JP2001003794A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2001003794A
JP2001003794A JP11171296A JP17129699A JP2001003794A JP 2001003794 A JP2001003794 A JP 2001003794A JP 11171296 A JP11171296 A JP 11171296A JP 17129699 A JP17129699 A JP 17129699A JP 2001003794 A JP2001003794 A JP 2001003794A
Authority
JP
Japan
Prior art keywords
fuel injection
secondary fuel
catalyst
cylinder temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11171296A
Other languages
Japanese (ja)
Inventor
Yasuo Harada
泰生 原田
Kotaro Hayashi
孝太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11171296A priority Critical patent/JP2001003794A/en
Publication of JP2001003794A publication Critical patent/JP2001003794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To feed secondary fuel in an amount and being a component optimum to NOx reduction to an NOx catalyst. SOLUTION: In this control device, an NOx catalyst 15 capable of reducing NOx in oxidation atmosphere in arranged in an engine exhaust passage. At an engine expansion stroke or an exhaust stroke consecutive to main fuel injection, second secondary fuel injection is effected from a fuel injection valve 17 arranged in a cylinder and secondary fuel is fed to the NOx catalyst 15. A cylinder temperature is determined by a cylinder temperature sensor 38. Based on a cylinder temperature, secondary fuel injection timing is determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化
装置に関する。
The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine.

【0002】[0002]

【従来の技術】酸化雰囲気でNOX を還元可能なNOX
触媒を機関排気通路内に配置し、主燃料噴射に引き続く
機関膨張行程または排気行程において筒内に配置された
燃料噴射弁から2回目の2次燃料噴射を行って2次燃料
をNOX 触媒に供給するようにした内燃機関の排気浄化
装置が公知である(特開平4−231645号公報参
照)。
BACKGROUND OF THE INVENTION capable of reducing NO X in an oxidizing atmosphere NO X
Placing the catalyst into the engine exhaust passage, a secondary fuel by performing secondary fuel injection for the second time from the fuel injection valve disposed in the cylinder in a subsequent engine expansion stroke or exhaust stroke in the main fuel injection in the NO X catalyst 2. Description of the Related Art An exhaust gas purifying apparatus for an internal combustion engine which supplies the exhaust gas is known (see Japanese Patent Application Laid-Open No. Hei 4-231645).

【0003】[0003]

【発明が解決しようとする課題】NOX 触媒におけるN
X 浄化率はNOX 触媒に流入する2次燃料の量及び成
分に依存し、NOX 触媒に流入する2次燃料の量及び成
分は2次燃料噴射が行われるときの筒内温度に依存す
る。従って、NOX 還元のために最適な量及び成分の2
次燃料をNOX 触媒に供給するためには2次燃料噴射時
期を筒内温度に基づいて定める必要がある。しかしなが
ら、上述の公報ではこの点について何ら示唆されていな
い。
[SUMMARY OF THE INVENTION] NO X catalyst in N
O X purification rate depends on the amount and components of the secondary fuel flowing to the NO X catalyst, the amount and components of the secondary fuel flowing to the NO X catalyst depends on the in-cylinder temperature at the time when the secondary fuel injection is performed I do. Thus, 2 of the optimal quantity and components for of the NO X reduction
In order to supply the secondary fuel to the NO X catalyst, it is necessary to determine the secondary fuel injection timing based on the in-cylinder temperature. However, the above-mentioned publication does not suggest anything about this point.

【0004】従って本発明の目的はNOX 還元のために
最適な量及び成分の2次燃料をNO X 触媒に供給するこ
とができる内燃機関の排気浄化装置を提供することにあ
る。
Accordingly, an object of the present invention is to provide NOXFor reduction
NO for optimal amount and composition of secondary fuel XSupply to the catalyst
To provide an exhaust gas purification device for an internal combustion engine that can
You.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明によれば、酸化雰囲気でNOX を還元可能なN
X 触媒を機関排気通路内に配置し、主燃料噴射に引き
続く機関膨張行程または排気行程において筒内に配置さ
れた燃料噴射弁から2回目の2次燃料噴射を行って2次
燃料をNOX 触媒に供給するようにした内燃機関の排気
浄化装置において、筒内温度を求めて筒内温度に基づき
2次燃料噴射時期を定めるようにしている。すなわち、
機関運転状態に応じて筒内温度が変動したときにも、筒
内温度が最適のときに2次燃料噴射が行われ、従って最
適な量及び成分の2次燃料がNO X 触媒に供給される。
[MEANS FOR SOLVING THE PROBLEMS]
According to the present invention, NO in an oxidizing atmosphereXN that can reduce
OXPlacing the catalyst in the engine exhaust passage and pulling it for main fuel injection
In the subsequent engine expansion stroke or exhaust stroke,
The second fuel injection from the selected fuel injection valve
NO fuelXInternal combustion engine exhaust supplied to the catalyst
In the purifier, the temperature inside the cylinder is calculated based on the temperature inside the cylinder.
The secondary fuel injection timing is determined. That is,
When the temperature in the cylinder fluctuates according to the engine operating condition,
Secondary fuel injection is performed when the internal temperature is optimal, and
NO secondary fuel of appropriate amount and composition XSupplied to the catalyst.

【0006】[0006]

【発明の実施の形態】図1は本発明をディーゼル機関に
適用した場合を示している。しかしながら本発明を火花
点火式機関に適用することもできる。図1を参照する
と、1は機関本体、2はピストン、3は燃焼室、4は吸
気ポート、5は吸気弁、6は排気ポート、7は排気弁を
夫々示す。吸気ポート4は対応する吸気枝管8を介して
サージタンク9に接続され、サージタンク9は吸気ダク
ト10を介してエアクリーナ11に接続される。吸気ダ
クト4内にはスロットル弁12が配置される。一方、排
気ポート6は排気マニホルド13及び排気管14を介し
てNOX 触媒15を収容したケーシング16に接続され
る。
FIG. 1 shows a case where the present invention is applied to a diesel engine. However, the present invention can be applied to a spark ignition type engine. Referring to FIG. 1, 1 indicates an engine body, 2 indicates a piston, 3 indicates a combustion chamber, 4 indicates an intake port, 5 indicates an intake valve, 6 indicates an exhaust port, and 7 indicates an exhaust valve. The intake port 4 is connected to a surge tank 9 via a corresponding intake branch pipe 8, and the surge tank 9 is connected to an air cleaner 11 via an intake duct 10. A throttle valve 12 is arranged in the intake duct 4. On the other hand, the exhaust port 6 is connected via an exhaust manifold 13 and an exhaust pipe 14 to a casing 16 containing a NO X catalyst 15.

【0007】燃焼室3内には燃焼室3内に燃料を直接噴
射する例えば電磁式の燃料噴射弁17が配置される。各
燃料噴射弁17は共通の燃料蓄圧室18を介し吐出量を
制御可能な燃料ポンプ(図示しない)に接続される。燃
料ポンプは燃料蓄圧室18内の燃料圧が目標燃料圧とな
るように吐出量が制御される。電子制御ユニット(EC
U)30はデジタルコンピュータからなり、双方向性バ
ス31を介して相互に接続されたROM(リードオンリ
メモリ)32、RAM(ランダムアクセスメモリ)3
3、CPU(マイクロプロセッサ)34、常時電源に接
続されているB−RAM(バックアップRAM)35、
入力ポート36、および出力ポート37を具備する。燃
焼室3内には燃焼室3内の温度すなわち筒内温度TCに
比例した出力電圧を発生する筒内温度センサ38が配置
される。また、踏み込み量センサ39はアクセルペダル
の踏み込み量DEPに比例した出力電圧を発生する。こ
れらセンサ38,39の出力電圧はそれぞれ対応するA
D変換器40を介して入力ポート36に入力される。さ
らに、入力ポート36には機関回転数Nを表す出力パル
スを発生する回転数センサ41が接続される。一方、出
力ポート37は対応する駆動回路42を介して各燃料噴
射弁7に接続される。
In the combustion chamber 3, for example, an electromagnetic fuel injection valve 17 for directly injecting fuel into the combustion chamber 3 is arranged. Each fuel injection valve 17 is connected to a fuel pump (not shown) capable of controlling the discharge amount via a common fuel pressure accumulating chamber 18. The discharge amount of the fuel pump is controlled such that the fuel pressure in the fuel pressure accumulating chamber 18 becomes the target fuel pressure. Electronic control unit (EC
U) 30 is composed of a digital computer, and a ROM (read only memory) 32 and a RAM (random access memory) 3 interconnected via a bidirectional bus 31.
3. CPU (microprocessor) 34, B-RAM (backup RAM) 35 constantly connected to a power source,
An input port 36 and an output port 37 are provided. In the combustion chamber 3, an in-cylinder temperature sensor 38 that generates an output voltage proportional to the temperature in the combustion chamber 3, that is, the in-cylinder temperature TC is arranged. The depression amount sensor 39 generates an output voltage proportional to the depression amount DEP of the accelerator pedal. The output voltages of these sensors 38 and 39 are respectively A
The data is input to the input port 36 via the D converter 40. Further, the input port 36 is connected to a rotation speed sensor 41 that generates an output pulse representing the engine rotation speed N. On the other hand, the output port 37 is connected to each fuel injection valve 7 via the corresponding drive circuit 42.

【0008】NOX 触媒15はゼオライト、フェリエラ
イト、モルデナイト、アルミナAl 2 3 、チタニアT
iO2 のような多孔質担体上に担持された白金Pt、パ
ラジウムPd、ロジウムRh、イリジウムIrのような
貴金属、銅Cu、鉄Fe、コバルトCo、ニッケルN
i、クロムCr、バナジウムV、チタンTiのような遷
移金属、またはこれら遷移金属の酸化物を具備する。ゼ
オライトとして例えばZSM−5型などの高シリカ含有
ゼオライトを用いることができる。このNOX 触媒15
は例えば炭化水素HC、一酸化炭素CO、アンモニアN
3 、水素H2 のような還元剤を含む酸素雰囲気におい
てNOX を還元剤と選択的に反応せしめ、それによって
NOX を窒素N2 に還元することができる。すなわち、
NOX 触媒15は流入する排気が還元剤を含んでいる
と、たとえ酸素雰囲気であっても流入する排気中のNO
X を還元する。
[0008] NOXCatalyst 15 is zeolite, ferriera
Ite, mordenite, alumina Al TwoOThree, Titania T
iOTwoPt supported on a porous carrier such as
Such as radium Pd, rhodium Rh, iridium Ir
Precious metals, copper Cu, iron Fe, cobalt Co, nickel N
Transitions such as i, chromium Cr, vanadium V, titanium Ti
It comprises a transfer metal or an oxide of these transition metals. Ze
High silica content such as ZSM-5 type as olilite
Zeolites can be used. This NOXCatalyst 15
Is, for example, hydrocarbon HC, carbon monoxide CO, ammonia N
HThree, Hydrogen HTwoIn an oxygen atmosphere containing a reducing agent such as
NOXSelectively reacts with the reducing agent, thereby
NOXTo nitrogen NTwoCan be reduced to That is,
NOXIn the catalyst 15, the exhaust gas flowing in contains the reducing agent
NO in the inflowing exhaust gas even in an oxygen atmosphere
XTo reduce.

【0009】図1のディーゼル機関では機関から排出さ
れるスモークやパティキュレートを低減するために常
時、酸素過剰燃焼が行われており、したがってNOX
媒15に流入する排気は通常、酸素雰囲気に維持されて
いる。この場合、機関から排出される未燃HCやCOな
どが還元剤として作用し、その結果NOX 触媒15にお
いてNOX が還元される。しかしながら、ディーゼル機
関から排出される未燃HC量などに比べて浄化すべきN
X 量は圧倒的に多く、すなわちNOX を良好に浄化す
るための還元剤が不足する。そこで本実施態様では、圧
縮上死点周りに行われる主燃料噴射に引き続く機関膨張
行程または排気行程において、燃料噴射弁17から2回
目の燃料噴射、すなわち2次燃料噴射を行って2次燃料
を還元剤としてNOX 触媒15に供給するようにしてい
る。なお、2次燃料は機関出力にほとんど寄与しない。
[0009] Always in order to reduce smoke and particulates exhausted from the engine is a diesel engine of FIG. 1, the oxygen excess combustion has been performed, thus flowing to the NO X catalyst 15 exhaust is typically maintained in an oxygen atmosphere Have been. In this case, unburned HC or CO discharged from the engine acts as a reducing agent, and as a result, NO X is reduced in the NO X catalyst 15. However, compared to the unburned HC amount discharged from the diesel engine, N
O X amount overwhelmingly, i.e. reducing agents for favorably purify NO X becomes insufficient. Therefore, in the present embodiment, in the engine expansion stroke or the exhaust stroke subsequent to the main fuel injection performed around the compression top dead center, the second fuel injection from the fuel injection valve 17, that is, the secondary fuel injection is performed to discharge the secondary fuel. and then supplied to the NO X catalyst 15 as a reducing agent. The secondary fuel hardly contributes to the engine output.

【0010】図2は2次燃料噴射が行われる時点での筒
内温度TCと、NOX 触媒15に流入する排気中のHC
成分濃度CHC及びNOX 浄化率PENOX との関係を
示す実験結果である。図2からわかるように、HC成分
濃度CHC及びNOX 浄化率PENOX は筒内温度TC
が低くなると低くなり、筒内温度TCが高くなると低く
なる。これは次の理由によるものと考えられている。す
なわち、筒内温度TCが低くなるにつれて筒内で改質又
はクラッキングせしめられる2次燃料の量及び改質又は
クラッキングの程度が低くなり、従ってNOX 還元のた
めに有効な軽質のHCが少なくなる。また、筒内温度T
Cが高くなるにつれて筒内で完全燃焼せしめられる2次
燃料量が増大し、斯くしてこの場合も軽質のHCが少な
くなる。
[0010] Figure 2 is a cylinder temperature TC at the time when the secondary fuel injection is performed, HC in the exhaust gas flowing to the NO X catalyst 15
It is an experimental result showing the relationship between the component concentration CHC and the NO X purification rate PENO X. As can be seen from FIG. 2, the HC component concentration CHC and the NO X purification rate PENO X are different from the in-cylinder temperature TC.
Becomes lower when the in-cylinder temperature TC increases. This is believed to be due to the following reasons. That is, the amount and extent of the reforming or cracking of the reforming or cracking caused to be secondary fuel is low in the cylinder as the cylinder temperature TC becomes lower, thus NO X HC effective light for the reduction is decreased . The cylinder temperature T
As C becomes higher, the amount of secondary fuel that is completely burned in the cylinder increases, and thus, also in this case, the amount of light HC decreases.

【0011】さらに図2を参照すると、HC成分濃度C
HCは筒内温度TCがTOPTのときに最大となり、こ
のときNOX 浄化率PENOX も最大となる。従って、
このTOPTを最適筒内温度と称すると、筒内温度TC
が最適温度TOPTのときに2次燃料噴射を行えばNO
X 触媒15においてNOX を良好に浄化できることにな
る。なお、筒内温度TCが最適温度TOPTのときに2
次燃料噴射を行うと、NOX 触媒15に流入するHCの
うち軽質成分(例えばC10以下)の割合が高くなること
も確認されている。
Referring still to FIG. 2, the HC component concentration C
HC becomes maximum when the in-cylinder temperature TC is TOPT, and at this time, the NO X purification rate PENO X also becomes maximum. Therefore,
This TOP is referred to as an optimum in-cylinder temperature.
NO if secondary fuel injection is performed when is at the optimal temperature TOPT
The X catalyst 15 can satisfactorily purify NO X. Note that when the in-cylinder temperature TC is the optimum temperature TOPT, 2
Doing next fuel injection, the proportion of light components of HC flowing into the NO X catalyst 15 (for example of C 10 or less) has also confirmed that high.

【0012】この最適筒内温度TOPTは機関運転状態
に応じて定まる。本実施態様では最適筒内温度TOPT
は予め実験により求められており、機関負荷を表すアク
セルペダルの踏み込み量DEPおよび機関回転数Nの関
数として予めROM32内に図3に示されるマップの形
で記憶されている。従って、本実施態様ではNOX 触媒
15に供給される2次燃料の量及び質を最適にすること
ができる。すなわち、NOX 触媒15に供給される軽質
成分を増大すると共に、可溶有機成分(SOF)を低減
することができる。その結果、NO X 触媒15において
NOX を良好に浄化することができると共に、NOX
媒15がSOFにより被毒するのを阻止することができ
る。
The optimum in-cylinder temperature TOPT is determined by the engine operating state.
It is determined according to. In the present embodiment, the optimum in-cylinder temperature TOPT
Is determined in advance by experiments, and
The relation between the depression amount DEP of the cell pedal and the engine speed N
The form of the map shown in FIG.
Is remembered. Therefore, in this embodiment, NOXcatalyst
Optimizing the quantity and quality of secondary fuel supplied to 15
Can be. That is, NOXLight to be supplied to the catalyst 15
Increasing components and reducing soluble organic components (SOF)
can do. As a result, NO XIn catalyst 15
NOXCan be satisfactorily purified, and NOXTouch
It is possible to prevent the medium 15 from being poisoned by SOF.
You.

【0013】図4は本実施態様による2次燃料噴射時期
SFITの算出ルーチンを示している。このルーチンは
予め定められた設定クランク角毎の割り込みによって実
行される。図4を参照すると、まず始めにステップ60
では基本2次燃料噴射時期ITBが算出される。この基
本2次燃料噴射時期ITBは筒内温度TCが最適筒内温
度TOPTになるクランク角に対応する2次燃料噴射時
期であり、予め実験により求められている。基本2次燃
料噴射時期ITBは例えば機関負荷を表すアクセルペダ
ルの踏み込み量DEPおよび機関回転数Nの関数として
予めROM32内に図5に示されるマップの形で記憶さ
れている。続くステップ61では図3のマップから最適
筒内温度TOPTが算出される。続くステップ62では
実際の筒内温度TCが読み込まれる。続くステップ63
では実際の筒内温度TCと最適筒内温度TOPTとの差
(TC−TOPT)である温度差DIFが算出される。
続くステップ64では補正係数ITKが算出される。こ
の補正係数ITKは2次燃料噴射時期における筒内温度
TCを最適筒内温度TOPTに維持するためのものであ
る。図6に示されるように、DIF>0のときにはIT
K>0となり、すなわち2次燃料噴射時期SFITが進
角せしめられ、DIF=0のときにはITK=0とな
り、DIF<0のときにはITK<0となり、すなわち
2次燃料噴射時期SFITが遅角せしめられる。補正係
数ITKは図6に示されるマップの形で予めROM32
内に記憶されている。続くステップ65では次式に基づ
いて2次燃料噴射時期SFITが算出される。
FIG. 4 shows a routine for calculating the secondary fuel injection timing SFIT according to this embodiment. This routine is executed by interruption every predetermined set crank angle. Referring to FIG. 4, first, step 60 is executed.
Then, the basic secondary fuel injection timing ITB is calculated. The basic secondary fuel injection timing ITB is a secondary fuel injection timing corresponding to a crank angle at which the in-cylinder temperature TC becomes the optimum in-cylinder temperature TOPT, and is obtained in advance by an experiment. The basic secondary fuel injection timing ITB is stored in the ROM 32 in advance in the form of a map shown in FIG. In the following step 61, the optimum in-cylinder temperature TOPT is calculated from the map of FIG. In the following step 62, the actual in-cylinder temperature TC is read. Next step 63
Then, the temperature difference DIF, which is the difference (TC-TOPT) between the actual in-cylinder temperature TC and the optimum in-cylinder temperature TOPT, is calculated.
In the following step 64, a correction coefficient ITK is calculated. This correction coefficient ITK is for maintaining the in-cylinder temperature TC at the secondary fuel injection timing at the optimum in-cylinder temperature TOPT. As shown in FIG. 6, when DIF> 0, IT
K> 0, that is, the secondary fuel injection timing SFIT is advanced. When DIF = 0, ITK = 0, and when DIF <0, ITK <0, that is, the secondary fuel injection timing SFIT is retarded. . The correction coefficient ITK is stored in advance in the ROM 32 in the form of a map shown in FIG.
Is stored within. In the following step 65, the secondary fuel injection timing SFIT is calculated based on the following equation.

【0014】SFIT=ITB+ITK 上述の実施態様では燃焼室3内に筒内温度センサ38を
配置して筒内温度TCを直接的に検出するようにしてい
る。しかしながら、例えば燃焼室3内に筒内圧を検出す
る筒内圧センサを配置し、又は機関排気通路内に排気の
温度を検出する排気温度センサを配置し、筒内圧又は排
気温度に基づき筒内温度TCを間接的に検出するように
することもできる。さらに、燃料噴射弁17のニードル
のリフト量を検出するニードルリフトセンサを燃料噴射
弁17に取り付けて実際の2次燃料噴射時期を検出し、
実際の2次燃料噴射時期が算出された2次燃料噴射時期
SFITに一致するように燃料噴射弁を制御することも
できる。
SFIT = ITB + ITK In the above embodiment, the in-cylinder temperature sensor 38 is arranged in the combustion chamber 3 so as to directly detect the in-cylinder temperature TC. However, for example, an in-cylinder pressure sensor for detecting an in-cylinder pressure in the combustion chamber 3 or an exhaust temperature sensor for detecting the temperature of exhaust gas in an engine exhaust passage is provided. Can be detected indirectly. Further, a needle lift sensor for detecting a lift amount of the needle of the fuel injection valve 17 is attached to the fuel injection valve 17 to detect an actual secondary fuel injection timing,
The fuel injection valve can be controlled so that the actual secondary fuel injection timing coincides with the calculated secondary fuel injection timing SFIT.

【0015】[0015]

【発明の効果】NOX 還元のために最適な量及び成分の
2次燃料をNOX 触媒に供給することができる。
The secondary fuel optimal amount and components for of the NO X reduction according to the present invention can be supplied to the NO X catalyst.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内燃機関の全体図である。FIG. 1 is an overall view of an internal combustion engine.

【図2】2次燃料噴射が行われる時点での筒内温度TC
と、NOX 触媒に流入する排気中のHC成分濃度CHC
及びNOX 浄化率PENOX との関係を示す図である。
FIG. 2 is a cylinder temperature TC at the time when secondary fuel injection is performed.
If, HC component concentration CHC in the exhaust gas flowing to the NO X catalyst
FIG. 7 is a diagram showing the relationship between the NOx conversion rate and the NO X purification rate PENO X.

【図3】最適筒内温度TOPTを示す線図である。FIG. 3 is a diagram showing an optimum in-cylinder temperature TOPT.

【図4】2次燃料噴射時期SFITの算出ルーチンを示
すフローチャートである。
FIG. 4 is a flowchart showing a routine for calculating a secondary fuel injection timing SFIT.

【図5】基本2次燃料噴射時期を示す線図である。FIG. 5 is a diagram showing basic secondary fuel injection timing.

【図6】補正係数ITKを示す線図である。FIG. 6 is a diagram showing a correction coefficient ITK.

【符号の説明】[Explanation of symbols]

1…機関本体 3…燃焼室 13…排気マニホルド 15…NOX 触媒 17…燃料噴射弁 38…筒内温度センサ1 ... engine body 3 ... combustion chamber 13 ... Temperature sensor exhaust manifold 15 ... NO X catalyst 17 ... fuel injection valves 38 in the cylinder

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/04 335 F02D 41/04 335A Fターム(参考) 3G091 AA18 AB05 BA14 CB02 CB03 EA01 EA07 EA15 GB01W GB05W GB06W GB07W GB09X GB10X 3G301 HA02 JA25 MA14 MA19 MA26 PC05Z PE01Z PF03Z Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) F02D 41/04 335 F02D 41/04 335A F term (Reference) 3G091 AA18 AB05 BA14 CB02 CB03 EA01 EA07 EA15 GB01W GB05W GB06W GB07W GB09X GB10X 3G301 HA02 JA25 MA14 MA19 MA26 PC05Z PE01Z PF03Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化雰囲気でNOX を還元可能なNOX
触媒を機関排気通路内に配置し、主燃料噴射に引き続く
機関膨張行程または排気行程において筒内に配置された
燃料噴射弁から2回目の2次燃料噴射を行って2次燃料
をNOX 触媒に供給するようにした内燃機関の排気浄化
装置において、筒内温度を求めて該筒内温度に基づき2
次燃料噴射時期を定めるようにした内燃機関の排気浄化
装置。
1. A possible reduction of NO X in an oxidizing atmosphere NO X
Placing the catalyst into the engine exhaust passage, a secondary fuel by performing secondary fuel injection for the second time from the fuel injection valve disposed in the cylinder in a subsequent engine expansion stroke or exhaust stroke in the main fuel injection in the NO X catalyst In the exhaust gas purifying apparatus for an internal combustion engine, the in-cylinder temperature is determined, and based on the in-cylinder temperature,
An exhaust gas purification device for an internal combustion engine, which determines the next fuel injection timing.
JP11171296A 1999-06-17 1999-06-17 Exhaust emission control device for internal combustion engine Pending JP2001003794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11171296A JP2001003794A (en) 1999-06-17 1999-06-17 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11171296A JP2001003794A (en) 1999-06-17 1999-06-17 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001003794A true JP2001003794A (en) 2001-01-09

Family

ID=15920674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11171296A Pending JP2001003794A (en) 1999-06-17 1999-06-17 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001003794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332885A (en) * 2006-06-15 2007-12-27 Honda Motor Co Ltd Nox purification system and nox purification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332885A (en) * 2006-06-15 2007-12-27 Honda Motor Co Ltd Nox purification system and nox purification method
JP4704964B2 (en) * 2006-06-15 2011-06-22 本田技研工業株式会社 NOx purification system and NOx purification method

Similar Documents

Publication Publication Date Title
US5996338A (en) Exhaust gas purifying device for engine
CA2235016C (en) Method and device for purifying exhaust gas of engine
US6178743B1 (en) Device for reactivating catalyst of engine
EP1882840B1 (en) Exhaust gas purification method and exhaust gas purification system
CN101617106B (en) Exhaust gas purification device for internal combustion engine
US6199374B1 (en) Exhaust gas purifying device for engine
JP4292633B2 (en) Exhaust gas purification device for internal combustion engine
US6446431B1 (en) Configuration for converting at least one exhaust emission component of an exhaust emission flow from an internal combustion engine and method for operating the configuration
JP2003206785A (en) Method and device for controlling engine
JP2006242020A (en) Exhaust emission control device
EP1835137B1 (en) Exhaust emission device
US7454895B2 (en) Diagnosing an aftertreatment system with a nonthermal plasma discharge device coupled to a lean burn engine
JPH11270329A (en) Reducing agent feeder for internal combustion engine
JPH10121948A (en) Exhaust emission control device for internal combustion engine
WO2004097200A1 (en) Internal combustin engine control device
JP2001003794A (en) Exhaust emission control device for internal combustion engine
JP2543736Y2 (en) Exhaust gas purification device for internal combustion engine
JP3641964B2 (en) Exhaust gas purification device for internal combustion engine
US7114324B2 (en) Method for operating a lean burn engine with an aftertreatment system including nonthermal plasma discharge device
JP3536739B2 (en) Exhaust gas purification device for internal combustion engine
JP3613660B2 (en) Exhaust gas purification device for internal combustion engine
JP3744220B2 (en) Engine exhaust gas purification device
JPH11294142A (en) Nox purifier
JP3266100B2 (en) Exhaust gas purification device for internal combustion engine
JP3557842B2 (en) Catalyst regeneration device for internal combustion engine