JPH11270329A - Reducing agent feeder for internal combustion engine - Google Patents

Reducing agent feeder for internal combustion engine

Info

Publication number
JPH11270329A
JPH11270329A JP7634598A JP7634598A JPH11270329A JP H11270329 A JPH11270329 A JP H11270329A JP 7634598 A JP7634598 A JP 7634598A JP 7634598 A JP7634598 A JP 7634598A JP H11270329 A JPH11270329 A JP H11270329A
Authority
JP
Japan
Prior art keywords
reducing agent
temperature
exhaust pipe
exhaust gas
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7634598A
Other languages
Japanese (ja)
Other versions
JP3855444B2 (en
Inventor
Nobumoto Ohashi
伸基 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP07634598A priority Critical patent/JP3855444B2/en
Publication of JPH11270329A publication Critical patent/JPH11270329A/en
Application granted granted Critical
Publication of JP3855444B2 publication Critical patent/JP3855444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To accurately and easily detect plug up of an HC feeder for annexing HC into an exhaust pipe. SOLUTION: This feeder is provided with a lean NOx catalyst 17 for reducing NOx to the exhaust pipe 16 of an internal combustion engine under the existance of reducing agent of oxygen excess ambient atmosphere and HC feeders 19, 31, 33 for feeding HC to the exhaust gas flowing in to the catalyst, while these HC feeders 19, 31, 33 are composed of a feeding passage 31 for feeding the liquid reducing agent and an injection means 19 for injecting the liquid reducing agent fed from the passage 31 into the exhaust pipe 16. In this case, a temperature sensor 34 is provided inside the exhaust pipe on the lower stream side of the injection means 19 and the degree of plug up is detected correspondingly to the temperature detected by the temperature sensor 34.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関から排出
される酸素過剰状態下の排気ガス中のNOxを浄化する
ための還元剤供給装置であって、さらには、この還元剤
供給装置の詰まりを検出する異常検出に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reducing agent supply device for purifying NOx in exhaust gas in an excess oxygen state discharged from an internal combustion engine, and further, the clogging of the reducing agent supply device. This is related to the abnormality detection for detecting the error.

【0002】[0002]

【従来の技術】酸素過剰状態下の排気ガス中に含まれる
酸化窒素(以下、NOx)を浄化するNOx触媒を機関
排気通路内に備えた内燃機関の排気ガス浄化装置が知ら
れている。NOx触媒は予め定められた温度範囲で高い
NOx浄化率を示す。従って、NOx触媒は、その温度
が上記予め定められた温度範囲にある時に、排気ガス中
の還元剤(一般的には炭化水素即ちHCが用いられてお
り、以下HCとする)によりNOxを窒素へ還元してN
Oxを浄化する。即ち、高いNOx浄化率を確保するに
は、排気ガス中のHC濃度をNOx量及び排気ガス温度
に応じた最適な濃度にすることが好ましい。例えば、特
開平05−113116号公報には、排気ガス中のNO
x濃度、触媒温度に応じて最適なHC濃度となるように
HC供給装置によってHCを排気ガス中に添加するHC
供給装置およびHC供給制御が開示されている。
2. Description of the Related Art There is known an exhaust gas purifying apparatus for an internal combustion engine provided with an NOx catalyst for purifying nitrogen oxides (hereinafter, NOx) contained in exhaust gas in an excess oxygen state in an engine exhaust passage. The NOx catalyst exhibits a high NOx purification rate in a predetermined temperature range. Therefore, when the temperature of the NOx catalyst is within the above-mentioned predetermined temperature range, NOx is reduced to nitrogen by a reducing agent (generally, hydrocarbon, that is, HC, hereinafter referred to as HC) in the exhaust gas. Reduced to N
Purify Ox. That is, in order to secure a high NOx purification rate, it is preferable that the HC concentration in the exhaust gas is set to an optimum concentration according to the NOx amount and the exhaust gas temperature. For example, Japanese Patent Application Laid-Open No. 05-113116 discloses that NO in exhaust gas.
HC that is added to exhaust gas by an HC supply device so that the HC concentration becomes optimum according to the x concentration and the catalyst temperature.
A supply device and HC supply control are disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、HCを
供給し続けると、排気ガスの熱によりHC供給装置内の
供給通路上に一部のHCが固体化(即ち、デポジットが
堆積する)してHC添加壁面に付着し、しいてはHC供
給装置内の通路を詰まらせるという問題があった。そこ
で、HC供給装置内の通路の何れかで詰まりが発生した
かを検出するため、実際に排気管中に所望のHCが噴射
されたか否かを検出することが望まれていた。しかし、
この供給されたHCは排気管内で排気ガスと混合されて
おり、HC量を正確に検出することができなかった。従
って、本発明の目的は、HCが液体から気体になったと
きに生じる吸熱作用を利用して添加されたHC量を推定
することで、HC添加装置の詰まりを検出する異常検出
装置を提供することにある。
However, if the supply of HC is continued, part of the HC is solidified (that is, a deposit is deposited) on the supply passage in the HC supply device due to the heat of the exhaust gas, and the HC is supplied. There has been a problem that it adheres to the addition wall surface and eventually blocks the passage in the HC supply device. Therefore, in order to detect whether or not clogging has occurred in any of the passages in the HC supply device, it has been desired to detect whether or not desired HC has actually been injected into the exhaust pipe. But,
The supplied HC was mixed with the exhaust gas in the exhaust pipe, and the HC amount could not be accurately detected. Accordingly, an object of the present invention is to provide an abnormality detection device that detects clogging of an HC addition device by estimating the amount of added HC by utilizing an endothermic effect generated when HC changes from a liquid to a gas. It is in.

【0004】[0004]

【課題を解決するための手段】本発明の請求項1によれ
ば、内燃機関の排気管に酸素過剰雰囲気の還元剤存在下
でNOxを還元するリーンNOx触媒及び該触媒に流入
する排気ガスに還元剤を供給する還元剤供給装置を備
え、該還元剤供給装置は液体状の還元剤を供給する供給
通路と該通路から供給された液体状の還元剤を排気管内
に噴射する噴射手段からなる内燃機関の還元剤供給装置
において、前記噴射手段下流側の排気管内に温度センサ
を設け、該温度センサから検出された温度に応じて還元
剤供給装置の詰まり度合いを検出する。上記発明によ
り、還元剤供給装置内の液体状の還元剤が排気ガス中に
添加される時、この液体から気体になる時に生じる吸熱
作用で生じた排気ガス温度変化を検出し、この変化量か
ら還元剤供給装置内の詰まり度合いを検出する。
According to the first aspect of the present invention, a lean NOx catalyst for reducing NOx in the presence of a reducing agent in an oxygen-excess atmosphere in an exhaust pipe of an internal combustion engine and an exhaust gas flowing into the catalyst are provided. A reducing agent supply device for supplying the reducing agent, the reducing agent supply device including a supply passage for supplying a liquid reducing agent and an injection unit for injecting the liquid reducing agent supplied from the passage into the exhaust pipe; In the reducing agent supply device for the internal combustion engine, a temperature sensor is provided in an exhaust pipe on the downstream side of the injection means, and a degree of clogging of the reducing agent supply device is detected according to a temperature detected by the temperature sensor. According to the above invention, when the liquid reducing agent in the reducing agent supply device is added to the exhaust gas, a change in the exhaust gas temperature caused by an endothermic effect that occurs when the liquid turns into a gas is detected, and the amount of change is detected from the change amount. The degree of clogging in the reducing agent supply device is detected.

【0005】[0005]

【発明の実施の形態】図1を参照すると、1は機関本
体、2はピストン、3は燃焼室、4は点火栓、5は吸気
弁、6は吸気ポート、7は排気弁、8は排気ポートを夫
々示す。吸気ポート6は対応するインテークマニホルド
9を介してサージタンク10に連結され、各インテーク
マニホルド9には夫々吸気ポート6内に向けて燃料を噴
射する燃料噴射弁11が取り付けられる。サージタンク
10は吸気ダクト12を介してエアクリーナ13に連結
され、吸気ダクト12内にはスロットル弁14が配置さ
れる。一方、排気ポート8はエキゾーストマニホルド1
5及び排気管16を介してリーンNOx触媒17を内蔵
したケーシング18に接続される。ここで、リーンNO
x触媒17とは、遷移金属あるいは貴金属を担持せしめ
たゼオライトからなり、酸化雰囲気中、HCの存在下で
排気ガス中のNOxを還元する選択還元型NOx触媒、
又はアルミナ担体上にアルカリ金属、アルカリ土類、希
土類から選ばれた少なくとも一つと、白金のような貴金
属とが担持され、酸素過剰下でNOxを吸収し、酸素低
下時吸収されたNOxを放出して排気ガス中のHCと還
元させる吸蔵還元型NOx触媒等が考えられる。このリ
ーンNOx触媒17の上流側の排気管16には還元剤供
給装置であるHC供給弁19が設けられている。さら
に、HC供給弁19へ液状のHCを供給する通路30、
31及び三方弁33が設けられ、液状のHCはHC供給
弁19内のノズルによって気化されて排気管16の排気
ガス中へ噴射添加される。尚、HCは図示しない燃料タ
ンクからポンプによって通路30へ供給され、三方弁3
3によって必要な量のみ通路31へ供給し残りは通路3
2によって燃料タンクへリターンされる。ここで、この
システムでの還元剤即ちHCはディーゼルエンジンの場
合軽油、ガソリンエンジン場合ガソリンとなるが、これ
に限られるものではなく、予めHCタンクを備えたシス
テムであってもよい。本明細書において『上流』および
『下流』という用語は排気管16内を流れる排気ガスの
流れに対するものであり、また本発明は、主にディーゼ
ルエンジンまたはリーンバーンエンジンのような酸素を
過剰に含む排気ガスを排出する内燃機関に適用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, 1 is an engine body, 2 is a piston, 3 is a combustion chamber, 4 is a spark plug, 5 is an intake valve, 6 is an intake port, 7 is an exhaust valve, and 8 is exhaust gas. Each port is shown. The intake ports 6 are connected to surge tanks 10 via corresponding intake manifolds 9, and each intake manifold 9 is provided with a fuel injection valve 11 for injecting fuel into the intake port 6. The surge tank 10 is connected to an air cleaner 13 via an intake duct 12, and a throttle valve 14 is arranged in the intake duct 12. On the other hand, the exhaust port 8 is connected to the exhaust manifold 1
5 and an exhaust pipe 16 are connected to a casing 18 containing a lean NOx catalyst 17. Here, lean NO
The x catalyst 17 is composed of a zeolite supporting a transition metal or a noble metal, and is a selective reduction type NOx catalyst that reduces NOx in exhaust gas in the presence of HC in an oxidizing atmosphere.
Or at least one selected from alkali metals, alkaline earths, and rare earths, and a noble metal such as platinum are supported on an alumina carrier, absorb NOx in excess of oxygen, and release absorbed NOx when oxygen decreases. A storage-reduction type NOx catalyst or the like for reducing HC in exhaust gas by exhaust gas is considered. An HC supply valve 19 as a reducing agent supply device is provided in the exhaust pipe 16 on the upstream side of the lean NOx catalyst 17. Further, a passage 30 for supplying liquid HC to the HC supply valve 19,
A HC 31 and a three-way valve 33 are provided, and the liquid HC is vaporized by a nozzle in the HC supply valve 19 and is injected and added into the exhaust gas of the exhaust pipe 16. HC is supplied from a fuel tank (not shown) to the passage 30 by a pump.
3, only the necessary amount is supplied to the passage 31 and the rest is supplied to the passage 3.
2 returns to the fuel tank. Here, the reducing agent, that is, HC in this system is light oil in the case of a diesel engine, and gasoline in the case of a gasoline engine, but is not limited thereto, and may be a system provided with an HC tank in advance. As used herein, the terms "upstream" and "downstream" refer to the flow of exhaust gas flowing through the exhaust pipe 16, and the present invention primarily includes an excess of oxygen, such as a diesel or lean burn engine. Applied to internal combustion engines that emit exhaust gas.

【0006】電子制御ユニット40はデジタルコンピュ
ータからなり双方向性バス41を介して相互に接続され
たROM(リードオンメモリ)42、RAM(ランダム
アクセスメモリ)43、CPU(マイクロプロセッサ)
44、入力ポート45および出力ポート46を具備す
る。サージタンク10内にはサージタンク10内の絶対
圧PMに比例した出力電圧を発生する圧力センサ28が
取り付けられ、この圧力センサ28の出力電圧がAD変
換器47を介して入力ポート45に入力される。また、
入力ポート45には機関本体1のクランクシャフトが例
えば30度回転する毎に出力パルスを発生するクランク
角センサ30が接続される。CPU44ではこの出力パ
ルスに基づいて機関本体1の機関回転数が算出される。
更に、HC供給弁19の上流側には排気ガス温度に比例
した出力電圧を発生する上流側温度センサ32が取り付
けられ、この上流側温度センサ32の出力電圧はAD変
換器48を介して入力ポート45に入力される。HC供
給弁19の下流側にもHC供給弁19から噴射されたば
かりのHC温度を加味した排気ガス温度に比例した出力
電圧を発生する下流側温度センサ34が取り付けられ、
この下流側温度センサ34の出力電圧はAD変換器49
を介して入力ポート45に入力される。尚、下流側温度
センサ34の位置は、HC供給弁19から噴射されたば
かりのHC温度を加味した排気ガス温度を検出するため
HC供給弁19の近傍且つHC噴射方向に設けている。
一方、出力ポート46は駆動回路50を介してHC供給
弁19から噴射されるHC量を制御するため、三方弁3
3の開度量を制御している。
The electronic control unit 40 is composed of a digital computer and is connected to each other via a bidirectional bus 41. A ROM (read-on memory) 42, a RAM (random access memory) 43, and a CPU (microprocessor)
44, an input port 45 and an output port 46. A pressure sensor 28 that generates an output voltage proportional to the absolute pressure PM in the surge tank 10 is mounted in the surge tank 10, and the output voltage of the pressure sensor 28 is input to an input port 45 via an AD converter 47. You. Also,
The input port 45 is connected to the crank angle sensor 30 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 30 degrees. The CPU 44 calculates the engine speed of the engine body 1 based on the output pulse.
Further, an upstream temperature sensor 32 for generating an output voltage proportional to the exhaust gas temperature is attached to the upstream side of the HC supply valve 19, and the output voltage of the upstream temperature sensor 32 is supplied to an input port via an AD converter 48. 45 is input. A downstream temperature sensor 34 for generating an output voltage proportional to the exhaust gas temperature in consideration of the HC temperature just injected from the HC supply valve 19 is also provided downstream of the HC supply valve 19,
The output voltage of the downstream temperature sensor 34 is
Through the input port 45. The position of the downstream temperature sensor 34 is provided near the HC supply valve 19 and in the HC injection direction in order to detect the exhaust gas temperature in consideration of the HC temperature just injected from the HC supply valve 19.
On the other hand, the output port 46 controls the amount of HC injected from the HC supply valve 19 through the drive circuit 50.
3 is controlled.

【0007】リーンNOx触媒17は予め定められた温
度範囲内において予め定められた高いNOx浄化率を示
す。触媒温度とNOx浄化率との関係を示した図2にあ
るように本実施形態における予め定められた温度範囲W
は、NOx浄化率が約35%以上となる下限温度値T1
と上限温度値T2との間の範囲である。従って、本実施
形態では予め定められた高いNOx浄化率を示す温度範
囲Wとは約35%以上のNOx浄化率を示す温度範囲と
定義される。しかしながら、これは本発明を限定するも
のではない。尚、図2において、最大NOx浄化率を示
す触媒温度をTmとする。
[0007] The lean NOx catalyst 17 exhibits a predetermined high NOx purification rate within a predetermined temperature range. As shown in FIG. 2 showing the relationship between the catalyst temperature and the NOx purification rate, a predetermined temperature range W in the present embodiment is used.
Is the lower limit temperature value T1 at which the NOx purification rate becomes about 35% or more.
And the upper limit temperature value T2. Therefore, in the present embodiment, the predetermined temperature range W indicating a high NOx purification rate is defined as a temperature range indicating a NOx purification rate of about 35% or more. However, this is not a limitation of the present invention. In FIG. 2, the catalyst temperature indicating the maximum NOx purification rate is defined as Tm.

【0008】本実施形態では、リーンNOx触媒17の
温度Tが予め定められた温度範囲Wの下限温度値T1と
上限温度値T2との間の範囲内であるとき、HC供給弁
19を開弁してHCを噴射するように三方弁33を制御
する。このHC供給弁19の開弁時間は排気ガス中のN
Ox量が多い程大きくなるように設定される。排気ガス
中のNOx量は、例えば、以下のようにして推定する。
機関回転数Nが高くなる程機関から単位時間当たり排出
される排気ガス量が増大するので機関回転数Nが高くな
るにつれて機関から単位時間当たり排出されるNOx量
を増大する。また、機関負荷が高くなる程、即ちサージ
タンク10内の絶対圧PMが高くなるほど各燃焼室3か
ら排出される排気ガス量が増大し、しかも燃焼温度が高
くなるので機関負荷が高くなるほど、即ちサージタンク
10内の絶対圧PMが高くなるほど機関から単位時間当
たり排出されるNOx量が増大する。図3は実験により
求められた単位時間当たりに機関から排出されるNOx
量と、サージタンク10内の絶対圧PM、機関回転数N
との関係を示しており、図3において各曲線は同一NO
x量を示している。図3に示されるように単位時間当た
り機関から排出されるNOx量はサージタンク10内の
絶対圧PMが高くなるほど多くなり、機関回転数Nが高
くなるほど多くなる。尚、図3に示したNOx量は図4
に示すようなマップの形で予めROM42内に記憶され
ている。しかしながら、一回に供給するHCの量の上限
はHCが還元作用をせずにリーンNOx触媒を通過して
しまわない量に設定しておく。
In the present embodiment, when the temperature T of the lean NOx catalyst 17 is within the range between the lower limit temperature value T1 and the upper limit temperature value T2 of the predetermined temperature range W, the HC supply valve 19 is opened. Then, the three-way valve 33 is controlled so as to inject HC. The opening time of the HC supply valve 19 is determined by the N
It is set to increase as the Ox amount increases. The NOx amount in the exhaust gas is estimated, for example, as follows.
As the engine speed N increases, the amount of exhaust gas emitted from the engine per unit time increases. Therefore, as the engine speed N increases, the amount of NOx emitted from the engine per unit time increases. Further, as the engine load increases, that is, as the absolute pressure PM in the surge tank 10 increases, the amount of exhaust gas discharged from each combustion chamber 3 increases, and the combustion temperature increases, so the engine load increases, that is, As the absolute pressure PM in the surge tank 10 increases, the amount of NOx discharged from the engine per unit time increases. Figure 3 shows the NOx emissions from the engine per unit time determined by experiments.
Amount, the absolute pressure PM in the surge tank 10, and the engine speed N
In FIG. 3, each curve is the same
The x amount is shown. As shown in FIG. 3, the amount of NOx discharged from the engine per unit time increases as the absolute pressure PM in the surge tank 10 increases, and increases as the engine speed N increases. The NOx amount shown in FIG.
Are stored in the ROM 42 in advance in the form of a map as shown in FIG. However, the upper limit of the amount of HC supplied at one time is set to an amount that does not cause the HC to pass through the lean NOx catalyst without performing the reducing action.

【0009】図5には本発明の実施形態に従ったHC供
給制御のフローチャートを示している。ステップS10
においては上記図3及び図4に基づいて現時点の排気ガ
ス中のNOx量を推定している。次に、リーンNOx触
媒17の温度Tsを検出し、ステップS12では上記温
度範囲Wの上限温度値T2以下か否かを判断し、ステッ
プS14では上記温度範囲Wの下限温度値T1以上か否
かを判断する。この両判断ステップで上限温度値T2以
下且つ下限温度値T1以上と判断した時にはステップS
16に進み、この温度範囲以外ではHC供給制御を終了
する。ステップS16に進んだ場合には、S10で推定
されたNOx量を還元浄化させることができるHC量を
HC供給弁19から排気管16内に噴射するようにHC
供給弁を所定期間開弁させる。この開弁期間は三方弁3
3によって通路30と通路31とを連通する期間によっ
て決定されるものであり、NOx量を還元浄化させるこ
とができるHC量を基に三方弁33は制御されている。
そして、HC供給弁19からHCが噴射されている状態
で別のルーチンAが作動される。尚、本実施形態ではH
C供給弁19の上流側に備えられた上流側温度センサ3
2の温度値をリーンNOx触媒の温度Tsとしている。
FIG. 5 shows a flowchart of HC supply control according to the embodiment of the present invention. Step S10
In the above, the NOx amount in the exhaust gas at the present time is estimated based on FIGS. Next, the temperature Ts of the lean NOx catalyst 17 is detected. In step S12, it is determined whether the temperature is equal to or lower than the upper limit temperature value T2 of the temperature range W. In step S14, whether the temperature is equal to or higher than the lower limit temperature value T1 of the temperature range W is determined. Judge. If it is determined that the temperature is equal to or lower than the upper limit temperature value T2 and equal to or higher than the lower limit temperature value T1 in both of these determination steps, step S
Proceeding to 16, the HC supply control is ended outside this temperature range. When the process proceeds to step S16, the HC amount that can reduce and purify the NOx amount estimated in S10 is injected from the HC supply valve 19 into the exhaust pipe 16 so that the HC amount is reduced.
The supply valve is opened for a predetermined period. This valve opening period is three-way valve 3
The three-way valve 33 is controlled based on the amount of HC capable of reducing and purifying the NOx amount, which is determined by the period in which the passage 30 and the passage 31 communicate with each other.
Then, another routine A is operated while HC is being injected from the HC supply valve 19. In this embodiment, H
Upstream temperature sensor 3 provided upstream of C supply valve 19
The temperature value of 2 is the temperature Ts of the lean NOx catalyst.

【0010】図6は本発明のポイントを示しており、第
一の実施形態のHC供給弁19の異常検出のルーチンA
を示している。まず、ステップS20において上流側温
度センサ32によって排気ガス温度Tgを検出する。
尚、温度センサを用いるのではなく内燃機関の運転状態
から排気ガス温度を推定することもできる。次にステッ
プS22に進んで、HC供給弁19の近傍且つHC噴射
方向に設けられた下流側温度センサ34によってHC供
給弁19から噴射されたばかりのHC温度を加味した排
気ガス温度Thを検出する。そして、ステップS24で
は上記で検出したTgとThとの温度差(Tg−Th)
が所定値B以上か否かを判断する。ここで、所定値Bは
実験等によって予め定められた値であるが、さらにはH
Cの添加の量が多い程所定値Bを大きくするように変更
してもよい。この判断ステップで温度差(Tg−Th)
が所定値Bより大きな値であると判断されたときには、
排気管16内にHCが正常に供給されたとして、この異
常検出ルーチンAを終了する。なお、HCが正常に供給
していると判断される理由は通路31及びHC供給弁1
9内では液状のHCであり、排気管16内にHCが噴射
された瞬間にHCは液体から気体に変化し、この液体か
ら気体になる時に周囲の熱を吸熱する気化熱によって周
りの排気ガス温度が低下する。そして、HCの量が多い
程排気ガス温度の低下量は多くなり、上記温度差を検出
することによって排気管16内にHCが噴射された量を
推定することができる。この判断ステップで温度差(T
g−Th)が所定値Bより小さな値であると判断された
ときには、上記理由によって排気管16内に所望のHC
量が供給されておらず、通路31及びHC供給弁19内
で詰まり等が発生したと判断される。このときには、ス
テップS26に進んで三方弁33を制御してHCを通路
31へ供給するのを停止するとともに、ステップS28
によって運転手等にHC供給系の詰まり異常であること
を表示する。
FIG. 6 shows the point of the present invention. Routine A for detecting abnormality of the HC supply valve 19 of the first embodiment.
Is shown. First, in step S20, the exhaust gas temperature Tg is detected by the upstream temperature sensor 32.
Note that the exhaust gas temperature can be estimated from the operating state of the internal combustion engine instead of using the temperature sensor. Next, proceeding to step S22, the exhaust gas temperature Th that takes into account the HC temperature just injected from the HC supply valve 19 is detected by the downstream temperature sensor 34 provided in the vicinity of the HC supply valve 19 and in the HC injection direction. In step S24, the temperature difference between Tg and Th detected above (Tg-Th)
Is greater than or equal to a predetermined value B. Here, the predetermined value B is a value predetermined by an experiment or the like.
The predetermined value B may be changed so as to increase as the amount of C added increases. In this determination step, the temperature difference (Tg-Th)
Is determined to be larger than the predetermined value B,
Assuming that the HC is normally supplied into the exhaust pipe 16, the abnormality detection routine A ends. The reason why it is determined that the HC is being supplied normally is that the passage 31 and the HC supply valve 1
9 is liquid HC, and at the moment HC is injected into the exhaust pipe 16, the HC changes from a liquid to a gas, and when the liquid becomes a gas, the surrounding exhaust gas is absorbed by heat of vaporization that absorbs surrounding heat. The temperature drops. The greater the amount of HC, the greater the amount of decrease in the exhaust gas temperature. By detecting the temperature difference, the amount of HC injected into the exhaust pipe 16 can be estimated. In this determination step, the temperature difference (T
g-Th) is determined to be smaller than the predetermined value B, the desired HC is set in the exhaust pipe 16 for the above-described reason.
The amount is not supplied, and it is determined that clogging or the like has occurred in the passage 31 and the HC supply valve 19. At this time, the process proceeds to step S26 to stop supplying the HC to the passage 31 by controlling the three-way valve 33, and to execute step S28.
This indicates to the driver or the like that the clogging of the HC supply system is abnormal.

【0011】図7は第二の実施形態として別のHC供給
弁19の異常検出のルーチンAを示している。まず、ス
テップS30においてHC供給弁19の近傍且つHC噴
射方向に設けられた下流側温度センサ34によってHC
供給弁19から噴射していない時の排気ガス温度からH
C供給弁19から噴射している時の排気ガス温度へ変化
した変化量ΔThを検出する。ここで、下流側温度セン
サ34の位置は第一の実施形態と同様にHC供給弁19
の近傍且つHC噴射方向に設けられている。次に、ステ
ップS30で求められた変化量ΔTh(ここでΔThは
絶対値)が所定値C以上か否かを判断している。ここ
で、所定値Cは実験等によって予め定められた値である
が、さらにはHCの添加の量が多い程所定値Cを大きく
するように変更してもよい。この判断ステップで変化量
ΔThが所定値Cより大きな値であると判断されたとき
には、排気管16内にHCが正常に供給されたとして、
この異常検出ルーチンAを終了する。一方、所定値C以
下であれば第一の実施形態と同様な理由によって排気管
16内に所望のHC量が供給されておらず、通路31及
びHC供給弁19内で詰まり等が発生したと判断され
る。このときには、ステップS34に進んで三方弁33
を制御してHCを通路31へ供給するのを停止し、ステ
ップS36へ進む。第二の実施形態では予めHC供給弁
19内のノズル内又は通路31内に付着したデポジット
を燃焼除去する加熱ヒータが埋め込まれており、ステッ
プS36では所定期間加熱ヒータを作動させてデポジッ
ト等の詰まりを除去する。ステップS36で所定期間加
熱した後、HC供給弁19を開弁するように三方弁33
を制御する。そして、再度ステップS30に戻って異常
判定を行う。尚、本実施形態のHC供給制御は第一の実
施形態と同様である。
FIG. 7 shows another routine A for detecting an abnormality of the HC supply valve 19 as a second embodiment. First, in step S30, HC is detected by the downstream temperature sensor 34 provided near the HC supply valve 19 and in the HC injection direction.
From the exhaust gas temperature when the fuel is not injected from the supply valve 19, H
The change amount ΔTh that changes to the exhaust gas temperature when the fuel is injected from the C supply valve 19 is detected. Here, the position of the downstream side temperature sensor 34 is the same as that of the first embodiment.
And in the HC injection direction. Next, it is determined whether or not the change amount ΔTh (here, ΔTh is an absolute value) obtained in step S30 is equal to or greater than a predetermined value C. Here, the predetermined value C is a value predetermined by an experiment or the like, but may be changed so that the larger the amount of HC added, the larger the predetermined value C. If it is determined in this determination step that the change amount ΔTh is larger than the predetermined value C, it is determined that HC is normally supplied into the exhaust pipe 16, and
This abnormality detection routine A ends. On the other hand, if the value is equal to or less than the predetermined value C, it is determined that the desired amount of HC has not been supplied into the exhaust pipe 16 for the same reason as in the first embodiment, and clogging or the like has occurred in the passage 31 and the HC supply valve 19. Is determined. At this time, the process proceeds to step S34 and the three-way valve 33
Is stopped to supply HC to the passage 31, and the process proceeds to step S36. In the second embodiment, a heater for burning and removing deposits previously deposited in the nozzles or passages 31 in the HC supply valve 19 is embedded. In step S36, the heaters are operated for a predetermined period to block deposits and the like. Is removed. After heating for a predetermined period in step S36, the three-way valve 33 is opened so that the HC supply valve 19 is opened.
Control. Then, the process returns to step S30 again to perform the abnormality determination. Note that the HC supply control of this embodiment is the same as that of the first embodiment.

【0012】上記異常判定により、この液体から気体に
なる時に吸熱する気化熱を検出することで排気管16内
の排気ガスに添加されたHC量を推定でき、HC供給弁
19及び通路31の詰まり度合いを精度良く且つ容易に
検出することができる。さらに、第二の実施形態では詰
まりを検出したら加熱除去手段を備えているので、最小
限の加熱エネルギで長期間HC添加を作動させることが
できる。
By detecting the heat of vaporization that absorbs when the liquid turns into gas, the amount of HC added to the exhaust gas in the exhaust pipe 16 can be estimated, and the clogging of the HC supply valve 19 and the passage 31 can be estimated. The degree can be accurately and easily detected. Furthermore, in the second embodiment, when the clogging is detected, the heating and removing means is provided, so that the addition of HC can be operated for a long time with a minimum heating energy.

【0013】[0013]

【発明の効果】本発明では、還元剤が液体から気体にな
る時に吸熱する気化熱を検出することで排気ガスに添加
された還元剤量を推定でき、還元剤添加装置内のの詰ま
り度合いを精度良く且つ容易に検出することができる。
According to the present invention, the amount of the reducing agent added to the exhaust gas can be estimated by detecting the heat of vaporization absorbed when the reducing agent changes from a liquid to a gas, and the degree of clogging in the reducing agent adding device can be estimated. It can be detected accurately and easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の排気ガス浄化装置を備えた
内燃機関を示す図である。
FIG. 1 is a diagram illustrating an internal combustion engine including an exhaust gas purification device according to an embodiment of the present invention.

【図2】触媒温度とHCおよびNOxの浄化率との関係
を示した図である。
FIG. 2 is a diagram showing a relationship between a catalyst temperature and a purification rate of HC and NOx.

【図3】機関本体から排出されるNOx量を示す図であ
る。
FIG. 3 is a diagram showing the amount of NOx discharged from the engine body.

【図4】機関本体から排出されるNOx量を推定するた
めのマップを示す図である。
FIG. 4 is a diagram showing a map for estimating the amount of NOx discharged from the engine body.

【図5】HC供給制御を示すフローチャートである。FIG. 5 is a flowchart showing HC supply control.

【図6】第一実施形態のHC供給異常検出を示すフロー
チャートである。
FIG. 6 is a flowchart illustrating detection of an abnormality in HC supply according to the first embodiment.

【図7】第二実施形態のHC供給異常検出を示すフロー
チャートである。
FIG. 7 is a flowchart illustrating detection of an abnormality in HC supply according to the second embodiment.

【符号の説明】[Explanation of symbols]

17…NOx触媒 19…HC供給弁 32…上流側温度センサ 34…下流側温度センサ 30、31…通路 32…リターン通路 33…三方弁 17 NOx catalyst 19 HC supply valve 32 upstream temperature sensor 34 downstream temperature sensor 30, 31 passage 32 return passage 33 three-way valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 41/22 301 F02D 41/22 301M ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 41/22 301 F02D 41/22 301M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気管に酸素過剰雰囲気の還
元剤存在下でNOxを還元するリーンNOx触媒及び該
触媒に流入する排気ガスに還元剤を供給する還元剤供給
装置を備え、該還元剤供給装置は液体状の還元剤を供給
する供給通路と該通路から供給された液体状の還元剤を
排気管内に噴射する噴射手段からなる内燃機関の還元剤
供給装置において、前記噴射手段下流側の排気管内に温
度センサを設け、該温度センサから検出された温度に応
じて還元剤供給装置の詰まり度合いを検出する詰まり検
出手段を備えたことを特徴とする。
An exhaust pipe of an internal combustion engine includes a lean NOx catalyst for reducing NOx in the presence of a reducing agent in an oxygen-excess atmosphere, and a reducing agent supply device for supplying the reducing agent to exhaust gas flowing into the catalyst. The agent supply device is a reducing agent supply device for an internal combustion engine comprising a supply passage for supplying a liquid reducing agent, and an injection device for injecting the liquid reducing agent supplied from the passage into an exhaust pipe. A temperature sensor is provided in the exhaust pipe, and clogging detecting means for detecting the degree of clogging of the reducing agent supply device in accordance with the temperature detected by the temperature sensor is provided.
JP07634598A 1998-03-24 1998-03-24 Reducing agent supply device for internal combustion engine Expired - Fee Related JP3855444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07634598A JP3855444B2 (en) 1998-03-24 1998-03-24 Reducing agent supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07634598A JP3855444B2 (en) 1998-03-24 1998-03-24 Reducing agent supply device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11270329A true JPH11270329A (en) 1999-10-05
JP3855444B2 JP3855444B2 (en) 2006-12-13

Family

ID=13602781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07634598A Expired - Fee Related JP3855444B2 (en) 1998-03-24 1998-03-24 Reducing agent supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3855444B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049044A1 (en) * 2004-11-05 2006-05-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device
WO2006109850A1 (en) * 2005-04-08 2006-10-19 Toyota Jidosha Kabushiki Kaisha Exhaust purifier for internal combustion engine
JP2007064112A (en) * 2005-08-31 2007-03-15 Toyota Motor Corp Diagnostic device of reducing agent feeder
JP2008223681A (en) * 2007-03-14 2008-09-25 Mitsubishi Motors Corp Exhaust emission control device
US7467512B2 (en) 2003-10-28 2008-12-23 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus and exhaust gas purifying method of an engine
US7805930B2 (en) 2004-10-29 2010-10-05 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
EP2284369A1 (en) * 2008-04-25 2011-02-16 Toyota Jidosha Kabushiki Kaisha Apparatus for checking reducing agent feeder
US8033096B2 (en) 2005-06-10 2011-10-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
JP2012102669A (en) * 2010-11-10 2012-05-31 Toyota Industries Corp Exhaust gas purifier for internal combustion engine
JP2014214612A (en) * 2013-04-22 2014-11-17 株式会社豊田自動織機 Abnormality detection device for fuel supply unit
JP2016205314A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 Abnormality determination device for urea water

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7467512B2 (en) 2003-10-28 2008-12-23 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus and exhaust gas purifying method of an engine
US7805930B2 (en) 2004-10-29 2010-10-05 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
WO2006049044A1 (en) * 2004-11-05 2006-05-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device
US7743603B2 (en) 2004-11-05 2010-06-29 Nissan Diesel Motor Co., Ltd. Exhaust gas purification apparatus
WO2006109850A1 (en) * 2005-04-08 2006-10-19 Toyota Jidosha Kabushiki Kaisha Exhaust purifier for internal combustion engine
US8033096B2 (en) 2005-06-10 2011-10-11 Nissan Diesel Motor Co., Ltd. Exhaust gas purifying apparatus for engine
JP2007064112A (en) * 2005-08-31 2007-03-15 Toyota Motor Corp Diagnostic device of reducing agent feeder
JP2008223681A (en) * 2007-03-14 2008-09-25 Mitsubishi Motors Corp Exhaust emission control device
EP2284369A1 (en) * 2008-04-25 2011-02-16 Toyota Jidosha Kabushiki Kaisha Apparatus for checking reducing agent feeder
EP2284369A4 (en) * 2008-04-25 2013-06-12 Toyota Motor Co Ltd Apparatus for checking reducing agent feeder
US8813476B2 (en) 2008-04-25 2014-08-26 Toyota Jidosha Kabushiki Kaisha Diagnosis apparatus for reducing agent supply apparatus
JP2012102669A (en) * 2010-11-10 2012-05-31 Toyota Industries Corp Exhaust gas purifier for internal combustion engine
JP2014214612A (en) * 2013-04-22 2014-11-17 株式会社豊田自動織機 Abnormality detection device for fuel supply unit
JP2016205314A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 Abnormality determination device for urea water

Also Published As

Publication number Publication date
JP3855444B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
EP1431533B1 (en) Emissions control system for increasing selective catalytic reduction efficiency
US6260353B1 (en) NOx reduction system for combustion exhaust gas
JP4375483B2 (en) Exhaust gas purification device for internal combustion engine
US8656703B2 (en) Exhaust purification device for engine
JPH1047048A (en) Emission control device for internal combustion engine
JP2004514829A (en) Apparatus and method for post-treating exhaust gas
JP4432917B2 (en) Exhaust gas purification device for internal combustion engine
CN101646846A (en) Method of estimating rate of N2O formation on ammonia oxidation catalyst and exhaust purification system for internal combustion engine
KR101949043B1 (en) Exhaust gas control apparatus for internal combustion engine and control method for exhaust gas control apparatus
JP4292633B2 (en) Exhaust gas purification device for internal combustion engine
JP6003600B2 (en) Control device for internal combustion engine
JP3855444B2 (en) Reducing agent supply device for internal combustion engine
JP2004156615A (en) Emission aftertreatment system of internal combustion engine
US8424290B2 (en) Method and system for controlling an engine during diesel particulate filter regeneration at idle conditions
JP2004156614A (en) System and method for aftertreatment of engine exhaust gas
JP2008196375A (en) Exhaust emission control device of internal combustion engine
US9719393B2 (en) Exhaust system for dual fuel engines
JPH10121948A (en) Exhaust emission control device for internal combustion engine
JP3615911B2 (en) Diesel engine exhaust gas purification system
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP3520789B2 (en) Exhaust gas purification device for internal combustion engine
KR20180069408A (en) Scr purifying system and method for improving purifying efficiency of scr purifying system
JPH0674023A (en) Exhaust gas purifying device of internal combustion engine
JP2001059428A (en) Exhaust emission control device for internal combustion engine
JPH08281069A (en) Method of purifying exhaust gas from internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041215

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060724

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

LAPS Cancellation because of no payment of annual fees