JP4054858B2 - Ion exchanger holding device and ion separation method using the same - Google Patents

Ion exchanger holding device and ion separation method using the same Download PDF

Info

Publication number
JP4054858B2
JP4054858B2 JP21736198A JP21736198A JP4054858B2 JP 4054858 B2 JP4054858 B2 JP 4054858B2 JP 21736198 A JP21736198 A JP 21736198A JP 21736198 A JP21736198 A JP 21736198A JP 4054858 B2 JP4054858 B2 JP 4054858B2
Authority
JP
Japan
Prior art keywords
ion exchanger
ion
adsorption
hole
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21736198A
Other languages
Japanese (ja)
Other versions
JP2000054037A (en
Inventor
尚史 河野
正栄 高田
光輝 戸石
Original Assignee
Dowaエコシステム株式会社
Dowaハイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエコシステム株式会社, Dowaハイテック株式会社 filed Critical Dowaエコシステム株式会社
Priority to JP21736198A priority Critical patent/JP4054858B2/en
Publication of JP2000054037A publication Critical patent/JP2000054037A/en
Application granted granted Critical
Publication of JP4054858B2 publication Critical patent/JP4054858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明はイオン交換体保持装置およびそれを用いたイオンの分離方法に関する。
【0002】
【従来の技術】
イオン交換による排水処理では、液中に溶存した有用イオンをイオン交換体に吸着させ、有用イオンで飽和した交換体は再使用するために再生される。この再生処理では、結果的に吸着している有用イオンを溶離させることになる。溶離した有用イオンを含む溶離液は、そのままあるいは処理することで有用イオンを再利用あるいは回収することができる。従ってイオン交換を排水処理に適用すると、排水中から有用イオンを回収することができるので、特に有用金属イオン、有用金属の再利用、回収に応用されている。
【0003】
図2はイオン交換体による処理装置の一般的なフローシートを示す図であって、粒状のイオン交換樹脂等のイオン交換体1を通液塔2に充填し、その上部より金属イオン等の有用イオンの含有溶液3を通液し、通液された溶液は処理後溶液4として適宜必要な処理をした後放流または再使用等される。一定容量通液すると有用イオンで交換体1が飽和するので、この時点で通液を停止、交換体にろ過された懸濁物を除去するために通液筒下部より逆洗溶液5を通液して逆洗する(逆洗後溶液6)。この逆洗により懸濁物の除去と同時に交換体層をほぐした後再生を行う。再生溶液7は通液筒1上部より注入され、再生終了後は交換体層に残留している再生溶液を洗浄溶液8で洗浄して再生工程を終わる(再生後溶液9)。この再生工程では、1つの再生溶液7で有用イオンの溶離とイオン交換体の再生を同時に行なう場合もあれば、有用イオンの溶離用の溶液と、イオン交換体の再生用の溶液の別々の再生溶液7で溶離、再生を行なう場合もある。再生処理後、再び吸着工程に入る。
【0004】
以上のようなイオン交換体を利用した貴金属メッキ排水から貴金属イオンを回収するためのイオン交換装置や方法が提案されている。
例えば、特公昭53−29124号によれば、下部から液を供給するイオン交換吸着塔において、ポンプ圧送されるメッキ排水の噴入による樹脂粒の乱流防止のために排水の入口と出口の双方にストレーナーを取り付けて圧送水の噴出をストレーナーで緩和させて回収イオンの吸着を良好にした装置、特公平5−14012号では、同様に下から液を供給する吸着塔において、吸着塔の下部をホッパー型にして吸着率の向上を図った装置が示されている。
また、特開平1−111825号では、パラジウム含有液をpH調節してから、ピリジン系のキレート性イオン交換樹脂を詰めたカラムに通液吸着させた後、アルカリ性溶液で溶離してパラジウムを高収率で回収する方法、特開平3−158426号では陰イオン交換樹脂に吸着したパラジウムを溶離させ、陰イオン交換樹脂は再利用する方法がそれぞれ開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら従来の固定式イオン交換保持塔では、吸着工程を終了した後、吸着成分の溶離、およびイオン交換体の再生の間はそのカラムに金属イオンを含む液を通液することが不可能であり、連続的に発生する排液への対応が困難であった。対象溶液の発生が必ずしも連続的でなくても、その発生量が多ければ同時に設備、場所等の負担がかかっていた。そのため、処理を施そうとする溶液の発生量に応じて、イオン交換体の単味の吸着処理能力だけでなく溶離、再生の全体での吸着処理能力をもった設備にしなければならず、設備のコストが多大なものとなった。処理系統を複数にし、吸着、溶離、再生を同時に行なえば効率は上がるが、系統を複数設置しなければならず、コストがかかり、設置場所も必要となっていた。また、溶離再生の間、処理対象溶液を一時的な貯液槽に貯液することも可能であるが、そのために新たに貯液槽を設置する費用が発生し、しかも有用イオンの濃度が比較的低く、それを含む溶液の量が比較的多量に発生する場合、費用の面からだけでなく、設置場所の面からも大きな負担となっていた。
したがって本発明の目的は、有用イオンを含有する溶液が連続的または間欠的に発生する場合のいずれにも対応できるイオン交換保持塔とそれを用いた有用イオンの分離方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく研究の結果、従来の固定式のイオン交換カラムでは対応困難であった有用イオン含有溶液に対して、イオン交換体保持塔を着脱可能にして、イオン交換体を保持させたこのイオン交換体保持装置に有用イオン含有溶液を通液し有用イオンを吸着させた後、該イオン交換体保持装置を外し、直ちにその個所に別の再生済みイオン交換体保持装置を取り付けるようにすれば、連続的に発生する排液の連続的吸着ができ、しかも複数のイオン交換体保持装置を準備することにより吸着以外の溶離工程や樹脂の再生工程を同時進行的にも実施できることを見出し本発明に到達した。
【0007】
すなわち本発明は第1に、送液孔を有する部材、気泡分離器、イオン交換体保持部材、排液孔を有する部材およびこれら部材を記載の順序に接続する部材からなり、かつ送液孔を有する部材と排液孔を有する部材の箇所で着脱可能にしたことを特徴とするイオン分離用イオン交換体保持装置;第2に、前記気泡分離器が、送液孔、排液孔、排気孔を有する密閉容器、排気弁、複数の開孔を有する部材からなり、前記密閉容器内に前記送液孔から送液された液体が前記複数の開孔を有する部材を通過して前記排液孔を通し前記密閉容器から排出され、前記液体に含まれる気泡が前記複数の開孔を有する部材を通過する際小さくなるように、前記送液孔と前記排液孔との間に前記複数の開孔を有する部材を配置し、前記密閉容器の内側上部に留まる気体を前記排気弁を開けることにより前記排気孔を通し前記密閉容器から排気できるように、前記密閉容器の上部に前記排気孔を配置し、前記排気弁を前記排気孔の位置で前記密閉容器に接続して、構成されることを特徴とする前記第1記載のイオン交換体保持装置;第3に、前記複数の開孔を有する部材の開孔が2mm以上10mm以下であることを特徴とする前記第2記載のイオン交換体保持装置;第4に、前記送液孔を有する部材の前にさらに送液孔を有する部材とそれに続くフィルターを組み込んだことを特徴とする、前記第1〜3のいずれかに記載のイオン交換体保持装置;第5に、吸着箇所で金属イオンを吸着させたイオン交換体を、前記吸着箇所から移動し別の箇所で前記吸着した金属イオンを溶離させ前記金属イオンを回収するとともに、前記吸着箇所での新たな吸着のために前記イオン交換体を再生する、金属イオンの回収方法において、前記イオン交換体を気泡分離器を備えた着脱可能なイオン交換体保持装置に保持し、吸着、移動、溶離、再生することを特徴とする、金属イオンの回収方法;第6に、イオン交換体に吸着箇所で金属イオンを吸着させた後、前記吸着箇所から移動し別の箇所で前記吸着した金属イオンを溶離させ前記金属イオンを回収するためのイオン交換体の吸着箇所での金属イオンの吸着方法において、前記吸着箇所とは別の箇所で再生された前記イオン交換体を保持する気泡分離器を備えた着脱可能なイオン交換体保持装置を前記吸着箇所に少なくとも吸着操作の間取り付けて前記イオン交換体に前記イオンを吸着させることを特徴とする金属イオンの吸着方法;第7に、銀イオンとパラジウムイオンが共存する溶液に塩化物イオンを添加し塩化銀の沈殿を生成させた後、前記沈殿を含む溶液を前記第4記載のイオン交換体保持装置に供給することを特徴とする銀とパラジウムの分離回収方法、である。
【0008】
【発明の実施の形態】
図1は本発明のイオン交換体保持装置を説明するための模式側面図であって、この図を参照して該保持装置およびこれを用いた有用イオンの分離方法について、パラジウムイオンの場合を例にとって以下説明する。
【0009】
パラジウムイオンの含有溶液3が集められる受け槽11よりポンプ12、フィルター13を経て送液孔14から供給されたパラジウム溶液を空間速度SV=1〜30で陰イオン交換樹脂ダイヤSA10A(三菱化学製)を封入したイオン交換体保持塔16内に通液されるが、該溶液がイオン交換体保持塔16の下部から上部へ透過し、この間に液中のパラジウムがイオン交換体保持塔16内のイオン交換樹脂に吸着される。透過後、上部の排液孔17から排出される液にはほとんどパラジウムは含まれていない。吸着に伴ない樹脂は赤褐色に変色する。
【0010】
連続的に発生するパラジウム含有溶液からの吸着、回収に対応するために、パラジウム含有溶液を一旦受け槽11に入れ、そこからポンプ12で汲み上げてイオン交換体保持装置内のイオン交換樹脂に吸着させる吸着工程において、イオン交換体保持装置交換中のみポンプ12のスイッチを切って受け槽11にパラジウム含有溶液を貯め、交換終了後ポンプ12を作動させ吸着を再開する。
パラジウムの吸着を終えたイオン交換体保持装置は吸着装置から取り外し、溶離装置にセットする。まず200mol/m3 の塩酸を流してイオン交換体保持装置内の重金属を系外に排出させる。塩酸量は樹脂(Cl- 型)の見掛け体積(以下樹脂体積と記す)の20倍、SV=2〜15とする。
【0011】
次にイオン交換体保持装置内に残った重金属を完全に追い出すために通水する。水の量は樹脂体積の2倍、SV=2〜15とする。
次いで溶離工程として1000mol/m3 のアンモニア水をイオン交換体保持装置内部に通液(SV=2〜15)する。溶離により樹脂に吸着したパラジウムがPd(NH34Cl2(ジクロロテトラアンミンパラジウム)水溶液の形で イオン交換体保持装置から取り出される。取り出された溶離液は蓋付容器に入れる。溶離が完了した部分から樹脂は黄褐色に変色する。アンモニア水の液量は樹脂体積の5倍とする。溶離終了後、イオン交換体保持装置に残っている液を排出するために通水する。水量は樹脂体積の2倍とし、排出された液は溶離液と同じ蓋付容器に入れる。
【0012】
溶離および水洗を終えたイオン交換体保持装置を再生装置にセットし、この装置で1000mol/m3の塩酸を通液する(SV=2〜15)。この工程を「 イオン交換体保持装置再生」と称する。イオン交換体保持装置再生の目的は樹脂を溶離後のOH-型からもともとのCl-型に戻し、再びパラジウムを吸着できる形態にすることにある。塩酸量は樹脂体積の3倍とする。Cl-型に戻ると樹脂 は黄橙色に変色する。次いでこの装置に通水し、フリーのCl-を追い出す。水 の量は樹脂体積の2倍でSV=2〜15とする。この操作の後イオン交換体保持装置は再びパラジウム吸着の用に供することができる。
【0013】
またイオン交換体保持装置の構造として図1に示すように送液孔14および排液孔17の両方でユニオンにより装置とつないであり、吸着、溶離および再生の各装置間の運搬に際しては、このユニオンに蓋をねじ込んでイオン交換体保持装置内部の液および樹脂の流出を防止するようにする。
吸着、溶離、再生の各装置については1ヶ所にまとめておく必要はなく、例えば再生済イオン交換体保持装置を客先に貸し出して吸着を行い、吸着後それを引き取って溶離および再生を行い、再生後再び貸し出すというような使用法が可能となる。またイオン交換体保持装置を複数個製作することにより、吸着、溶離、再生を全く同時に行うことが可能になり、このことで常に吸着には再生済イオン交換体保持装置を供することができる。
【0014】
なおイオン交換体保持装置にはイオン交換体保持塔16の液が入る手前に気泡分離器15が付いている。SV値が低く約4以下の時はイオン交換体保持塔16内部での液の動きによる樹脂の動きがほとんどなく、このため空気が送液孔14から入った場合、気泡分離器15がなければ樹脂内にとどまり気泡となり液がその気泡をよけて通るため、どの工程においてもその作用が発揮されなくなる。特に吸着工程では、パラジウム吸着量が気泡により減少することがあり、このため気泡分離器15を設け空気が直接イオン交換体保持塔16内に入らないようにする。本発明のイオン交換体保持装置は使用に応じて着脱を行なう場合は、当然のことながら気泡の流入の可能性が高くなるため、気泡分離器15を設けることは、気泡の流入防止に特に効果的である。
【0015】
気泡分離器15内には金網(以下メッシュと言う)18を入れ、気泡がつぶれるようにした。金網の目の開きは2mm以上10mm以下、好ましくは2mm以上5mm以下とする。2mm未満では通液抵抗が大きく、10mmを超えるとメッシュの効果が得られない。なお上記の開口径を有するものであればメッシュに限らずスポンジ状にしたメタル、繊維の集合体でも同様の効果がある。
【0016】
さらに、送液孔14を有する部材の前にさらに送液孔14’を有する部材とそれに続くフィルター13(濾過器)を組み込んで、金属イオンを沈殿としてフィルター13で処理することにより、イオン交換体での処理と併せると、少なくとも2種類の金属イオンを同時に処理し、分離、回収することも可能である。例えば銀イオンとパラジウムイオンが共存する溶液に塩化ナトリウム等の塩化物イオンを与える化合物を添加して、銀イオンを塩化銀として沈殿させた後、液中に塩化銀が懸濁した状態でこの溶液をフィルター13を組み込んだイオン交換体保持装置に、上記のパラジウムイオン含有溶液の処理と同様に通液することにより、銀イオンは塩化銀の沈殿としてフィルター13で捕集し、パラジウムイオンはイオン交換体で吸着させて、これらを同時に分離、回収することができる。塩化銀とイオン交換体に吸着したパラジウムイオンを処理する設備のない所にも、本発明のイオン交換体保持装置を貸し出す等して塩化銀を捕集しパラジウムイオンを吸着させた後、別の場所で塩化銀、吸着したパラジウムイオンを処理することでこれらの金属イオンを回収することができる。
【0017】
本発明を適用可能な金属イオンを含む溶液としては連続して発生することの多いメッキ排水等があり、これらに適用可能である。好ましくはパラジウムメッキ液、その洗浄排水、エッチング排水、無電解ニッケルメッキ液の排水、その洗浄排水、エッチング排水や表面処理用等のパラジウム触媒の溶解液、その廃液、その回収工程の洗浄排水等が挙げられる。より好ましくは、パラジウムイオンを含む排水であり、特に銀イオンとパラジウムイオンを同時に含むメッキ排水が銀とパラジウムを同時に含むメッキ排水が銀とパラジウムを同時に分離、回収できる点で好ましい。
以下実施例により本発明をさらに詳細に説明する。しかし本発明の範囲は以下の実施例により制限されるものではない。
【0018】
【実施例1】
陰イオン交換樹脂(ダイヤイオンSA10A:三菱化学製)400mLをイオン交換体保持装置に充填し、パラジウム88mg/Lの溶液17LをSV=2で吸着させ、次いで純水2Lを同じくSV=2で通液させた。この後イオン交換体保持装置を溶離装置に移し、1000mol/m3アンモニア水、純水各1Lを SV=2で通液させたところ、パラジウム890mg/Lの溶離液1.999Lが得られた。この後イオン交換体保持装置に1000mol/m3塩酸、純水各 1LをSV=2で通液し、イオン交換体保持装置の再生を行った。
【0019】
【実施例2】
陰イオン交換樹脂(ダイヤイオンSA10A:三菱化学製)10Lを図1のイオン交換体保持装置に充填し、パラジウム63.5mg/Lの溶液5m3をSV =11で吸着させたところ、吸着後の溶液5m3に含まれるパラジウムは0.1 8mg/Lであった。
【0020】
【実施例3】
パラジウムアクチベータ廃液(パラジウム82.5mg/L)2m3を図1の 装置においてSV=4で吸着させ、この装置のイオン交換体保持装置に塩酸洗浄、水洗を行った後、溶離および水洗を行ったところ、160.77gのパラジウムが溶離液中に回収できた。回収率は97.4%であった。
【0021】
【実施例4】
(銀とパラジウムが共存する液の処理例)
銀イオンおよびパラジウムイオンの含まれる溶液(銀77.6g/l、パラジウム4.95g/l)5Lに塩化ナトリウム635gを加えた後、液中に塩化銀が懸濁した状態で図1のようにフィルター13を組み込んだイオン交換体保持装置にSV=2で吸着させたところ、吸着後の液に含まれる銀は0.01mg/l以下、パラジウムは0.31mg/lであり、またこのとき塩化銀はフィルター13にて濾過され以下イオン交換体内への残存は確認できなかった。樹脂からの溶離液は19.7Lでパラジウムは1.31g/lであり、パラジウムの収率は93.4%であった。またこの溶離液中の銀濃度は0.01mg/l以下であった。またフィルター13から回収された塩化銀は513.8gであり、当初の溶液中に含まれている銀の99.7%が回収された。
【0022】
【比較例】
図1において空気分離器15のない状態で、イオン交換樹脂を充填したイオン交換体保持塔16に直接実施例と同じくパラジウムアクチベータ廃液(パラジウム82.5mg/L)2m3をSV=4で通した場合、イオン交換体保持塔16 に吸着できたパラジウムの量が143.62g(回収率87.0%)にとどまった。
なおイオン交換体保持塔16には下部に大きな気泡が認められた。
【0023】
【発明の効果】
以上述べたように本発明のイオン交換樹脂保持装置によれば、イオン交換体を内蔵するイオン交換体保持装置が着脱可能とされ、送液側の送液孔と排液側の排液孔の2個所で着脱自在に構成されていて、従来の固定式イオン交換カラムで吸着した例えば有用金属を溶離する際、吸着を中止せざるを得なかったのに対し、複数のイオン交換体保持装置が用意されているので、常に連続的に新しい再生されたイオン交換体保持装置で吸着が可能となり、吸着済イオン交換体保持装置は別の場所で溶離、再生等の操作を併行的に行えるので作業性が著しく向上する。
【図面の簡単な説明】
【図1】本発明のイオン交換体保持装置を説明するための模式側面図である。
【図2】従来のイオン交換による処理装置の一般的なフローシートを示す図である。
【符号の説明】
1 イオン交換樹脂
2 通液塔
3 有用イオンの含有溶液
4 処理後溶液
5 逆洗溶液
6 逆洗後溶液
7 再生溶液
8 洗浄溶液
9 再生後溶液
11 受け槽
12 ポンプ
13 フィルター
14、14’ 送液孔
15 気泡分離器
16 イオン交換体保持塔
17 排液孔
18 金網
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion exchanger holding device and an ion separation method using the same.
[0002]
[Prior art]
In wastewater treatment by ion exchange, useful ions dissolved in the liquid are adsorbed on the ion exchanger, and the exchanger saturated with useful ions is regenerated for reuse. In this regeneration process, useful ions adsorbed as a result are eluted. The eluent containing the eluted useful ions can be reused or recovered as it is or after being processed. Therefore, when ion exchange is applied to wastewater treatment, useful ions can be recovered from the wastewater, so that it is particularly applied to reuse and recovery of useful metal ions and useful metals.
[0003]
FIG. 2 is a diagram showing a general flow sheet of a processing apparatus using an ion exchanger, in which an ion exchanger 1 such as a granular ion exchange resin is filled in a liquid column 2 and useful for metal ions and the like from above. The ion-containing solution 3 is passed, and the passed solution is appropriately discharged as a post-treatment solution 4 and then discharged or reused. Since the exchanger 1 is saturated with useful ions when a certain volume is passed, the flow is stopped at this point, and the backwash solution 5 is passed from the bottom of the flow cylinder to remove the suspension filtered through the exchanger. And backwashing (solution 6 after backwashing). By this backwashing, the suspension is removed and the exchanger layer is loosened and then regenerated. The regeneration solution 7 is injected from the upper part of the liquid passing cylinder 1, and after the regeneration is completed, the regeneration solution remaining in the exchanger layer is washed with the cleaning solution 8 to finish the regeneration process (post-regeneration solution 9). In this regeneration step, useful ions may be eluted and ion exchangers may be regenerated simultaneously with a single regeneration solution 7, or the useful ion elution solution and the ion exchanger regeneration solution may be regenerated separately. In some cases, elution and regeneration may be performed with the solution 7. After the regeneration process, the adsorption process starts again.
[0004]
An ion exchange apparatus and method for recovering precious metal ions from precious metal plating wastewater using the ion exchanger as described above have been proposed.
For example, according to Japanese Examined Patent Publication No. 53-29124, in an ion exchange adsorption tower for supplying a liquid from below, both drainage inlet and outlet are provided to prevent turbulent flow of resin particles due to injection of pumped plating wastewater. In Japanese Patent Publication No. 5-14012, a strainer is attached to the surface to ease the discharge of pumped water with a strainer to improve the adsorption of recovered ions. An apparatus which is a hopper type and has an improved adsorption rate is shown.
In JP-A-1-111825, after adjusting the pH of a palladium-containing solution, the solution is adsorbed through a column packed with a pyridine-based chelating ion exchange resin and then eluted with an alkaline solution to obtain a high yield of palladium. JP-A-3-158426 discloses a method for recovering at a high rate, and a method in which palladium adsorbed on an anion exchange resin is eluted and the anion exchange resin is reused.
[0005]
[Problems to be solved by the invention]
However, in the conventional fixed ion exchange holding tower, it is impossible to pass a liquid containing metal ions through the column during the elution of the adsorbed components and the regeneration of the ion exchanger after the adsorption process is completed. Therefore, it was difficult to cope with the continuously generated drainage. Even if the generation of the target solution is not always continuous, if the generation amount is large, the load on the equipment, the place, etc. is simultaneously imposed. Therefore, depending on the amount of solution to be treated, the equipment must have not only the simple adsorption treatment capacity of the ion exchanger but also the adsorption treatment capacity of the entire elution and regeneration. The cost of became huge. If multiple treatment systems are used and adsorption, elution, and regeneration are performed at the same time, the efficiency increases. However, it is necessary to install a plurality of systems, which is costly and requires an installation location. In addition, it is possible to store the solution to be treated in a temporary storage tank during elution regeneration, but this causes the expense of installing a new storage tank, and the concentration of useful ions is compared. When a relatively large amount of solution containing it is generated, it has become a heavy burden not only from the viewpoint of cost but also from the viewpoint of installation location.
Accordingly, an object of the present invention is to provide an ion exchange holding tower capable of dealing with either a case where a solution containing useful ions is generated continuously or intermittently, and a method for separating useful ions using the same.
[0006]
[Means for Solving the Problems]
As a result of research to achieve the above object, the present inventors have made it possible to attach and detach an ion exchanger holding column to a useful ion-containing solution that has been difficult to cope with with a conventional fixed ion exchange column, and to perform ion exchange. After passing a useful ion-containing solution through this ion exchanger holding device holding the body and adsorbing useful ions, the ion exchanger holding device is removed, and another regenerated ion exchanger holding device is immediately removed at that location. It is possible to perform continuous adsorption of continuously generated effluent, and by preparing multiple ion exchanger holding devices, elution processes other than adsorption and resin regeneration processes can be performed simultaneously. The present invention has been found out that it can be carried out.
[0007]
That is, the present invention first comprises a member having a liquid feeding hole, a bubble separator, an ion exchanger holding member, a member having a drainage hole, and a member for connecting these members in the order described, An ion exchanger holding device for ion separation characterized by being detachable at a member having a member having a drainage hole and a member having a drainage hole; second, the bubble separator comprises a liquid feeding hole, a drainage hole, and an exhaust hole. A liquid container, a discharge valve, and a member having a plurality of openings, and the liquid fed from the liquid supply hole into the sealed container passes through the member having the plurality of openings and the drainage hole. The plurality of openings are provided between the liquid supply holes and the drain holes so that bubbles contained in the liquid are discharged when passing through the member having the plurality of openings. Place a member with holes and stay on top of the inside of the sealed container. The exhaust hole is disposed in the upper part of the sealed container so that gas can be exhausted from the sealed container through the exhaust hole by opening the exhaust valve, and the exhaust valve is placed in the sealed container at the position of the exhaust hole. The ion exchanger holding device according to the first aspect, which is configured by being connected; and thirdly, the opening of the member having the plurality of openings is 2 mm or more and 10 mm or less. The ion exchanger holding device according to the second aspect; fourth, the member having a liquid feeding hole and the subsequent filter are further incorporated before the member having the liquid feeding hole. The fifth aspect of the present invention is the ion exchanger holding device according to any one of the above: fifth, the ion exchanger having the metal ion adsorbed at the adsorption site is moved from the adsorption site, and the adsorbed metal ion is eluted at another site; Ion times In the metal ion recovery method, the ion exchanger is held in a removable ion exchanger holding device equipped with a bubble separator, in which the ion exchanger is regenerated for new adsorption at the adsorption site. And sixth, a method for recovering metal ions, wherein the metal ion is adsorbed at the adsorption site on the ion exchanger and then moved from the adsorption site to another site. In the method for adsorbing metal ions at an ion exchanger adsorption site for eluting the adsorbed metal ions and recovering the metal ions, the regenerated ion exchanger is held at a location different from the adsorption location A removable ion exchanger holding device having a bubble separator is attached to the adsorption site at least during the adsorption operation, and the ions are adsorbed on the ion exchanger. A method of adsorbing metal ions; seventh, adding chloride ions to a solution in which silver ions and palladium ions coexist to form a silver chloride precipitate; A method for separating and recovering silver and palladium, which is supplied to a body holding device.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic side view for explaining an ion exchanger holding device according to the present invention. Referring to this drawing, the holding device and a method for separating useful ions using the holding device are exemplified by the case of palladium ions. Will be described below.
[0009]
An anion exchange resin diamond SA10A (manufactured by Mitsubishi Chemical Corporation) is supplied at a space velocity SV = 1 to 30 with a palladium solution supplied from a solution tank 14 through a pump 12 and a filter 13 from a receiving tank 11 in which a palladium ion-containing solution 3 is collected. Is passed through the ion exchanger holding tower 16 enclosing the ion exchanger, and the solution permeates from the lower part to the upper part of the ion exchanger holding tower 16, during which the palladium in the liquid is ionized in the ion exchanger holding tower 16. Adsorbed on the exchange resin. After the permeation, the liquid discharged from the upper drain hole 17 contains almost no palladium. The resin turns reddish brown with the adsorption.
[0010]
In order to cope with the adsorption and recovery from the palladium-containing solution that is continuously generated, the palladium-containing solution is once put into the receiving tank 11 and is then pumped up by the pump 12 and adsorbed onto the ion exchange resin in the ion exchanger holding device. In the adsorption process, the pump 12 is switched off only during the exchange of the ion exchanger holding device, the palladium-containing solution is stored in the receiving tank 11, and after completion of the exchange, the pump 12 is operated to resume the adsorption.
The ion exchanger holding device after the adsorption of palladium is removed from the adsorption device and set in the elution device. First, 200 mol / m 3 of hydrochloric acid is flowed to discharge the heavy metal in the ion exchanger holding device out of the system. The amount of hydrochloric acid is 20 times the apparent volume (hereinafter referred to as resin volume) of the resin (Cl type), and SV = 2 to 15.
[0011]
Next, water is passed through in order to completely expel the heavy metal remaining in the ion exchanger holding device. The amount of water is twice the resin volume and SV = 2-15.
Next, as an elution step, 1000 mol / m 3 of ammonia water is passed through the inside of the ion exchanger holding device (SV = 2 to 15). The palladium adsorbed on the resin by elution is taken out from the ion exchanger holding device in the form of an aqueous solution of Pd (NH 3 ) 4 Cl 2 (dichlorotetraammine palladium). The extracted eluent is placed in a container with a lid. The resin turns yellowish brown from the part where elution is completed. The amount of ammonia water is 5 times the resin volume. After the elution is completed, water is passed to discharge the liquid remaining in the ion exchanger holding device. The amount of water is twice the resin volume, and the discharged liquid is placed in the same lidded container as the eluent.
[0012]
The ion exchanger holding device after elution and washing with water is set in a regenerator, and 1000 mol / m 3 of hydrochloric acid is passed through this device (SV = 2 to 15). This process is referred to as “ion exchanger holding device regeneration”. The purpose of regeneration of the ion exchanger holding device is to return the resin from the OH type after elution to the original Cl type and to make it possible to adsorb palladium again. The amount of hydrochloric acid is 3 times the resin volume. When returning to the Cl - type, the resin turns yellow-orange. The apparatus is then flushed to expel free Cl . The amount of water is twice the resin volume and SV = 2-15. After this operation, the ion exchanger holding device can be used again for palladium adsorption.
[0013]
As shown in FIG. 1, the structure of the ion exchanger holding device is connected to the device by a union at both the liquid feed hole 14 and the drainage hole 17, and is used for transportation between the adsorption, elution and regeneration devices. A lid is screwed into the union to prevent outflow of liquid and resin inside the ion exchanger holding device.
The adsorption, elution, and regeneration devices do not need to be collected in one place. For example, a regenerated ion exchanger holding device is lent to a customer to perform adsorption, and after adsorption, it is taken out to perform elution and regeneration. Usage such as renting out again after reproduction becomes possible. Also, by producing a plurality of ion exchanger holding devices, it is possible to perform adsorption, elution, and regeneration at the same time, so that a regenerated ion exchanger holding device can always be provided for adsorption.
[0014]
The ion exchanger holding device has a bubble separator 15 before the liquid in the ion exchanger holding tower 16 enters. When the SV value is low and about 4 or less, there is almost no movement of the resin due to the movement of the liquid inside the ion exchanger holding tower 16, so if air enters from the liquid feed hole 14, there is no bubble separator 15. Since the liquid stays in the resin to form bubbles and the liquid passes through the bubbles, the action is not exhibited in any process. In particular, in the adsorption process, the amount of palladium adsorbed may be reduced by bubbles. For this reason, a bubble separator 15 is provided to prevent air from directly entering the ion exchanger holding tower 16. When the ion exchanger holding device of the present invention is attached or detached according to use, it is natural that the possibility of inflow of bubbles increases. Therefore, the provision of the bubble separator 15 is particularly effective for preventing inflow of bubbles. Is.
[0015]
A wire mesh (hereinafter referred to as a mesh) 18 was placed in the bubble separator 15 so that the bubbles collapsed. The opening of the wire mesh is 2 mm or more and 10 mm or less, preferably 2 mm or more and 5 mm or less. If it is less than 2 mm, the resistance to fluid flow is large, and if it exceeds 10 mm, the mesh effect cannot be obtained. In addition, if it has said opening diameter, it will have the same effect not only with a mesh but with the sponge-like metal and fiber assembly.
[0016]
Further, by incorporating a member having a liquid feeding hole 14 ′ and a subsequent filter 13 (filter) before the member having the liquid feeding hole 14 , and treating the metal ions as a precipitate with the filter 13, an ion exchanger When combined with the above-mentioned treatment, at least two kinds of metal ions can be simultaneously treated, separated and recovered. For example, a compound that gives chloride ions such as sodium chloride is added to a solution in which silver ions and palladium ions coexist to precipitate silver ions as silver chloride, and then the silver chloride is suspended in the solution. Is passed through an ion exchanger holding device incorporating the filter 13 in the same manner as in the treatment of the palladium ion-containing solution, so that silver ions are collected by the filter 13 as silver chloride precipitates, and the palladium ions are ion-exchanged. They can be adsorbed on the body and separated and recovered at the same time. Even in places where there is no facility for treating palladium ions adsorbed on silver chloride and ion exchangers, the ion exchanger holding device of the present invention is lent out to collect silver chloride and adsorb palladium ions. These metal ions can be recovered by treating silver chloride and adsorbed palladium ions in place.
[0017]
Examples of the solution containing metal ions to which the present invention can be applied include plating waste water which is frequently generated continuously, and can be applied to these. Palladium plating solution, cleaning waste water, etching waste water, electroless nickel plating solution waste water, cleaning waste water, etching waste water and palladium catalyst solution for surface treatment, waste liquid, washing waste water for recovery process, etc. Can be mentioned. More preferably, the waste water contains palladium ions. In particular, the plating waste water containing silver ions and palladium ions at the same time is preferable because the plating waste water containing silver and palladium at the same time can separate and recover silver and palladium at the same time.
Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the following examples.
[0018]
[Example 1]
400 mL of anion exchange resin (Diaion SA10A: manufactured by Mitsubishi Chemical) was filled in an ion exchanger holding device, 17 L of palladium 88 mg / L was adsorbed at SV = 2, and then 2 L of pure water was passed through at SV = 2. Let it liquid. Thereafter, the ion exchanger holding device was transferred to an elution device, and 1 L each of 1000 mol / m 3 ammonia water and pure water was passed through at SV = 2, whereby 1.999 L of palladium 890 mg / L eluent was obtained. Thereafter, 1 L each of 1000 mol / m 3 hydrochloric acid and pure water was passed through the ion exchanger holding device at SV = 2 to regenerate the ion exchanger holding device.
[0019]
[Example 2]
Anion exchange resin (Diaion SA10A: manufactured by Mitsubishi Chemical) 10L was filled in the ion exchanger holding device of FIG. 1, and 5m 3 of palladium 63.5 mg / L was adsorbed at SV = 11. The palladium contained in 5 m 3 of the solution was 0.18 mg / L.
[0020]
[Example 3]
Palladium activator waste (palladium 82.5mg / L) 2m 3 adsorbed in SV = 4 in the apparatus of FIG. 1, hydrochloric washed ion exchanger holding device of the apparatus, after washing with water, was subjected to elution and washing However, 160.77 g of palladium could be recovered in the eluent. The recovery rate was 97.4%.
[0021]
[Example 4]
(Example of treatment of liquid in which silver and palladium coexist)
After adding 635 g of sodium chloride to 5 L of a solution containing silver ions and palladium ions (silver 77.6 g / l, palladium 4.95 g / l), silver chloride is suspended in the solution as shown in FIG. When adsorbed to the ion exchanger holding device incorporating the filter 13 at SV = 2, the amount of silver contained in the liquid after adsorption is 0.01 mg / l or less, and palladium is 0.31 mg / l. Silver was filtered through the filter 13 and could not be confirmed to remain in the ion exchanger. The eluent from the resin was 19.7 L, palladium was 1.31 g / l, and the yield of palladium was 93.4%. The silver concentration in this eluent was 0.01 mg / l or less. The silver chloride recovered from the filter 13 was 513.8 g, and 99.7% of the silver contained in the original solution was recovered.
[0022]
[Comparative example]
In FIG. 1, 2 m 3 of palladium activator waste liquid (palladium 82.5 mg / L) was passed through the ion exchanger holding tower 16 filled with the ion exchange resin with SV = 4 in the same manner as in the example without the air separator 15. In this case, the amount of palladium that could be adsorbed on the ion exchanger holding tower 16 was 143.62 g (recovery rate: 87.0%).
In the ion exchanger holding tower 16, large bubbles were observed at the bottom.
[0023]
【The invention's effect】
As described above, according to the ion exchange resin holding device of the present invention, the ion exchanger holding device incorporating the ion exchanger can be attached and detached, and the liquid feed hole on the liquid feed side and the drain hole on the drain side can be separated. It is configured to be detachable at two locations, and for example, when eluting useful metals adsorbed by a conventional fixed ion exchange column, the adsorption had to be stopped, whereas a plurality of ion exchanger holding devices Because it is prepared, it is always possible to adsorb continuously with a new regenerated ion exchanger holding device, and the adsorbed ion exchanger holding device can perform operations such as elution and regeneration in another place in parallel. The property is significantly improved.
[Brief description of the drawings]
FIG. 1 is a schematic side view for explaining an ion exchanger holding device of the present invention.
FIG. 2 is a view showing a general flow sheet of a conventional processing apparatus using ion exchange.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ion exchange resin 2 Flow-through tower 3 Useful ion containing solution 4 Processed solution 5 Backwash solution 6 Backwash solution 7 Regenerated solution 8 Washed solution 9 Regenerated solution 11 Receiving tank 12 Pump 13 Filters 14 and 14 ' Hole 15 Bubble separator 16 Ion exchanger holding tower 17 Drain hole 18 Wire mesh

Claims (7)

  1. 送液孔を有する部材、気泡分離器、イオン交換体保持部材、排液孔を有する部材およびこれら部材を記載の順序に接続する部材からなり、かつ送液孔を有する部材と排液孔を有する部材の箇所で着脱可能にしたことを特徴とするイオン分離用イオン交換体保持装置。  A member having a liquid supply hole, a bubble separator, an ion exchanger holding member, a member having a drainage hole, and a member for connecting these members in the described order, and having a member having a liquid supply hole and a drainage hole An ion exchanger holding apparatus for ion separation characterized by being detachable at a member.
  2. 前記気泡分離器が、送液孔、排液孔、排気孔を有する密閉容器、排気弁、複数の開孔を有する部材からなり、前記密閉容器内に前記送液孔から送液された液体が前記複数の開孔を有する部材を通過して前記排液孔を通し前記密閉容器から排出され、前記液体に含まれる気泡が前記複数の開孔を有する部材を通過する際小さくなるように、前記送液孔と前記排液孔との間に前記複数の開孔を有する部材を配置し、前記密閉容器の内側上部に留まる気体を前記排気弁を開けることにより前記排気孔を通し前記密閉容器から排気できるように、前記密閉容器の上部に前記排気孔を配置し、前記排気弁を前記排気孔の位置で前記密閉容器に接続して、構成されることを特徴とする請求項1記載のイオン交換体保持装置。  The bubble separator is composed of a liquid supply hole, a liquid discharge hole, a sealed container having an exhaust hole, an exhaust valve, and a member having a plurality of openings, and the liquid fed from the liquid supply hole into the sealed container Passing through the member having the plurality of openings, passing through the drainage hole and being discharged from the sealed container, so that bubbles contained in the liquid are reduced when passing through the member having the plurality of openings. A member having the plurality of openings is disposed between the liquid supply hole and the drainage hole, and the gas remaining in the upper part inside the sealed container is opened from the sealed container through the exhaust hole by opening the exhaust valve. 2. The ion according to claim 1, wherein the exhaust hole is disposed in an upper part of the sealed container so that the exhaust can be performed, and the exhaust valve is connected to the sealed container at the position of the exhaust hole. Exchanger holding device.
  3. 前記複数の開孔を有する部材の開孔が2mm以上10mm以下であることを特徴とする請求項2記載のイオン交換体保持装置。  The ion exchanger holding device according to claim 2, wherein the opening of the member having the plurality of openings is 2 mm or more and 10 mm or less.
  4. 前記送液孔を有する部材の前にさらに送液孔を有する部材とそれに続くフィルターを組み込んだことを特徴とする、請求項1〜3のいずれかに記載のイオン交換体保持装置。  The ion exchanger holding device according to any one of claims 1 to 3, wherein a member having a liquid feeding hole and a subsequent filter are further incorporated in front of the member having the liquid feeding hole.
  5. 吸着箇所で金属イオンを吸着させたイオン交換体を、前記吸着箇所から移動し別の箇所で前記吸着した金属イオンを溶離させ前記金属イオンを回収するとともに、前記吸着箇所での新たな吸着のために前記イオン交換体を再生する、金属イオンの回収方法において、前記イオン交換体を気泡分離器を備えた着脱可能なイオン交換体保持装置に保持し、吸着、移動、溶離、再生することを特徴とする、金属イオンの回収方法。  The ion exchanger having the metal ions adsorbed at the adsorption site is moved from the adsorption site and the adsorbed metal ions are eluted at another site to collect the metal ions, and for the new adsorption at the adsorption site. In the metal ion recovery method for regenerating the ion exchanger, the ion exchanger is held in a removable ion exchanger holding device equipped with a bubble separator, and is adsorbed, moved, eluted, and regenerated. A method for recovering metal ions.
  6. イオン交換体に吸着箇所で金属イオンを吸着させた後、前記吸着箇所から移動し別の箇所で前記吸着した金属イオンを溶離させ前記金属イオンを回収するためのイオン交換体の吸着箇所での金属イオンの吸着方法において、前記吸着箇所とは別の箇所で再生された前記イオン交換体を保持する気泡分離器を備えた着脱可能なイオン交換体保持装置を前記吸着箇所に少なくとも吸着操作の間取り付けて前記イオン交換体に前記イオンを吸着させることを特徴とする金属イオンの吸着方法。  After the metal ion is adsorbed to the ion exchanger at the adsorption site, the metal at the adsorption site of the ion exchanger for recovering the metal ion by moving from the adsorption site and eluting the adsorbed metal ion at another site In the ion adsorption method, a removable ion exchanger holding device having a bubble separator for holding the ion exchanger regenerated at a location different from the adsorption location is attached to the adsorption location at least during the adsorption operation. And adsorbing the ions on the ion exchanger.
  7. 銀イオンとパラジウムイオンが共存する溶液に塩化物イオンを添加し塩化銀の沈殿を生成させた後、前記沈殿を含む溶液を請求項4記載のイオン交換体保持装置に供給することを特徴とする銀とパラジウムの分離回収方法A chloride ion is added to a solution in which silver ions and palladium ions coexist to form a silver chloride precipitate, and then the solution containing the precipitate is supplied to the ion exchanger holding device according to claim 4. A method for separating and recovering silver and palladium.
JP21736198A 1998-07-31 1998-07-31 Ion exchanger holding device and ion separation method using the same Expired - Lifetime JP4054858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21736198A JP4054858B2 (en) 1998-07-31 1998-07-31 Ion exchanger holding device and ion separation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21736198A JP4054858B2 (en) 1998-07-31 1998-07-31 Ion exchanger holding device and ion separation method using the same

Publications (2)

Publication Number Publication Date
JP2000054037A JP2000054037A (en) 2000-02-22
JP4054858B2 true JP4054858B2 (en) 2008-03-05

Family

ID=16702980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21736198A Expired - Lifetime JP4054858B2 (en) 1998-07-31 1998-07-31 Ion exchanger holding device and ion separation method using the same

Country Status (1)

Country Link
JP (1) JP4054858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205074A (en) * 2012-03-27 2013-10-07 Dowa Eco-System Co Ltd Replacement time determination method of ion exchange resin

Also Published As

Publication number Publication date
JP2000054037A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
AU709121B2 (en) Method for minimizing wastewater discharge
US5951874A (en) Method for minimizing wastewater discharge
US9422170B2 (en) Method for producing potable water and/or purifying water including the elimination of a target compound and filtration within a filter drum
JP4054858B2 (en) Ion exchanger holding device and ion separation method using the same
CN212864355U (en) Waste acid liquid regeneration pretreatment system
JP3231228B2 (en) Regeneration method of ion exchange resin tower
JP3896423B2 (en) Method for recovering palladium from palladium-containing liquid
JP3913939B2 (en) Boron recovery method
EP0452042B1 (en) Ion exchange process
JP4927670B2 (en) Etching waste liquid recycling method and recycling apparatus
JP3882255B2 (en) Method for regenerating coolant liquid for automobile and apparatus used therefor
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
KR100667974B1 (en) Retrieve treatment apparatus of Cu waste water and its treatment method
JPH11147088A (en) Dephosphorization of waste water
JP3661204B2 (en) Ion exchange apparatus and regeneration method
JP2742975B2 (en) Regeneration method of ion exchange device
JP2021191566A (en) Pure water production method and production equipment
JP2003299968A (en) Water treatment apparatus
KR200393307Y1 (en) retrieve treatment apparatus of Cu waste water
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
KR20030089792A (en) Method and Apparatus for extraction of Precious metals from Plating Wastewater
JPH0871318A (en) Filter
JPH10183398A (en) Method for regenerating waste plating liquid and apparatus therefor
CN111217423A (en) Hard water softening device with precipitate collecting and discharging structure
JPH09308881A (en) Washing of condensed water desalting apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term