JP2001004649A - Measuring system for motion of fluid body by gps - Google Patents

Measuring system for motion of fluid body by gps

Info

Publication number
JP2001004649A
JP2001004649A JP11152220A JP15222099A JP2001004649A JP 2001004649 A JP2001004649 A JP 2001004649A JP 11152220 A JP11152220 A JP 11152220A JP 15222099 A JP15222099 A JP 15222099A JP 2001004649 A JP2001004649 A JP 2001004649A
Authority
JP
Japan
Prior art keywords
floating body
water
data
river
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11152220A
Other languages
Japanese (ja)
Inventor
Toshitaka Ueno
敏孝 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINWA TECH CONSULTANT CORP
SHINWA TECHNIQUE CONSULTANT CORP
Original Assignee
SHINWA TECH CONSULTANT CORP
SHINWA TECHNIQUE CONSULTANT CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINWA TECH CONSULTANT CORP, SHINWA TECHNIQUE CONSULTANT CORP filed Critical SHINWA TECH CONSULTANT CORP
Priority to JP11152220A priority Critical patent/JP2001004649A/en
Publication of JP2001004649A publication Critical patent/JP2001004649A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

PROBLEM TO BE SOLVED: To provide an accurate and inexpensive measuring device for data for flood control plan and river channel plan. SOLUTION: A receiver 7 receiving data from a GPS satellite 4, and a transmitter 8 ratio-transmitting data based on the received data are stored. A floating body 2 integrally moving with changes in water or debris flow is disposed on a water surface or sediment top surface, and the position coordinates or displacement is detected by a measuring system 3 based on the received data from the floating body 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は土石流,ダムの水
面,河川や海流等の流動体の移動を計測するGPSによ
る流動体移動の計測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for measuring the movement of a fluid by GPS for measuring the movement of a fluid such as a debris flow, a water surface of a dam, a river or an ocean current.

【0002】[0002]

【従来の技術】従来所定の河川に関わる治水計画や河道
計画には、前記河川の水位と水流(流速)のデータが重
要であることが一般に知られている。このため河川の水
位と水流に関する計測が行われているが、現状では河川
における100m程度の範囲で「浮き」あるいは「浮
子」と呼ばれるフロートを流し、該浮子の流れる速度を
計算して、この100m程度の範囲の流速を演算し、い
わゆるH-Q曲線(水位と流速の関数表)を使用して流
速から流量を推定し、以上の計測を河川の複数箇所にお
いて行うことで、河川の水位と水流(流速)のデータを
得ていた。あるいは音波観測機器や土石流河川に点在さ
せたワイヤセンサにより測定を行っていた。
2. Description of the Related Art It is generally known that data on water levels and water flows (velocities) of rivers are important in flood control plans and river channel plans related to predetermined rivers. For this reason, the water level and the water flow of the river are measured. At present, a float called “floating” or “float” is flown in a range of about 100 m in the river, and the flow speed of the float is calculated. Calculate the flow rate in the range of the degree, estimate the flow rate from the flow rate using the so-called HQ curve (function table of water level and flow rate), and perform the above measurement at several places of the river, Water flow (flow rate) data was obtained. Alternatively, the measurement was performed using a sound wave observation device or a wire sensor scattered in a debris-flowing river.

【0003】[0003]

【発明が解決しようとする課題】しかし上記「浮子」に
よる河川の水位と水流(流速)の計測においては、河川
全体に対して断続的な計測であるため、河川全体のデー
タは推量となり、データの誤差が比較的大きいという欠
点の他、浮子の投入者以外に複数の観測者が必要となる
という欠点もあった。またいわゆる洪水時においては計
測が危険であり、特に水位のデータまで一元的に実測値
を得られないという問題点もあった。
However, in the measurement of the water level and the water flow (velocity) of the river by the above-mentioned "floats", since the measurement is intermittent for the entire river, the data of the entire river is guessed, and Is relatively large, and a plurality of observers are required in addition to the floater. In addition, there is a problem that measurement is dangerous during a so-called flood, and in particular, it is not possible to collectively obtain measured values up to water level data.

【0004】さらにデータの電子記録媒体等への蓄積が
困難であり、さらに浮子の回収がほぼ不可能であること
や、計測に時間や手間がかかること等により計測コスト
が高くなるという欠点もあった。一方ワイヤセンサや音
波測定器を使用する場合は、固定的な設備(ワイヤセン
サや音波測定器)を複数設置する必要があり、以上のよ
うな欠点から治水計画や河道計画に対してより正確で安
価なデータの計測装置が望まれていた。
Further, there are disadvantages that it is difficult to accumulate data on an electronic recording medium or the like, that the recovery of the float is almost impossible, and that the measurement cost is increased due to the time and labor required for the measurement. Was. On the other hand, when using wire sensors and sound wave measuring instruments, it is necessary to install multiple fixed equipment (wire sensors and sound wave measuring instruments), and these drawbacks make it more accurate for flood control and river channel planning. An inexpensive data measuring device has been desired.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明のGPSによる流動体移動の計測システムは、
GPS衛星4からのデータを受信する受信機7と、該受
信データに基づくデータを無線で送信する送信機8とを
備え、水面上に浮遊し又は流動する土砂上面に、これら
の水または土石流の変動とともに一体移動するように配
置される浮体2と、該浮体2からの送信データを受信
し、該受信データに基づいて上記浮体2の位置座標又は
変位量を検出する測定システム3とからなり、浮体2の
移動を浮体2の遠隔位置で検出することを第1の特徴と
している。
SUMMARY OF THE INVENTION In order to solve the above problems, a system for measuring fluid movement by GPS according to the present invention comprises:
A receiver 7 for receiving data from the GPS satellites 4 and a transmitter 8 for wirelessly transmitting data based on the received data are provided. A floating body 2 arranged so as to move integrally with the fluctuation, and a measuring system 3 which receives transmission data from the floating body 2 and detects a position coordinate or a displacement amount of the floating body 2 based on the received data, The first feature is that the movement of the floating body 2 is detected at a remote position of the floating body 2.

【0006】また浮体2が土砂又は水に対して浮遊する
中空の框体6からなり、該框体6内に受信機7及び送信
機8が内収されるとともに、浮遊する框体6の受信姿勢
を保持するウエイト部12を框体6に取り付けたことを
第2の特徴としている。
The floating body 2 comprises a hollow frame 6 floating on earth and sand or water. A receiver 7 and a transmitter 8 are contained in the frame 6, and the floating frame 6 receives the floating frame 6. The second feature is that the weight portion 12 for holding the posture is attached to the frame body 6.

【0007】さらにウエイト部12を、框体6の下方
に、框体6から所定距離離間させて設けたことを第3の
特徴としている。
A third feature is that the weight portion 12 is provided below the frame body 6 at a predetermined distance from the frame body 6.

【0008】[0008]

【発明の実施の形態】図1は河川の水流及び水量を計測
するための本発明のGPSによる流動体移動の計測シス
テム1の概略ブロック図であり、河川の水流又は水量を
センシングするセンサとしての浮体2と、該浮体2から
のデータに基づいて河川の水流及び水量を計測(演算)
する測定システム3等から構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic block diagram of a measurement system 1 of a fluid movement by a GPS according to the present invention for measuring a water flow and a water amount of a river. Floating body 2 and water flow and water volume of a river are measured (calculated) based on data from floating body 2.
And a measurement system 3 for performing the measurement.

【0009】そして浮体2を河川に浮遊せしめ、浮体2
を河川の水と一体的に移動させ(流し)、浮体2の位置
座標を検知(測定)することにより河川の水流及び水量
を計測するシステムとなっている。なお浮体2の位置座
標の検知は、浮体2がGPS衛星4からの電波(デー
タ)を受信するとともに、測定システム3がこの受信デ
ータに基づいて浮体2の位置座標を計測するシステムと
なっている。
Then, the floating body 2 is floated on the river, and the floating body 2
Is moved integrally with the water of the river (sink), and the position coordinates of the floating body 2 are detected (measured) to measure the flow and amount of water in the river. The detection of the position coordinates of the floating body 2 is a system in which the floating body 2 receives a radio wave (data) from the GPS satellite 4 and the measuring system 3 measures the position coordinates of the floating body 2 based on the received data. .

【0010】上記浮体2は、図2に示されるように土砂
や水面上の浮遊が可能な中空の略球状をなす框体である
ボール体6からなり、該ボール体6内にGPS衛星4か
らの電波(データ)を受信する受信機7及び計測システ
ム3側に該受信データに基づくデータを無線で送信する
送信機8とが収容されているとともに、該ボール体6の
下方にウエイト9が取り付けられた構造となっている。
As shown in FIG. 2, the floating body 2 is composed of a ball 6 which is a hollow, substantially spherical frame that can float on earth and sand or on the water surface. And a transmitter 8 for wirelessly transmitting data based on the received data on the measurement system 3 side, and a weight 9 is attached below the ball body 6. It is a structure that was given.

【0011】このとき上記受信機7及び送信機8がボー
ル体6における一方の半球側内に収容されているととも
に、ウエイト9が上記半球に対向する半球側に収容され
ており、つまりボール体6は受信機7及び送信機8が収
容された半球状のシステム部11とウエイト9が収容さ
れた半球状のウエイト部12とから構成されている。な
おシステム部11の上方からは通信用のアンテナ13が
突設されている。
At this time, the receiver 7 and the transmitter 8 are accommodated in one hemisphere of the ball 6, and the weight 9 is accommodated in the hemisphere opposite to the hemisphere. Is composed of a hemispherical system unit 11 containing the receiver 7 and the transmitter 8 and a hemispherical weight unit 12 containing the weight 9. A communication antenna 13 protrudes from above the system unit 11.

【0012】これにより浮体2を河川に投入すると、図
2(a)に示されるように、浮体2(ボール体6)が水
面上に浮遊するが、ウエイト9によりウエイト部12側
が河川Rの川底側に位置し、システム部11側が水面上
に浮ぶように、水面に対する浮体2の姿勢が保持され、
つまりボール体6内に収容された受信機7及び送信機8
の水面に対する姿勢が保持される。なおシステム部11
上方側のアンテナ13は水面から突出する。
When the floating body 2 is put into a river, the floating body 2 (ball body 6) floats on the water surface as shown in FIG. 2A, but the weight 9 causes the weight portion 12 side to be at the bottom of the river R. , The posture of the floating body 2 with respect to the water surface is maintained so that the system unit 11 side floats on the water surface,
That is, the receiver 7 and the transmitter 8 accommodated in the ball 6
Is maintained with respect to the water surface. Note that the system unit 11
The upper antenna 13 protrudes from the water surface.

【0013】一方上記測定システム3はパーソナルコン
ピュータ等から構成することが可能であり、図1に示さ
れるように浮体2からの送信信号を受信する受信部14
と、受信データから浮体2の位置座標,座標変位等の算
出を行う算出部16とを備えており、浮体2の流れ(位
置座標の変位)を常時(非常に短い時間間隔で)測定し
て追うことで、河川の流れや水位を演算することができ
る構造となっている。
On the other hand, the measuring system 3 can be constituted by a personal computer or the like, and as shown in FIG. 1, a receiving unit 14 for receiving a transmission signal from the floating body 2.
And a calculating unit 16 for calculating the position coordinates, coordinate displacement, etc. of the floating body 2 from the received data, and constantly (at very short time intervals) measure the flow (displacement of the position coordinates) of the floating body 2. By following, the structure can calculate the flow and water level of the river.

【0014】つまりGPS衛星4からの電波(データ)
を浮体2が受信することで、浮体2の平面方向及び高さ
方向の座標が得られるため、浮体2が水面に浮いている
ことで浮体2の高さ方向の座標から水位が測定され、浮
体2が流水と一体的に移動する(浮体2が流される)こ
とで浮体2の平面方向の座標データと時間から流速を計
測することができる。
That is, radio waves (data) from the GPS satellites 4
Is received by the floating body 2, the coordinates in the plane direction and the height direction of the floating body 2 can be obtained. Therefore, when the floating body 2 is floating on the water surface, the water level is measured from the coordinates in the height direction of the floating body 2, By moving the floating body 2 integrally with the flowing water (the floating body 2 is made to flow), the flow velocity can be measured from the coordinate data in the plane direction of the floating body 2 and time.

【0015】なお測定システム3側に浮体2により計測
する河川の周辺地形等のデータを与えておき、受信部1
4側のディスプレイに地形を表示せしめると共に、該表
示地形内に浮体2の位置を表示することで、河川の流れ
や水量(水位)を容易にグラフィック表示させることも
できる。
The measurement system 3 is provided with data such as the topography of the surroundings of the river measured by the floating body 2,
By displaying the terrain on the display on the four side and displaying the position of the floating body 2 in the displayed terrain, it is possible to easily graphically display the flow of the river and the amount of water (water level).

【0016】上記構造のGPSによる流動体の位置計測
システムにより、図3に示されるように上流側で河川R
に浮体2を投入し、浮体2を河川Rの上流から下流に向
かって流水と一体的に移動させる(流す)ことにより、
浮体2が浮いている水面の水位が計測されるとともに、
浮体2の平面座標と移動時間により水流(流速)をリア
ルタイムで計測することができ、河川全体の水位と流速
を測定することができる。
As shown in FIG. 3, the river R on the upstream side is measured by the system for measuring the position of a fluid by GPS having the above structure.
And the floating body 2 is moved (flowed) integrally with the flowing water from the upstream to the downstream of the river R.
While the water level of the water surface where the floating body 2 is floating is measured,
The water flow (flow velocity) can be measured in real time based on the plane coordinates and the movement time of the floating body 2, and the water level and flow velocity of the entire river can be measured.

【0017】このとき測定システム3が浮体2から遠隔
位置に配置されるため、測定者は河川Rに特に近づくこ
と無く上記測定を行うことができ、洪水時等における河
川Rの上記データを一括して容易に得ることができる。
また測定システム3がパーソナルコンピュータ等により
構成されている場合は、このパーソナルコンピュータを
遠隔操作することで測定システム3が配置された場所に
測定者がいなくても良い。つまり無人システムを構築す
ることも容易であり、情報を遠隔地でディスプレイ表示
させることも可能である。
At this time, since the measuring system 3 is arranged at a position remote from the floating body 2, the measurer can perform the above-mentioned measurement without particularly approaching the river R, and collectively collect the above data of the river R at the time of flooding or the like. Can be easily obtained.
Further, when the measurement system 3 is configured by a personal computer or the like, it is not necessary for the measurer to be at the place where the measurement system 3 is arranged by remotely operating the personal computer. That is, it is easy to construct an unmanned system, and it is also possible to display information at a remote location on a display.

【0018】なお上記のようにウエイト部12により水
面に対するボール体6の姿勢が保持されるため、つまり
水面に対する受信機7の姿勢が保持され、GPS衛星4
からの受信データがより正確になり、これにより上記河
川のデータをより正確に計測することができる。また図
2(b)に示されるようにウエイト部(ウエイト)12
をチェーン等の連結具17を介して、ボール体6から所
定距離離間して設けても良い。
As described above, since the attitude of the ball 6 with respect to the water surface is maintained by the weight section 12, that is, the attitude of the receiver 7 with respect to the water surface is maintained, and the GPS satellite 4 is held.
And the data of the river can be measured more accurately. In addition, as shown in FIG.
May be provided at a predetermined distance from the ball body 6 via a connecting member 17 such as a chain.

【0019】この場合浮体2を河川に投入した場合は、
図2(b)に示されるように、例えば浮体2はウエイト
部12がボール体6に対して遅れた状態に傾斜して、ウ
エイト部12の流れに従って、つまり水面から所定距離
潜った位置の河川の流れにしたがって移動する(流され
る)。そして通常河川Rは水面より下方に潜った位置の
流れが水の流れを代表し、河川の流速は水面から所定位
置(1m)潜った位置の流速を基準とするため、ウエイ
ト部12をボール体6から1m内外(略1m)離間させ
て設けることで、より正確な流速(基準流速)を測定す
ることができる。
In this case, when the floating body 2 is put into a river,
As shown in FIG. 2B, for example, the floating body 2 is inclined such that the weight portion 12 is delayed with respect to the ball body 6, and follows the flow of the weight portion 12, that is, the river at a position diving a predetermined distance from the water surface. Move (float) according to the flow of In the normal river R, the flow at a position diving below the surface of the water represents the flow of water, and the flow velocity of the river is based on the flow velocity at a position diving a predetermined position (1 m) from the water surface. A more accurate flow velocity (reference flow velocity) can be measured by providing a distance between 6 and 1 m inside and outside (approximately 1 m).

【0020】なおGPS衛星4からのデータにより浮体
2の位置が測定されるため、測定終了後の浮体2の位置
が測定システム3により特定でき、これにより浮体2の
回収が容易であり、計測コストが必要以上に高くならな
い。
Since the position of the floating body 2 is measured based on the data from the GPS satellites 4, the position of the floating body 2 after the measurement can be specified by the measuring system 3, whereby the floating body 2 can be easily collected, and the measurement cost is increased. Is not higher than necessary.

【0021】また計測中浮体2は河川Rにおける幅方向
の略中央位置に、河川Rの外形に沿って流れていくこと
が望ましいが、このため浮体2に方向制御用のモータや
舵等を取り付け、河川Rの外形を予め地図データ等の地
形データから取り出し、河川Rの外形に基づきモータや
舵により浮体2の進行方向をアクティブに制御して、浮
体2を河川Rにおける幅方向の略中央位置で流水と一体
に移動させる(流す)ように構成することもできる。
During the measurement, it is desirable that the floating body 2 flows along the outer shape of the river R at a substantially central position in the width direction of the river R. For this reason, a motor and a rudder for controlling the direction are attached to the floating body 2. The outer shape of the river R is previously extracted from topographical data such as map data, and the traveling direction of the floating body 2 is actively controlled by a motor or a rudder based on the outer shape of the river R, so that the floating body 2 is positioned substantially at the center of the river R in the width direction. It can also be configured to move (flow) integrally with running water.

【0022】なお上記実施形態は浮体2を河川Rに投入
し、河川Rの流れ(水位と流速)を計測する場合につい
て説明したが、上記浮体2をダム等の貯水池や湖沼に投
入することでダム,貯水池,湖沼の水位を容易に計測す
ることができ、さらに浮体2を土石流発生の恐れがある
現場に配置し、浮体2の移動(位置座標の変位)を測定
することで、土石流の発生予報や土石流の流れの計測等
も容易に行うことができる。
In the above embodiment, the case where the floating body 2 is put into the river R and the flow (water level and flow velocity) of the river R is measured has been described. However, the floating body 2 is put into a reservoir or a lake such as a dam. The water levels of dams, reservoirs, and lakes can be easily measured, and the floating body 2 is placed at a site where debris flow may occur, and the movement of the floating body 2 (displacement of position coordinates) is measured to generate debris flow. Forecasting and measurement of debris flow can be easily performed.

【0023】このため例えば、現在ダム等の貯水量の自
動計測は、堤体からガイドを構築して行う場合が一般的
であり、この技術によるとガイドケースへの水の連通が
阻塞されて観測水位に比較的大きな誤差が生じる場合が
あるという欠点があったが、本発明の上記技術により前
記欠点が防止され、浮体2の高さ方向の位置座標からよ
り正確にダム等の貯水量を自動計測することができる。
For this reason, for example, the automatic measurement of the water storage amount of a dam or the like at present is generally performed by constructing a guide from a bank, and according to this technique, the communication of water to the guide case is obstructed and the observation is performed. Although there was a drawback that a relatively large error might occur in the water level, the above-described technique of the present invention prevented the drawback, and the water storage amount of a dam or the like can be more accurately calculated from the position coordinates of the floating body 2 in the height direction. Can be measured.

【0024】また上記いずれの場合も浮体2を河川やダ
ム,土石流発生可能現場等に配置する必要があるが、浮
体2が比較的小さなボール体により構成されているた
め、配置現場に向かって投入することで、浮体2の配置
は容易であり、場合によってはヘリコプタ等により空中
から落下させることで浮体2を現場に配置しても良い。
さらに浮体2は水の進行(流れ)に応じて、框体をロケ
ット型等に形成しても良い。
In any of the above cases, it is necessary to dispose the floating body 2 at a river, a dam, a site where debris flow can occur, or the like. However, since the floating body 2 is formed of a relatively small ball, it is thrown toward the site of the arrangement. By doing so, the arrangement of the floating body 2 is easy. In some cases, the floating body 2 may be arranged on the site by dropping from the air by a helicopter or the like.
Further, the floating body 2 may be formed in a rocket shape or the like in accordance with the progress (flow) of water.

【0025】以上により土石流や流水,貯水の水位等の
観測の一層の省力化や安全化を図ることができるととも
に、土石流や河川の流れの連続的且つ即時的な観測も容
易に行うことができ、このデータに基づいてより正確な
治水計画や河道計画を立てることができる他、土石流や
洪水等の予警報用の情報を付近住民や施設管理者等に提
供することができる。またデジタルデータとしてインタ
ーネット等のコンピュータネットワークを利用した情報
の実況伝達もより容易に行うことができる。
As described above, it is possible to further save labor and secure the observation of the debris flow, flowing water, and the water level of the stored water, and it is also possible to easily and continuously observe the debris flow and the flow of the river. Based on this data, more accurate flood control plans and river channel plans can be made, and information for predicting and warning of debris flows, floods, and the like can be provided to nearby residents and facility managers. In addition, real-time transmission of information using a computer network such as the Internet as digital data can be performed more easily.

【0026】[0026]

【発明の効果】以上のように構成される本発明の構造に
よると、水面上に浮遊、又は流動する土砂や流水に一体
移動するように配された浮体の3次元の位置を、浮体か
ら離れた場所で計測することができるため、例えば浮体
を変位物であるダム等の貯水面上や河川に浮かべたり、
変位物となり得る土石流が発生する可能性のある斜面に
埋め込むことにより、河川やダムの水位と水の移動、土
石流の移動等を河川,ダム,土石流発生可能現場等から
離れた位置でリアルタイムに容易に測定することができ
る。
According to the structure of the present invention configured as described above, the three-dimensional position of the floating body which is arranged so as to move integrally with the sediment or running water floating or flowing on the water surface is moved away from the floating body. Because it can be measured in a place where it was placed, for example, floating bodies can be floated on water storage surfaces such as dams or rivers that are displaced objects,
By embedding in a slope where debris flow that may become a displacement object may occur, the water level and water movement of rivers and dams, and the movement of debris flow, etc. can be easily real-time away from rivers, dams, sites where debris flows can occur Can be measured.

【0027】このため土石流の速度や移動状態を観測す
ることができる他、洪水時等における河川の水位及び水
の移動観測等も容易に行うことができ、土石流に関する
データや治水計画や河道計画に必要な河川のデータ等を
より正確に得ることができる。そして上記観測は河川や
ダム,土石流現場から離れた場所で行うことができ、観
測がより安全に行われるという効果がある。
[0027] Therefore, in addition to being able to observe the speed and moving state of the debris flow, it is also possible to easily observe the water level of the river and the movement of the water during a flood or the like, and to use the data relating to the debris flow, flood control plans and river channel plans. Necessary river data can be obtained more accurately. And the above observation can be performed at a place away from rivers, dams and debris flow sites, and there is an effect that the observation is performed more safely.

【0028】これにより土石流や流水の観測の省力化や
安全化、及び連続的且つ即時的な流量観測や地盤変位計
測も可能となり、従って住民あるいは公共施設管理者に
対する予警報用の情報を早く供することができ、インタ
ーネット等による洪水等の情報の提供も容易となる。な
お浮体の位置データが浮体から離れた位置で受信できる
ため、使用した浮体の回収を容易におこなうこともでき
る。
As a result, labor saving and safety of debris flow and flowing water observation, and continuous and instantaneous flow rate observation and ground displacement measurement are also possible, and therefore, early warning information is provided to residents or public facilities managers. This makes it easy to provide information such as floods through the Internet or the like. Since the position data of the floating body can be received at a position away from the floating body, the used floating body can be easily collected.

【0029】一方浮体を受信機,送信機,重りが内収さ
れたボール体等の中空の框体により構成することで、浮
体が小型化されるとともに受信機の位置が浮遊する框体
の所定位置に配置されるため、より正確な浮体の位置測
定を行うことができるが、特にウエイト部を、框体の下
方に、框体から所定距離離間させて設けることにより、
浮体を流水に浮遊させた場合に、流水表面の流れではな
く、表面から所定距離潜った位置の水の基準の流れを観
測することができ、より詳細な流水データを得ることが
できる。
On the other hand, when the floating body is constituted by a hollow frame such as a receiver, a transmitter, and a ball body with a weight contained therein, the floating body is reduced in size, and the predetermined position of the frame in which the position of the receiver floats is determined. Since it is arranged at a position, it is possible to more accurately measure the position of the floating body, but in particular, by providing the weight portion below the frame body and separated by a predetermined distance from the frame body,
When the floating body is suspended in running water, a reference flow of water at a position diving a predetermined distance from the surface can be observed instead of the flow on the surface of the flowing water, and more detailed flowing water data can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】流動体の位置計測システムのシステム概略図で
ある。
FIG. 1 is a system schematic diagram of a fluid position measurement system.

【図2】(a),(b)は河川に浮遊する浮体の側断面
図である。
FIGS. 2A and 2B are side sectional views of a floating body floating on a river.

【図3】流動体の位置計測システムによる河川の測定状
態を示す概略図である。
FIG. 3 is a schematic diagram illustrating a river measurement state by a fluid position measurement system.

【符号の説明】[Explanation of symbols]

4 GPS衛星 7 受信機 8 送信機 2 浮体 3 測定システム 6 ボール体(框体) 12 ウエイト部 Reference Signs List 4 GPS satellite 7 Receiver 8 Transmitter 2 Floating body 3 Measurement system 6 Ball (frame) 12 Weight part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 GPS衛星(4)からのデータを受信す
る受信機(7)と、該受信データに基づくデータを無線
で送信する送信機(8)とを備え、水面上に浮遊し又は
流動する土砂上面に、これらの水または土石流の変動と
ともに一体移動するように配置される浮体(2)と、該
浮体(2)からの送信データを受信し、該受信データに
基づいて上記浮体(2)の位置座標又は変位量を検出す
る測定システム(3)とからなり、浮体(2)の移動を
浮体(2)の遠隔位置で検出するGPSによる流動体移
動の計測システム。
A receiver (7) for receiving data from a GPS satellite (4) and a transmitter (8) for wirelessly transmitting data based on the received data, wherein the receiver floats or flows on the water surface. A floating body (2) arranged on the upper surface of the sediment to move together with the fluctuation of the water or debris flow, receiving transmission data from the floating body (2), and based on the received data, the floating body (2). A) a measurement system (3) for detecting the position coordinates or the displacement amount of the floating body (2), wherein the movement of the floating body (2) is detected at a remote position of the floating body (2).
【請求項2】 浮体(2)が土砂又は水に対して浮遊す
る中空の框体(6)からなり、該框体(6)内に受信機
(7)及び送信機(8)が内収されるとともに、浮遊す
る框体(6)の受信姿勢を保持するウエイト部(12)
を框体(6)に取り付けた請求項1のGPSによる流動
体移動の計測システム。
2. A floating body (2) comprising a hollow frame (6) floating on earth and sand or water, wherein a receiver (7) and a transmitter (8) are housed in the frame (6). And a weight portion (12) for holding the receiving posture of the floating frame (6).
The system for measuring the movement of a fluid by GPS according to claim 1, wherein the frame is attached to a frame (6).
【請求項3】 ウエイト部(12)を、框体(6)の下
方に、框体(6)から所定距離離間させて設けた請求項
2のGPSによる流動体移動の計測システム。
3. The system for measuring the movement of a fluid by GPS according to claim 2, wherein the weight section (12) is provided below the frame body (6) at a predetermined distance from the frame body (6).
JP11152220A 1999-04-23 1999-05-31 Measuring system for motion of fluid body by gps Pending JP2001004649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11152220A JP2001004649A (en) 1999-04-23 1999-05-31 Measuring system for motion of fluid body by gps

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-155584 1999-04-23
JP15558499 1999-04-23
JP11152220A JP2001004649A (en) 1999-04-23 1999-05-31 Measuring system for motion of fluid body by gps

Publications (1)

Publication Number Publication Date
JP2001004649A true JP2001004649A (en) 2001-01-12

Family

ID=26481195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11152220A Pending JP2001004649A (en) 1999-04-23 1999-05-31 Measuring system for motion of fluid body by gps

Country Status (1)

Country Link
JP (1) JP2001004649A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847326B2 (en) 2002-04-05 2005-01-25 National Aerospace Laboratory Of Japan GPS device for measuring wave height and current direction and speed and GPS system for measuring wave height and current direction and speed
JP2006105916A (en) * 2004-10-08 2006-04-20 Pasuko:Kk System for analyzing earth and sand movement
KR100687634B1 (en) * 2006-08-16 2007-03-02 주식회사 도화종합기술공사 River flow measurement buoy using GPS
KR100787157B1 (en) 2007-10-11 2007-12-21 이경주 Ground sinking sensing system
KR100798406B1 (en) * 2005-11-04 2008-01-28 한국수자원공사 A System for Measuring Flow Velocity using Real Time Locating System and a Measuring Float used in the Said System
KR100798391B1 (en) 2005-11-04 2008-01-28 한국수자원공사 A Method for Measuring Flow Velocity using Real Time Locating System
WO2009093855A2 (en) * 2008-01-22 2009-07-30 Korea Institute Of Construction Technology Measuring device for flow speed and flow rate, and measuring system using same
KR101011887B1 (en) * 2004-04-21 2011-02-01 인천대학교 산학협력단 Buoy for oceanographic observation
WO2011083922A2 (en) * 2010-01-07 2011-07-14 한국건설기술연구원 System for measuring fluid velocity and flow rate, and method for measuring same
KR101172775B1 (en) 2012-03-15 2012-08-14 한국지질자원연구원 tracking apparatus for sediment movement and tracking method for sediment movement in using same
JP2012173126A (en) * 2011-02-21 2012-09-10 Tokyo Electric Power Co Inc:The Tracer
KR101304905B1 (en) * 2011-07-26 2013-09-05 삼성중공업 주식회사 Monitoring system of anti sloshing apparatus
KR101469070B1 (en) * 2013-12-12 2014-12-04 한국건설기술연구원 Hybrid sensor for flowing fluid and flowing fluid monitoring system using it
KR101525784B1 (en) * 2014-07-15 2015-06-05 서울대학교산학협력단 Navigation Capsule for Fluid Stream Research and Method
CN105222987A (en) * 2015-10-20 2016-01-06 昆明理工大学 A kind of ocean current pick-up unit based on real-time embedded GPS control system
CN106403884A (en) * 2016-08-24 2017-02-15 成都理工大学 Rolling stone attitude acquisition device used for debris flow simulation experiment
KR101810577B1 (en) * 2016-10-11 2018-01-25 인제대학교 산학협력단 Perpendicularity multipoint mode GPS electron floater system and method of measuring flow velocity thereby
CN108335034A (en) * 2018-01-31 2018-07-27 中国科学院、水利部成都山地灾害与环境研究所 Grid dam is blocked viscous mud-flow occlusion degree evaluation method
CN109186675A (en) * 2018-09-21 2019-01-11 河北冀云气象技术服务有限责任公司 Waterlogging monitoring method and device
CN109470883A (en) * 2018-10-15 2019-03-15 同济大学 A kind of GPS drifting type Flow speed measurer
JP2019530045A (en) * 2016-06-29 2019-10-17 オンテック セキュリティ、エスエル Flood detection apparatus and method
KR20190121490A (en) * 2018-04-18 2019-10-28 목포해양대학교 산학협력단 Smart Buoy for Provides Location Coordinates and Detects the Loss of Fishing Gear and Gateway for Fishing Vessels for Control System
CN110715650A (en) * 2019-10-15 2020-01-21 宁波上航测绘有限公司 Method for observing flow velocity and flow direction of cross section of multi-survey ship in same direction at constant speed in ring type quasi-synchronization manner
CN113655236A (en) * 2021-07-28 2021-11-16 长三角(义乌)生态环境研究中心 Method and device for measuring water body flow velocity, electronic equipment and medium

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847326B2 (en) 2002-04-05 2005-01-25 National Aerospace Laboratory Of Japan GPS device for measuring wave height and current direction and speed and GPS system for measuring wave height and current direction and speed
KR101011887B1 (en) * 2004-04-21 2011-02-01 인천대학교 산학협력단 Buoy for oceanographic observation
JP2006105916A (en) * 2004-10-08 2006-04-20 Pasuko:Kk System for analyzing earth and sand movement
JP4651352B2 (en) * 2004-10-08 2011-03-16 株式会社パスコ Sediment movement analysis system
KR100798406B1 (en) * 2005-11-04 2008-01-28 한국수자원공사 A System for Measuring Flow Velocity using Real Time Locating System and a Measuring Float used in the Said System
KR100798391B1 (en) 2005-11-04 2008-01-28 한국수자원공사 A Method for Measuring Flow Velocity using Real Time Locating System
KR100687634B1 (en) * 2006-08-16 2007-03-02 주식회사 도화종합기술공사 River flow measurement buoy using GPS
KR100787157B1 (en) 2007-10-11 2007-12-21 이경주 Ground sinking sensing system
WO2009093855A2 (en) * 2008-01-22 2009-07-30 Korea Institute Of Construction Technology Measuring device for flow speed and flow rate, and measuring system using same
WO2009093855A3 (en) * 2008-01-22 2009-11-05 한국건설기술연구원 Measuring device for flow speed and flow rate, and measuring system using same
WO2011083922A2 (en) * 2010-01-07 2011-07-14 한국건설기술연구원 System for measuring fluid velocity and flow rate, and method for measuring same
WO2011083922A3 (en) * 2010-01-07 2011-11-10 한국건설기술연구원 System for measuring fluid velocity and flow rate, and method for measuring same
JP2012173126A (en) * 2011-02-21 2012-09-10 Tokyo Electric Power Co Inc:The Tracer
KR101304905B1 (en) * 2011-07-26 2013-09-05 삼성중공업 주식회사 Monitoring system of anti sloshing apparatus
KR101172775B1 (en) 2012-03-15 2012-08-14 한국지질자원연구원 tracking apparatus for sediment movement and tracking method for sediment movement in using same
KR101469070B1 (en) * 2013-12-12 2014-12-04 한국건설기술연구원 Hybrid sensor for flowing fluid and flowing fluid monitoring system using it
KR101525784B1 (en) * 2014-07-15 2015-06-05 서울대학교산학협력단 Navigation Capsule for Fluid Stream Research and Method
CN105222987B (en) * 2015-10-20 2017-09-29 昆明理工大学 A kind of ocean current detection means based on real-time embedded GPS control systems
CN105222987A (en) * 2015-10-20 2016-01-06 昆明理工大学 A kind of ocean current pick-up unit based on real-time embedded GPS control system
JP2019530045A (en) * 2016-06-29 2019-10-17 オンテック セキュリティ、エスエル Flood detection apparatus and method
JP7024165B2 (en) 2016-06-29 2022-02-24 オンテック セキュリティ、エスエル Flood detectors and methods
CN106403884A (en) * 2016-08-24 2017-02-15 成都理工大学 Rolling stone attitude acquisition device used for debris flow simulation experiment
KR101810577B1 (en) * 2016-10-11 2018-01-25 인제대학교 산학협력단 Perpendicularity multipoint mode GPS electron floater system and method of measuring flow velocity thereby
CN108335034A (en) * 2018-01-31 2018-07-27 中国科学院、水利部成都山地灾害与环境研究所 Grid dam is blocked viscous mud-flow occlusion degree evaluation method
KR20190121490A (en) * 2018-04-18 2019-10-28 목포해양대학교 산학협력단 Smart Buoy for Provides Location Coordinates and Detects the Loss of Fishing Gear and Gateway for Fishing Vessels for Control System
KR102116074B1 (en) 2018-04-18 2020-05-27 목포해양대학교 산학협력단 Smart Buoy for Provides Location Coordinates and Detects the Loss of Fishing Gear and Gateway for Fishing Vessels for Control System
CN109186675B (en) * 2018-09-21 2021-01-05 河北冀云气象技术服务有限责任公司 Waterlogging monitoring method and device
CN109186675A (en) * 2018-09-21 2019-01-11 河北冀云气象技术服务有限责任公司 Waterlogging monitoring method and device
CN109470883A (en) * 2018-10-15 2019-03-15 同济大学 A kind of GPS drifting type Flow speed measurer
CN109470883B (en) * 2018-10-15 2021-03-26 同济大学 GPS drift type flow velocity measuring instrument
CN110715650A (en) * 2019-10-15 2020-01-21 宁波上航测绘有限公司 Method for observing flow velocity and flow direction of cross section of multi-survey ship in same direction at constant speed in ring type quasi-synchronization manner
CN110715650B (en) * 2019-10-15 2021-06-01 宁波上航测绘有限公司 Method for observing flow velocity and flow direction of cross section of multi-survey ship in same direction at constant speed in ring type quasi-synchronization manner
CN113655236A (en) * 2021-07-28 2021-11-16 长三角(义乌)生态环境研究中心 Method and device for measuring water body flow velocity, electronic equipment and medium

Similar Documents

Publication Publication Date Title
JP2001004649A (en) Measuring system for motion of fluid body by gps
US6558216B2 (en) Land and water based flash flood detection and warning system
KR100965267B1 (en) System of measuring environment of sea in automatically with unmanned and method thereof
JP3658595B2 (en) GPS wave height / flow direction flow velocity measuring device and GPS wave height / flow direction flow velocity measuring system
KR101649726B1 (en) A floating device for measuring water-environment and real-time water-environment monitering methods using the same
MX2012009694A (en) Seismic data acquisition using self-propelled underwater vehicles.
CN107884154B (en) Bed load discharge measuring system and measurement method based on cross-correlation method
Millard et al. Versatile autonomous submersibles—the realising and testing of a practical vehicle
CN114417461A (en) Intelligent method and system for rapidly plugging dam gap
Nasello et al. A new small drifter for shallow water basins: Application to the study of surface currents in the Muggia Bay (Italy)
Gibeaut et al. Increasing the accuracy and resolution of coastal bathymetric surveys
KR101339401B1 (en) Underwater probing robot using usn
Meier et al. Columbia Glacier progress report; December 1977
KR102166842B1 (en) Mini apparatus for measuring water environmental and system for managing water environmental data using the apparatus
JPH10300467A (en) Surveying system and surveying method using the same
Ehigiator et al. Determination of volume and direction of flow of Kainji Reservoir using Hydro-Geomatics techniques
McCullough Problems in measuring currents near the ocean surface
JPS61120980A (en) Oceal current measuring device
Atashi et al. Characteristics of Seasonality on 3D Velocity and Bathymetry Profiles in Red River of the North
Côté The measurement of nearshore bathymetry on intermediate and dissipative beaches
Pollock Effectiveness of Spur Jetties at Siuslaw River, Oregon, Report 2: Localized Current Flow Patterns Induced by Spur Jetties: Airborne Current Measurement System and Prototype/physical Model Correlation
Dietsch et al. Hydrographic Survey of Chaktomuk, the Confluence of the Mekong, Tonlé Sap, and Bassac Rivers near Phnom Penh, Cambodia, 2012
JP7309985B2 (en) Monitoring system and monitoring device
Itani et al. Low-cost wave sensor using time differential carrier phase observations
Krayushkin et al. Application of GPS