JP2001006735A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2001006735A
JP2001006735A JP11178061A JP17806199A JP2001006735A JP 2001006735 A JP2001006735 A JP 2001006735A JP 11178061 A JP11178061 A JP 11178061A JP 17806199 A JP17806199 A JP 17806199A JP 2001006735 A JP2001006735 A JP 2001006735A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
negative electrode
electrolyte
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11178061A
Other languages
Japanese (ja)
Inventor
Yoshiyo Tanaka
佳代 田中
Masami Suzuki
正美 鈴木
Masaki Shikoda
将貴 志子田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP11178061A priority Critical patent/JP2001006735A/en
Publication of JP2001006735A publication Critical patent/JP2001006735A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery having excellent heavy load characteristics at a high voltage and capable of suppressing production of a defective appearance by adding PC to an electrolyte containing EC, chain carbonic ester, and/or chain carbonic acid ester as main ingredients. SOLUTION: This nonaqueous electrolyte secondary battery has a structure in which a positive electrode case used also for a positive electrode terminal is sealed to a negative electrode case through a sealing material and at least a positive electrode, a negative electrode, a separator and a nonaqueous electrolyte are included, and a carbon material having a d002 spacing of not more than 0.338 nm is used for the negative electrode in it. The amount of PC added is preferably not less than 25% of an EC content in this electrolyte, and concentration of the PC to the entire electrolyte solvent is preferably not more than 17%. A positive electrode collector 2 is brought into internal contact with the inner surface of a positive electrode container 1 of stainless steel, the separator 4 is installed on the positive electrode 3 and a negative electrode carrying body 6 is provided on top of it. A negative electrode collector 7 is brought into internal contact with a negative electrode container 8, a gasket 5 is interposed in the opening part of the positive electrode container 5, the positive electrode collector 2 is sealed in the negative electrode container 8 and the electrolyte is filled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は重負荷特性に優れた
非水電解質二次電池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery having excellent heavy load characteristics.

【0002】[0002]

【従来の技術】近年、ポータブル機器の電源として、高
電圧、高エネルギ密度化の期待が高まっており、高エネ
ルギ密度を有し、優れた重負荷特性、および充放電サイ
クル特性を有する電池系として、負極にリチウムを吸蔵
放出可能な炭素材を有し、正極にLiCoO2 、LiN
iO2 、LiMn2 4 、LiCr2 4 などのリチウ
ム含有酸化物や、これらの物質の遷移金属元素を他の金
属元素で置換したり、酸素欠損量が異なるリチウム含有
酸化物を用い、電解液に非水電解質を用いた非水電解質
二次電池が検討されている。そして、その一部は円筒形
や角形の二次電池として既に実用化されている。このう
ち、負極材にd002 の面間隔が0.338nm以下であ
る炭素材を用いたものは、充電末期においても高電圧を
有しており、高エネルギ密度を有している。
2. Description of the Related Art In recent years, as a power source for portable equipment, high voltage and high energy density are expected to be high. As a battery system having a high energy density, excellent heavy load characteristics and charge / discharge cycle characteristics. , A negative electrode having a carbon material capable of inserting and extracting lithium, and a positive electrode having LiCoO 2 , LiN
Electrolysis using lithium-containing oxides such as iO 2 , LiMn 2 O 4 , and LiCr 2 O 4, or replacing the transition metal elements of these substances with other metal elements, or using lithium-containing oxides having different oxygen deficiencies. A non-aqueous electrolyte secondary battery using a non-aqueous electrolyte as a liquid has been studied. Some of them have already been put into practical use as cylindrical or square secondary batteries. Of these, those spacing of d 002 was used carbon material is less than 0.338nm the negative electrode material has a high voltage at the end of charging, and a high energy density.

【0003】これらの電池の電解液には、通常、EC
(エチレンカーボネート)、PC(プロピレンカーボネ
ート)、BC(プチレンカーボネート)などの高誘電率
を有する環状炭酸エステルに、低粘度を有するDMC
(ジメチルカーボネート:炭酸ジメチル)、DEC(ジ
エチルカーボネート:炭酸ジエチル)、MEC(メチル
エチルカーボネート)等の鎖状炭酸エステル、および/
または酢酸メチル、酢酸エチル、プロピオン酸エチル等
の鎖状カルボン酸エステル等の低沸点溶媒を混合し、用
いている。また、負極にd002 の面間隔が0.338n
m以下の炭素質材を用いた電池では、環状炭酸エステル
にPCやBCを単独で用いた場合に電解液の分解が生じ
てしまう。そこで、この電池に限ってはECに先の鎖状
炭酸エステルや鎖状カルボン酸エステルを混合したもの
を溶媒として用いている。
[0003] The electrolyte of these batteries is usually EC
(DCE) having a low viscosity to cyclic carbonates having a high dielectric constant such as (ethylene carbonate), PC (propylene carbonate), and BC (butylene carbonate).
Chain carbonates such as (dimethyl carbonate: dimethyl carbonate), DEC (diethyl carbonate: diethyl carbonate), MEC (methyl ethyl carbonate), and / or
Alternatively, a low-boiling solvent such as a chain carboxylic acid ester such as methyl acetate, ethyl acetate or ethyl propionate is mixed and used. Furthermore, spacing of d 002 in the negative electrode 0.338n
In a battery using a carbonaceous material of m or less, decomposition of the electrolytic solution occurs when PC or BC is used alone as the cyclic carbonate. Therefore, in this battery only, a mixture of EC and the above-mentioned chain carbonate or chain carboxylate is used as a solvent.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年の
使用機器の、より一層の小形化により、先の非水電解質
二次電池についても、小形、薄形化が要求されており、
コイン形やカード形などの扁平形非水電解質二次電池の
開発が必要とされた。
However, with the further miniaturization of the equipment used in recent years, the nonaqueous electrolyte secondary battery has also been required to be smaller and thinner.
The development of a flat non-aqueous electrolyte secondary battery such as a coin type or a card type was required.

【0005】前述の扁平形非水電解質二次電池の場合、
通常の円筒形や角形の電池と比較して、セル構造が平形
で開口径が大きいため電解液が揮発しやすい。また生産
工程において、扁平形電池の形状の特徴から、電池に電
解液を過剰に注液した後、電池ケースを嵌合し、その後
かしめ加工により電解液を溢れさせながら電池ケースを
封口し、電池を組立てている。さらに、通常は電解液を
合剤に吸収させるために、電解液を注液してからかしめ
加工を行うまでの間、5分程度の放置を行っている。し
かし、ECと低沸点溶媒の混合溶媒からなる電解液を用
いた場合、かしめ加工を行うまでの間に、溢れた電解液
中の低沸点成分が揮発し、電解液が固化し、正極ケース
に固着するという問題が発生した。その結果、かしめ加
工により電池を封口する際に正極ケースにキズが付き、
外観不良が多発するという問題が生じた。
In the case of the above-mentioned flat non-aqueous electrolyte secondary battery,
Compared with a normal cylindrical or prismatic battery, the electrolyte is easily volatilized because the cell structure is flat and the opening diameter is large. Also, in the production process, due to the characteristics of the shape of the flat battery, after excessively injecting the electrolyte into the battery, the battery case is fitted, and then the battery case is sealed while overflowing the electrolyte by swaging, and the battery is closed. Is being assembled. Further, usually, in order to absorb the electrolyte solution into the mixture, the electrolyte solution is left standing for about 5 minutes until the caulking process is performed after the electrolyte solution is injected. However, when an electrolyte consisting of a mixed solvent of EC and a low-boiling solvent is used, the low-boiling components in the overflowing electrolyte are volatilized before the caulking process is performed, and the electrolyte is solidified, and the electrolyte is solidified in the positive electrode case. The problem of sticking occurred. As a result, when sealing the battery by swaging, the positive electrode case is scratched,
The problem that appearance failure occurs frequently occurred.

【0006】本発明は上記問題に対処してなされたもの
で、その目的は電解液成分に検討を加えることにより、
外観不良の発生を抑制し、かつ高電圧で重負荷特性に優
れた非水電解質二次電池を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and its object is to examine the components of an electrolytic solution,
An object of the present invention is to provide a non-aqueous electrolyte secondary battery that suppresses appearance defects and has excellent high-load characteristics at high voltage.

【0007】[0007]

【課題を解決するための手段】本発明者らは、電解液の
組成について鋭意検討を重ねた結果、電解液中にECと
低沸点溶媒以外の溶媒としてPCを添加することでこれ
らの課題が解決されることを見出した。さらに高温保存
後においても、優れた重負荷特性を維持することにも成
功した。すなわち、本発明によると、高沸点の溶媒であ
るPCを電解液に添加することで、低沸点溶媒の揮発が
起こった場合でも、ECの析出を抑えることができ、外
観不良を発生させずに、電池を製造することができる。
さらに、PC添加量を規制することで、放電特性の劣化
が少ない、重負荷特性に優れた電池を提供することがで
きる。
Means for Solving the Problems As a result of intensive studies on the composition of the electrolytic solution, the present inventors have solved these problems by adding PC as a solvent other than EC and a low boiling point solvent to the electrolytic solution. Found to be solved. Furthermore, even after high-temperature storage, it succeeded in maintaining excellent heavy load characteristics. That is, according to the present invention, by adding PC, which is a high-boiling solvent, to the electrolytic solution, even when the low-boiling solvent evaporates, it is possible to suppress the deposition of EC and without causing poor appearance. , And a battery can be manufactured.
Further, by regulating the amount of PC added, it is possible to provide a battery with little deterioration in discharge characteristics and excellent in heavy load characteristics.

【0008】また、電池製造時に発生する外観不良を抑
制することは、正極端子を兼ねる金属製の正極ケース
を、封口材を介し、負極ケースと封口し、少なくとも正
極、負極、セパレータ、および非水電解液を内包する構
造を有する電池において、前記非水電解液に、「ECを
可溶」「室温で液体であり、揮発しにくい(高沸点であ
る)」「電池特性に影響を与えない」といった条件を満
たす新たな非水溶媒を加えることにより実現される。
[0008] In addition, to suppress appearance defects that occur during battery manufacturing, a metal positive electrode case also serving as a positive electrode terminal is sealed with a negative electrode case via a sealing material, and at least the positive electrode, the negative electrode, the separator, and the non-aqueous solution. In a battery having a structure including an electrolytic solution, the non-aqueous electrolytic solution may be “soluble in EC”, “liquid at room temperature and hardly volatilizes (has a high boiling point)” “does not affect battery characteristics” This is realized by adding a new non-aqueous solvent satisfying the above conditions.

【0009】本発明者らは、添加溶媒について鋭意研究
を重ねた結果、上記添加成分として、電池特性に及ぼす
影響が少ないという点で、特にPCが好ましいことを見
出した。γ−BLも前記の3つの条件を満たすと思われ
たが、様々な検討を行った結果、γ−BLは高温貯蔵後
や、長期連続充電後に重負荷特性が低下するという問題
が生じた。
As a result of intensive studies on the additive solvent, the present inventors have found that PC is particularly preferable as the above-mentioned additive component in that it has little effect on battery characteristics. Although it was thought that γ-BL also satisfied the above three conditions, as a result of various studies, there was a problem that γ-BL had a reduced heavy load characteristic after storage at a high temperature or after long-term continuous charging.

【0010】また、電解液へのPCの添加量としては、
EC含有量の25%以上であり、かつ電解液全体に対す
るPCの濃度が17%以下であることが好ましい。なぜ
なら、ECに対して25%以上でないと完全にECを溶
解することができず、期待される外観不良防止効果が見
られない。また、電解液溶媒全体に対して17%を超え
るとPCの分解が進み、ガスが発生し高温貯蔵後や、長
期の連続充電後に重負荷特性が低下してしまうからであ
る。
The amount of PC added to the electrolytic solution is as follows:
It is preferable that the content of EC is 25% or more of the EC content, and the concentration of PC with respect to the whole electrolytic solution is 17% or less. This is because if it is not more than 25% of the EC, the EC cannot be completely dissolved, and the expected effect of preventing poor appearance cannot be obtained. On the other hand, if the content exceeds 17% of the total solvent of the electrolytic solution, the decomposition of PC proceeds, and gas is generated, resulting in a decrease in heavy load characteristics after high-temperature storage or after long-term continuous charging.

【0011】本発明によれば、非水電解質二次電池にお
いて、上記の条件を満たす非水溶媒を加えることで、製
造工程中において低沸点成分が揮発した後も、添加した
新たな溶媒にECを溶解しておくことが可能となる。そ
のため、ECが析出固化することなく外観不良が生じる
ということが防止される。
According to the present invention, in a non-aqueous electrolyte secondary battery, by adding a non-aqueous solvent that satisfies the above-mentioned conditions, even after the low-boiling-point components volatilize during the manufacturing process, EC added to the added new solvent. Can be dissolved beforehand. Therefore, it is possible to prevent the appearance defect from occurring without the EC being precipitated and solidified.

【0012】[0012]

【発明の実施の形態】(実施例1−1)図1は本実施例
の電池の断面図である。図において、1はステンレス鋼
からなる正極容器であり、この正極容器1の内面にはス
テンレス鋼の正極集電体2が内接されている。この集電
体2を含む正極容器1内には、正極3が収納されてい
る。この正極3はLiCoO2 90重量部と人造黒鉛1
0重量部を混合した後、粉末状のポリテトラフルオロエ
チレン3重量部を添加して混練し、さらに所定量秤量
し、厚さ0.8mmのペレット状に加圧成形したもので
ある。
(Embodiment 1-1) FIG. 1 is a sectional view of a battery according to this embodiment. In the figure, reference numeral 1 denotes a positive electrode container made of stainless steel, and a positive electrode current collector 2 made of stainless steel is inscribed on the inner surface of the positive electrode container 1. The positive electrode 3 is accommodated in the positive electrode container 1 including the current collector 2. This positive electrode 3 is composed of 90 parts by weight of LiCoO 2 and artificial graphite 1
After mixing 0 parts by weight, 3 parts by weight of powdery polytetrafluoroethylene is added, kneaded, weighed in a predetermined amount, and pressed into a 0.8 mm thick pellet.

【0013】正極3上には、ポリプロピレン不織布から
なるセパレータ4が設置されており、さらにこのセパレ
ータ4の上面には負極担持体6が設置されている。この
負極担持体6は炭素質材であるメソフェーズピッチ系炭
素繊維を黒鉛化(d002 =3.38以下)した後、粉砕
したもの95重量部に、結着剤としてスチレン−ブタヂ
エン共重合体を5重量部混合した後秤量し、厚さ0.8
mmのペレット状に加圧成形したものである。
A separator 4 made of a polypropylene nonwoven fabric is provided on the positive electrode 3, and a negative electrode carrier 6 is provided on the upper surface of the separator 4. The negative electrode carrier 6 is obtained by graphitizing (d 002 = 3.38 or less) mesophase pitch-based carbon fiber as a carbonaceous material, and then pulverizing 95 parts by weight of a styrene-butadiene copolymer as a binder. After mixing 5 parts by weight, weigh and mix
It was pressed into a pellet of mm.

【0014】また、8はステンレス鋼からなる負極容器
であり、この負極容器8の内面にはCu製の負極集電体
7が内接されている。そして、正極容器1の開口部に
は、絶縁ガスケット5を介して負極容器8内に正極集電
体2、セパレータ4、負極担持体6、および負極集電体
7が密閉されている。
Reference numeral 8 denotes a negative electrode container made of stainless steel, and a negative electrode current collector 7 made of Cu is inscribed on the inner surface of the negative electrode container 8. The positive electrode current collector 2, the separator 4, the negative electrode carrier 6, and the negative electrode current collector 7 are hermetically sealed in the negative electrode container 8 via the insulating gasket 5 at the opening of the positive electrode container 1.

【0015】正極集電体2が内接された正極容器1内
に、正極3を収納した後、この正極3上にセパレータ4
を設置し、ここにEC:MEC:PC=28:65:7
の混合溶媒にLiPF6 を1モル/lの濃度で溶解した
電解液を注液した。次に、負極担持体6を設置し、負極
容器8をガスケット5を介して接合した。なお、このと
きに電池内から溢れた電解液が正極ケースに付着した。
そして、正極3とセパレータ4、負極6に電解液を浸透
させる目的で5分間放置した後、正極容器1のかしめ加
工により密閉し、電池を作製した。このようにして作製
された電池は、直径20mm、厚さ2.5mmである。
この電池を、0.5mAの定電流で電池電圧が4.2V
になるまで充電し、実施例1−1の電池とした。
After the positive electrode 3 is housed in the positive electrode container 1 in which the positive electrode current collector 2 is inscribed, a separator 4 is placed on the positive electrode 3.
And EC: MEC: PC = 28: 65: 7
An electrolytic solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in the mixed solvent was injected. Next, the negative electrode carrier 6 was installed, and the negative electrode container 8 was joined via the gasket 5. At this time, the electrolyte overflowing from the inside of the battery adhered to the positive electrode case.
Then, after leaving for 5 minutes for the purpose of permeating the electrolytic solution into the positive electrode 3, the separator 4, and the negative electrode 6, the positive electrode container 1 was sealed by caulking to produce a battery. The battery manufactured in this way has a diameter of 20 mm and a thickness of 2.5 mm.
The battery voltage was 4.2 V at a constant current of 0.5 mA.
To give a battery of Example 1-1.

【0016】(実施例1−2) 電解液組成がEC:MEC:PC=28:60:12で
あること以外は実施例1−1と同様に電池を作製した。
Example 1-2 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 28: 60: 12.

【0017】(実施例1−3) 電解液組成がEC:MEC:PC=28:55:17で
あること以外は実施例1−1と同様に電池を作製した。
Example 1-3 A battery was produced in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 28: 55: 17.

【0018】(実施例1−4) 電解液組成がEC:MEC:PC=21:72:7であ
ること以外は実施例1−1と同様に電池を作製した。
Example 1-4 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 21: 72: 7.

【0019】(実施例1−5) 電解液組成がEC:MEC:PC=21:65:14で
あること以外は実施例1−1と同様に電池を作製した。
Example 1-5 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 21: 65: 14.

【0020】(実施例1−6) 電解液組成がEC:MEC:PC=35:55:10で
あること以外は実施例1−1と同様に電池を作製した。
Example 1-6 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 35: 55: 10.

【0021】(実施例1−7) 電解液組成がEC:MEC:PC=35:50:15で
あること以外は実施例1−1と同様に電池を作製した。
Example 1-7 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 35: 50: 15.

【0022】(比較例1−1) 電解液組成がEC:MEC:PC=28:72:0であ
ること以外は実施例1−1と同様に電池を作製した。
Comparative Example 1-1 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 28: 72: 0.

【0023】(比較例1−2) 電解液組成がEC:MEC:PC=28:68:4であ
ること以外は実施例1−1と同様に電池を作製した。
Comparative Example 1-2 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 28: 68: 4.

【0024】(比較例1−3) 電解液組成がEC:MEC:PC=28:47:25で
あること以外は実施例1−1と同様に電池を作製した。
Comparative Example 1-3 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 28: 47: 25.

【0025】(比較例1−4) 電解液組成がEC:MEC:PC=21:79:0であ
ること以外は実施例1−1と同様に電池を作製した。
Comparative Example 1-4 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 21: 79: 0.

【0026】(比較例1−5) 電解液組成がEC:MEC:PC=21:58:21で
あること以外は実施例1−1と同様に電池を作製した。
(Comparative Example 1-5) A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 21: 58: 21.

【0027】(比較例1−6) 電解液組成がEC:MEC:PC=35:65:0であ
ること以外は実施例1−1と同様に電池を作製した。
Comparative Example 1-6 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 35: 65: 0.

【0028】(比較例1−7) 電解液組成がEC:MEC:PC=35:60:5であ
ること以外は実施例1−1と同様に電池を作製した。
Comparative Example 1-7 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 35: 60: 5.

【0029】(比較例1−8) 電解液組成がEC:MEC:PC=35:40:25で
あること以外は実施例1−1と同様に電池を作製した。 以上の通り作製した本実施例および比較例の電池につい
て、電池製造時の外観不良発生率を表1に示す。
Comparative Example 1-8 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: MEC: PC = 35: 40: 25. Table 1 shows the appearance defect occurrence rate at the time of battery production for the batteries of this example and the comparative example produced as described above.

【0030】[0030]

【表1】 [Table 1]

【0031】この表1より明らかなように、EC濃度に
関わらずPCをECに対し25%以上添加した実施例1
−1〜実施例1−7の電池と比較例1−3、1−5、1
−8の電池では、本実施例の電池の方が、外観不良の発
生が抑制されていることが分かる。次に、初回の充電完
了から24h経過後の電池の総高増加量を測定した。ま
た、それぞれの電池について7.5mAの定電流で3.
0Vまで重負荷放電を行った。その結果を併せて表1に
示す。表1より明らかであるが、EC濃度に関わらず、
PCの添加量が21%以上である比較例1−3、1−
5、1−8の電池は電池総高の増加が大きい。また、放
電容量も小さい。次に、60℃で20日間保存した後の
放電結果と4.2Vで60℃、20日間連続充電状態に
おいた後の放電結果を合わせて表1に示す。表1におい
て比較例1−3、1−5、1−8のPCを電解液溶媒全
体に対して21%以上添加しているものは、実施例1−
1〜実施例1−7、および比較例1−1、1−2、1−
4、1−6、1−7の電池に比べ、試験後の放電容量が
大きく低下している。
As is clear from Table 1, Example 1 in which PC was added at 25% or more to EC irrespective of the EC concentration.
-1 to the batteries of Example 1-7 and Comparative Examples 1-3, 1-5, and 1
It can be seen that in the battery of -8, the occurrence of poor appearance is suppressed in the battery of this example. Next, the total height increase of the battery 24 hours after the completion of the first charging was measured. In addition, a constant current of 7.5 mA was used for each battery.
Heavy load discharge was performed to 0V. Table 1 also shows the results. As is clear from Table 1, regardless of the EC concentration,
Comparative Examples 1-3 and 1- in which the amount of PC added was 21% or more.
The batteries 5 and 1-8 have a large increase in the total battery height. Also, the discharge capacity is small. Next, Table 1 shows the discharge results after storage at 60 ° C. for 20 days and the discharge results after continuous charging at 4.2 ° C. for 20 days at 60 ° C. In Table 1, those of Comparative Examples 1-3, 1-5, and 1-8 in which PC was added in an amount of 21% or more based on the entire electrolyte solvent were the same as those in Example 1
1 to Example 1-7 and Comparative Examples 1-1, 1-2, 1-
The discharge capacity after the test is significantly lower than those of the batteries 4, 1-6, and 1-7.

【0032】これらの検討結果より、PCの添加量はE
Cに対し25%以上であり、電解液溶媒全体に対して1
7%以下であることが好ましいことは明らかである。さ
らに、電解液中のMECをDECに変え、下記の電池を
作製した。
From these examination results, the amount of PC added was E
25% or more with respect to C, and 1% with respect to the entire electrolyte solvent.
Clearly, it is preferably at most 7%. Further, the MEC in the electrolyte was changed to DEC, and the following battery was produced.

【0033】(実施例2−1) 電解液組成がEC:DEC:PC=28:60:12で
あること以外は実施例1−1と同様に電池を作製した。
Example 2-1 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: DEC: PC = 28: 60: 12.

【0034】(比較例2−1) 電解液組成がEC:DEC:PC=28:72:0であ
ること以外は実施例1−1と同様に電池を作製した。
Comparative Example 2-1 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: DEC: PC = 28: 72: 0.

【0035】(比較例2−2) 電解液組成がEC:DEC:PC=28:68:4であ
ること以外は実施例1−1と同様に電池を作製した。
Comparative Example 2-2 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: DEC: PC = 28: 68: 4.

【0036】(比較例2−3) 電解液組成がEC:DEC:PC=28:47:25で
あること以外は実施例1−1と同様に電池を作製した。
Comparative Example 2-3 A battery was fabricated in the same manner as in Example 1-1, except that the composition of the electrolytic solution was EC: DEC: PC = 28: 47: 25.

【0037】以上作製した電池を実施例1と同様に評価
した。結果を表2に示す。電解液中のMECをDECに
変えても、表1に示した実施例1の場合と同様の効果が
得られている。
The battery fabricated as described above was evaluated in the same manner as in Example 1. Table 2 shows the results. Even when the MEC in the electrolytic solution is changed to DEC, the same effect as in the case of Example 1 shown in Table 1 is obtained.

【0038】[0038]

【表2】 [Table 2]

【0039】(実施例3−1) 電解液組成がEC:MEC:EPR:PC=28:4
0:20:12であること以外は実施例1−1と同様に
電池を作製した。なおEPRはプロピオン酸エチルであ
る。
(Example 3-1) The composition of the electrolytic solution was EC: MEC: EPR: PC = 28: 4.
A battery was prepared in the same manner as in Example 1-1, except that the ratio was 0:20:12. EPR is ethyl propionate.

【0040】(比較例3−1) 電解液組成がEC:MEC:EPR:PC=28:4
8:24:0であること以外は実施例1−1と同様に電
池を作製した。
(Comparative Example 3-1) The composition of the electrolytic solution was EC: MEC: EPR: PC = 28: 4.
A battery was fabricated in the same manner as in Example 1-1, except that the ratio was 8: 24: 0.

【0041】(比較例3−2) 電解液組成がEC:MEC:EPR:PC=28:4
6:23:3であること以外は実施例1−1と同様に電
池を作製した。
(Comparative Example 3-2) The composition of the electrolytic solution was EC: MEC: EPR: PC = 28: 4.
A battery was prepared in the same manner as in Example 1-1, except that the ratio was 6: 23: 3.

【0042】(比較例3−3) 電解液組成がEC:MEC:EPR:PC=28:3
2:16:24であること以外は実施例1−1と同様に
電池を作製した。
(Comparative Example 3-3) The composition of the electrolytic solution was EC: MEC: EPR: PC = 28: 3.
A battery was fabricated in the same manner as in Example 1-1, except that the ratio was 2:16:24.

【0043】以上作製した電池を実施例1と同様に評価
した。結果を表3に示す。電解液中のMECをMECと
EPRに変えても、表1に示した実施例1と同様の効果
が得られている。
The battery fabricated as described above was evaluated in the same manner as in Example 1. Table 3 shows the results. Even when the MEC in the electrolytic solution is changed to MEC and EPR, the same effect as in Example 1 shown in Table 1 is obtained.

【0044】[0044]

【表3】 [Table 3]

【0045】また、電解液組成がPCに変えてγ−BL
を添加した比較例4を以下のように作製した。 (比較例4−1) 電解液組成がEC:MEC:γ−BL=28:68:4
であること以外は実施例1−1と同様に電池を作製し
た。
When the electrolyte composition was changed to PC, γ-BL
Was prepared as follows in which Comparative Example 4 was added. (Comparative Example 4-1) The electrolyte composition was EC: MEC: γ-BL = 28: 68: 4.
A battery was fabricated in the same manner as in Example 1-1, except that

【0046】(比較例4−2) 電解液組成がEC:MEC:γ−BL=28:60:1
2であること以外は実施例1−1と同様に電池を作製し
た。
(Comparative Example 4-2) The composition of the electrolytic solution was EC: MEC: γ-BL = 28: 60: 1.
A battery was fabricated in the same manner as in Example 1-1, except that the battery was No. 2.

【0047】(比較例4−3) 電解液組成がEC:MEC:γ−BL=28:47:2
5であること以外は実施例1−1と同様に電池を作製し
た。
(Comparative Example 4-3) The composition of the electrolytic solution was EC: MEC: γ-BL = 28: 47: 2.
A battery was fabricated in the same manner as in Example 1-1, except that the battery number was 5.

【0048】以上作製した電池を実施例1と同様に評価
した。結果を表4に示す。これより、γ−BLを12%
以上添加した比較例4−2、および4−3の電池は外観
不良防止効果は得られたものの、重負荷放電時の放電容
量が低下してしまい、特に高温貯蔵後や連続充電後にお
いては著しく劣る結果となった。
The battery fabricated as described above was evaluated in the same manner as in Example 1. Table 4 shows the results. From this, γ-BL is reduced by 12%.
Although the batteries of Comparative Examples 4-2 and 4-3 added as described above exhibited the effect of preventing appearance defects, the discharge capacity at the time of heavy load discharge was reduced, and particularly after storage at high temperatures and after continuous charge. Inferior results.

【0049】[0049]

【表4】 [Table 4]

【0050】さらに、本発明の実施例は、非水電解質に
非水溶媒を用いたコイン形非水溶媒二次電池により説明
したが、非水電解質に先の溶媒を含浸させたポリマー電
解質を用いたポリマー二次電池や固体電解質を用いた固
体電解質二次電池についても当然、適用が可能である。
また、電池形状についてもこの限りではなく、カード形
やシート形などの他の非水電解質二次電池に関しても当
然、適用が可能である。
Further, the embodiments of the present invention have been described with reference to a coin-shaped non-aqueous solvent secondary battery using a non-aqueous solvent for the non-aqueous electrolyte. Naturally, the present invention can be applied to a polymer secondary battery or a solid electrolyte secondary battery using a solid electrolyte.
The shape of the battery is not limited to this, and the present invention is naturally applicable to other nonaqueous electrolyte secondary batteries such as a card type and a sheet type.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば外
観不良の発生を著しく軽減でき、製造後に充電状態で長
期的に保存を行っても容量低下が少なく、重負荷特性に
優れた電池を提供することができる。
As described above, according to the present invention, the occurrence of poor appearance can be remarkably reduced, and even if the battery is stored for a long time in a charged state after production, the capacity is small and the battery has excellent heavy load characteristics. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池の断面図。FIG. 1 is a cross-sectional view of a battery of the present invention.

【符号の説明】[Explanation of symbols]

1…正極容器、2…正極集電体、3…正極、4…セパレ
ータ、5…ガスケット、6…負極担持体、7…負極集電
体、8…負極容器。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode container, 2 ... Positive electrode collector, 3 ... Positive electrode, 4 ... Separator, 5 ... Gasket, 6 ... Negative electrode support, 7 ... Negative electrode current collector, 8 ... Negative electrode container.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 志子田 将貴 東京都品川区南品川三丁目4番10号 東芝 電池株式会社内 Fターム(参考) 5H003 AA01 AA08 BB01 BB12 BC06 BD02 BD06 5H029 AJ02 AJ14 AK03 AL06 AM03 AM05 BJ03 CJ05 DJ02 DJ03 DJ04 DJ05 HJ10 HJ13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masaki Shikoda 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation F-term (reference) 5H003 AA01 AA08 BB01 BB12 BC06 BD02 BD06 5H029 AJ02 AJ14 AK03 AL06 AM03 AM05 BJ03 CJ05 DJ02 DJ03 DJ04 DJ05 HJ10 HJ13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極端子を兼ねる正極ケースを、封口材
を介し、負極ケースと封口し、少なくとも正極、負極、
セパレータ、および非水電解質を内包する構造を有し、
002 の面間隔が0.338nm以下である炭素材を負
極に使用した非水電解質二次電池において、ECと鎖状
炭酸エステル、および/または鎖状カルボン酸エステル
を主体とする電解液に、PCを加えたことを特徴とする
非水電解質二次電池。
A positive electrode case also serving as a positive electrode terminal is sealed with a negative electrode case via a sealing material, and at least a positive electrode, a negative electrode,
Having a structure that includes a separator, and a non-aqueous electrolyte,
In the nonaqueous electrolyte secondary battery using a carbon material spacing of d 002 is less than 0.338nm the negative electrode, the electrolyte solution EC and chain carbonic ester, and / or a chain carboxylate as a main component, Non-aqueous electrolyte secondary battery characterized by adding PC.
【請求項2】 PCの添加量がEC含有量に対して25
%以上である電解液であり、かつ電解液溶媒全体に対す
るPCの濃度が17%以下であることを特徴とする請求
項1記載の非水電解質二次電池。
2. The amount of PC added is 25 to the EC content.
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the concentration of the electrolyte is not less than 17% and the concentration of PC with respect to the entire electrolyte solution solvent is not more than 17%.
JP11178061A 1999-06-24 1999-06-24 Nonaqueous electrolyte secondary battery Pending JP2001006735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11178061A JP2001006735A (en) 1999-06-24 1999-06-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11178061A JP2001006735A (en) 1999-06-24 1999-06-24 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2001006735A true JP2001006735A (en) 2001-01-12

Family

ID=16041933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11178061A Pending JP2001006735A (en) 1999-06-24 1999-06-24 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2001006735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297422A (en) * 2002-04-02 2003-10-17 Sony Corp Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297422A (en) * 2002-04-02 2003-10-17 Sony Corp Battery

Similar Documents

Publication Publication Date Title
CN108808071B (en) Electrolyte for high-nickel ternary positive electrode material system battery and lithium ion battery
WO2019165796A1 (en) Battery and method for testing remaining active lithium capacity in negative electrode piece after battery discharging
CN101515640A (en) Cathode and lithium ion secondary battery containing same
JPS63102173A (en) Lithium secondary battery
US20190173124A1 (en) Electrolyte and lithium-ion battery
JPH0982325A (en) Manufacture of positive active material
CN109309227A (en) Lithium ion battery and positive electrode active material thereof
CN112271338A (en) Electrolyte and lithium ion battery containing same
JP2001006737A (en) Electrolyte for lithium secondary battery and lithium secondary battery using it
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
CN108390098B (en) High-voltage lithium ion battery electrolyte and high-voltage lithium ion battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
CN113745662A (en) Flame-retardant wide-temperature-range electrolyte and preparation method and application thereof
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JP2001057235A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US20030148190A1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP3861582B1 (en) Improved rechargeable batteries and production thereof
JP4253921B2 (en) Lithium secondary battery
JPH0210666A (en) Nonaqueous electrolyte secondary battery
CN114497739A (en) Lithium secondary battery electrolyte and application thereof
CN112467205B (en) High-voltage non-aqueous electrolyte and lithium ion battery containing same
CN111864266B (en) High-voltage lithium ion battery electrolyte additive and electrolyte thereof
JPH11273723A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2001006735A (en) Nonaqueous electrolyte secondary battery
CN113764731A (en) Application of dioxazalone compound in battery electrolyte

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714