性を改めて詳細に検討し移送の可能
性を検討した。その結果、水酸化ジルコニウムを担持す
るイオン交換樹脂は、一般に易破砕性とされ、実際に吸
脱着時に反応槽内を攪拌機で攪拌して接触処理した場合
には、イオン交換樹脂が攪拌翼により破砕され微細化さ
れるが、例えばオープンインペラーのスラリーポンプ等
によりスラリー状で搬送する場合には、従来から破砕の
おそれがあるとされていたにも拘らず破砕や破損が生じ
ないことを見出し本発明に至った。即ち、本発明は、吸
着剤のイオン交換樹脂を各工程に搬送して用いることが
でき、工程を順次切換えるスイッチ方式とは全く異なる
円滑な連続処理を可能とし処理時間を著しく短縮するこ
とができ、また、設備費及び運転コストも低減される。
That is, the present invention relates to the above-mentioned JP-A-8-6751.
In the method of removing sulfate ions from sulfate ion-containing salt water using zirconium hydroxide-supported ion exchange resin as the adsorbent proposed in No. 4, smooth continuous operation can be performed without increasing equipment costs, and the processing time is shortened. The purpose is to plan. For the above purpose, the inventors first reexamined the characteristics of the above-mentioned process, and at the same time, reexamined the properties of the ion exchange resin supporting zirconium hydroxide to be used. That is, with regard to the easily crushable ion exchange resin to be used, the crushability was examined in detail again, and the possibility of transfer was examined. As a result, the ion exchange resin carrying zirconium hydroxide is generally considered to be easily crushable, and when the inside of the reaction tank is actually stirred by a stirrer at the time of adsorption and desorption, the ion exchange resin is crushed by a stirring blade. It is found that, for example, in the case where the slurry is conveyed in a slurry state by an open impeller slurry pump or the like, crushing or breakage does not occur despite the fact that there has been a risk of crushing conventionally. Reached. That is, the present invention can use the ion-exchange resin as the adsorbent in each step, and can use the switch method for sequentially switching the steps, thereby enabling a smooth continuous processing completely different from that of the switching method and significantly reducing the processing time. Also, equipment and operating costs are reduced.

【0005】[0005]

【課題を解決するための手段】本発明によれば、(1)
硫酸イオン含有塩水を、酸性下、水酸化ジルコニウム担
持イオン交換樹脂と流動状態で接触し硫酸イオンを吸着
除去する硫酸イオン吸着工程、(2)硫酸イオン吸着工
程の硫酸イオンを吸着した水酸化ジルコニウム担持イオ
ン交換樹脂を含有するスラリーを固液分離して回収しス
ラリー状で搬送する第1固液分離・搬送工程、(3)第
1固液分離・搬送工程から搬送された硫酸イオン吸着の
水酸化ジルコニウム担持イオン交換樹脂を流動状態で前
記吸着工程の酸性より高いpHの水性溶液と接触させ硫
酸イオンを脱着し水酸化ジルコニウム担持イオン交換樹
脂を再生する脱着再生工程、及び(4)脱着再生工程で
再生された水酸化ジルコニウム担持イオン交換樹脂を含
有するスラリーを固液分離して回収しスラリー状で搬送
する第2固液分離・搬送工程を有すると共に、第2固液
分離・搬送工程から搬送された再生水酸化ジルコニウム
担持イオン交換樹脂を再び硫酸イオン吸着工程に供給し
て循環系を形成し、水酸化ジルコニウム担持イオン交換
樹脂をスラリー状で搬送して前記各工程が連続されてな
ることを特徴とする塩水の硫酸イオン除去処理法が提供
される。
According to the present invention, (1)
A sulfate ion-adsorbing step of adsorbing and removing sulfate ions by contacting a sulfate-containing salt water with an ion-exchange resin carrying zirconium hydroxide under acidic conditions, and (2) supporting zirconium hydroxide adsorbing sulfate ions in the sulfate ion adsorption step. A first solid-liquid separation / transportation step in which a slurry containing an ion exchange resin is collected by solid-liquid separation and collected and transported in the form of a slurry; (3) hydroxylation of sulfate ion adsorption transported from the first solid-liquid separation / transportation step A desorption regeneration step in which the zirconium-supported ion exchange resin is brought into contact with an aqueous solution having a pH higher than the acidity in the adsorption step in a fluid state to desorb sulfate ions and regenerate the zirconium hydroxide-loaded ion exchange resin; and (4) a desorption regeneration step. The second solid-liquid separation in which the slurry containing the regenerated zirconium hydroxide-supported ion exchange resin is separated by solid-liquid separation, collected, and transported in a slurry state In addition to the transport step, the regenerated zirconium hydroxide-supported ion-exchange resin transported from the second solid-liquid separation / transport step is supplied again to the sulfate ion adsorption step to form a circulation system, and the zirconium hydroxide-loaded ion-exchange resin is slurried. And a step of removing the sulfate ion from the salt water, wherein the steps are carried out in a continuous manner.

【0006】本発明の上記塩水の硫酸イオン除去処理法
において、スラリー状の搬送が、専断力を付与しない条
件であることが好ましく、脱着再生工程で前記水性溶液
を流入することにより流動状態を形成することが好まし
い。また、前記脱着再生工程において、流動状態の固液
相の一部を抜出して再び該脱着再生工程に戻して循環さ
せることが好ましく、その固液相の一部抜出しが、スラ
リーポンプで行うことが好ましい。
[0006] In the above-mentioned method for removing sulfate ions of salt water of the present invention, it is preferable that the slurry is conveyed under conditions that do not apply a special force, and a flow state is formed by flowing the aqueous solution in the desorption regeneration step. Is preferred. Further, in the desorption regeneration step, it is preferable that a part of the solid-liquid phase in a fluidized state be extracted and returned to the desorption regeneration step and circulated again, and the partial extraction of the solid-liquid phase be performed by a slurry pump. preferable.

【0007】また、本発明の上記塩水の硫酸イオン除去
処理法の第2固液分離・搬送工程において、再生され固
液分離された水酸化ジルコニウム担持イオン交換樹脂の
スラリーに、酸性下、被処理硫酸イオン含有塩水を添加
してスラリー搬送し、搬送と同時に吸着処理して硫酸イ
オン吸着工程となすことができる。
In the second solid-liquid separation / transportation step of the method for removing sulfate ions of salt water of the present invention, the slurry of the regenerated and solid-liquid separated zirconium hydroxide-supported ion exchange resin is treated under acidic conditions. Sulfate ion-containing salt water is added, the slurry is transported, and an adsorption process is performed simultaneously with the transport to perform a sulfate ion adsorption step.

【0008】更に、前記第1及び第2固液分離・搬送工
程において、少なくとも固液分離胴部、固形物搬送部及
び母液受槽を有する分離固形物の搬送可能な固液分離装
置であって、回転自在な円環状筒体を固液分離胴部と
し、該円環状筒体内を隔壁により2以上に区分して各区
分域の内周面側にスラリー導入部を有すると共に外周面
側に母液透過部を有し、該円環状筒体の中心空間に固形
物導入部を有し搬送治具を具備する固形物搬送部を配設
して一体に形成してなり、回転する該円環状筒体の上部
位置にある該スラリー導入部と該固形物導入部とが相対
し、且つ、下部位置にある該母液透過部の下方に母液受
槽が配設されてなる固液分離装置を用いることが好まし
い。
Further, in the first and second solid-liquid separation / transportation steps, there is provided a solid-liquid separation apparatus capable of transporting separated solids having at least a solid-liquid separation barrel, a solids transporting section and a mother liquor receiving tank, A rotatable annular cylindrical body is used as a solid-liquid separation body, and the annular cylindrical body is divided into two or more by partition walls, and a slurry introduction portion is provided on an inner peripheral surface side of each of the divided regions, and mother liquor is transmitted on an outer peripheral surface side. A solid material transporting section having a solid object introduction part in the center space of the annular cylindrical body and having a transport jig, and integrally formed and rotated. It is preferable to use a solid-liquid separation device in which the slurry introduction section and the solid matter introduction section at the upper position are opposite to each other, and a mother liquor receiving tank is disposed below the mother liquor permeation section at the lower position. .

【0009】また、本発明は、上記固液分離装置と同様
に構成される前段及び後段の各分離機が、各前記固形物
搬送部を延長して連結され、連結された固形物搬送部の
中間部に分離固形物排出口を有し、且つ、該分離固形物
排出口が所定の処理部に連続すると共に処理部が後段固
液分離機に連続してなる固液分離装置を用い、前記脱着
再生工程からの水酸化ジルコニウム担持イオン交換樹脂
含有スラリーを前段固液分離機に供給し、固液分離して
母液分離し、洗浄後、水酸化ジルコニウム担持イオン交
換樹脂を洗浄液及び/または硫酸イオン含有塩水とスラ
リー状で搬送し、前記分離固形物排出口から搬送スラリ
ーを処理部に抜出し、処理部を流動状態に保持すること
により前記第2固液分離・搬送工程及び硫酸イオン吸着
工程を形成してなり、次いで、処理部からの水酸化ジル
コニウム担持イオン交換樹脂含有スラリーを後段固液分
離機に供給し、固液分離して母液分離し、洗浄後、水酸
化ジルコニウム担持イオン交換樹脂を洗浄液とスラリー
状で前記脱着再生工程に搬送して前記第1固液分離・搬
送工程を形成してなる塩水の硫酸イオン除去処理法を提
供する。
Further, according to the present invention, each of the first and second separators constructed in the same manner as the above-mentioned solid-liquid separation device is connected to each other by extending each of the solid material transporting portions. Using a solid-liquid separation device having a separated solid matter discharge port in the intermediate portion, and the separated solid matter discharge port being continuous with a predetermined processing section and the processing section being continuous with a subsequent solid-liquid separator, The zirconium hydroxide-supported ion-exchange resin-containing slurry from the desorption / regeneration step is supplied to the pre-stage solid-liquid separator, separated into a mother liquor by solid-liquid separation, washed, and then washed with a washing liquid and / or sulfate ion. The second solid-liquid separation / transportation step and the sulfate ion adsorption step are carried out by carrying the slurry in the form of slurry with the contained salt water, withdrawing the carried slurry from the separated solids discharge port to the treatment section, and keeping the treatment section in a fluid state. Do Then, the zirconium hydroxide-supported ion-exchange resin-containing slurry from the processing section is supplied to a subsequent solid-liquid separator, which is separated into a mother liquor by solid-liquid separation. The present invention provides a method for removing a sulfate ion in salt water, which comprises carrying the first solid-liquid separation / transportation step by carrying it to the desorption regeneration step.

【0010】なお、本発明において、流動状態で接触と
は、硫酸イオン吸着時及び脱着時において、硫酸イオン
含有塩水または水性液と水酸化ジルコニウム担持(粒
状)イオン交換樹脂とが共存して接触する処理域内に機
械的流動化手段が配備されることなく流体流通等により
生じる流体運動に伴い当該塩水とイオン交換樹脂とが共
に静止することなく常に運動状態にあって、両者が均一
に混合して互いに接触することをいい、通常、約0.0
01m/秒以上の移動速度の運動状態にあることをい
う。また、スラリー状で搬送とは、硫酸イオン含有塩水
または水性液と水酸化ジルコニウム担持イオン交換樹脂
とが共存し、混合している状態をいう。
In the present invention, the term "contact in a fluid state" means that the sulfate-containing salt water or aqueous liquid and the zirconium hydroxide-supported (granular) ion-exchange resin coexist during sulfate ion adsorption and desorption. The salt water and the ion-exchange resin are always in a state of motion without being stationary together with the fluid motion generated by the fluid circulation or the like without the mechanical fluidizing means being provided in the treatment area, and both are uniformly mixed. Contact with each other, usually about 0.0
It means that it is in a motion state at a moving speed of 01 m / sec or more. The transportation in a slurry state refers to a state in which sulfate ion-containing salt water or an aqueous liquid and a zirconium hydroxide-supporting ion exchange resin coexist and are mixed.

【0011】本発明は、上記のように構成され、水酸化
ジルコニウム担持(粒状)イオン交換樹脂(以下、適宜、
単にイオン交換樹脂と記す)をオープンインペラのスラ
リーポンプ等を用いスクリューによりスラリー状で搬送
することから、一般的なポンプ移送と異なりポンプのイ
ンペラとの激しい衝突もなくイオン交換樹脂の破砕が生
じず吸着能が損なわれず移送できる。従来破砕のおそれ
から回避されていた移送が可能であることから、硫酸イ
オンの吸脱着工程とその間の固液分離して搬送する工程
とを別個の反応装置で行なわせ、それら反応装置を直列
的に接続して各工程を連続させると共に循環して処理し
て硫酸イオン含有塩水から硫酸イオンを連続的に円滑且
つ安定に除去できる。このため従来のイオン交換樹脂を
吸脱着処理塔に保持して液の排出・供給操作で対応する
スイッチ方式に比し、本発明では時間的間断がなく循環
して連続処理が行われることから、時間的ロスがなくな
り処理時間が著しく短縮される。
The present invention is directed to a zirconium hydroxide-supported (granular) ion-exchange resin (hereinafter referred to as
The ion-exchange resin is simply conveyed in a slurry state by a screw using an open impeller slurry pump or the like. Unlike a general pump transfer, there is no severe collision with the pump impeller and no crushing of the ion-exchange resin occurs. It can be transferred without loss of adsorption capacity. Since the transfer, which was conventionally avoided because of the risk of crushing, is possible, the process of adsorbing and desorbing sulfate ions and the process of solid-liquid separation and transport between them are performed in separate reactors, and the reactors are connected in series. To continuously process and circulate the process to remove sulfate ions continuously and smoothly from the sulfate ion-containing salt water. For this reason, in comparison with the conventional switch system corresponding to the discharge / supply operation of the liquid by holding the conventional ion-exchange resin in the adsorption / desorption treatment tower, the present invention performs continuous processing by circulating without interruption in time, There is no time loss and processing time is significantly reduced.

【0012】また、例えば、吸着(20分)−液抜き・洗
浄・液抜き(10分)−脱着(20分)−液抜き・洗浄・液
抜き(10分)の60分1サイクル処理を操作する場合、
従来のスイッチ方式では各工程にそれぞれ同量のイオン
交換樹脂を保持することになるが、本発明では連続操作
が平衡状態に達することにより、約1/3のイオン交換
樹脂量で同一量の硫酸イオンを除去することができる。
少量のイオン交換樹脂量で、従来とほぼ同様の硫酸イオ
ン除去が可能であることは、装置的には小型化でき設備
費が低減される。更に、装置の小型化は、吸着及び/ま
たは脱着の滞留時間を延長して硫酸イオン除去率を向上
させたり、また、使用するイオン交換樹脂量を増やして
滞留時間を短縮させる等条件に応じて適宜選択でき、広
い範囲で適用可能であり工業的実用性が高い。更にま
た、硫酸イオン除去率を高くして操作する場合は、高濃
度の硫酸イオンを含有する塩水を処理することができる
ことから、処理塩水量が少なくなる。このため、塩水か
ら硫酸イオンを除去する前に必須な脱塩素処理の負荷を
低減することができ、ひいては塩水の電気分解のための
一連の処理プロセスの小型化を図ることができる。更
に、本発明は、上記のように硫酸イオンの吸着処理と吸
着剤であるイオン交換樹脂を再生処理して吸着処理に戻
す一連の連続工程の循環系を形成させて、塩水から硫酸
イオンの除去を円滑に行なうことから、従来のスイッチ
方式のように多数の反応槽を併設させる必要がない上
に、固液分離とスラリー搬送を簡潔に容易に行なうこと
ができる所定の固液分離装置を用いることから、反応処
理槽と固液分離機等の反応機器類をできる限り低減する
ことができる。これによっても塩水から硫酸イオンの除
去プロセスがより一層コンパクト化され、簡便となる。
Further, for example, one cycle of 60 minutes of adsorption (20 minutes) -draining / washing / draining (10 minutes) -desorption (20 minutes) -draining / washing / draining (10 minutes) is operated. If you do
In the conventional switching method, the same amount of ion-exchange resin is held in each step, but in the present invention, when the continuous operation reaches an equilibrium state, the same amount of sulfuric acid is used in about 1/3 of the amount of ion-exchange resin. Ions can be removed.
The fact that sulfate ions can be removed with a small amount of ion exchange resin in substantially the same manner as in the prior art means that the apparatus can be reduced in size and equipment costs can be reduced. In addition, the miniaturization of the apparatus may be performed depending on conditions such as extending the retention time of adsorption and / or desorption to improve the sulfate ion removal rate, or increasing the amount of ion exchange resin used to shorten the residence time. It can be selected appropriately, can be applied in a wide range, and has high industrial practicality. Furthermore, when the operation is performed with a high sulfate ion removal rate, the salt water containing a high concentration of sulfate ions can be treated, so that the amount of the treated salt water decreases. For this reason, the load of the dechlorination process essential before removing the sulfate ions from the salt water can be reduced, and the size of a series of treatment processes for electrolysis of the salt water can be reduced. Furthermore, the present invention forms a circulating system of a series of continuous steps for the adsorption treatment of sulfate ions and the regeneration treatment of the ion exchange resin as an adsorbent as described above to return to the adsorption treatment, thereby removing the sulfate ions from the salt water. Is performed smoothly, so that it is not necessary to provide a large number of reaction vessels in parallel as in the conventional switch system, and a predetermined solid-liquid separation device that can easily and easily perform solid-liquid separation and slurry transportation is used. Thus, the number of reaction equipment such as a reaction tank and a solid-liquid separator can be reduced as much as possible. This also makes the process of removing sulfate ions from the salt water more compact and simple.

【0013】[0013]

【発明の実施の形態】本発明について、更に詳細に説明
する。本発明の吸着剤である水酸化ジルコニウム担持イ
オン交換樹脂、硫酸イオンの吸着及び脱着に関しその主
要点を下記に説明する。但し、それらの基本的構成や機
構は、前記の出願人による特開平8−67514号公報
で提案した技術に基づくものである。即ち、硫酸イオン
の実質的吸着剤成分の水酸化ジルコニウムを担持するイ
オン交換樹脂は平均粒子径300〜1200μmの粒状
のものが好ましい。平均粒子径が300μmより小さい
場合は、固液分離の際に目開き細かい網状体の濾材を使
用することになり、抵抗が増大するため濾過効率が低下
する。一方、平均粒子径が1200μmより大きい場合
は、硫酸イオンの吸脱着速度が低下したり、沈降速度が
大きいため搬送時のスラリーが均一にならず好ましくな
い。通常、数100μmの粒子径を有するイオン交換樹
脂を使用する。吸着や脱着終了時の固液分離操作が容易
となり、取扱い等の作業性に優れるためである。前記特
開平3−153522号公報に提案されるように、水酸
化ジルコニウムを担体を用いずそのまま吸着剤とするこ
とは、本発明の上記所定の固液分離装置を用いても粒子
径が小さく分離が困難である。イオン交換樹脂として
は、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂
及びキレート樹脂のいずれでもよく適宜選択できる。陰
イオン交換樹脂は、水酸化ジルコニウムの担持効率が低
い上、樹脂自体が塩化物イオンを吸脱着するため、水酸
化ジルコニウムによる硫酸イオン吸着の選択性が損なわ
れるため使用できない。また、表面の状態により分類さ
れる所謂ゲル型とマクロポーラス型の双方のイオン交換
樹脂が使用できる。ゲル型樹脂は、一般に表面積が小さ
いため硫酸イオンの吸脱着速度がマクロポーラス型より
遅い傾向にあるが、条件に応じて適宜選択して使用でき
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail. The main points regarding the adsorption and desorption of the zirconium hydroxide-supported ion exchange resin and the sulfate ion as the adsorbent of the present invention will be described below. However, their basic configuration and mechanism are based on the technology proposed in Japanese Patent Application Laid-Open No. Hei 8-67514 by the applicant. That is, the ion-exchange resin supporting zirconium hydroxide, which is a substantial adsorbent component for sulfate ions, is preferably in the form of particles having an average particle diameter of 300 to 1200 μm. When the average particle size is smaller than 300 μm, a filter material having a fine mesh is used at the time of solid-liquid separation, and the filtration efficiency is reduced due to an increase in resistance. On the other hand, if the average particle size is larger than 1200 μm, the rate of adsorption and desorption of sulfate ions decreases and the rate of sedimentation is high, so that the slurry during transport is not uniform, which is not preferable. Usually, an ion-exchange resin having a particle size of several 100 μm is used. This is because the solid-liquid separation operation at the end of the adsorption or desorption becomes easy, and the workability such as handling is excellent. As proposed in JP-A-3-153522, the use of zirconium hydroxide as an adsorbent without using a carrier can reduce the particle size even if the predetermined solid-liquid separator of the present invention is used. Is difficult. As the ion exchange resin, any of a strongly acidic cation exchange resin, a weakly acidic cation exchange resin and a chelate resin may be used and may be appropriately selected. An anion exchange resin cannot be used because zirconium hydroxide has a low loading efficiency and the resin itself adsorbs and desorbs chloride ions, which impairs the selectivity of sulfate ion adsorption by zirconium hydroxide. Further, both a so-called gel type and macroporous type ion exchange resin classified according to the surface condition can be used. The gel-type resin generally has a small surface area, and thus the adsorption / desorption rate of sulfate ion tends to be lower than that of the macroporous type. However, it can be appropriately selected and used depending on the conditions.

【0014】本発明の硫酸イオン吸着工程は、水酸化ジ
ルコニウム担持イオン交換樹脂と、酸性下で、硫酸イオ
ン含有塩水とを流動状態で接触することにより、塩水中
の硫酸イオンを吸着除去する。酸性は、塩酸、硝酸等の
酸を添加して行い、塩水中にはアルカリ金属塩化物が含
有されることが多く、通常、塩酸を用いる。接触時の酸
性度は、通常、pH1〜5、好ましくはpH2〜3の範
囲のがよい。一般に、pH値を下げると水酸化ジルコニ
ウムの硫酸イオン吸着量が増え且つ吸着速度も上がるの
で好ましい。しかし、pH値を下げ過ぎると水酸化ジル
コニウムが溶け、系外に流出してコストアップという問
題が起こるので好ましくない。本発明では水酸化ジルコ
ニウムがイオン交換樹脂に担持されるため、一部の水酸
化ジルコニウムが溶けてジルコニルイオンが生じたとし
ても、イオン交換樹脂の官能基がジルコニルイオンを捕
捉するため、樹脂の外にジルコニルイオンが拡散するこ
とがない。このため水酸化ジルコニウム粉体を用いる硫
酸イオン吸着除去法に比して、本発明の硫酸イオン吸着
工程では、通常、pH1〜5、好ましくはpH2〜3の
範囲の酸性下で接触処理することができ、流動状態との
相乗効果で吸着効率を高めることができる。
In the sulfate ion adsorption step of the present invention, the sulfate ion in the salt water is adsorbed and removed by bringing the zirconium hydroxide-supporting ion exchange resin into contact with a sulfate ion-containing salt water under acidic conditions in a fluid state. The acidity is performed by adding an acid such as hydrochloric acid or nitric acid, and the salt water often contains an alkali metal chloride. Usually, hydrochloric acid is used. The acidity at the time of contact is usually in the range of pH 1 to 5, preferably pH 2 to 3. In general, lowering the pH value is preferable because the amount of sulfate ions adsorbed by zirconium hydroxide increases and the adsorption rate also increases. However, if the pH value is lowered too much, zirconium hydroxide dissolves and flows out of the system to cause a problem of cost increase, which is not preferable. In the present invention, since zirconium hydroxide is supported on the ion exchange resin, even if some of the zirconium hydroxide is dissolved to generate zirconyl ions, the functional groups of the ion exchange resin capture the zirconyl ions, so that the zirconyl ions are trapped outside the resin. Zirconyl ions are not diffused into the metal. For this reason, compared with the sulfate ion adsorption removal method using zirconium hydroxide powder, in the sulfate ion adsorption step of the present invention, the contact treatment is usually performed under acidic conditions in the range of pH 1 to 5, preferably pH 2 to 3. It is possible to increase the adsorption efficiency by a synergistic effect with the fluid state.

【0015】本発明の上記硫酸イオン吸着工程は、特に
吸着反応槽を設けることなく、脱着再生工程で再生され
たイオン交換樹脂を、下記する所定の固液分離装置で固
液分離してスラリー搬送する際に、酸性下の被処理塩水
を添加して搬送と同時に硫酸イオンの吸着除去してもよ
い。また、上記固液分離装置の搬送部中間には反応槽が
付帯的に設置され、搬送時に吸着反応が完了したスラリ
ーを一旦抜出して次工程の第2固液分離・反応工程(後
段分離機)に送入する。このため、搬送時に吸着反応さ
せると共にその搬送部中間の反応槽内でも、または、そ
の反応槽内のみでスラリー流動状態で吸着反応させるこ
ともできる。
In the sulfate ion adsorption step of the present invention, the ion exchange resin regenerated in the desorption / regeneration step is separated into solid and liquid by a predetermined solid-liquid separation device described below without the need of providing an adsorption reaction tank, and the slurry is conveyed. In this case, the salt water to be treated under an acidic condition may be added to adsorb and remove sulfate ions simultaneously with the transportation. In addition, a reaction tank is provided in the middle of the transport section of the solid-liquid separation device, and the slurry after the completion of the adsorption reaction is once extracted at the time of transport, and then the second solid-liquid separation / reaction step (second-stage separator) of the next step is performed. Send to For this reason, it is possible to cause the adsorption reaction at the time of transfer, and also to perform the adsorption reaction in the slurry flowing state in the reaction tank in the middle of the transfer section or only in the reaction tank.

【0016】本発明の脱着再生工程は、下記する固液分
離・スラリー搬送された硫酸イオンを吸着したイオン交
換樹脂を、脱着反応槽内で上記吸着時pH値より高いp
H値、即ちpH3〜11好ましくはpH5〜10の水性
液とスラリー流動状態で接触処理し硫酸イオンを脱着す
る。脱着時のpH調整は、通常、苛性ソーダ等のアルカ
リを添加する。脱着時pH値が3より低い場合は硫酸イ
オンの脱着効率が低く、pH値が11より高い場合は水
酸化ジルコニウムと反応するナトリウムイオンが増え苛
性ソーダや塩酸の原単位が悪くなるので好ましくない。
In the desorption regeneration step of the present invention, the following ion-exchange resin adsorbing sulfate ions, which has been conveyed by solid-liquid separation / slurry transportation, is treated in a desorption reaction tank with a pH higher than the above-mentioned adsorption pH
An aqueous solution having an H value, that is, pH 3 to 11, preferably pH 5 to 10 is contacted with the slurry in a fluidized state to desorb sulfate ions. For pH adjustment during desorption, an alkali such as caustic soda is usually added. When the pH value at the time of desorption is lower than 3, the desorption efficiency of sulfate ions is low, and when the pH value is higher than 11, sodium ions reacting with zirconium hydroxide increase and the basic units of caustic soda and hydrochloric acid are unfavorably deteriorated.

【0017】本発明において、上記硫酸イオンの吸脱着
反応を行なう反応槽(上記固液分離装置の中間の反応槽
も含む)は、イオン交換樹脂と水性液とのスラリーが均
一な流動状態を維持できるものであればよく、特にその
形状は制限されるものでない。また、その容量は、処理
する塩水量と含有硫酸イオン濃度(除去すべき硫酸イオ
ン量)、温度、pH値、循環スラリー流量等の吸脱着反
応条件により吸脱着速度が変化するため、それら条件に
応じて適宜選択すればよい。この場合、本発明において
はイオン交換樹脂が循環して連続的に移動することか
ら、イオン交換樹脂の循環量に対しスラリー濃度50〜
60重量%で約15〜20分間滞留できるようにするこ
とが好ましい。
In the present invention, the reaction tank (including the intermediate reaction tank of the solid-liquid separation device) for carrying out the adsorption / desorption reaction of the sulfate ion maintains a uniform fluid state of the slurry of the ion exchange resin and the aqueous liquid. Any shape can be used, and the shape is not particularly limited. In addition, the adsorption / desorption speed varies depending on the adsorption / desorption reaction conditions such as the amount of salt water to be treated and the concentration of sulfate ions contained (the amount of sulfate ions to be removed), temperature, pH value, and flow rate of the circulating slurry. What is necessary is just to select suitably according to it. In this case, in the present invention, since the ion exchange resin circulates and moves continuously, the slurry concentration is 50 to 50% with respect to the circulation amount of the ion exchange resin.
It is preferable to be able to stay at 60% by weight for about 15 to 20 minutes.

【0018】本発明において、上記反応槽における吸脱
着反応時のスラリー流動状態は、前記特開平8−675
14号公報提案の方法と同様に機械的な撹拌機等を用い
ることなく形成させる。樹脂の破砕を避けるためであ
る。即ち、吸着時は酸性被処理塩水、脱着時は脱着アル
カリ水性液を反応槽下部から供給し、槽内に滞留してい
るイオン交換樹脂を均一なスラリーの流動状態にする。
各液は、通常、反応槽に対してLV値70〜80m/時
の量で供給し、それによりイオン交換樹脂の展開率を
1.7〜1.8とすることができ、槽内スラリー濃度を
ほぼ上記50〜60重量%にすることができる。特に、
脱着反応槽においては、イオン交換樹脂のプロセス系の
循環相当量を、槽内スラリー濃度でスラリーポンプによ
って抜出し再び脱着槽に戻す方式で槽循環させてもよ
い。イオン交換樹脂スラリーの槽循環は、流動状態での
接触がより効果的に促進され吸着された硫酸イオン量の
80%以上が脱着でき好ましい。また、スラリーポンプ
は、オープンインペラ方式のものを用いることによりイ
オン交換樹脂がインペラとの接触で破砕されることがな
い。
In the present invention, the flow state of the slurry during the adsorption / desorption reaction in the reaction tank is described in the above-mentioned JP-A-8-675.
It is formed without using a mechanical stirrer or the like as in the method proposed in Japanese Patent Publication No. This is to avoid crushing of the resin. In other words, the acidic treated salt water is supplied from the lower part of the reaction tank at the time of adsorption and the desorbed alkaline aqueous liquid at the time of desorption, and the ion exchange resin retained in the tank is made into a uniform slurry fluidized state.
Each liquid is usually supplied to the reaction tank at an LV value of 70 to 80 m / hour, whereby the development rate of the ion exchange resin can be set to 1.7 to 1.8, and the slurry concentration in the tank can be controlled. Can be approximately 50 to 60% by weight. In particular,
In the desorption reaction tank, the circulation amount of the ion exchange resin in the process system may be withdrawn by a slurry pump at a slurry concentration in the tank and returned to the desorption tank again. The tank circulation of the ion exchange resin slurry is preferable because the contact in the fluidized state is more effectively promoted and 80% or more of the adsorbed sulfate ion can be desorbed. Further, by using an open impeller type slurry pump, the ion exchange resin is not crushed by contact with the impeller.

【0019】本発明において、上記のようにして吸脱着
反応が完了したイオン交換樹脂は、固液分離装置にスラ
リー状で送入して固液分離され母液を濾過分離して回収
され、所定の水性液のスラリー状で送られ再度吸脱着反
応に供せられる。この場合、固液分離装置への搬送は、
通常、上記の脱着槽循環系と同様のスラリーポンプを用
いることによりイオン交換樹脂の破砕の発生を防止でき
る。固液分離装置は、一般的な回転ドラム式濾過機等イ
オン交換樹脂に衝撃力を与えず破砕することなく固液分
離できるものであればよく、特に制限されるものでない
が、下記実施例で説明する固液分離装置を用いることが
好ましい。即ち、固液分離装置は、詳細は下記するが、
同時低速回転する円環状分離胴を有する前後段の2つの
分離機からなり、各分離胴中心部を通して同心状に搬送
機が配設された構造であり、装置外で脱着反応を完了し
たイオン交換樹脂をスラリー状で受入れ、母液分離しイ
オン交換樹脂を洗浄、回収して、水性液、好ましくは硫
酸イオン含有塩水により再びスラリー状として搬送し、
搬送と同時及び/または吸着反応槽で硫酸イオンを吸着
し、吸着後のスラリー状イオン交換樹脂を、同様に母液
分離し洗浄して、装置外の脱着反応槽にイオン交換樹脂
をスラリー状で連続的に送出する機能を有するものであ
る。
In the present invention, the ion-exchange resin which has completed the adsorption / desorption reaction as described above is fed into a solid-liquid separator in the form of a slurry, solid-liquid separated, and the mother liquor is recovered by filtration. It is sent in the form of a slurry of the aqueous liquid, and is again subjected to the adsorption / desorption reaction. In this case, transportation to the solid-liquid separation device
Usually, the use of the same slurry pump as in the desorption tank circulation system can prevent the ion exchange resin from being crushed. The solid-liquid separator is not particularly limited as long as it can perform solid-liquid separation without crushing without giving an impact force to an ion exchange resin such as a general rotary drum type filter, and is not particularly limited. It is preferable to use the solid-liquid separation device described. That is, the solid-liquid separation device will be described in detail below,
It consists of two separators in the front and rear stages with an annular separator rotating at the same time and rotating at low speed. The transporter is concentrically arranged through the center of each separator, and the ion exchange that has completed the desorption reaction outside the device Receiving the resin in the form of slurry, separating the mother liquor, washing and recovering the ion exchange resin, transporting the aqueous liquid, preferably a sulfated salt-containing salt water again,
Simultaneously with transportation and / or adsorption of sulfate ions in the adsorption reaction tank, the slurry-like ion-exchange resin after adsorption is similarly separated and washed with mother liquor, and the ion-exchange resin is continuously slurry-like in the desorption reaction tank outside the apparatus. It has a function of sending out the information.

【0020】また、上記固液分離装置の各分離胴を貫通
配設された搬送部の中間部には、搬送スラリー抜出部を
設け、それと接続して中間反応槽を設け、水性液または
硫酸イオン含有塩水でスラリー状で搬送されたイオン交
換樹脂を一旦抜出し、要すれば、中間反応槽内で吸着反
応を完結させた後、スラリー状で後段分離機に移動させ
る。通常、前段分離機では脱着後の、後段分離機では吸
着後の母液分離と洗浄が行われ、中心部の搬送機は各分
離胴から脱落したイオン交換樹脂を回収し、前段分離機
では脱着イオン交換樹脂を搬送スラリー抜出部から反応
槽まで、後段分離機では硫酸イオン吸着イオン交換樹脂
を装置外に送出して、脱着槽へ再循環する。上記固液分
離装置において、固液分離して母液と分離されたイオン
交換樹脂の洗浄は、吸着後の洗浄水のpH値は、吸着時
pHと同等か低くすることが好ましい。pH値が吸着時
pHより高い場合、吸着された硫酸イオンの一部が脱着
するためである。この点は、上記したように吸着時pH
値をできる限り低くして吸着量を増やすことと関係があ
る。従って、吸着後の洗浄時のpH値をコントロールす
ることにより、食塩回収量の増加を図ることができる。
In addition, an intermediate part of the conveying part provided through each of the separation cylinders of the solid-liquid separating device is provided with a conveyed slurry discharge part, and an intermediate reaction tank is provided so as to be connected to the conveyed slurry discharge part. The ion-exchange resin conveyed in the form of slurry with the ion-containing salt water is once extracted, and if necessary, after the adsorption reaction is completed in the intermediate reaction tank, it is moved to the post-separator in the form of slurry. Normally, the mother liquor is separated and washed after adsorption in the pre-separator, and after adsorption in the post-separator.The transporter in the center collects the ion-exchange resin that has fallen off from each separation cylinder. The exchange resin is sent from the slurry extraction portion to the reaction tank, and in the latter-stage separator, the sulfate ion-adsorbed ion exchange resin is sent out of the apparatus and is recycled to the desorption tank. In the solid-liquid separation device, it is preferable that the pH value of the washing water after the adsorption is equal to or lower than the pH at the time of the adsorption when washing the ion-exchange resin separated from the mother liquor by the solid-liquid separation. This is because when the pH value is higher than the pH at the time of adsorption, a part of the adsorbed sulfate ions is desorbed. This point, as described above,
This is related to increasing the amount of adsorption by lowering the value as much as possible. Therefore, by controlling the pH value at the time of washing after adsorption, the amount of collected salt can be increased.

【0021】本発明は、上記したように、吸脱着反応完
了後の各イオン交換樹脂は、各反応槽(または搬送部の
反応域)からスラリー状態で連続的に固液分離装置に送
られ、固液分離されて母液を濾過分離し回収され、再び
所定の水性液のスラリー状態で送られ、再度吸脱着反応
に供せられる。即ち、本発明は、吸着剤の水酸化ジルコ
ニウム担持イオン交換樹脂を移動させて、硫酸イオンの
吸着と脱着再生を連続的に繰返して行い、塩水中の硫酸
イオンを除去する方法である。従来から破砕され易いと
され、且つ、作業性が低くその取扱いが煩雑となるとさ
れた粒状イオン交換樹脂に吸着成分水酸化ジルコニウム
を担持した吸着剤を、塩水に含有される硫酸イオンの除
去するため、搬送させ循環して吸脱着に用いることは、
本発明により初めて提案され流ものである。また、本発
明は、選択態様によれば、一つの反応槽(脱着反応槽)
と一つの固液分離装置との最小単位の装置を用い、吸着
−固液分離−水洗−搬送−脱着−固液分離−水洗−搬送
の工程を連続的に実施することにより塩水より硫酸イオ
ンを効率よく安定且つ経済的に除去することができる。
According to the present invention, as described above, each ion-exchange resin after the completion of the adsorption / desorption reaction is continuously sent in a slurry state from each reaction tank (or the reaction zone of the transport section) to the solid-liquid separation device, The mother liquor is separated by solid-liquid separation and collected by filtration, sent again in a slurry state of a predetermined aqueous liquid, and subjected to the adsorption / desorption reaction again. That is, the present invention is a method for removing sulfate ions in salt water by moving a zirconium hydroxide-supported ion exchange resin as an adsorbent and continuously repeating adsorption and desorption regeneration of sulfate ions. Conventionally, the adsorbent supporting zirconium hydroxide as the adsorbent component on the granular ion exchange resin, which is considered to be easily crushed, and is considered to have low workability and its handling is complicated, for removing sulfate ions contained in salt water. Transporting, circulating and using for adsorption and desorption,
This is the first proposal proposed by the present invention. Further, according to the present invention, the present invention provides one reaction tank (desorption reaction tank).
And the solid-liquid separation device and the minimum unit, and successively perform the steps of adsorption-solid-liquid separation-washing-transportation-desorption-solid-liquid separation-water-washing-transportation to convert sulfate ions from salt water. It can be removed efficiently, stably and economically.

【0022】本発明について、その実施態様を図面を参
照しながら更に詳しく説明する。但し、本発明は下記実
施態様により制限されるものではない。図1は、水酸化
ジルコニウム担持イオン交換樹脂を吸着剤として用い
て、硫酸イオンの吸着と脱着を繰返して吸着剤を再生循
環使用する本発明の硫酸イオンの除去法の一例のプロセ
スフロー説明図、図2は使用する固液分離装置の一例の
説明図である。図1において、脱着反応槽1には吸着処
理に用いられ吸着能の低下したイオン交換樹脂吸着剤が
スラリーで供給され、また、ラインL1から下記する脱
着処理母液及び洗浄水または所定の洗浄液が、ラインL
2から苛性ソーダ溶液がそれぞれ供給され脱着処理され
る。脱着反応槽1と水性液槽2とはラインL3、ポンプ
P1及びラインL4を介して脱着循環系を形成して連絡
され、ポンプP1により水性液槽2中の水性液をライン
L4から流入し脱着反応槽中のスラリーを均一に流動さ
せる。脱着反応槽1では吸着機能低下イオン交換樹脂か
ら吸着硫酸イオンが硫酸ソーダ(芒硝)として脱着され
イオン交換樹脂を再生する。また、脱着反応処理により
硫酸ソーダ(芒硝)が溶解した再生イオン交換樹脂含有
のスラリーは、ポンプP2によりラインL5から連続的
に図2に示した固液分離装置20の前段分離機5の固液
分離胴部51に送られる。
Embodiments of the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited by the following embodiments. FIG. 1 is a process flow explanatory diagram of an example of a sulfate ion removal method of the present invention in which a zirconium hydroxide-supported ion exchange resin is used as an adsorbent, and adsorption and desorption of sulfate ions are repeated to regenerate and use the adsorbent. FIG. 2 is an explanatory diagram of an example of the solid-liquid separation device used. In FIG. 1, an ion-exchange resin adsorbent used in an adsorption process and having reduced adsorption capacity is supplied as a slurry to a desorption reaction tank 1, and a desorption treatment mother liquor and cleaning water or a predetermined cleaning solution described below are supplied from a line L1. Line L
The caustic soda solution is supplied from 2 and desorbed. The desorption reaction tank 1 and the aqueous liquid tank 2 are connected via a line L3, a pump P1, and a line L4 to form a desorption circulation system, and the aqueous liquid in the aqueous liquid tank 2 flows in from the line L4 by the pump P1 to be desorbed. The slurry in the reaction vessel is made to flow uniformly. In the desorption reaction tank 1, adsorbed sulfate ions are desorbed from the ion-exchange resin with reduced adsorption function as sodium sulfate (Glauber's salt) to regenerate the ion-exchange resin. Further, the slurry containing the regenerated ion exchange resin in which sodium sulfate (Glauber's salt) is dissolved by the desorption reaction treatment is continuously supplied from the line L5 by the pump P2 to the solid-liquid separation unit 5 of the pre-separator 5 of the solid-liquid separation device 20 shown in FIG. It is sent to the separation trunk 51.

【0023】次いで図2の固液分離装置20について説
明すると共に、硫酸イオンの除去法についても上記した
後の工程を順次説明する。図2において、固液分離装置
20は、ほぼ同様に形成された2つの前段分離機5と後
段分離機8とが連結搬送部6で直列に連結されている。
各分離機5、8は、主に固液分離胴部51(51’)、
81(81’)、固形物搬送部52、82及び母液受槽
53、83からなる。固液分離胴部51(51’)及び
81(81’)は円環筒状に形成されると共に、固液分
離胴部の円環筒体中心空間には、固形物搬送部52、8
2が中間空間部57、87を介在させ同心配設される。
固液分離胴部51(51’)及び81(81’)は、伝
動機G1に連結され連動回転する駆動ローラR1、R2
及び従動ローラR3、R4に連絡されてそれぞれ回転自
在に構成される。各固液分離胴部の円環状筒体内は隔壁
を配設し2以上の区分域を形成する。例えば、回転する
固液分離胴の下部に位置する51、81の4区分域と上
部に位置する51’、81’の4区分域との等分に8区
分する。同時に各区分域の内周面側にスラリー導入部5
4(上部位置では固形物放出部54’)、84(8
4’)を配置すると共に外周面側に母液透過部55、8
5を配置する。母液透過部55、85は、例えば、外形
を金属、硬質プラスチック、木材等の硬質材料で作製し
た網状体または格子状体で形成し、その内側に供給スラ
リー含有の固形物が通過しない目開きのサランネット等
樹脂製の柔軟性メッシュ体の濾材を配設して形成され
る。また、スラリー導入部54、84(固形物放出部5
4’、84’)は、固液分離胴の内周面の隔壁間の一部
又は全部を開口して形成される。
Next, the solid-liquid separation device 20 shown in FIG. 2 will be described, and the steps after the above-mentioned steps for removing sulfate ions will also be sequentially described. In FIG. 2, in the solid-liquid separation device 20, two front-stage separators 5 and a rear-stage separator 8, which are formed in substantially the same manner, are connected in series by a connecting / conveying unit 6.
Each of the separators 5 and 8 mainly includes a solid-liquid separation body 51 (51 ′),
81 (81 '), solid transport sections 52 and 82, and mother liquor receiving tanks 53 and 83. The solid-liquid separation barrels 51 (51 ′) and 81 (81 ′) are formed in an annular cylindrical shape, and the solid material transporting units 52, 8 are provided in the central space of the annular cylinder of the solid-liquid separation barrel.
2 is provided with the intermediate spaces 57 and 87 interposed therebetween.
The solid-liquid separation barrels 51 (51 ') and 81 (81') are connected to the transmission G1 and are driven by driving rollers R1, R2 which rotate in conjunction therewith.
And are connected to driven rollers R3 and R4 to be rotatable. A partition is provided in the annular cylinder of each solid-liquid separation body to form two or more divided areas. For example, eight sections are equally divided into four section areas 51 and 81 located at the lower part of the rotating solid-liquid separation cylinder and four section areas 51 ′ and 81 ′ located at the upper part. At the same time, the slurry introduction section 5
4 (solid discharge section 54 'at the upper position), 84 (8
4 ′) and the mother liquor transmitting portions 55, 8 on the outer peripheral surface side.
5 is arranged. The mother liquor transmitting portions 55 and 85 are, for example, formed of a net or a grid having an outer shape made of a hard material such as metal, hard plastic, and wood, and are provided with mesh openings through which solids containing the supply slurry do not pass. It is formed by disposing a filter material of a flexible mesh body made of resin such as saran net. Further, the slurry introduction sections 54 and 84 (the solid substance discharge section 5)
4 ', 84') are formed by opening some or all of the spaces between the partitions on the inner peripheral surface of the solid-liquid separation cylinder.

【0024】搬送部52、82は、従来公知のスクリュ
ーコンベヤとほぼ同様の搬送治具、即ちスクリュー羽根
63を有する搬送回転軸62が円形やU字状の管体61
内に配備され、伝動機G2により連動して回転する。更
に、上部所定位置に固形物導入部56、86が、固液分
離胴が回転し上部位置にある固形物放出部54’、8
4’と相対するように配設される。また、固液分離胴の
回転で下部位置にある母液透過部55、85の下方に母
液受槽53、83が配設され、固液分離された液相分で
ある母液が回収される。中間空間部57にはスラリー供
給管58が配置される。連結搬送部6には搬送スラリー
排出部64が配設されると共に仕切壁65を配置し、各
固液分離機の搬送部52と82とを隔離する。また、固
液分離機5及び固液分離機8の中間に、吸着反応器7が
排出部64に連続するように設置され、固液分離機5か
ら搬送される再生イオン交換樹脂と洗浄液とからなる再
生イオン交換樹脂スラリーが排出部64を経て送入され
る。吸着反応器7には送出管66が配備され、硫酸イオ
ン吸着イオン交換樹脂スラリーをオーバーフローで後段
固液分離機8の中間空間部87を経て固液分離胴部81
に送出する。
The transporting units 52 and 82 are provided with a transporting jig substantially similar to a conventionally known screw conveyor, that is, a transport rotating shaft 62 having a screw blade 63 and a circular or U-shaped tubular body 61.
And is rotated in conjunction with the transmission G2. Further, the solid introduction portions 56 and 86 are provided at predetermined upper positions, and the solid discharge portions 54 'and 8 are provided at the upper position by rotation of the solid-liquid separation cylinder.
4 ′. Further, the mother liquor receiving tanks 53 and 83 are disposed below the mother liquor transmitting parts 55 and 85 at the lower position by the rotation of the solid-liquid separation cylinder, and the mother liquor corresponding to the liquid phase separated by the solid-liquid separation is collected. A slurry supply pipe 58 is disposed in the intermediate space 57. A transport slurry discharge section 64 is disposed in the connecting transport section 6 and a partition wall 65 is disposed to isolate the transport sections 52 and 82 of each solid-liquid separator. In addition, an adsorption reactor 7 is installed between the solid-liquid separator 5 and the solid-liquid separator 8 so as to be continuous with the discharge section 64, and is provided between the regenerated ion exchange resin and the washing liquid conveyed from the solid-liquid separator 5. The regenerated ion-exchange resin slurry is sent through the discharge unit 64. A delivery pipe 66 is provided in the adsorption reactor 7, and the sulfate-adsorbed ion-exchange resin slurry overflows through the intermediate space 87 of the subsequent solid-liquid separator 8 to form a solid-liquid separation body 81.
To send to.

【0025】再生イオン交換樹脂スラリーが、スラリー
供給管58から中間空間部57に供給され、更にスラリ
ー導入部54を経て回転する固液分離胴部51に導入さ
れる。再生イオン交換樹脂スラリーは、固液分離胴部5
1において母液透過部55を通過して濾過され、母液即
ち芒硝を含有する水性液がラインL1から脱着反応槽1
に戻され、固液分離胴部51に再生イオン交換樹脂が分
離残存される。また、スラリー供給と同時に洗浄水が、
中間空間部57に配設したスプレーノズル(図示せず)か
ら供給され分離された再生イオン交換樹脂を洗浄し、洗
浄水は母液と共に脱着反応槽1に戻される。再生イオン
交換樹脂を保持する固液分離胴51は、回転により上部
位置の固液分離胴51’となり、保持された再生イオン
交換樹脂は、自重により固形物放出部54’から中間空
間部57及び固形物導入部56を経て搬送部52に流落
下する。また、固液分離胴51’上方に配置した洗浄水
供給部59(図1のラインL6)から洗浄水を噴霧し固
液分離胴51’を洗浄すると同時に、残余の再生イオン
交換樹脂を搬送部52に流出する。再生イオン交換樹脂
は、搬送部52にて洗浄水と共にスラリー状で搬送され
吸着反応器7に供給される。同時に、ラインL7から流
入口67を経て、塩酸を添加して所定の酸性pHに調整
された被処理液の硫酸イオン含有塩水が吸着反応器7に
流入される。この塩水の流入により、吸着反応器7内の
搬送された再生イオン交換樹脂スラリーは、要すれば補
充される補充イオン交換樹脂と共に流動状態となり、硫
酸イオンの吸着反応が円滑に行われる。吸着反応槽7内
の塩水中の硫酸イオンを吸着した硫酸イオン吸着イオン
交換樹脂含有スラリーは、オーバーフローで送出管66
(図1のライン12)から固液分離装置20の後段分離
機8に送出される。
The regenerated ion exchange resin slurry is supplied from the slurry supply pipe 58 to the intermediate space 57, and is further introduced into the rotating solid-liquid separation body 51 via the slurry introduction section 54. The regenerated ion exchange resin slurry is supplied to the solid-liquid separation body 5.
1, the aqueous solution containing the mother liquor, ie, sodium sulfate, is filtered from the line L1 through the mother liquor permeation part 55.
And the regenerated ion exchange resin is separated and left in the solid-liquid separation body 51. In addition, washing water is supplied simultaneously with slurry supply,
The regenerated ion exchange resin supplied and separated from the spray nozzle (not shown) provided in the intermediate space 57 is washed, and the washing water is returned to the desorption reaction tank 1 together with the mother liquor. The solid-liquid separation cylinder 51 holding the regenerated ion-exchange resin becomes the solid-liquid separation cylinder 51 ′ at the upper position by rotation, and the held regenerated ion-exchange resin is moved by its own weight from the solid discharge section 54 ′ to the intermediate space 57 and It flows down to the transport section 52 via the solid matter introduction section 56. Further, the washing water is sprayed from the washing water supply unit 59 (line L6 in FIG. 1) disposed above the solid-liquid separation cylinder 51 ′ to wash the solid-liquid separation cylinder 51 ′, and at the same time, the remaining regenerated ion exchange resin is transferred to the conveyance unit. Outflow to 52. The regenerated ion exchange resin is transported in a slurry state together with the washing water in the transport section 52 and is supplied to the adsorption reactor 7. At the same time, the sulfuric acid ion-containing salt water of the liquid to be treated, which is adjusted to a predetermined acidic pH by adding hydrochloric acid, flows into the adsorption reactor 7 from the line L7 through the inlet 67. Due to the inflow of the salt water, the regenerated ion exchange resin slurry transported in the adsorption reactor 7 is brought into a fluid state together with the replenishment ion exchange resin to be replenished if necessary, and the sulfate ion adsorption reaction is smoothly performed. The slurry containing the sulfate ion-adsorbed ion-exchange resin, in which the sulfate ions in the salt water in the adsorption reaction tank 7 are adsorbed, overflows in the delivery pipe 66.
(Line 12 in FIG. 1) is sent out to the post-stage separator 8 of the solid-liquid separation device 20.

【0026】後段分離機8では、前段分離機5と同様に
回転する固液分離胴部81に供給されたスラリーが網状
外周部85を通過して濾過され、母液即ち脱硫酸イオン
処理された塩水が、同時に固液分離胴部81に供給され
る硫酸イオン吸着イオン交換樹脂の洗浄水と共にライン
L8から塩水系に回収される。一方、固液分離胴部81
に分離残存された硫酸イオン吸着イオン交換樹脂も、同
様に、固液分離胴81が回転して上方位置の固液分離胴
81’において、硫酸イオン吸着イオン交換樹脂は、洗
浄水供給部89(図1のラインL9)から噴霧される洗
浄水と共に固形物放出部84’から中間空間部87及び
固形物導入部86を経て搬送部82に流落下する。硫酸
イオン吸着イオン交換樹脂は、搬送部82にて洗浄水と
共にスラリー状で搬送され、スラリー排出口68(ライ
ンL10)から脱着反応槽1に送入され循環する。ま
た、脱着反応槽1をオーバーフローした水性液はライン
L3から水性液槽2に送られ、水性液の一部は脱着循環
系のラインL4から系外に廃棄される。
In the second-stage separator 8, the slurry supplied to the solid-liquid separation body 81, which rotates similarly to the first-stage separator 5, is filtered through the net-shaped outer peripheral portion 85, and is filtered into the mother liquor, ie, the desulfated ion-treated salt water. Is simultaneously recovered from the line L8 into the salt water system together with the washing water for the sulfate ion-adsorbed ion exchange resin supplied to the solid-liquid separation body 81. On the other hand, the solid-liquid separation body 81
Similarly, the sulfate-ion-adsorbed ion-exchange resin, which has been separated and left, is also rotated by the solid-liquid separation cylinder 81 in the upper solid-liquid-separation cylinder 81 ′, and the sulfate-ion-adsorbed ion-exchange resin is removed from the washing water supply unit 89 ( The washing water sprayed from the line L9) in FIG. 1 flows down from the solid discharge section 84 ′ to the transport section 82 through the intermediate space 87 and the solid introduction section 86. The sulfate ion-adsorbed ion-exchange resin is transported in a slurry state together with the washing water in the transport section 82, and is fed into the desorption reaction tank 1 from the slurry outlet 68 (line L10) and circulated. The aqueous liquid overflowing the desorption reaction tank 1 is sent from the line L3 to the aqueous liquid tank 2, and a part of the aqueous liquid is discarded outside the system from the line L4 of the desorption circulation system.

【0027】上記のように構成される図2の固液分離装
置20は、従来の固液分離装置と異なり搬送装置を別個
に設けることなく、固液分離処理と分離したイオン交換
樹脂の回収搬送を同一装置で同時にでき、且つ、搬送に
よって易破砕性のイオン交換樹脂の形態や吸着機能を損
なうことがない。このため硫酸イオンの吸脱着の循環処
理系を形成し、系内を水酸化ジルコニウム担持イオン交
換樹脂を連続的に搬送しながら塩水から硫酸イオンを除
去するために好適である。また、固液分離装置20は、
供給口69(図1のラインL13)から被処理液の硫酸
イオン含有塩水を供給し、再生イオン交換樹脂吸着剤を
スラリー搬送しながら吸着反応させることもできる。更
に、図1において、破線で示したように脱着反応槽1内
の流動状態のスラリーの一部をポンプP3で抜出し、ラ
インL11により再びスラリー状で脱着反応槽1に循環
して、槽内の流動状態をより活発にして接触を高め、脱
着効率を向上させることができる。
The solid-liquid separation device 20 of FIG. 2 configured as described above differs from the conventional solid-liquid separation device in that the solid-liquid separation process and the separated ion-exchange resin separated and conveyed are performed without separately providing a conveying device. Can be simultaneously performed in the same apparatus, and the form and the adsorption function of the easily crushable ion exchange resin are not impaired by the transportation. Therefore, it is suitable for forming a circulation treatment system for adsorption and desorption of sulfate ions, and removing sulfate ions from salt water while continuously transporting the ion-exchange resin carrying zirconium hydroxide in the system. Further, the solid-liquid separation device 20 includes:
Sulfate ion-containing salt water of the liquid to be treated can be supplied from the supply port 69 (line L13 in FIG. 1), and the regenerated ion exchange resin adsorbent can be adsorbed while carrying the slurry. Further, as shown by the broken line in FIG. 1, a part of the slurry in the fluidized state in the desorption reaction tank 1 is withdrawn by the pump P3, circulated again to the desorption reaction tank 1 in a slurry state by the line L11, and The flow state can be made more active, the contact can be increased, and the desorption efficiency can be improved.

【0028】[0028]

【実施例】本実施例で使用した水酸化ジルコニウム担持
陽イオン交換樹脂は次の方法で調製した。即ち、三菱化
成社製陽イオン交換樹脂(商品名:ダイヤイオンPK2
16)10リットルをポリプロピレン製容器に入れ、オ
キシ塩化ジルコニウムの2モル(M)水溶液20リット
ルを加え、適宜攪拌しながら2時間浸漬処理した。オキ
シ塩化ジルコニウム水溶液をデカンテーション除去した
後、総量25リットルの純水を用い陽イオン交換樹脂を
5回洗浄した。洗浄した陽イオン交換樹脂を、2M苛性
ソーダ溶液40リットル中に投入し、適宜攪拌しながら
1時間浸漬した。苛性ソーダ溶液をデカンテーション除
去した後、総量25リットルの純水を用い陽イオン交換
樹脂を5回洗浄した。5回目の洗浄において、洗浄水を
除去することなく濃塩酸を滴下してpH2.5に調整し
た後、液をデカンテーション除去した。その後、pH
2.5調整した液を除去した陽イオン交換樹脂を、2M
オキシ塩化ジルコニウム水溶液による浸漬処理及び洗浄
と、2M苛性ソーダ溶液による浸漬処理及び洗浄を同様
に繰返した。但し、2M苛性ソーダ溶液処理の5回目の
最終洗浄液をpH8.5とした。また、2回目の処理の
2Mオキシ塩化ジルコニウム水溶液及び2M苛性ソーダ
溶液は、先に使用してデカンテーション除去により回収
して用いた。上記のようにして調製した水酸化ジルコニ
ウム担持陽イオン交換樹脂全量を本実施例に使用した。
EXAMPLES The cation exchange resin supporting zirconium hydroxide used in this example was prepared by the following method. That is, a cation exchange resin (trade name: Diaion PK2, manufactured by Mitsubishi Kasei Corporation)
16) 10 liters were placed in a polypropylene container, 20 liters of a 2 mol (M) aqueous solution of zirconium oxychloride was added, and immersion treatment was performed for 2 hours with appropriate stirring. After decantation removal of the aqueous solution of zirconium oxychloride, the cation exchange resin was washed five times using a total of 25 liters of pure water. The washed cation exchange resin was put into 40 liters of a 2M sodium hydroxide solution, and immersed for 1 hour with appropriate stirring. After decantation of the caustic soda solution, the cation exchange resin was washed five times using a total of 25 liters of pure water. In the fifth washing, concentrated hydrochloric acid was added dropwise without removing the washing water to adjust the pH to 2.5, and then the liquid was decanted off. Then pH
2.5 The cation exchange resin from which the adjusted solution was removed
The immersion treatment and washing with an aqueous solution of zirconium oxychloride and the immersion treatment and washing with a 2M sodium hydroxide solution were similarly repeated. However, the pH of the fifth final washing in the 2M caustic soda solution treatment was 8.5. The 2M aqueous solution of zirconium oxychloride and the 2M aqueous solution of caustic soda in the second treatment were previously used and recovered by decantation. The total amount of the zirconium hydroxide-supported cation exchange resin prepared as described above was used in this example.

【0029】前記図2に示したものと同様の固液分離装
置を用い、図1に示した工程と同様に硫酸イオン含有塩
水の硫酸イオン除去を行なった。脱着槽1としてアクリ
ル樹脂製の直径250mmφ、高さ600mmの塔を使
用した。また、固液分離装置20の前後段の分離機5、
8は双方とも同サイズであり、実質的な固液分離処理を
する固液分離胴部51(51’)、81(81’)は、
中心部に固形物搬送部52、82を配設して内径50m
mφ、長さ1600mmの両端閉鎖の円筒状に形成され
た。固液分離胴51(51’)、81(81’)の各外
周面は、多数の穿孔を有する多孔性チタン材の内側に5
0メッシュのチタン製網を張設して母液透過部55、8
5を形成した。
Using a solid-liquid separator similar to that shown in FIG. 2, sulfate ions were removed in the same manner as in the process shown in FIG. As the desorption tank 1, an acrylic resin tower having a diameter of 250 mm and a height of 600 mm was used. Further, the separators 5 before and after the solid-liquid separation device 20,
8 are the same size, and solid-liquid separation barrels 51 (51 ′) and 81 (81 ′) for performing a substantial solid-liquid separation process are:
50m inner diameter with solid material transfer units 52 and 82 arranged at the center
It was formed into a cylindrical shape with both ends closed and having a diameter of mφ and a length of 1600 mm. The outer peripheral surface of each of the solid-liquid separation cylinders 51 (51 ′) and 81 (81 ′) is provided inside a porous titanium material having a large number of perforations.
A 0-mesh titanium net is stretched to form a mother liquor transmitting portion 55, 8
5 was formed.

【0030】上記のように構成された脱着槽1に、先ず
スタートアップのために吸着剤である前記調製の水酸化
ジルコニウム担持陽イオン交換樹脂(以下単にイオン交
換樹脂とする)全量10リットルと市水10リットルを
供給した。同時に、脱着槽1内のスラリーのpHを8.
5〜9.0に維持するように、ラインL2から32重量
%苛性ソーダ溶液を送入すると共に、予め容量10リッ
トルの水性液槽2に貯留した市水(水性液)をポンプP
1で30リットル/時で送入し、脱着槽1をオーバーフ
ローした水性液をラインL3で水性液槽2に送出して循
環系を形成した。次いで、脱着槽1からポンプP2でイ
オン交換樹脂スラリーを流量20リットル/時で抜出
し、ラインL5を経由して前段分離機5のスラリー供給
管58に送入した。イオン交換樹脂スラリーは中間空間
部57を経てスラリー導入部54から下部に位置する固
液分離胴51流入して固液分離処理された。固液分離さ
れ母液透過部55から母液貯留部53に流下した濾液は
全てラインL1で脱着槽1に送出した。分離され残存し
たイオン交換樹脂を保持した固液分離胴51は回転によ
り上部位置の分離胴51’に移行し、洗浄水供給部59
から市水を10リットル/時で噴霧し洗浄した。このた
め分離胴51’において、イオン交換樹脂は、自重で流
落下すると同時に洗浄により固形物放出部54’及び固
形物導入部56を経て搬送部52に流下し、搬送部52
をスラリー状で搬送された。
In the desorption tank 1 constructed as described above, first, a total of 10 liters of a cation exchange resin carrying zirconium hydroxide (hereinafter simply referred to as ion exchange resin) prepared as an adsorbent, which is an adsorbent, for start-up, and city water. 10 liters were supplied. At the same time, the pH of the slurry in the desorption tank 1 is adjusted to 8.
A 32% by weight caustic soda solution is fed from the line L2 so as to maintain the solution at 5 to 9.0, and city water (aqueous liquid) previously stored in the aqueous liquid tank 2 having a capacity of 10 liters is pumped by the pump P.
1, the aqueous solution overflowing the desorption tank 1 was sent out to the aqueous liquid tank 2 via line L3 to form a circulation system. Next, the ion-exchange resin slurry was withdrawn from the desorption tank 1 by the pump P2 at a flow rate of 20 liter / hour, and was fed into the slurry supply pipe 58 of the pre-stage separator 5 via the line L5. The ion-exchange resin slurry flows through the intermediate space portion 57 from the slurry introduction portion 54 into the solid-liquid separation cylinder 51 located below, and is subjected to solid-liquid separation processing. All of the filtrate which was separated into solid and liquid and flowed down from the mother liquor permeation section 55 to the mother liquor storage section 53 was sent out to the desorption tank 1 via the line L1. The solid-liquid separation cylinder 51 holding the separated and remaining ion-exchange resin moves to the separation cylinder 51 ′ at the upper position by rotation, and the washing water supply unit 59.
Was sprayed with city water at a rate of 10 liters / hour for washing. For this reason, in the separation cylinder 51 ′, the ion exchange resin flows down by its own weight, and at the same time, flows down to the transport section 52 through the solid substance discharge section 54 ′ and the solid substance introduction section 56 by washing.
Was transported in slurry form.

【0031】搬送されたイオン交換樹脂を、搬送スラリ
ー排出部61から容量20リットルの吸着反応器7に送
出した。吸着反応器7では、酸性(pH2)下で流入口
64から被処理液の硫酸イオン含有塩水(70℃でNa
Clを200g/リットル、Na2SO4を8g/リット
ル含有)を流量100リットル/時で流入し、イオン交
換樹脂を流動化すると同時に、ジルコニウム担持イオン
交換樹脂との接触により塩水から硫酸イオンを除去し
た。硫酸イオンを吸着して吸着能の低下したイオン交換
樹脂を、吸着反応器7からスラリー状でオーバーフロー
し送出管63により後段分離機8に送入した。送入され
たイオン交換樹脂スラリーは、後段分離機8の中間空間
部87を経てスラリー導入部84から下部に位置する固
液分離胴81に供給され固液分離処理された。固液分離
され母液透過部85から母液貯留部83に流下した濾液
を全てラインL8から系外に排出した。分離され残存し
たイオン交換樹脂を保持した固液分離胴81は回転によ
り上部位置の分離胴81’に移行し、洗浄水供給部89
から市水を2リットル/時で噴霧し洗浄した。分離胴8
1’において、イオン交換樹脂は、自重で流落下すると
同時に洗浄により固形物放出部84’及び固形物導入部
86を通過して搬送部82に流下し、搬送部82内をス
ラリー状で搬送された。搬送部82内を搬送されたイオ
ン交換樹脂を、排出口68から排出されラインL10で
脱着槽1に送入した。脱着槽1は上記のように32重量
%苛性ソーダ溶液、ラインL1で前段分離機5からの母
液、洗浄水及び水性液槽2からの循環水性液が供給さ
れ、スラリーpHを8.5〜9.0に維持した。また、
水性液循環系のラインL4から水性液の一部をラインL
14で系外に排出した。
The transported ion exchange resin was sent out from the transport slurry discharge section 61 to the adsorption reactor 7 having a capacity of 20 liters. In the adsorption reactor 7, the sulfate-containing salt water (Na at 70 ° C.) of the liquid to be treated is supplied from the inlet 64 under acidic conditions (pH 2)
200 g / l of Cl and 8 g / l of Na2SO4) were introduced at a flow rate of 100 l / h to fluidize the ion exchange resin and simultaneously remove sulfate ions from the salt water by contact with the ion exchange resin carrying zirconium. The ion-exchange resin having reduced adsorption capacity by adsorbing sulfate ions overflowed from the adsorption reactor 7 in the form of slurry, and was sent to the post-separator 8 through the delivery pipe 63. The fed ion-exchange resin slurry was supplied to the solid-liquid separation cylinder 81 located below from the slurry introduction part 84 via the intermediate space part 87 of the post-stage separator 8 and subjected to solid-liquid separation processing. All of the filtrate that was solid-liquid separated and flowed down from the mother liquor permeation section 85 to the mother liquor storage section 83 was discharged out of the system from the line L8. The solid-liquid separation cylinder 81 holding the separated and remaining ion-exchange resin moves to the separation cylinder 81 ′ at the upper position by rotation, and the washing water supply unit 89.
Was sprayed with city water at a rate of 2 liters / hour for washing. Separation cylinder 8
In 1 ', the ion-exchange resin flows down by its own weight, and at the same time, flows down through the solids discharge section 84' and the solids introduction section 86 to the transport section 82 by washing, and is transported in the transport section 82 in a slurry form. Was. The ion exchange resin transported in the transport section 82 was discharged from the discharge port 68 and fed into the desorption tank 1 through the line L10. As described above, the desorption tank 1 is supplied with the 32% by weight caustic soda solution, the mother liquor from the pre-separator 5, the washing water and the circulating aqueous liquid from the aqueous liquid tank 2 through the line L 1. It was kept at zero. Also,
A part of the aqueous liquid is transferred from line L4 of the aqueous liquid circulation system to line L.
At 14 the gas was discharged out of the system.

【0032】上記のようにして、脱着槽1でのイオン交
換樹脂からの吸着硫酸イオンの脱着、イオン交換樹脂ス
ラリーの固液分離装置20の前段分離機5への送入、前
段分離機5における固液分離−洗浄−吸着反応器7への
搬送、吸着反応器7での塩水から硫酸イオンの吸着除
去、イオン交換樹脂スラリーの固液分離装置20の後段
分離機8への送入、後段分離機8における固液分離−洗
浄−脱着槽1への搬送の各処理工程を連続で実施した。
上記工程の連続操作は約6時間で平衡に達した。この場
合の脱着液(水性液槽2より系外に排出される液)は、
流量10リットル/時であり、10g/リットルのNa
2SO4を含有していた。即ち、Na2SO4は100
g/時の損失であった。また、固液分離装置内を搬送し
たイオン交換樹脂は、損傷や破砕を受けることもなく、
吸着能等の機能特性が損なわれることなく24時間以上
の連続操作後においても、吸着能を十分有し更に使用で
きる状態であった。
As described above, the desorption of the adsorbed sulfate ion from the ion exchange resin in the desorption tank 1, the feeding of the ion exchange resin slurry to the pre-separator 5 of the solid-liquid separator 20 and the pre-separator 5 Solid-liquid separation-washing-conveyance to adsorption reactor 7, adsorption and removal of sulfate ions from salt water in adsorption reactor 7, introduction of ion-exchange resin slurry into solid-liquid separation device 20 into post-separator 8, post-separation Each processing step of solid-liquid separation-washing-transfer to the desorption tank 1 in the machine 8 was continuously performed.
The continuous operation of the above process reached equilibrium in about 6 hours. The desorption liquid in this case (the liquid discharged from the aqueous liquid tank 2 to the outside of the system) is
Flow rate 10 l / h, 10 g / l Na
It contained 2SO4. That is, Na2SO4 is 100
g / h. In addition, the ion exchange resin transported inside the solid-liquid separation device is not damaged or crushed,
Even after continuous operation for 24 hours or more without deteriorating the functional characteristics such as the adsorbing ability, it had a sufficient adsorbing ability and could be used further.

【0033】本発明の上記実施例と従来の多塔式プロセ
スとの比較を下記表1に示した。表1から明らかなよう
に、本発明は吸着剤の使用量を著しく低減させることが
分かる。なお、表1は、Na2SO4除去量100kg
/時、供給食塩水中のNa2SO4濃度7g/リットル
及びNaCl濃度200g/リットルで操作した結果で
ある。
A comparison between the above embodiment of the present invention and a conventional multi-column process is shown in Table 1 below. As is clear from Table 1, it can be seen that the present invention significantly reduces the amount of adsorbent used. Table 1 shows that the amount of Na2SO4 removed was 100 kg.
/ H, the result of operating at a Na2SO4 concentration of 7 g / l and a NaCl concentration of 200 g / l in the feed saline.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明の塩水の硫酸イオン除去処理法
は、水酸化ジルコニウム担持イオン交換樹脂を連続的に
スラリー状で搬送して循環使用し、硫酸イオン含有塩水
から硫酸イオンの吸着反応及びその脱着反応を同時に行
なわせることから、バッチ式やスイッチ式のイオン交換
樹脂を反応槽に保持する従来法に比し処理に要する時間
が著しく短縮され実用性に優れる。しかも、易破砕性の
イオン交換樹脂をスラリー状で自動的に搬送することか
ら作業性が向上すると同時に、イオン交換樹脂の破損も
殆ど生じることがなく損失が少なく、また、塩の損失も
減少でき、運転コストが低減される。更に、最少の反応
槽と分離機で簡便に運転操作でき、また、高価な制御機
器類を要しないことから設備費が嵩むことがなく、極め
て工業的に有用である。
According to the method for removing sulfate ions of salt water of the present invention, the zirconium hydroxide-supported ion-exchange resin is continuously transported in a slurry state and circulated for use. Since the desorption reaction is performed at the same time, the time required for the treatment is remarkably reduced as compared with the conventional method in which a batch-type or switch-type ion-exchange resin is held in a reaction tank, and the practicability is excellent. Moreover, the workability is improved by automatically transporting the easily crushable ion-exchange resin in a slurry state, and at the same time, the ion-exchange resin is hardly damaged, the loss is small, and the loss of salt can be reduced. And operating costs are reduced. Furthermore, it can be easily operated and operated with a minimum number of reaction tanks and separators, and does not require expensive control equipment, so that the equipment cost is not increased and it is extremely industrially useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のプロセスフロー説明図。FIG. 1 is an explanatory diagram of a process flow according to an embodiment of the present invention.

【図2】本発明で使用する固液分離装置の一例の説明
図。
FIG. 2 is an explanatory diagram of an example of a solid-liquid separation device used in the present invention.

【符号の説明】[Explanation of symbols]

1 脱着反応槽 2 水性液槽 P1、P2 ポンプ 20 固液分離装置 5 前段分離機 6 連結搬送部 7 吸着反応器 8 後段分離機 51、51’、81、81’ 固液分離胴 52、82 固形物搬送部 53、83 母液受槽 54(54’)、84(84’) スラリー導入部(固
形物放出部) 55、85 母液透過部 56、86 固形物導入部 57、87 中間空間部 58 スラリー供給管 59、89 洗浄水供給部 61 管体 62 搬送回転軸 63 スクリュー羽根 64 搬送スラリー排出部 65 仕切壁 66 送出管 67 流入口 68 スラリー排出口 69 供給口 G1、G2 伝動機 R1、R2 駆動ローラ R3、R4 従動ローラ
DESCRIPTION OF SYMBOLS 1 Desorption reaction tank 2 Aqueous liquid tank P1, P2 Pump 20 Solid-liquid separation apparatus 5 Pre-separator 6 Connection conveyance part 7 Adsorption reactor 8 Post-separator 51, 51 ', 81, 81' Solid-liquid separation cylinder 52, 82 Solid Material transport section 53, 83 Mother liquor receiving tank 54 (54 '), 84 (84') Slurry introduction section (solid substance discharge section) 55, 85 Mother liquor transmission section 56, 86 Solid substance introduction section 57, 87 Intermediate space section 58 Slurry supply Pipes 59, 89 Cleaning water supply unit 61 Pipe body 62 Transport rotation shaft 63 Screw blade 64 Transport slurry discharge unit 65 Partition wall 66 Delivery pipe 67 Inflow port 68 Slurry discharge port 69 Supply port G1, G2 Transmission R1, R2 Drive roller R3 , R4 driven roller

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 (1)硫酸イオン含有塩水を、酸性下、
水酸化ジルコニウム担持イオン交換樹脂と流動状態で接
触し硫酸イオンを吸着除去する硫酸イオン吸着工程、
(2)硫酸イオン吸着工程の硫酸イオンを吸着した水酸
化ジルコニウム担持イオン交換樹脂を含有するスラリー
を固液分離して回収しスラリー状で搬送する第1固液分
離・搬送工程、(3)第1固液分離・搬送工程から搬送
された硫酸イオン吸着の水酸化ジルコニウム担持イオン
交換樹脂を流動状態で前記吸着工程の酸性より高いpH
の水性溶液と接触させ硫酸イオンを脱着し水酸化ジルコ
ニウム担持イオン交換樹脂を再生する脱着再生工程、及
び(4)脱着再生工程で再生された水酸化ジルコニウム
担持イオン交換樹脂を含有するスラリーを固液分離して
回収しスラリー状で搬送する第2固液分離・搬送工程を
有すると共に、第2固液分離・搬送工程から搬送された
再生水酸化ジルコニウム担持イオン交換樹脂を再び硫酸
イオン吸着工程に供給して循環系を形成し、水酸化ジル
コニウム担持イオン交換樹脂をスラリー状で搬送して前
記各工程が連続されてなることを特徴とする塩水の硫酸
イオン除去処理法。
(1) Sulfate ion-containing salt water is prepared under acidic conditions.
A sulfate ion adsorption step of contacting in a fluid state with a zirconium hydroxide-supported ion exchange resin to adsorb and remove sulfate ions,
(2) a first solid-liquid separation / transportation step in which a slurry containing a sulfate ion-adsorbed zirconium hydroxide-supported ion exchange resin in the sulfate ion adsorption step is separated by solid-liquid separation, collected, and transported in a slurry state; 1 The sulfated zirconium hydroxide-supported ion-exchange resin transported from the solid-liquid separation / transportation step is transported in a fluidized state to a pH higher than the acidity of the adsorption step
And (4) a solid-liquid slurry containing the zirconium hydroxide-supported ion-exchange resin regenerated in the desorption regeneration step, wherein the slurry contains solid-liquid. It has a second solid-liquid separation / transportation step of separating and collecting and transporting it in the form of a slurry, and supplies the regenerated zirconium hydroxide-supported ion exchange resin transported from the second solid-liquid separation / transportation step again to the sulfate ion adsorption step. Forming a circulating system, and transporting the zirconium hydroxide-supporting ion-exchange resin in a slurry state to continuously carry out each of the above steps.
【請求項2】 前記スラリー状の搬送が、前記イオン交
換樹脂に専断力を付与しない条件である請求項1記載の
塩水の硫酸イオン除去処理法。
2. The method for removing sulfate ions from salt water according to claim 1, wherein the transportation in the form of a slurry is performed under such a condition that no special force is applied to the ion exchange resin.
【請求項3】 前記硫酸イオン吸着工程において前記塩
水を、前記脱着再生工程において前記水性溶液を、それ
ぞれ流入することにより流動状態を形成する請求項1又
は2記載の塩水の硫酸イオン除去処理法。
3. The method for removing a sulfate ion from salt water according to claim 1, wherein the fluid state is formed by flowing the salt water in the sulfate ion adsorption step and the aqueous solution in the desorption regeneration step, respectively.
【請求項4】 前記脱着再生工程において、流動状態の
スラリーの一部を抜出して再び該脱着再生工程に戻して
スラリー状で循環させる請求項1、2又は3記載の塩水
の硫酸イオン除去処理法。
4. The method for removing a sulfate ion from salt water according to claim 1, wherein in the desorption regeneration step, a part of the slurry in a fluidized state is extracted, returned to the desorption regeneration step, and circulated in a slurry state. .
【請求項5】 前記抜出しが、スラリーポンプで行われ
る請求項4記載の塩水の硫酸イオン除去処理法。
5. The method according to claim 4, wherein the extraction is performed by a slurry pump.
【請求項6】 前記第2固液分離・搬送工程において、
前記再生され固液分離された水酸化ジルコニウム担持イ
オン交換樹脂のスラリーに、酸性下、被処理硫酸イオン
含有塩水を添加してスラリー搬送し、搬送と同時に吸着
処理して前記吸着工程を兼ねてなる請求項1〜5のいず
れか記載の塩水の硫酸イオン除去処理法。
6. In the second solid-liquid separation / transport step,
To the slurry of the regenerated and solid-liquid separated zirconium hydroxide-supported ion-exchange resin, a sulfuric acid ion-containing salt water to be treated is added under acidic conditions, and the slurry is transported. A method for removing sulfate ions from brine according to any one of claims 1 to 5.
【請求項7】 前記第1及び第2固液分離・搬送工程に
おいて、少なくとも固液分離胴部、固形物搬送部及び母
液受槽を有する分離固形物の搬送可能な固液分離装置で
あって、回転自在な円環状筒体を固液分離胴部とし、該
円環状筒体内を隔壁により2以上に区分して各区分域の
内周面側にスラリー導入部を有すると共に外周面側に母
液透過部を有し、該円環状筒体の中心空間に固形物導入
部を有し搬送治具を具備する固形物搬送部を配設して一
体に形成してなり、回転する該円環状筒体の上部位置に
ある該スラリー導入部と該固形物導入部とが相対し、且
つ、下部位置にある該母液透過部の下方に母液受槽が配
設されてなる固液分離装置を用いる請求項1〜6のいず
れか記載の塩水の硫酸イオン除去処理法。
7. A solid-liquid separator capable of transporting separated solids having at least a solid-liquid separation body, a solids transporter, and a mother liquor receiving tank in the first and second solid-liquid separation / transportation steps, A rotatable annular cylindrical body is used as a solid-liquid separation body, and the annular cylindrical body is divided into two or more by partition walls, and a slurry introduction portion is provided on an inner peripheral surface side of each of the divided regions, and mother liquor is transmitted on an outer peripheral surface side. A solid material transporting section having a solid object introduction part in the center space of the annular cylindrical body and having a transport jig, and integrally formed and rotated. 2. A solid-liquid separation device comprising a slurry introduction section and a solid substance introduction section at an upper position of the solid liquid introduction section, and a mother liquor receiving tank disposed below the mother liquor permeation section at a lower position. 7. The method for removing a sulfate ion from brine according to any one of claims 6 to 6.
【請求項8】 前記請求項7記載の固液分離装置と同様
に構成される前段及び後段の各分離機が、各前記固形物
搬送部を延長して連結され、連結された固形物搬送部の
中間部に分離固形物排出口を有し、且つ、該分離固形物
排出口が所定の処理部に連続すると共に該処理部が後段
固液分離機に連続してなる固液分離装置を用い、前記脱
着再生工程からの水酸化ジルコニウム担持イオン交換樹
脂含有スラリーを該前段固液分離機に供給し、固液分離
して母液分離し、洗浄後、水酸化ジルコニウム担持イオ
ン交換樹脂を洗浄液及び/または硫酸イオン含有塩水と
スラリー状で搬送し、前記分離固形物排出口から搬送ス
ラリーを処理部に抜出し、該処理部を流動状態に保持す
ることにより前記第2固液分離・搬送工程及び硫酸イオ
ン吸着工程を形成してなり、次いで、該処理部からの水
酸化ジルコニウム担持イオン交換樹脂含有スラリーを該
後段固液分離機に供給し、固液分離して母液分離し、洗
浄後、水酸化ジルコニウム担持イオン交換樹脂を洗浄液
とスラリー状で前記脱着再生工程に搬送して前記第1固
液分離・搬送工程を形成してなる請求項1〜5のいずれ
か記載の塩水の硫酸イオン除去処理法。
8. A solid-state separation unit connected to the solid-liquid separation unit in a manner similar to that of the solid-liquid separation unit according to claim 7 by extending the solid-state transfer units and connecting the solid-state transfer units. Using a solid-liquid separation device having a separated solids discharge port in the middle of the solid-liquid separator, and the separated solids discharge port being continuous with a predetermined processing section and the processing section being continuous with a subsequent solid-liquid separator. Supplying the slurry containing the zirconium hydroxide-supported ion exchange resin from the desorption regeneration step to the former-stage solid-liquid separator, separating the mother liquor by solid-liquid separation, washing, and then washing the zirconium hydroxide-supported ion exchange resin with a washing liquid and / or Alternatively, the slurry is conveyed in the form of a slurry with sulfate ion-containing salt water, the conveyed slurry is withdrawn from the separated solids discharge port into the processing section, and the processing section is kept in a fluid state to thereby carry out the second solid-liquid separation / transport step and the sulfate ion. Forming the adsorption process Then, the slurry containing the zirconium hydroxide-supported ion-exchange resin from the treatment section is supplied to the latter-stage solid-liquid separator, separated into a mother liquor by solid-liquid separation, washed, and then washed with a zirconium hydroxide-supported ion-exchange resin. The method for removing sulfate ions from salt water according to any one of claims 1 to 5, wherein the first solid-liquid separation / conveying step is formed by conveying the cleaning liquid and slurry in the form of the desorbing / regenerating step.
JP11188594A 1999-07-02 1999-07-02 Method of removing sulfate ion in salt water Pending JP2001009451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11188594A JP2001009451A (en) 1999-07-02 1999-07-02 Method of removing sulfate ion in salt water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11188594A JP2001009451A (en) 1999-07-02 1999-07-02 Method of removing sulfate ion in salt water

Publications (1)

Publication Number Publication Date
JP2001009451A true JP2001009451A (en) 2001-01-16

Family

ID=16226402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11188594A Pending JP2001009451A (en) 1999-07-02 1999-07-02 Method of removing sulfate ion in salt water

Country Status (1)

Country Link
JP (1) JP2001009451A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136672A (en) * 2014-01-23 2015-07-30 国立大学法人佐賀大学 Method for removing anionic species in solution
CN105600979A (en) * 2015-12-01 2016-05-25 江苏金凯树脂化工有限公司 Method and apparatus for pretreatment of chlorinated resin polymerization mother liquor
CN110713284A (en) * 2019-10-14 2020-01-21 江苏省盐海化工有限公司 Sulfate radical removal process for circulating zero-emission brine system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136672A (en) * 2014-01-23 2015-07-30 国立大学法人佐賀大学 Method for removing anionic species in solution
CN105600979A (en) * 2015-12-01 2016-05-25 江苏金凯树脂化工有限公司 Method and apparatus for pretreatment of chlorinated resin polymerization mother liquor
CN110713284A (en) * 2019-10-14 2020-01-21 江苏省盐海化工有限公司 Sulfate radical removal process for circulating zero-emission brine system

Similar Documents

Publication Publication Date Title
US5718828A (en) Method for minimizing wastewater discharge
US5951874A (en) Method for minimizing wastewater discharge
EP2373821B1 (en) System and method for wastewater treatment
KR20230051148A (en) How to recover lithium from brine
JP2001009451A (en) Method of removing sulfate ion in salt water
JP3791760B2 (en) Method and apparatus for removing and recovering phosphorus from water containing SS and phosphorus
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
JP2000005519A (en) Solid-liquid separator, method for solid-liquid separation and separated matter conveyance, using the same
JP6247968B2 (en) Ion exchange resin regeneration device and ion exchange resin regeneration system
JP4054858B2 (en) Ion exchanger holding device and ion separation method using the same
JPS62282647A (en) Ion exchange method for cation exchanger
CN116947153A (en) System and method for recycling organic amine in salt lake brine
KR200393307Y1 (en) retrieve treatment apparatus of Cu waste water
JP2003126709A (en) Apparatus for regenerating chelating agent
KR20060119337A (en) Retrieve treatment apparatus of cu waste water and its treatment method
JP2002301470A (en) Activated carbon cartridge and pure water making apparatus
WO1995022388A1 (en) Method and apparatus for continuous removal and recovery of materials from a liquid in a single tube