JP2001007389A - Manufacturing semiconductor light emitting element - Google Patents

Manufacturing semiconductor light emitting element

Info

Publication number
JP2001007389A
JP2001007389A JP17413899A JP17413899A JP2001007389A JP 2001007389 A JP2001007389 A JP 2001007389A JP 17413899 A JP17413899 A JP 17413899A JP 17413899 A JP17413899 A JP 17413899A JP 2001007389 A JP2001007389 A JP 2001007389A
Authority
JP
Japan
Prior art keywords
light emitting
type
transparent substrate
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17413899A
Other languages
Japanese (ja)
Inventor
Haruji Yoshitake
春二 吉武
Kazuyoshi Furukawa
和由 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP17413899A priority Critical patent/JP2001007389A/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to DE60042187T priority patent/DE60042187D1/en
Priority to EP00304862A priority patent/EP1065734B1/en
Priority to TW089111181A priority patent/TW502458B/en
Priority to US09/589,452 priority patent/US6465809B1/en
Publication of JP2001007389A publication Critical patent/JP2001007389A/en
Priority to US10/211,707 priority patent/US6815312B2/en
Priority to US10/961,066 priority patent/US7217635B2/en
Priority to US11/621,638 priority patent/US7364982B2/en
Priority to US12/042,561 priority patent/US20080308827A1/en
Priority to US13/595,284 priority patent/US8829488B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress stresses from growing due to film thickness difference on a transparent substrate for avoiding cracks in light emitting element parts. SOLUTION: Surface of a GaAs substrate is epitaxially grown to form an n-type clad layer 14, an active layer 15 and a p-type clad layer 16. After adhering a p-type transparent substrate 19 to the p-type clad layer 16 surface at the room temp., the GaAs substrate is removed. At the room temp. an n-type transparent substrate 20 is adhered to the clad layer 14 surface via an n-type In0.5Ga0.5P 13. The reafter, transparent substrates 19, 20 and the clad layers 16, 14 are adhered at a high temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明基板を用いた
発光素子の製造方法に係わり、特に、発光素子のエピタ
キシャル膜に透明基板を接着する半導体発光素子の製造
方法に関する。
The present invention relates to a method for manufacturing a light emitting device using a transparent substrate, and more particularly, to a method for manufacturing a semiconductor light emitting device in which a transparent substrate is bonded to an epitaxial film of the light emitting device.

【0002】[0002]

【従来の技術】この種の透明基板を用いた半導体発光ダ
イオード(LED)は、例えば4元InGaAlP系の
LED発光素子部の一方面及び他方面に透明基板が形成
されている。前記4元組成比を変えることで全可視光領
域のLEDを作成することが可能である。しかし、透明
基板と発光素子部の格子定数が一致しないため格子整合
しない。そのため、発光素子部を透明基板上に直接形成
した場合、透明基板上に良好なエピタキシャル膜を形成
することが困難である。
2. Description of the Related Art In a semiconductor light emitting diode (LED) using a transparent substrate of this kind, for example, a transparent substrate is formed on one surface and the other surface of a quaternary InGaAlP-based LED light emitting element. By changing the quaternary composition ratio, it is possible to produce an LED in the entire visible light region. However, since the lattice constants of the transparent substrate and the light emitting element do not match, there is no lattice matching. Therefore, when the light emitting element portion is formed directly on the transparent substrate, it is difficult to form a good epitaxial film on the transparent substrate.

【0003】従って、図8乃至図14に示すように、G
aAs基板上に発光素子部をエピタキシャル成長した後
に、GaAs基板を除去し、発光素子部の一方面及び他
方面に順次に透明基板を形成することが一般的である。
以下に、従来の半導体発光素子の製造方法について説明
する。
Accordingly, as shown in FIGS.
In general, after a light emitting element portion is epitaxially grown on an aAs substrate, the GaAs substrate is removed, and a transparent substrate is sequentially formed on one surface and the other surface of the light emitting element portion.
Hereinafter, a method for manufacturing a conventional semiconductor light emitting device will be described.

【0004】まず、図8に示すように、GaAs基板3
1上にエッチングストップ層32が形成され、エッチン
グストップ層32上にp型クラッド層33が形成され
る。このp型クラッド層33上に活性層34が形成さ
れ、活性層34上にn型クラッド層35が形成される。
このn型クラッド層35上にキャップ層36が形成され
る。このように、エピタキシャル成長によって発光素子
部が形成される。
[0004] First, as shown in FIG.
1, an etching stop layer 32 is formed, and a p-type cladding layer 33 is formed on the etching stop layer 32. An active layer 34 is formed on the p-type cladding layer 33, and an n-type cladding layer 35 is formed on the active layer 34.
On this n-type cladding layer 35, a cap layer 36 is formed. Thus, the light emitting element section is formed by epitaxial growth.

【0005】図9に示すように、エッチングによりキャ
ップ層36が除去され、n型クラッド層35の表面が露
出される。
[0005] As shown in FIG. 9, the cap layer 36 is removed by etching, and the surface of the n-type cladding layer 35 is exposed.

【0006】図10に示すように、エピタキシャル成長
により、n型クラッド層35の表面に膜厚が例えば10
乃至50μmのn型透明基板37が形成される。
[0006] As shown in FIG. 10, a film thickness of, for example, 10
An n-type transparent substrate 37 of about 50 μm is formed.

【0007】図11に示すように、エッチングによりG
aAs基板31が除去され、エッチングストップ層32
の表面が露出される。
[0007] As shown in FIG.
The aAs substrate 31 is removed, and the etching stop layer 32 is removed.
Surface is exposed.

【0008】図12に示すように、エッチングによりエ
ッチングストップ層32が除去され、p型クラッド層3
3の表面が露出される。
As shown in FIG. 12, the etching stop layer 32 is removed by etching, and the p-type cladding layer 3 is removed.
3 is exposed.

【0009】図13に示すように、熱圧着により、p型
クラッド層33の表面に膜厚が例えば250μmのp型
透明基板38が接着される。
As shown in FIG. 13, a p-type transparent substrate 38 having a thickness of, for example, 250 μm is adhered to the surface of the p-type cladding layer 33 by thermocompression bonding.

【0010】図14に示すように、n型透明基板37及
びp型透明基板38の表面に、それぞれ金属電極39及
び40が形成される。
As shown in FIG. 14, metal electrodes 39 and 40 are formed on the surfaces of an n-type transparent substrate 37 and a p-type transparent substrate 38, respectively.

【0011】[0011]

【発明が解決しようとする課題】上記従来の半導体発光
素子の製造方法において、p型クラッド層33とp型透
明基板38の接着面が良好なオーミックになるために
は、高温な熱圧着により接着することが必要である。し
かし、エピタキシャル成長膜であるn型透明基板37の
膜厚はp型透明基板38の膜厚に比べて薄いため、熱圧
着によりp型クラッド層33表面にp型透明基板38を
接着して、発光素子部を透明基板37、38で挟み込む
際、クラッド層33及び35と透明基板38及び37の
熱膨張係数の差による応力が発生する。主に、透明基板
37、38の膜厚差により、発生した応力が打ち消し合
わず、図15に示すように、発光素子部に反りが生じて
クラック40が発生する。従って、LEDの発光特性が
大幅に劣化するという問題があった。
In the conventional method of manufacturing a semiconductor light emitting device, in order to make the bonding surface between the p-type cladding layer 33 and the p-type transparent substrate 38 good ohmic, the bonding is performed by high-temperature thermocompression bonding. It is necessary to. However, since the thickness of the n-type transparent substrate 37, which is an epitaxial growth film, is thinner than the thickness of the p-type transparent substrate 38, the p-type transparent substrate 38 is bonded to the surface of the p-type cladding layer 33 by thermocompression bonding to emit light. When the element portion is sandwiched between the transparent substrates 37, 38, a stress is generated due to a difference in thermal expansion coefficient between the cladding layers 33, 35 and the transparent substrates 38, 37. Mainly, due to the difference in film thickness between the transparent substrates 37 and 38, the generated stresses do not cancel each other, and as shown in FIG. 15, the light emitting element portion is warped and cracks 40 are generated. Therefore, there is a problem that the light emission characteristics of the LED are significantly deteriorated.

【0012】これを解決するためには、n型透明基板3
7の膜厚をp型透明基板38の膜厚と同一にすることが
考えられる。しかし、これはエピタキシャル成長の時間
を長くする必要があるため、処理時間が長くなり、得策
ではない。
In order to solve this, the n-type transparent substrate 3
It is conceivable to make the film thickness of 7 the same as the film thickness of the p-type transparent substrate 38. However, this requires a longer epitaxial growth time, which increases the processing time, which is not advantageous.

【0013】本発明は上記課題を解決するためになされ
たものであり、その目的とするところは、発光素子部の
クラックの発生を抑制することができる半導体発光素子
の製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a semiconductor light emitting device which can suppress the occurrence of cracks in a light emitting device portion. is there.

【0014】[0014]

【課題を解決するための手段】本発明は、前記目的を達
成するために以下に示す手段を用いている。
The present invention uses the following means to achieve the above object.

【0015】本発明の半導体発光素子の製造方法は、透
明基板を接着する半導体発光素子の製造方法であって、
発光素子部を透明基板で両側から挟み、これらを高温処
理して接着する。
The method for manufacturing a semiconductor light emitting device of the present invention is a method for manufacturing a semiconductor light emitting device for bonding a transparent substrate,
The light emitting element portion is sandwiched between the transparent substrates from both sides, and these are subjected to high temperature treatment and bonded.

【0016】前記高温処理は、前記発光素子部及び両側
の前記透明基板を一括して処理し接着する。
In the high temperature treatment, the light emitting element portion and the transparent substrates on both sides are collectively processed and bonded.

【0017】また、本発明の半導体発光素子の製造方法
は、透明基板を接着する半導体発光素子の製造方法であ
って、化合物半導体基板の表面に発光素子部をエピタキ
シャル成長させる工程と、室温で、前記発光素子部の一
方面に第1の透明基板を接着する工程と、前記化合物半
導体基板を除去し、前記発光素子部の他方面を露出する
工程と、室温で、前記発光素子部の他方面に第2の透明
基板を接着する工程と、前記第1及び第2の透明基板と
前記発光素子を高温処理し、これらを接着する工程とを
含む。
Further, a method of manufacturing a semiconductor light emitting device according to the present invention is a method of manufacturing a semiconductor light emitting device in which a transparent substrate is adhered, wherein a step of epitaxially growing a light emitting element portion on a surface of a compound semiconductor substrate comprises: A step of bonding a first transparent substrate to one surface of the light emitting element portion, a step of removing the compound semiconductor substrate and exposing the other surface of the light emitting element portion, and a step of bonding the other surface of the light emitting element portion at room temperature. A step of bonding a second transparent substrate; and a step of subjecting the first and second transparent substrates and the light emitting element to high-temperature treatment and bonding them.

【0018】前記高温処理の温度は500℃乃至120
0℃である。
The temperature of the high temperature treatment is 500 ° C. to 120 ° C.
0 ° C.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態を以下に図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1乃至図6は、本発明を例えば緑色の半
導体発光素子の製造方法に適用した場合について示して
いる。
FIGS. 1 to 6 show a case where the present invention is applied to, for example, a method for manufacturing a green semiconductor light emitting device.

【0021】まず、図1に示すように、膜厚が例えば2
50μmのGaAs基板11上に、膜厚が例えば0.5
μmのn型GaAs層12が形成され、このn型GaA
s層12上に、膜厚が例えば0.2μmのn型In0.5
Ga0.5P層13が形成される。このn型In0.5Ga
0.5P層13上に、膜厚が例えば0.6μmのn型クラ
ッド層(In0.5Al0.5P層)14が形成され、このn
型クラッド層14上に、膜厚が例えば1.0μmのP型
活性層(In0.5(Ga0.55Al0.450.5P層、P型濃
度が5×1016乃至2×1017cm-3)15が形成され
る。このP型活性層15上に、膜厚が例えば1.0μm
のP型クラッド層(In0.5Al0.5P層)16が形成さ
れ、このP型クラッド層16上に、膜厚が例えば0.0
1μmのP型エッチングストップ層(GaAs層)17
が形成される。このエッチングストップ層17上に、膜
厚が例えば0.02μmのn型キャップ層(In
0.5(Ga0.7Al0.30.5P層)18が形成される。こ
のように、エピタキシャル成長によって、同一バッチで
発光素子部が形成される。
First, as shown in FIG.
On a GaAs substrate 11 having a thickness of 50 μm,
A μm n-type GaAs layer 12 is formed.
An n-type In 0.5 layer having a thickness of, for example, 0.2 μm is formed on the s layer 12.
A Ga 0.5 P layer 13 is formed. This n-type In 0.5 Ga
An n-type cladding layer (In 0.5 Al 0.5 P layer) 14 having a thickness of, for example, 0.6 μm is formed on the 0.5 P layer 13.
A P-type active layer (In 0.5 (Ga 0.55 Al 0.45 ) 0.5 P layer, P-type concentration of 5 × 10 16 to 2 × 10 17 cm −3 ) having a thickness of, for example, 1.0 μm is formed on the mold cladding layer 14. Is formed. On this P-type active layer 15, a film thickness of, for example, 1.0 μm
A P-type clad layer (In 0.5 Al 0.5 P layer) 16 is formed, and a thickness of, for example, 0.0
1 μm P-type etching stop layer (GaAs layer) 17
Is formed. On this etching stop layer 17, an n-type cap layer (In
0.5 (Ga 0.7 Al 0.3 ) 0.5 P layer) 18 is formed. As described above, the light emitting element portion is formed in the same batch by the epitaxial growth.

【0022】次に、図2に示すように、n型キャップ層
18とp型エッチングストップ層17がエッチングさ
れ、p型クラッド層16の表面が露出される。その後、
露出されたp型クラッド層16上に形成された自然酸化
膜(図示せず)及びp型クラッド層16表面のパーティ
クルが除去される。また、図3に示すp型クラッド層1
6に接着されるp型透明基板(GaP基板)19表面の
自然酸化膜及びパーティクルも予め除去される。このp
型透明基板19は、発光素子部とは別の製造工程で製造
される。
Next, as shown in FIG. 2, the n-type cap layer 18 and the p-type etching stop layer 17 are etched, and the surface of the p-type cladding layer 16 is exposed. afterwards,
The natural oxide film (not shown) formed on the exposed p-type cladding layer 16 and particles on the surface of the p-type cladding layer 16 are removed. Further, the p-type cladding layer 1 shown in FIG.
A natural oxide film and particles on the surface of the p-type transparent substrate (GaP substrate) 19 adhered to 6 are also removed in advance. This p
The mold transparent substrate 19 is manufactured in a different manufacturing process from the light emitting element section.

【0023】この後、図3に示すように、室温で、p型
クラッド層16の表面に、膜厚が例えば250μmのp
型透明基板19の表面が接着される。
Thereafter, as shown in FIG. 3, a p-type cladding layer 16 having a thickness of, for example, 250 μm is formed on the surface of the p-type cladding layer 16 at room temperature.
The surface of the mold transparent substrate 19 is bonded.

【0024】次に、図4に示すように、エッチングによ
りn型In0.5Ga0.5P13下部のGaAs基板11及
びn型GaAs層12が除去される。
Next, as shown in FIG. 4, the GaAs substrate 11 and the n-type GaAs layer 12 under the n-type In 0.5 Ga 0.5 P 13 are removed by etching.

【0025】この後、図5に示すn型In0.5Ga0.5
13に接着されるn型透明基板(GaP基板)20の表
面の自然酸化膜(図示せず)及びパーティクルが予め除
去される。このn型透明基板20は、発光素子部とは別
の製造工程で製造される。
Thereafter, the n-type In 0.5 Ga 0.5 P shown in FIG.
A natural oxide film (not shown) and particles on the surface of an n-type transparent substrate (GaP substrate) 20 adhered to 13 are removed in advance. This n-type transparent substrate 20 is manufactured in a manufacturing process different from that of the light emitting element section.

【0026】この後、図5に示すように、室温で、n型
In0.5Ga0.5P13の表面に、膜厚が例えば250μ
mのn型透明基板20が接着される。
Thereafter, as shown in FIG. 5, at room temperature, a film having a thickness of, for example, 250 μm is formed on the surface of the n-type In 0.5 Ga 0.5 P13.
The m-type n-type transparent substrate 20 is bonded.

【0027】次に、Arガスを流しながら、例えば80
0℃に加熱され、p型クラッド層16とp型透明基板1
9の接着面、n型In0.5Ga0.5P13を介してn型ク
ラッド層14とn型透明基板20の接着面が一括して高
温接着される。その後、室温で上記ウエハが冷却され
る。尚、高温の接着時の温度としては、800℃に限定
されるわけではなく、例えば500℃乃至1200℃で
あればよい。
Next, while flowing Ar gas, for example, 80
Heated to 0 ° C., the p-type cladding layer 16 and the p-type transparent substrate 1
The bonding surface 9 and the bonding surface of the n-type cladding layer 14 and the n-type transparent substrate 20 are bonded together at a high temperature via the n-type In 0.5 Ga 0.5 P13. Thereafter, the wafer is cooled at room temperature. In addition, the temperature at the time of high-temperature bonding is not limited to 800 ° C., and may be, for example, 500 ° C. to 1200 ° C.

【0028】次に、図6に示すように、n型透明基板2
0上に、膜厚が例えば1乃至10nmのGeを含むAu
(例えばGeを0.5%含有するAuGe)からなる介
在層21が形成される。
Next, as shown in FIG.
Au containing Ge having a thickness of, for example, 1 to 10 nm
The intervening layer 21 made of (for example, AuGe containing 0.5% of Ge) is formed.

【0029】次に、スパッタリングにより、介在層21
上にITO(In酸化膜とSn酸化膜の混合膜)膜から
なる透明電極22が形成される。この際、基板温度は室
温(22℃)程度で、ArとOの比(Ar:O)は例え
ば100:1とし、真空度は例えば1×10-3Torr
とする。
Next, the intermediate layer 21 is formed by sputtering.
A transparent electrode 22 made of an ITO (a mixed film of an In oxide film and a Sn oxide film) is formed thereon. At this time, the substrate temperature is about room temperature (22 ° C.), the ratio of Ar to O (Ar: O) is, for example, 100: 1, and the degree of vacuum is, for example, 1 × 10 −3 Torr.
And

【0030】次に、透明電極22上に例えばAuからな
る金属電極23が形成され、p型透明基板19の表面
に、例えばBeを1%含有するAuBeからなる裏面電
極24が形成される。その後、Ar雰囲気中で温度が例
えば450℃、処理時間が例えば15分の熱処理が行わ
れる。
Next, a metal electrode 23 made of, for example, Au is formed on the transparent electrode 22, and a back electrode 24 made of, for example, AuBe containing 1% of Be is formed on the surface of the p-type transparent substrate 19. Thereafter, heat treatment is performed in an Ar atmosphere at a temperature of, for example, 450 ° C. and a processing time of, for example, 15 minutes.

【0031】次に、ウエハにスクライブが行われ、チッ
プ化される。その後、樹脂パッケージにより封止され
る。
Next, the wafer is scribed to be chipped. Then, it is sealed with a resin package.

【0032】上記実施の形態によれば、p型クラッド層
16にp型透明基板19を接着するとともに、このp型
透明基板19と同一の膜厚のn型透明基板20をn型I
0. 5Ga0.5P13を介してn型クラッド層14に接着
している。つまり、p型透明基板19とn型クラッド層
14の膜厚は同一であるため、高温接着から室温冷却の
際、異種材料からなる透明基板19及び20とクラッド
層16及び14の熱膨張係数の差により生じたストレス
を、互いに打ち消し合うことができる。このため、発光
素子部の反り及びクラックの発生を抑制することができ
る。
According to the above embodiment, the p-type transparent substrate 19 is bonded to the p-type cladding layer 16 and the n-type transparent substrate 20 having the same thickness as the p-type transparent substrate 19 is formed on the n-type I-type substrate.
adhering to the n-type cladding layer 14 through the n 0. 5 Ga 0.5 P13. In other words, since the p-type transparent substrate 19 and the n-type cladding layer 14 have the same thickness, when the substrate is cooled from room temperature to room temperature, the thermal expansion coefficients of the transparent substrates 19 and 20 and the cladding layers 16 and 14 made of different materials are different. The stress caused by the difference can be canceled by each other. For this reason, the occurrence of warpage and cracks in the light emitting element portion can be suppressed.

【0033】また、図7は、透明基板を接着する前と接
着した後のLEDの発光輝度の様子を示している。この
実施の形態によれば、LEDに反りやクラックが発生し
ないため、同図に示すように、透明基板を接着した後も
発光輝度が低下しない。このため、LED特性の劣化を
防止できる。
FIG. 7 shows the light emission luminance of the LED before and after the transparent substrate is bonded. According to this embodiment, since the LED does not warp or crack, the light emission luminance does not decrease even after the transparent substrate is bonded as shown in FIG. For this reason, deterioration of LED characteristics can be prevented.

【0034】また、透明基板19及び20とクラッド層
16及び14を高温で接着する際に、接着時の温度が5
00℃乃至1200℃の範囲であれば、接着面は良好な
オーミックとなる。
When bonding the transparent substrates 19 and 20 and the cladding layers 16 and 14 at a high temperature, the bonding temperature is
When the temperature is in the range of 00 ° C. to 1200 ° C., the bonding surface becomes a good ohmic.

【0035】また、透明基板19、20の接着により発
光素子部を挟み込むため、透明基板をエピタキシャル成
長膜により形成する場合よりも処理時間を短縮できる。
Further, since the light emitting element portion is sandwiched between the transparent substrates 19 and 20 by bonding, the processing time can be reduced as compared with the case where the transparent substrate is formed by an epitaxial growth film.

【0036】更に、処理時間をかけることなく透明基板
19、20の膜厚を例えば250μmと厚く形成でき
る。しかも、透明基板19、20の膜厚が厚いため、透
明基板19、20の側面の面積を広くできる。従って、
透明基板19、20による反射面が広いため、側面に反
射された光を有効に活用できる。よって、LEDの発光
輝度を高めることができる。
Further, the transparent substrates 19 and 20 can be formed to have a large thickness of, for example, 250 μm without taking any processing time. Moreover, since the thickness of the transparent substrates 19 and 20 is large, the area of the side surfaces of the transparent substrates 19 and 20 can be increased. Therefore,
Since the reflection surfaces of the transparent substrates 19 and 20 are wide, light reflected on the side surfaces can be effectively used. Therefore, the light emission luminance of the LED can be increased.

【0037】尚、本発明は、上記実施の形態に限定され
るものではない。例えば、LEDとしては、緑以外の可
視光製品にも適用でき、上記と同様の効果を得ることが
できる。
The present invention is not limited to the above embodiment. For example, as an LED, the present invention can be applied to visible light products other than green, and the same effects as described above can be obtained.

【0038】また、透明基板19、20はGaP基板に
限る必要はなく、例えばGaN基板のように、導電性で
あり、且つ、可視領域で透明(透過率90%以上)であ
る材料であればよい。
The transparent substrates 19 and 20 need not be limited to GaP substrates, but may be made of any material, such as a GaN substrate, which is conductive and transparent in the visible region (transmittance of 90% or more). Good.

【0039】その他、本発明は、その要旨を逸脱しない
範囲で、種々変形して実施することが可能である。
In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、発
光素子部のクラックの発生を抑制することができる半導
体発光素子の製造方法を提供できる。
As described above, according to the present invention, it is possible to provide a method for manufacturing a semiconductor light emitting device which can suppress the occurrence of cracks in the light emitting device portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる半導体発光素子の製造工程を示
す断面図。
FIG. 1 is a sectional view showing a manufacturing process of a semiconductor light emitting device according to the present invention.

【図2】本発明に係わる半導体発光素子の製造工程を示
す断面図。
FIG. 2 is a sectional view showing a manufacturing process of the semiconductor light emitting device according to the present invention.

【図3】本発明に係わる半導体発光素子の製造工程を示
す断面図。
FIG. 3 is a cross-sectional view showing a manufacturing process of the semiconductor light emitting device according to the present invention.

【図4】本発明に係わる半導体発光素子の製造工程を示
す断面図。
FIG. 4 is a sectional view showing a manufacturing process of the semiconductor light emitting device according to the present invention.

【図5】本発明に係わる半導体発光素子の製造工程を示
す断面図。
FIG. 5 is a sectional view showing a manufacturing process of the semiconductor light emitting device according to the present invention.

【図6】本発明に係わる半導体発光素子の製造工程を示
す断面図。
FIG. 6 is a sectional view showing a step of manufacturing the semiconductor light emitting device according to the present invention.

【図7】本発明のLEDの発光輝度特性を示す図。FIG. 7 is a graph showing emission luminance characteristics of the LED of the present invention.

【図8】従来技術による半導体発光素子の製造工程を示
す断面図。
FIG. 8 is a cross-sectional view illustrating a manufacturing process of a semiconductor light emitting device according to a conventional technique.

【図9】従来技術による半導体発光素子の製造工程を示
す断面図。
FIG. 9 is a cross-sectional view illustrating a manufacturing process of a semiconductor light emitting device according to a conventional technique.

【図10】従来技術による半導体発光素子の製造工程を
示す断面図。
FIG. 10 is a cross-sectional view illustrating a manufacturing process of a semiconductor light emitting device according to a conventional technique.

【図11】従来技術による半導体発光素子の製造工程を
示す断面図。
FIG. 11 is a cross-sectional view illustrating a manufacturing process of a semiconductor light emitting device according to a conventional technique.

【図12】従来技術による半導体発光素子の製造工程を
示す断面図。
FIG. 12 is a cross-sectional view illustrating a manufacturing process of a semiconductor light emitting device according to a conventional technique.

【図13】従来技術による半導体発光素子の製造工程を
示す断面図。
FIG. 13 is a cross-sectional view showing a manufacturing process of a semiconductor light emitting device according to a conventional technique.

【図14】従来技術による半導体発光素子の製造工程を
示す断面図。
FIG. 14 is a cross-sectional view illustrating a manufacturing process of a semiconductor light emitting device according to a conventional technique.

【図15】従来技術によるクラックを示す断面図。FIG. 15 is a sectional view showing a crack according to a conventional technique.

【符号の説明】[Explanation of symbols]

11…GaAs基板、 12…n型GaAs基板、 13…n型In0.5Ga0.5P層、 14…n型クラッド層(In0.5Al0.5P層)、 15…P型活性層(In0.5(Ga0.55Al0.450.5
層)、 16…P型クラッド層(In0.5Al0.5P層)、 17…P型エッチングストップ層(GaAs層)、 18…n型キャップ層(In0.5(Ga0.7Al0.30.5
P層)、 19…p型透明基板(GaP基板)、 20…n型透明基板(GaP基板)、 21…介在層、 22…透明電極、 23…金属電極、 24…裏面電極。
11 GaAs substrate, 12 n-type GaAs substrate, 13 n-type In 0.5 Ga 0.5 P layer, 14 n-type clad layer (In 0.5 Al 0.5 P layer), 15 P-type active layer (In 0.5 (Ga 0.55 Al 0.45 ) 0.5 P
16) P-type cladding layer (In 0.5 Al 0.5 P layer) 17: P-type etching stop layer (GaAs layer) 18: n-type cap layer (In 0.5 (Ga 0.7 Al 0.3 ) 0.5
P layer), 19 p-type transparent substrate (GaP substrate), 20 n-type transparent substrate (GaP substrate), 21 intervening layer, 22 transparent electrode, 23 metal electrode, 24 back electrode.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA41 AA43 CA04 CA12 CA34 CA35 CA37 CA74 CA76 CA85 CA88 CA92 DA12 DA43  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F041 AA41 AA43 CA04 CA12 CA34 CA35 CA37 CA74 CA76 CA85 CA88 CA92 DA12 DA43

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明基板を接着する半導体発光素子の製
造方法であって、 発光素子部を透明基板で両側から挟み、これらを高温処
理して接着することを特徴とする半導体発光素子の製造
方法。
1. A method of manufacturing a semiconductor light emitting device, comprising: bonding a transparent substrate to a transparent substrate; .
【請求項2】 前記高温処理は、前記発光素子部及び両
側の前記透明基板を一括して処理し接着することを特徴
とする請求項1記載の半導体発光素子の製造方法。
2. The method for manufacturing a semiconductor light emitting device according to claim 1, wherein said high-temperature processing is to collectively process and bond said light emitting element portion and said transparent substrates on both sides.
【請求項3】 透明基板を接着する半導体発光素子の製
造方法であって、 化合物半導体基板の表面に発光素子部をエピタキシャル
成長させる工程と、 室温で、前記発光素子部の一方面に第1の透明基板を接
着する工程と、 前記化合物半導体基板を除去し、前記発光素子部の他方
面を露出する工程と、 室温で、前記発光素子部の他方面に第2の透明基板を接
着する工程と、 前記第1及び第2の透明基板と前記発光素子を高温処理
し、これらを接着する工程とを含むことを特徴とする半
導体発光素子の製造方法。
3. A method of manufacturing a semiconductor light emitting device, wherein a transparent substrate is adhered, wherein a step of epitaxially growing a light emitting device portion on a surface of a compound semiconductor substrate; Bonding a substrate; removing the compound semiconductor substrate to expose the other surface of the light emitting element unit; and bonding a second transparent substrate to the other surface of the light emitting element unit at room temperature. A process of subjecting the first and second transparent substrates and the light emitting device to high-temperature treatment and bonding them to each other.
【請求項4】 前記高温処理の温度は500℃乃至12
00℃であることを特徴とする請求項1又は3記載の半
導体発光素子の製造方法。
4. The temperature of the high-temperature treatment is 500 ° C. to 12 ° C.
The method according to claim 1, wherein the temperature is 00 ° C. 5.
JP17413899A 1999-06-09 1999-06-21 Manufacturing semiconductor light emitting element Pending JP2001007389A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP17413899A JP2001007389A (en) 1999-06-21 1999-06-21 Manufacturing semiconductor light emitting element
DE60042187T DE60042187D1 (en) 1999-06-09 2000-06-08 Bond-type semiconductor substrate, semiconductor light-emitting device, and manufacturing method
EP00304862A EP1065734B1 (en) 1999-06-09 2000-06-08 Bonding type semiconductor substrate, semiconductor light emitting element, and preparation process thereof.
TW089111181A TW502458B (en) 1999-06-09 2000-06-08 Bonding type semiconductor substrate, semiconductor light emission element and manufacturing method thereof
US09/589,452 US6465809B1 (en) 1999-06-09 2000-06-08 Bonding type semiconductor substrate, semiconductor light emitting element, and preparation process thereof
US10/211,707 US6815312B2 (en) 1999-06-09 2002-08-05 Bonding type semiconductor substrate, semiconductor light emitting element, and preparation process thereof
US10/961,066 US7217635B2 (en) 1999-06-09 2004-10-12 Process for preparing a bonding type semiconductor substrate
US11/621,638 US7364982B2 (en) 1999-06-09 2007-01-10 Process for preparing a bonding type semiconductor substrate
US12/042,561 US20080308827A1 (en) 1999-06-09 2008-03-05 Process for preparing a bonding type semiconductor substrate
US13/595,284 US8829488B2 (en) 1999-06-09 2012-08-27 Process for preparing a bonding type semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17413899A JP2001007389A (en) 1999-06-21 1999-06-21 Manufacturing semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2001007389A true JP2001007389A (en) 2001-01-12

Family

ID=15973337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17413899A Pending JP2001007389A (en) 1999-06-09 1999-06-21 Manufacturing semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2001007389A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100630306B1 (en) 2004-04-07 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride light-emitting diode and method for manufacturing the same
KR100710102B1 (en) 2003-02-20 2007-04-23 도요다 고세이 가부시키가이샤 Light emitting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710102B1 (en) 2003-02-20 2007-04-23 도요다 고세이 가부시키가이샤 Light emitting apparatus
KR100630306B1 (en) 2004-04-07 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride light-emitting diode and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3230638B2 (en) Light emitting diode manufacturing method
US6815312B2 (en) Bonding type semiconductor substrate, semiconductor light emitting element, and preparation process thereof
US8110451B2 (en) Method for manufacturing light emitting device
KR100495215B1 (en) VERTICAL GaN LIGHT EMITTING DIODE AND METHOD OF PRODUCING THE SAME
TWI405350B (en) Light emitting element and manufacturing method thereof
US20040130263A1 (en) High brightness led and method for producing the same
JP2004512688A (en) Method of manufacturing a GaN-based semiconductor device
JPH10114600A (en) Luminescent element, wafer therefor and manufacture of the same element
JPH07273367A (en) Manufacture of semiconductor substrate and light-emitting device
JP4980616B2 (en) Method for fabricating a semiconductor chip
KR20060097512A (en) Nitride-based light emitting diode with vertical electrode and manufacturing method of the same
JPH11126923A (en) Method for manufacturing gallium nitride compound semiconductor element
JP2001007389A (en) Manufacturing semiconductor light emitting element
JP3507716B2 (en) Method for manufacturing semiconductor light emitting device
JP3765457B2 (en) Semiconductor element
JPH11126924A (en) Method of manufacturing gallium nitride compound semiconductor element
KR20050042715A (en) Electrode structure, semiconductor light-emitting device provided with the same and method for manufacturing the same
TWI702733B (en) Mounting method of light-emitting element
JP2768343B2 (en) Crystal growth method for group III nitride compound semiconductor
JP4594708B2 (en) LIGHT EMITTING DIODE AND ITS MANUFACTURING METHOD, LIGHT EMITTING DIODE LAMP
JP2000101140A (en) Manufacture of gallium nitride compound semiconductor light emitting element
US20070096126A1 (en) Gallium nitride-based compound semiconductor light-emitting device and negative electrode thereof
WO2023021972A1 (en) Provisionally bonded wafer and method for producing same
JP2001085741A (en) Semiconductor device and light-emitting semiconductor device
JP3152474B2 (en) Light emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605