JP2001003776A - Automatic transmission control device - Google Patents

Automatic transmission control device

Info

Publication number
JP2001003776A
JP2001003776A JP11174931A JP17493199A JP2001003776A JP 2001003776 A JP2001003776 A JP 2001003776A JP 11174931 A JP11174931 A JP 11174931A JP 17493199 A JP17493199 A JP 17493199A JP 2001003776 A JP2001003776 A JP 2001003776A
Authority
JP
Japan
Prior art keywords
throttle opening
shift
accelerator
target throttle
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11174931A
Other languages
Japanese (ja)
Inventor
Shiro Yonezawa
史郎 米沢
Yasushi Ouchi
裕史 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11174931A priority Critical patent/JP2001003776A/en
Publication of JP2001003776A publication Critical patent/JP2001003776A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrain engine output during speed change to reduce a speed change shock by switching from a target throttle opening computed from an accelerator actuating amount to another target throttle opening during speed change operation, and again switching to a target throttle opening computed from the accelerator actuating amount at the end of speed change operation. SOLUTION: During the operation of an engine, a target throttle opening is computed on the basis of a detected amount obtained from an accelerator opening sensor 116, and the throttle opening of a throttle actuator 113 is controlled to realize the target throttle opening. The speed change control is conducted according to the input and output rotating speed of an automatic transmission 104, and the operating position of a shift lever 112. In this case, when shift operation from the neutral range to the running range is performed while an accelerator is actuated, the target throttle opening is temporarily switched from a target throttle opening computed from the accelerator actuating amount to another target throttle opening, and after the end of the above speed change operation, it is switched to the target throttle opening computed from the accelerator actuating amount.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車に用いら
れている自動変速機の変速制御方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shift control method for an automatic transmission used in an automobile.

【0002】[0002]

【従来の技術】従来の自動変速機の変速制御方法につい
て説明する。図11は、自動車のシフトレバーが動力伝
達解放となっている中立レンジ(P、Nレンジ)から動
力伝達を行う走行レンジ(D、Rレンジ)へシフトされ
た場合の変速制御方法を示したものであり、Nレンジか
らDレンジへのシフト時の制御動作を示している。図1
1(a)において、時間t1でシフトレバーがNレンジ
からDレンジへシフトされると、自動変速機制御部では
(d)変速制御ゾーンフラグ(Aゾーン)をセットして
変速制御を開始し、クラッチ制御dutyに初期dut
yを出力する。クラッチ制御dutyを出力すること
で、動力伝達クラッチにかかっている油圧が上昇し、ク
ラッチが動力解放の状態から動力伝達の状態へ向かう。
2. Description of the Related Art A conventional shift control method for an automatic transmission will be described. FIG. 11 shows a shift control method when the shift lever of the vehicle is shifted from a neutral range (P, N range) in which power transmission is released to a travel range (D, R range) for transmitting power. And shows the control operation when shifting from the N range to the D range. FIG.
In 1 (a), when the shift lever is shifted from the N range to the D range at time t1, the automatic transmission control unit sets (d) a shift control zone flag (A zone) to start shift control, Initial duty in clutch control duty
Output y. By outputting the clutch control duty, the hydraulic pressure applied to the power transmission clutch increases, and the clutch moves from the power release state to the power transmission state.

【0003】その後、(c)タービン回転数が変化が低
下し始め変速が進行したことを検出すると、変速制御ゾ
ーン(d)をAゾーンからBゾーンに変更する。Bゾー
ンでは変速時のショックを防止するために、タービン回
転数の変化が目標回転変化率となるようにクラッチ制御
dutyをフィードバック制御する。時間t3におい
て、タービン回転数が低下して目標タービン回転数(こ
こでは0rpm)との偏差がΔNtとなると変速がほぼ
終了していると判断して、変速制御ゾーンをCゾーンに
移行する。Cゾーンでは所定時間(t4−t3)の間ク
ラッチ制御dutyを出力して変速を終了する。以上が
NレンジからDレンジへの変速制御の内容である。
[0003] After that, (c) when it is detected that the change in turbine speed starts to decrease and the shift is advanced, the shift control zone (d) is changed from the A zone to the B zone. In the zone B, the clutch control duty is feedback-controlled so that the change in turbine speed becomes the target rotation change rate in order to prevent a shock during shifting. At time t3, when the turbine rotational speed decreases and the deviation from the target turbine rotational speed (here, 0 rpm) becomes ΔNt, it is determined that the shift is almost completed, and the shift control zone is shifted to the C zone. In the C zone, the clutch control duty is output for a predetermined time (t4-t3), and the shift is ended. The above is the content of the shift control from the N range to the D range.

【0004】続いて、Nレンジレーシング中にDレンジ
にシフトされた場合の制御方法について説明する。図1
2において(a)〜(d)は図11と同様の制御情報で
あるので説明を省略する。(e)はスロットル開度であ
る。時間t1より以前はNレンジでレーシングを行って
いる状態、もしくはNレンジでアクセルを踏み込んでい
てアクセルを戻した直後の状態で、タービン回転数(エ
ンジン回転数)が図11の通常アイドル時よりも高い場
合の制御方法を示している。時間t1において、シフト
レンジがNレンジからDレンジに変更されると、図11
と同様の変速制御を行うが、タービン回転数(エンジン
回転数)が高くエンジン出力が高い状態で変速を行った
場合には、自動変速機の動力伝達クラッチや変速機構部
分に過負荷がかかる。また、高回転のタービンを目標回
転に変化させるためイナーシャが発生し、それが変速シ
ョックとして現われる。そのため、変速期間中はエンジ
ンの出力を低減するために、(e)に示すように変速期
間中はスロットル開度を小さくさせてエンジンの出力を
低下している。または、エンジンのフューエルカットに
よってエンジン出力を低減させる場合もある。
[0004] Next, a description will be given of a control method when shifting to the D range during N range racing. FIG.
In FIG. 2, (a) to (d) are control information similar to that in FIG. (E) is the throttle opening. Prior to time t1, in a state in which racing is performed in the N range, or in a state immediately after the accelerator is depressed in the N range and the accelerator is released, the turbine speed (engine speed) is lower than that in the normal idle state in FIG. The control method in the case of a high value is shown. When the shift range is changed from the N range to the D range at time t1, FIG.
The same shift control as that described above is performed, but when shifting is performed in a state where the turbine speed (engine speed) is high and the engine output is high, an overload is applied to the power transmission clutch and the transmission mechanism of the automatic transmission. In addition, inertia is generated to change the high-speed turbine to the target speed, which appears as a shift shock. Therefore, in order to reduce the output of the engine during the shifting period, the throttle opening is reduced during the shifting period to reduce the output of the engine as shown in (e). Alternatively, the engine output may be reduced by fuel cut of the engine.

【0005】また、NレンジからDレンジのシフト中に
アクセルを踏み込まれた場合においても、レーシング中
のNレンジからDレンジへのシフトと同様に、変速機に
過負荷がかかるため、アクセルが踏み込まれてもスロッ
トル開度を目標開度に追従させずにスロットル開度を小
さいままとして、エンジン出力の上昇を抑制させてい
る。
Also, when the accelerator is depressed during the shift from the N range to the D range, the transmission is overloaded as in the shift from the N range to the D range during racing, so that the accelerator is depressed. In this case, the throttle opening is not made to follow the target opening, and the throttle opening is kept small to suppress an increase in engine output.

【0006】[0006]

【発明が解決しようとする課題】従来の自動変速機の制
御方法は以上のようにであるため、次のような問題点が
あった。
Since the conventional method for controlling an automatic transmission is as described above, there are the following problems.

【0007】NレンジからDレンジのシフト中にエンジ
ンの出力が高く、自動変速機が過負荷の状態であるとき
には、運転者のアクセル開度とは異なってスロットル開
度を小さくするため変速ショックは低減されるものの、
エンジン出力が小さくなっているため運転者の要求して
いる駆動力が実現できておらず、アクセルを踏んでいる
にもかかわらず、シフト中やシフト終了後の車両加速度
が小さく、走行フィーリング上の問題があった。
When the output of the engine is high and the automatic transmission is overloaded during the shift from the N range to the D range, a shift shock is generated to reduce the throttle opening unlike the accelerator opening of the driver. Although reduced,
Since the engine output is low, the driving force required by the driver cannot be realized, and the vehicle acceleration during and after the shift is low despite the accelerator being depressed, resulting in a low driving feeling. There was a problem.

【0008】そのため、シフト中のスロットル開度を大
きくした場合には、エンジン出力が増加するため、自動
変速機に過負荷がかかり変速ショックを伴うこととな
る。
[0008] Therefore, when the throttle opening during the shift is increased, the engine output increases, and the automatic transmission is overloaded, which causes a shift shock.

【0009】この発明は上記のような問題点を解消する
ためになされたものであり、レーシング中のNレンジか
らDレンジへのシフト、あるいはNレンジからDレンジ
へのシフト時にアクセル踏み込みがなされた場合など、
どのような状況においても、自動変速機への過負荷が加
わらず安定した変速を得るともに、運転者のアクセルワ
ークに対応した良好な加速性を得ることを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the accelerator is depressed when shifting from the N range to the D range or during the shift from the N range to the D range during racing. In some cases,
In any situation, it is an object of the present invention to obtain a stable shift without applying an overload to the automatic transmission and to obtain a favorable acceleration corresponding to a driver's accelerator work.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
運転者のアクセル踏み込み量を検出するアクセル踏み込
み量検出手段と、電気的にスロットル開度を制御できる
スロットルアクチュエータと、アクセル踏み込み量検出
手段から得た検出量を元に目標スロットル開度を演算す
るスロットル開度演算手段と、スロットル開度演算手段
で演算した目標スロットル開度となるようにスロットル
アクチュエータのスロットル開度を制御するスロットル
開度制御手段と、シフトレバーの操作位置を検出するシ
フトレバー位置検出手段と、変速機の入力軸回転数、変
速機の出力軸回転数、シフトレバーの操作位置を入力し
て変速機の制御を行なう自動変速機制御手段を備え、ア
クセルを踏み込まれた状態のままで中立レンジから走行
レンジにシフトレバー位置の変更があった場合、もしく
は中立レンジから走行レンジへの変速期間中にアクセル
を踏み込まれた場合に、目標スロットル開度をアクセル
踏み込み量から演算した目標スロットル開度から一時的
に他の目標スロットル開度へ切り換える自動変速機制御
装置において、中立レンジから走行レンジへの変速が終
了すれば、目標スロットル開度をアクセル踏み込み量か
ら演算した目標スロットル開度に切り換えることを特徴
とする。すなわち、変速終了時に目標スロットル開度を
アクセル踏み込み量から演算した目標スロットル開度に
切り換えるため、変速中はエンジンの出力を抑制でき、
変速終了後は運転者の要求する駆動力となる。
According to the first aspect of the present invention,
Accelerator depression amount detecting means for detecting the driver's accelerator depression amount, a throttle actuator capable of electrically controlling the throttle opening degree, and a throttle for calculating a target throttle opening degree based on the detection amount obtained from the accelerator depression amount detecting means Opening degree calculation means, throttle opening degree control means for controlling the throttle opening degree of the throttle actuator so as to achieve the target throttle opening degree calculated by the throttle opening degree calculation means, and shift lever position detection for detecting a shift lever operation position Means and an automatic transmission control means for controlling the transmission by inputting the input shaft rotation speed of the transmission, the output shaft rotation speed of the transmission, and the operation position of the shift lever, and keeping the accelerator pedal depressed. If the shift lever position changes from the neutral range to the drive range, or from the neutral range In the automatic transmission control device, when the accelerator is depressed during the shift period to the row range, the target throttle opening is temporarily switched from the target throttle opening calculated from the accelerator depression amount to another target throttle opening. When the shift from the neutral range to the travel range is completed, the target throttle opening is switched to the target throttle opening calculated from the accelerator depression amount. That is, since the target throttle opening is switched to the target throttle opening calculated from the accelerator depression amount at the end of the shift, the output of the engine can be suppressed during the shift,
After the shift is completed, the driving force required by the driver is obtained.

【0011】請求項2記載の発明は、目標スロットル開
度をアクセル踏み込み量から演算した目標開度に徐々に
変化させながら切り替えることを特徴とする。すなわ
ち、スロットル開度を徐々に変化させることで駆動力の
変化の急変が無くなるため、変速から走行への切り替わ
りがスムーズに行うことができる。
According to a second aspect of the present invention, the target throttle opening is switched while gradually changing the target throttle opening to a target opening calculated from the accelerator depression amount. That is, since the throttle opening is gradually changed, there is no sudden change in the driving force, so that the shift from the shift to the traveling can be performed smoothly.

【0012】請求項3記載の発明は、目標スロットル開
度をアクセル踏み込み量から演算した目標開度と切り換
えるタイミングは、変速期間中にエンジン出力が上昇し
ないタイミングとすることを特徴とする。すなわち、目
標スロットル開度の切換を行うタイミングを変速中にエ
ンジン出力が上昇しないタイミングで行うため、エンジ
ンの出力の上昇が変速終了後に行われる。
The invention described in claim 3 is characterized in that the timing at which the target throttle opening is switched to the target opening calculated from the accelerator pedal depression amount is a timing at which the engine output does not increase during the shift period. That is, the target throttle opening is switched at a timing at which the engine output does not increase during the shift, so that the engine output is increased after the shift is completed.

【0013】請求項4記載の発明は、目標スロットル開
度をアクセル踏み込み量から演算した目標スロットル開
度に切り換える際、スロットル開度の変化量に制限を持
たせることを特徴とする。すなわち、目標スロットル開
度切換時のスロットル開度変化量に制限を持たせている
ため、エンジン出力がなだらかに変化する。
According to a fourth aspect of the present invention, when the target throttle opening is switched to the target throttle opening calculated from the accelerator depression amount, the amount of change in the throttle opening is limited. That is, since the throttle opening change amount at the time of switching the target throttle opening is restricted, the engine output changes smoothly.

【0014】請求項5記載の発明は、中立レンジから走
行レンジへ変速中の変速進行状態によってスロットル開
度の制限量を設定することを特徴とする。すなわち、変
速中の目標スロットル開度を変速の進行率に応じて決定
しているため、変速状態に応じて変速ショックのない目
標スロットル開度を設定できる。
According to a fifth aspect of the present invention, a limit amount of the throttle opening is set according to a shift progress state during shifting from the neutral range to the traveling range. That is, since the target throttle opening during shifting is determined in accordance with the progress rate of shifting, a target throttle opening without shift shock can be set in accordance with the shifting state.

【0015】[0015]

【発明の実施の形態】実施の形態1.図1はこの発明に
係る自動変速機制御装置の構成を示す概略ブロック図で
ある。図において、101はエンジン、102はエンジ
ンの吸入通路101aに取り付けられたスロットルバル
ブ、103はエンジン101のクランク軸の回転数を検
出するためのクランク軸回転検出センサ、104はエン
ジン101の出力軸に連結される自動変速機であって、
トルクコンバータ105、変速機構部106、タービン
回転を検出するためのタービン回転検出センサ107、
自動変速機の出力回転を検出するための出力軸回転検出
センサ108を備えている。109はトルクコンバータ
105からの駆動力を変速機構部106に動力伝達を行
うための動力伝達クラッチである。110は動力伝達ク
ラッチ109の変位を制御するためにクラッチにかかる
油圧制御を行う油圧ソレノイドである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a schematic block diagram showing a configuration of an automatic transmission control device according to the present invention. In the figure, 101 is an engine, 102 is a throttle valve attached to an intake passage 101a of the engine, 103 is a crankshaft rotation detecting sensor for detecting the number of rotations of the crankshaft of the engine 101, and 104 is a crankshaft rotation detection sensor. An automatic transmission to be coupled,
Torque converter 105, transmission mechanism 106, turbine rotation detection sensor 107 for detecting turbine rotation,
An output shaft rotation detection sensor 108 for detecting the output rotation of the automatic transmission is provided. Reference numeral 109 denotes a power transmission clutch for transmitting the driving force from the torque converter 105 to the transmission mechanism 106. Reference numeral 110 denotes a hydraulic solenoid that controls the hydraulic pressure applied to the power transmission clutch 109 to control the displacement of the clutch.

【0016】112はシフトレバー、111は上記した
各種のエンジン、自動変速機に取り付けられたセンサ出
力の検出を行い、自動変速機を制御するための自動変速
機制御部である。113は電気的にスロットル弁102
を駆動するスロットルアクチュエータ、114はスロッ
トルアクチュエータ113に取り付けられスロットル弁
を駆動するためのモータ、115はスロットル弁102
の開度を検出するためのスロットル開度センサ、116
は運転者のアクセル踏み込み量を検出するアクセル開度
センサ、117はアクセル開度センサの値に基づきスロ
ットル弁の開閉を行うスロットル制御部、118は自動
変速機制御部111とスロットル弁制御部117の情報
交換を行うための伝送路である。
Reference numeral 112 denotes a shift lever, and 111 denotes an automatic transmission control unit for detecting the output of a sensor attached to the various engines and automatic transmissions and controlling the automatic transmission. 113 is the throttle valve 102 electrically.
A throttle actuator 114 is mounted on the throttle actuator 113 to drive a throttle valve, and 115 is a throttle valve 102
Throttle opening sensor for detecting the opening of the engine, 116
Is a throttle opening sensor for detecting the accelerator pedal depression amount of the driver, 117 is a throttle control unit that opens and closes a throttle valve based on the value of the accelerator opening sensor, and 118 is an automatic transmission control unit 111 and a throttle valve control unit 117. This is a transmission path for exchanging information.

【0017】次に、実施の形態1の自動変速機の変速制
御方法を図に基づいて説明する。図2はレーシング中に
シフトレンジをNレンジからDレンジに切り替えた場合
の制御方法を示したものであり、それぞれ横軸は時間を
表している。図において、(a)はシフトレバー信号、
(b)は自動変速機のクラッチ制御dutyを示し、自
動変速機の動力伝達機構を中立状態から前進へ切り換え
る際、締結するクラッチの油圧調整を行う。(c)は変
速機の入力軸回転数であるタービン回転数、(d)はN
レンジからDレンジへの変速制御中に変速の進行状態に
応じて制御の変更を行うための変速制御ゾーン、(e)
はアクセル開度、(f)はスロットル開度を示してい
る。
Next, a shift control method for the automatic transmission according to the first embodiment will be described with reference to the drawings. FIG. 2 shows a control method when the shift range is switched from the N range to the D range during the racing, and the horizontal axis represents time. In the figure, (a) is a shift lever signal,
(B) shows the clutch control duty of the automatic transmission. When the power transmission mechanism of the automatic transmission is switched from the neutral state to the forward state, the hydraulic pressure of the clutch to be engaged is adjusted. (C) is the turbine speed which is the input shaft speed of the transmission, and (d) is N
(E) a shift control zone for changing the control according to the progress of the shift during the shift control from the range to the D range.
Indicates an accelerator opening, and (f) indicates a throttle opening.

【0018】図において、時間t1より前は、運転者が
アクセルを踏み込んでいる状態であり、スロットル開度
(f)はアクセル開度(e)に応じて演算される目標ス
ロットル開度に保持されている。このとき変速機はNレ
ンジであり無負荷状態なので、タービン回転数(c)は
エンジン回転(図示していない)と共に吹き上がり、高
い回転数であることを示している。
In FIG. 1, before the time t1, the driver is depressing the accelerator, and the throttle opening (f) is held at the target throttle opening calculated according to the accelerator opening (e). ing. At this time, since the transmission is in the N range and is in a no-load state, the turbine speed (c) rises with the engine speed (not shown), indicating a high speed.

【0019】次に、時間t1では、運転者がアクセルを
踏み込んだままシフトレバー信号をNレンジからDレン
ジへシフトを行ったことを示している。この時は、変速
機の動力伝達機構を中立状態から前進状態に変更する制
御が開始され、変速制御ゾーン(d)がAゾーンに変化
すると同時に、変速クラッチの制御duty(b)の変
更を行う。時間t1の時点では運転者は引き続きアクセ
ルを踏み込んでいる状態であるが、エンジンの出力が高
い状態でNレンジからDレンジへのシフトをした場合に
は、変速機に過負荷が生じるため、エンジンへの吸入空
気量を低下させるためにスロットル開度を閉じる。この
とき、スロットル開度はエンストが発生しない程度にエ
ンジンの吸入空気量を低減するようにして、エンジンの
出力を低下させる。
Next, at time t1, it is shown that the driver has shifted the shift lever signal from the N range to the D range while depressing the accelerator. At this time, control for changing the power transmission mechanism of the transmission from the neutral state to the forward state is started. At the same time, the shift control zone (d) changes to the A zone, and at the same time, the control duty (b) of the shift clutch is changed. . At the time t1, the driver is still depressing the accelerator. However, if the shift from the N range to the D range is performed with the engine output being high, the transmission will be overloaded. Close the throttle opening to reduce the amount of intake air to the engine. At this time, the throttle opening reduces the engine intake air amount to such an extent that engine stall does not occur, thereby reducing the engine output.

【0020】次に、時間t2、t3においては、従来例
で示した動作と同じであるため、ここでの説明は省略す
る。この期間のスロットル開度は時間t1において変更
したスロットル開度の状態で開度を保っている。
Next, at times t2 and t3, the operation is the same as the operation shown in the conventional example, and the description is omitted here. During this period, the throttle opening is maintained at the throttle opening changed at time t1.

【0021】次に、時間t4では、タービン回転数
(c)が目標回転数に到達したため変速が終了したこと
を示している。変速が終了したので、変速期間中低下さ
せていたスロットル開度(f)をアクセル開度(e)に
応じた開度に変更し、エンジンの出力を増加させる。
Next, at time t4, it is indicated that the shift has been completed because the turbine speed (c) has reached the target speed. Since the shift is completed, the throttle opening (f), which has been reduced during the shift, is changed to an opening corresponding to the accelerator opening (e), and the engine output is increased.

【0022】以上のように、時間t1からt4にかけて
は、スロットル開度を低下させてエンジンの出力を低減
させているため、変速中に変速機にかかる負荷が少ない
ため、変速時のショックを大幅に低減させることができ
る。
As described above, during the period from time t1 to time t4, the throttle opening is reduced to reduce the engine output. Therefore, the load applied to the transmission during gear shifting is small, and the shock during gear shifting is greatly reduced. Can be reduced.

【0023】また、時間t4以降においてはスロットル
開度をアクセル開度に応じた開度に変更するため、運転
者の要求している駆動力を満たすことができ走行性を満
足することができる。
Since the throttle opening is changed to an opening corresponding to the accelerator opening after time t4, the driving force required by the driver can be satisfied and the traveling performance can be satisfied.

【0024】上記実施の形態1の動作についてフローチ
ャートを用いて説明する。図3は実施の形態1の制御方
法について示したフローチャートである。図において、
S1001ではシフトレバーがNレンジからDレンジへ
変速中であるかどうかの判定を行う。NレンジからDレ
ンジへの変速中で無い場合は、S1002に進みアクセ
ル踏み込み量(APS)を検出する。そして、S100
3ではアクセル踏み込み量から目標スロットル開度を演
算し、S1004では目標スロットル開度になるように
スロットル開度の制御を行う。一方、S1001でNレ
ンジからDレンジへ変速中の場合は、S1005に進み
Nレンジ→Dレンジ中の目標スロットル開度を演算す
る。例えばここではエンストの発生しない最小のスロッ
トル開度を目標開度とする。その後S1004に進む。
The operation of the first embodiment will be described with reference to a flowchart. FIG. 3 is a flowchart illustrating the control method according to the first embodiment. In the figure,
In S1001, it is determined whether the shift lever is shifting from the N range to the D range. If the shift from the N range to the D range is not in progress, the process proceeds to S1002, where the accelerator depression amount (APS) is detected. And S100
In step 3, the target throttle opening is calculated from the accelerator depression amount, and in step S1004, the throttle opening is controlled so as to reach the target throttle opening. On the other hand, if the gear is being shifted from the N range to the D range in S1001, the process proceeds to S1005 to calculate the target throttle opening from the N range to the D range. For example, here, the minimum throttle opening at which engine stall does not occur is set as the target opening. Then, the process proceeds to S1004.

【0025】実施の形態2.上記実施の形態1において
は、変速終了時の時間t4においてスロットル開度をア
クセル開度に応じた開度に瞬時に戻したが、本実施の形
態のように、変速終了後スロットル開度をアクセル開度
から演算した目標スロットル開度に対して、徐々に変化
させるようにしても良い。
Embodiment 2 In the first embodiment, the throttle opening is instantaneously returned to the opening corresponding to the accelerator opening at the time t4 at the end of the shift. However, as in the present embodiment, the throttle opening is changed to the accelerator opening after the shift is completed. The target throttle opening calculated from the opening may be gradually changed.

【0026】図4は、この発明の実施の形態2による自
動変速機制御装置のレーシング中の中立レンジから走行
レンジへの変速時の制御方法を示したタイムチャートで
ある。時間t4より以前においては、実施の形態1と制
御方法は同様であるため、説明を省略する。
FIG. 4 is a time chart showing a control method of the automatic transmission control device according to Embodiment 2 of the present invention at the time of shifting from the neutral range to the traveling range during racing. Before time t4, the control method is the same as in the first embodiment, and a description thereof will not be repeated.

【0027】図において、時間t4では、変速終了後ス
ロットル開度をアクセル開度から演算した目標スロット
ル開度に対して、徐々に変化させるようにしている。
In the figure, at time t4, the throttle opening is gradually changed from the target throttle opening calculated from the accelerator opening after the shift is completed.

【0028】スロットル開度を瞬時に変化させた場合に
は、駆動力が急変することで運転者に違和感を与えた
り、危険性がある場合があるが、スロットル開度を徐々
に変化させることで駆動力の変化の急変が無くなるた
め、変速から走行への切り替わりがスムーズに行うこと
ができる。
If the throttle opening is changed instantaneously, the driving force may suddenly change, giving the driver a sense of incongruity or danger. However, by gradually changing the throttle opening, Since there is no sudden change in the driving force, the switching from the shift to the traveling can be performed smoothly.

【0029】上記実施の形態2の動作についてフローチ
ャートで説明する。図5において、S1101ではシフ
トレバーがNレンジからDレンジへ変速中であるかどう
かの判定を行う。NレンジからDレンジへの変速中の場
合にはS1108へ進み、実施の形態1でも述べたよう
に変速中の目標スロットル開度を演算する。変速が完了
すればS1102に移り、アクセル踏み込み量(AP
S)から目標スロットル開度を演算するため、アクセル
踏み込み量(APS)の読み取りを行う。次に、S11
03ではアクセル踏み込み量(APS)から目標スロッ
トル開度(θT)を演算する。そして、S1104では
変速終了時のスロットル開度の変化制限量(Δθ)を演
算する。S1105では実開度(θR)と目標開度(θ
T)の偏差を演算する。ここで偏差がΔθよりも小さい
又は等しい場合はS1106に移り、目標スロットル開
度をアクセル踏み込み量(APS)から計算した目標ス
ロットル開度(θT)とする。その後S1107に進み
スロットル開度制御を行う。S1105で偏差がΔθよ
りも大きい場合はS1109に進む。ここではアクセル
踏み込み量(APS)から演算した目標スロットル開度
(θT)と実開度(θR)の偏差が大きいため、目標開
度を制限して目標スロットル開度=θR+Δθとする。
その後S1107に移る。
The operation of the second embodiment will be described with reference to a flowchart. In FIG. 5, in S1101, it is determined whether or not the shift lever is shifting from the N range to the D range. If the shift is being performed from the N range to the D range, the process proceeds to S1108, and the target throttle opening during the shift is calculated as described in the first embodiment. Upon completion of the shift, the flow shifts to S1102, where the accelerator pedal depression amount (AP
In order to calculate the target throttle opening from S), the accelerator depression amount (APS) is read. Next, S11
In step 03, the target throttle opening (θT) is calculated from the accelerator depression amount (APS). Then, in S1104, a change limit amount (Δθ) of the throttle opening at the end of the shift is calculated. In S1105, the actual opening (θR) and the target opening (θ
The deviation of T) is calculated. If the deviation is smaller than or equal to Δθ, the flow shifts to S1106, where the target throttle opening is set to the target throttle opening (θT) calculated from the accelerator depression amount (APS). Thereafter, the flow advances to S1107 to perform throttle opening control. If the deviation is larger than Δθ in S1105, the process proceeds to S1109. Here, since the deviation between the target throttle opening (θT) calculated from the accelerator pedal depression amount (APS) and the actual opening (θR) is large, the target opening is limited and target throttle opening = θR + Δθ.
After that, the procedure moves to S1107.

【0030】実施の形態3.上記実施の形態において
は、変速終了時の時間t4においてスロットル開度をア
クセル開度に応じたスロットル開度に変更を開始した
が、本実施の形態のようにしても良い。
Embodiment 3 In the above embodiment, the throttle opening is started to be changed to the throttle opening corresponding to the accelerator opening at the time t4 at the end of the gear shift. However, the present embodiment may be applied.

【0031】図6は、この発明の実施の形態3による自
動変速機制御装置のレーシング中の中立レンジから走行
レンジへの変速時の制御方法を示したタイムチャートで
ある。時間t3より以前においては、制御内容は上記実
施の形態と同様であるため、説明を省略する。
FIG. 6 is a time chart showing a control method when shifting from the neutral range to the running range during racing of the automatic transmission control device according to the third embodiment of the present invention. Before time t3, the details of the control are the same as those in the above embodiment, and a description thereof will be omitted.

【0032】図において、時間t4より少し手前の時間
t3’において、スロットル開度をアクセル開度に応じ
た目標スロットル開度とする。スロットル開度が変化し
てからエンジンの出力が上昇するまでは空気の応答遅れ
があるためにタイムラグが生じる。本実施の形態ではス
ロットル開度の変化から空気の応答遅れの後エンジン出
力が上昇しても、すでに変速期間は終了しており、変速
ショックに与える影響は少ない。この方法によれば、上
記実施の形態よりもスロットルを開くタイミングが早い
ため、変速終了後に駆動力が上昇するまでの時間が短
く、応答性の改善を行うことができる。
In the figure, at time t3 'slightly before time t4, the throttle opening is set to a target throttle opening corresponding to the accelerator opening. There is a time lag between the change in the throttle opening and the increase in the engine output due to a delay in air response. In this embodiment, even if the engine output rises after a delay in air response due to a change in the throttle opening, the shift period has already ended, and the effect on shift shock is small. According to this method, the opening timing of the throttle is earlier than in the above embodiment, so that the time until the driving force increases after the shift is completed is short, and the responsiveness can be improved.

【0033】また、図7に示すように時間t3’からの
スロットル開度の変化を一度に上昇させるのでは無く、
徐々に上昇させるようにすればスロットル変化による駆
動力の急変を防止することができる。
Further, as shown in FIG. 7, the change of the throttle opening from time t3 'is not increased at once,
By gradually increasing the driving force, it is possible to prevent a sudden change in the driving force due to a change in the throttle.

【0034】なお、本実施の形態においては変速中のス
ロットル開度を変速期間中一定としていたが、変速中の
変速状態に応じて変速制御ゾーン毎に切換を行っても良
い。
In the present embodiment, the throttle opening during shifting is fixed during the shifting period. However, switching may be performed for each shift control zone according to the shifting state during shifting.

【0035】また、運転者はアクセルを踏み続けている
のにスロットル開度を低下させてエンジン出力を低下さ
せることは、運転者にとって非常に違和感となるもので
ありフィーリングの悪化に通じる。上記実施の形態にお
いては変速ショック回避を優先として、変速期間中には
エンジンの出力をなるべく低下させる方法での例を記載
しているが、エンジンの出力を多少高めとしておき、ア
クセルを踏んでいない状態と踏んでいる状態とで、アク
セルを踏んでいる状態の方がエンジン出力が高い状態に
しておくことも必要である。エンジン出力の低下と発進
時の加速性の応答遅れは相反する関係であるため、加速
性を優先にする場合には多少ショックが発生しても、変
速中のスロットル開度を少し大きめとして吸入空気量を
多くしておく必要がある。
Further, if the driver keeps stepping on the accelerator and lowers the engine output by lowering the throttle opening, it is very uncomfortable for the driver, which leads to a deterioration in feeling. In the above-described embodiment, an example of a method in which the shift of the shock is avoided and the engine output is reduced as much as possible during the shift period is described, but the engine output is slightly increased and the accelerator is not depressed. It is also necessary to keep the engine output higher when the accelerator is depressed between the state and the stepped state. Since the decrease in engine output and the response delay in acceleration at the time of starting are in opposition to each other, if the acceleration is prioritized, even if a slight shock occurs, the throttle opening during shifting should be slightly increased and the intake air You need to increase the amount.

【0036】実施の形態4.上記実施の形態は、Nレン
ジの状態でアクセルを踏み込んでいて、Dレンジへのシ
フトを行ったレーシング中のNレンジからDレンジへの
シフト時の変速ショックの回避手段について記載してい
るが、本実施の形態においてはNレンジからDレンジへ
のシフト中にアクセル踏み込みを行った、シフト中のア
クセル踏み込み時の制御手段について説明を行う。
Embodiment 4 FIG. In the above embodiment, the accelerator is depressed in the state of the N range, and the means for avoiding the shift shock at the time of shifting from the N range to the D range during the racing performed the shift to the D range is described. In the present embodiment, a description will be given of a control means when the accelerator is depressed during the shift, in which the accelerator is depressed during the shift from the N range to the D range.

【0037】図8は、この発明の実施の形態4による自
動変速機制御装置の中立レンジから走行レンジへの変速
時にアクセルを踏み込まれた場合の制御方法を示したタ
イムチャートである。図において、変速中の時間t2に
おいてアクセルの踏み込みが行われた。このとき、変速
期間中であるためスロットル開度(f)はアクセル踏み
込み量(e)に応じて演算されるスロットル開度とはな
らず、アクセル踏み込み前の開度を継続する。時間t4
において変速が終了すると、スロットル開度(f)をア
クセル踏み込み量(e)に応じた開度に変更する。
FIG. 8 is a time chart showing a control method when the accelerator is depressed when shifting from the neutral range to the travel range according to the fourth embodiment of the present invention. In the figure, the accelerator pedal is depressed at time t2 during shifting. At this time, since the shift period is in progress, the throttle opening (f) does not become the throttle opening calculated in accordance with the accelerator depression amount (e), and the opening before the accelerator depression is continued. Time t4
When the gear change is completed in step, the throttle opening (f) is changed to an opening corresponding to the accelerator pedal depression amount (e).

【0038】このように、変速中にはアクセル踏み込み
によってエンジンの出力が上昇しないため、エンジンの
出力が上昇せず、変速中のアクセル踏み込みによって発
生する変速ショックを回避することができる。また、変
速中のアクセル踏み込みの有無に依らず、変速中にエン
ジンの状態(タービン回転数)の変化が安定しているた
め、安定した変速制御を行うことができる。
As described above, since the output of the engine does not increase due to the depression of the accelerator during the shift, the output of the engine does not increase, and the shift shock caused by the depression of the accelerator during the shift can be avoided. Further, regardless of whether or not the accelerator is depressed during shifting, the change in the state of the engine (turbine speed) is stable during shifting, so that stable shifting control can be performed.

【0039】スロットル開度をアクセル踏み込み量に応
じた開度に変更する方法については、上記実施の形態で
説明したような種々の方法を適用することで上記実施の
形態と同様の効果を得ることができる。
Regarding the method of changing the throttle opening to an opening corresponding to the accelerator depression amount, the same effects as in the above embodiment can be obtained by applying various methods as described in the above embodiment. Can be.

【0040】実施の形態5.実施の形態4においては、
変速中にアクセルを踏み込まれた場合、エンジンの出力
が上昇しないようにスロットル開度をアクセルが踏み込
まれる前と同じ状態にしていたが、本実施の形態のよう
にしても良い。
Embodiment 5 In the fourth embodiment,
When the accelerator is depressed during gear shifting, the throttle opening is set to the same state as before the accelerator is depressed so that the output of the engine does not increase. However, the present embodiment may be adopted.

【0041】図9は、この発明の実施の形態5による自
動変速機制御装置の中立レンジから走行レンジへの変速
時にアクセルを踏み込まれた場合の制御方法を示したタ
イムチャートである。図において、変速中時間t2’に
おいてアクセルが踏み込まれた場合、スロットル開度を
変速中の状態に応じた制限開度θまで上昇させる。その
後変速期間中は、変速状態に応じた制限開度θを維持
し、時間t4において変速が終了すればスロットル開度
の制限を解除して、アクセル開度(e)に応じて演算さ
れるスロットル開度へ変化させる。
FIG. 9 is a time chart showing a control method when the accelerator is depressed when shifting from the neutral range to the travel range according to the fifth embodiment of the present invention. In the figure, when the accelerator is depressed at the shifting time t2 ', the throttle opening is increased to the limit opening θ corresponding to the state during shifting. Thereafter, during the shift period, the limit opening degree θ according to the shift state is maintained, and when the shift ends at time t4, the restriction on the throttle opening degree is released, and the throttle calculated based on the accelerator opening degree (e). Change to opening.

【0042】アクセルを踏み込んでも変速期間中スロッ
トル開度を一定とする方法では、アクセルを踏み込んで
もエンジンの出力が変化せず運転者が違和感を感じる
が、この方法では、アクセル踏み込み時のスロットル開
度はアクセル踏み込みに応じたスロットル開度よりは小
さいが、スロットル開度を開けることでエンジンの出力
に変化があるため、運転者はアクセルを踏み込んだこと
によるエンジンの出力上昇を感じることができ、フィー
リングが上昇する。また、変速期間中にエンジンの出力
を上昇させるので変速終了時の加速応答性を向上させる
ことができる。
In the method in which the throttle opening is kept constant during the gear shift period even when the accelerator is depressed, the engine output does not change even when the accelerator is depressed, and the driver feels a sense of discomfort. Is smaller than the throttle opening corresponding to the accelerator depression, but since opening the throttle opening changes the engine output, the driver can feel the engine output increase due to the accelerator depression, Ring rises. Further, since the output of the engine is increased during the shift period, the acceleration response at the end of the shift can be improved.

【0043】本実施の形態の説明に使用した図9では、
アクセル踏み込み後から変速終了までのスロットル開度
を一定としているが、スロットル開度の制限量θは変速
の進行に伴い値を変化してもよく、例えば図9の時間t
2’から変速終了までの間に等変化量で変化させて目標
スロットル開度に追従させる等、変速時のショックと加
速応答性、フィーリングとの兼ね合いを考慮して任意に
設定できるものである。
In FIG. 9 used for describing the present embodiment,
Although the throttle opening from the time the accelerator is depressed to the end of the shift is fixed, the throttle opening limit amount θ may change as the shift progresses.
It can be arbitrarily set in consideration of the balance between shock, acceleration responsiveness, and feeling during shifting, such as following the target throttle opening by changing the same amount of change between 2 'and the end of shifting. .

【0044】上記実施の形態5の動作をフローチャート
によって説明する。図10は図5のS1108の内容を
示したものである。S1201では変速の進行率をター
ビン回転数の値から演算するもので、変速開始から終了
までの回転数変化量と現在の回転数と目標回転数との比
率によって変速進行率(D)を演算する。S1202で
は変速進行率とアクセル踏込み量(APS)から変速状
態、アクセル踏み込み量に応じた目標スロットル開度を
演算する。アクセル踏み込み量によらずスロットル開度
を演算するのであれば、スロットル開度θは変速進行率
Dによって決定されるようにすればよい。また、運転者
の意志であるAPSの値が高い場合は、θの出力値を大
きく設定すれば応答性重視のスロットル開度設定ができ
るし、θの設定値を小さく設定すればショック低減重視
の設定ができることになる。
The operation of the fifth embodiment will be described with reference to a flowchart. FIG. 10 shows the contents of S1108 in FIG. In step S1201, the shift progress rate is calculated from the value of the turbine speed, and the shift progress rate (D) is calculated from the change amount of the speed from the start to the end of the shift and the ratio of the current speed and the target speed. . In step S1202, a target throttle opening corresponding to the shift state and the accelerator depression amount is calculated from the shift progress rate and the accelerator depression amount (APS). If the throttle opening is to be calculated irrespective of the accelerator depression amount, the throttle opening θ may be determined by the shift progress rate D. When the value of the APS, which is the driver's will, is high, the throttle opening can be set with an emphasis on responsiveness by setting a large output value of θ, and by setting a small value of θ with a focus on shock reduction. You can set it.

【0045】ここではθの判断要素として変速進行率を
用いているが、図4等により説明している変速ゾーンを
用いても良い。また、変速開始からの時間を用いること
もできる。
Here, the shift progress rate is used as a judgment factor of θ, but the shift zone described with reference to FIG. 4 and the like may be used. Also, the time from the start of the shift can be used.

【0046】上記実施の形態においては、Nレンジから
Dレンジへのシフトの際の動作について述べているが、
Pレンジからのシフト、Rレンジ等走行レンジへのシフ
トに関しても同様の制御が適用できることは言うまでも
ない。
In the above embodiment, the operation at the time of shifting from the N range to the D range has been described.
It goes without saying that the same control can be applied to the shift from the P range and the shift to the running range such as the R range.

【0047】[0047]

【発明の効果】請求項1記載の発明によれば、変速終了
時に目標スロットル開度をアクセル開度から演算したス
ロットル開度に切り換えるため、変速中にはエンジンの
出力が小さく変速ショックを低減することができ、変速
終了後には運転者の要求する駆動力を実現することがで
きる。
According to the first aspect of the present invention, the target throttle opening is switched to the throttle opening calculated from the accelerator opening at the end of the shift, so that the engine output is small during the shift and the shift shock is reduced. After the shift is completed, the driving force required by the driver can be achieved.

【0048】請求項2記載の発明によれば、目標スロッ
トル開度をアクセル踏み込み量から演算した目標開度に
徐々に変化させながら切り換えるようにしたので、駆動
力の変化の急変が無くなるため、変速から走行への切り
替わりがスムーズに行うことができる。
According to the second aspect of the present invention, since the target throttle opening is switched while gradually changing the target throttle opening to the target opening calculated from the accelerator depression amount, there is no sudden change in the driving force. The switch from running to running can be performed smoothly.

【0049】請求項3記載の発明によれば、目標スロッ
トル開度をアクセル踏み込みタイミングから演算した目
標スロットル開度に切り換えるタイミングを変速中にエ
ンジン出力が変化しないタイミングに設定しているの
で、変速中は変速ショックを低下することができる。ま
た、変速中から目標スロットル開度をアクセル開度に応
じた目標スロットル開度に設定しているため、変速が終
了すればすぐに運転者の要求する目標駆動力が実現で
き、応答性を向上することができる。
According to the third aspect of the present invention, the timing for switching the target throttle opening to the target throttle opening calculated from the accelerator depression timing is set to a timing at which the engine output does not change during the gear shifting. Can reduce shift shock. Also, since the target throttle opening is set to the target throttle opening according to the accelerator opening during shifting, the target driving force required by the driver can be realized as soon as the shift is completed, improving responsiveness. can do.

【0050】請求項4記載の発明によれば、目標開度切
換時のスロットル開度の変化量に制限を待たせるように
したため、エンジン出力、駆動力の急変を抑えることが
でき、ショックの緩和と運転フィーリングの確保を行う
ことができる。
According to the fourth aspect of the present invention, the amount of change in the throttle opening at the time of switching the target opening is made to wait for a limit, so that a sudden change in the engine output and the driving force can be suppressed, and the shock can be reduced. And the driving feeling can be ensured.

【0051】請求項5記載の発明によれば、変速中のス
ロットル開度を変速機の変速進行状態に応じて適切に設
定できるため、変速ショック低減重視のスロットル開
度、加速性重視のスロットル開度の設定等、変速中のア
クセル踏み込み、アクセル踏み込み中の変速時の出力の
設定を任意に行うことができる。
According to the fifth aspect of the present invention, the throttle opening during gear shifting can be appropriately set according to the shift progress state of the transmission. It is possible to arbitrarily set the accelerator depression during gear shifting, such as the degree setting, and the output during gear shifting during accelerator depression.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明に係る自動変速機制御装置の構成を
示す概略ブロック図である。
FIG. 1 is a schematic block diagram showing a configuration of an automatic transmission control device according to the present invention.

【図2】 この発明の実施の形態1による自動変速機制
御装置のレーシング中の中立レンジから走行レンジへの
変速時の制御方法を示したタイムチャートである。
FIG. 2 is a time chart showing a control method of the automatic transmission control device according to the first embodiment of the present invention at the time of shifting from a neutral range to a traveling range during racing.

【図3】 この発明の実施の形態1による制御方法を示
したフローチャートである。
FIG. 3 is a flowchart showing a control method according to the first embodiment of the present invention.

【図4】 この発明の実施の形態2による自動変速機制
御装置のレーシング中の中立レンジから走行レンジへの
変速時の制御方法を示したタイムチャートである。
FIG. 4 is a time chart showing a control method of the automatic transmission control device according to Embodiment 2 of the present invention at the time of shifting from a neutral range to a running range during racing.

【図5】 この発明の実施の形態2による制御方法を示
したフローチャートである。
FIG. 5 is a flowchart showing a control method according to Embodiment 2 of the present invention.

【図6】 この発明の実施の形態3による自動変速機制
御装置のレーシング中の中立レンジから走行レンジへの
変速時の制御方法を示したタイムチャートである。
FIG. 6 is a time chart showing a control method of the automatic transmission control device according to Embodiment 3 of the present invention at the time of shifting from a neutral range to a running range during racing.

【図7】 この発明の実施の形態3による自動変速機制
御装置のレーシング中の中立レンジから走行レンジへの
変速時の制御方法を示したタイムチャートである。
FIG. 7 is a time chart showing a control method of the automatic transmission control device according to Embodiment 3 of the present invention at the time of shifting from a neutral range to a running range during racing.

【図8】 この発明の実施の形態4による自動変速機制
御装置の中立レンジから走行レンジへの変速時にアクセ
ルを踏み込まれた場合の制御方法を示したタイムチャー
トである。
FIG. 8 is a time chart showing a control method when an accelerator is depressed during a shift from a neutral range to a travel range according to a fourth embodiment of the present invention.

【図9】 この発明の実施の形態5による自動変速機制
御装置の中立レンジから走行レンジへの変速時にアクセ
ルを踏み込まれた場合の制御方法を示したタイムチャー
トである。
FIG. 9 is a time chart showing a control method when an accelerator is depressed during a shift from a neutral range to a travel range according to a fifth embodiment of the present invention.

【図10】 この発明の実施の形態5による制御方法を
示したフローチャートである。
FIG. 10 is a flowchart showing a control method according to Embodiment 5 of the present invention.

【図11】 従来の自動変速機の中立レンジから走行レ
ンジへの変速時の動作を表したタイムチャートである。
FIG. 11 is a time chart showing an operation at the time of shifting from a neutral range to a traveling range of a conventional automatic transmission.

【図12】 従来の自動変速機の中立レンジから走行レ
ンジへの変速時にアクセルを踏み込まれた場合の動作を
表したタイムチャートである。
FIG. 12 is a time chart showing an operation when an accelerator is depressed when shifting from a neutral range to a traveling range of the conventional automatic transmission.

【符号の説明】[Explanation of symbols]

101 エンジン、102 スロットルバルブ、103
クランク軸回転検出センサ、104 自動変速機、1
05 トルクコンバータ、106 変速機構部、107
タービン回転検出センサ、108 出力軸回転検出セ
ンサ、109動力伝達クラッチ、110 油圧ソレノイ
ド、111 自動変速機制御部、112 シフトレバ
ー、113 スロットルアクチュエータ、114 モー
タ、115 スロットル開度センサ、116 アクセル
開度センサ、117 スロットルアクチュエータ制御
部、118 伝送路。
101 engine, 102 throttle valve, 103
Crankshaft rotation detection sensor, 104 automatic transmission, 1
05 Torque converter, 106 Transmission mechanism, 107
Turbine rotation detection sensor, 108 Output shaft rotation detection sensor, 109 power transmission clutch, 110 hydraulic solenoid, 111 automatic transmission control unit, 112 shift lever, 113 throttle actuator, 114 motor, 115 throttle opening sensor, 116 accelerator opening sensor , 117 throttle actuator control unit, 118 transmission line.

フロントページの続き Fターム(参考) 3D041 AA53 AC08 AC15 AD02 AD10 AD30 AD31 AE04 AF01 AF03 3G065 CA00 DA05 DA06 EA13 FA05 FA12 GA10 GA31 GA46 KA36 3G093 AA05 BA03 CB08 DA01 DA06 DB01 DB11 EA09 EC02 FA07 FB03 FB05 3G301 JA04 KB10 LA03 NA08 ND02 ND41 NE17 PE01Z PF03Z PF08Z Continued on the front page F-term (reference) ND41 NE17 PE01Z PF03Z PF08Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 運転者のアクセル踏み込み量を検出する
アクセル踏み込み量検出手段と、電気的にスロットル開
度を制御できるスロットルアクチュエータと、アクセル
踏み込み量検出手段から得た検出量を元に目標スロット
ル開度を演算するスロットル開度演算手段と、スロット
ル開度演算手段で演算した目標スロットル開度となるよ
うにスロットルアクチュエータのスロットル開度を制御
するスロットル開度制御手段と、シフトレバーの操作位
置を検出するシフトレバー位置検出手段と、変速機の入
力軸回転数、変速機の出力軸回転数、シフトレバーの操
作位置を入力して変速機の制御を行なう自動変速機制御
手段を備え、アクセルを踏み込まれた状態のままで中立
レンジから走行レンジにシフトレバー位置の変更があっ
た場合、もしくは中立レンジから走行レンジへの変速期
間中にアクセルを踏み込まれた場合に、目標スロットル
開度をアクセル踏み込み量から演算した目標スロットル
開度から一時的に他の目標スロットル開度へ切り換える
自動変速機制御装置において、 中立レンジから走行レンジへの変速が終了すれば、他の
目標スロットル開度をアクセル踏み込み量から演算した
目標スロットル開度に切り換えることを特徴とする自動
変速機制御装置。
An accelerator depression amount detecting means for detecting a driver's accelerator depression amount, a throttle actuator capable of electrically controlling a throttle opening, and a target throttle opening based on a detection amount obtained from the accelerator depression amount detecting means. Throttle opening calculating means for calculating the degree of throttle, throttle opening controlling means for controlling the throttle opening of the throttle actuator to achieve the target throttle opening calculated by the throttle opening calculating means, and detecting the operating position of the shift lever Automatic transmission control means for inputting the input shaft rotation speed of the transmission, the output shaft rotation speed of the transmission, and the operation position of the shift lever to control the transmission, and depressing the accelerator. If the shift lever position is changed from the neutral range to the drive range while the Automatic transmission control that temporarily switches the target throttle opening from the target throttle opening calculated from the accelerator depression amount to another target throttle opening when the accelerator is depressed during the shift period from the vertical range to the travel range An automatic transmission control device, wherein when the shift from the neutral range to the travel range is completed, another target throttle opening is switched to a target throttle opening calculated from the accelerator depression amount.
【請求項2】 請求項1記載の自動変速機制御装置にお
いて、他の目標スロットル開度をアクセル踏み込み量か
ら演算した目標スロットル開度に徐々に変化させながら
切り換えることを特徴とする自動変速機制御装置。
2. The automatic transmission control device according to claim 1, wherein the other target throttle opening is switched while gradually changing the target throttle opening to a target throttle opening calculated from an accelerator pedal depression amount. apparatus.
【請求項3】 請求項1又は請求項2記載の自動変速機
制御装置において、他の目標スロットル開度をアクセル
踏み込み量から演算した目標スロットル開度と切り換え
るタイミングは、変速期間中にエンジン出力が上昇しな
いタイミングとすることを特徴とする自動変速機制御装
置。
3. The automatic transmission control device according to claim 1, wherein the timing at which the other target throttle opening is switched to the target throttle opening calculated from the accelerator pedal depression amount is determined based on the engine output during the shift period. An automatic transmission control device characterized in that the timing does not rise.
【請求項4】 請求項1から請求項3のいずれか1項に
記載の自動変速機制御装置において、他の目標スロット
ル開度をアクセル踏み込み量から演算した目標スロット
ル開度と切り換える際、スロットル開度の変化量に制限
を持たせることを特徴とした自動変速機制御装置。
4. The automatic transmission control device according to claim 1, wherein when the other target throttle opening is switched to a target throttle opening calculated from an accelerator depression amount, the throttle opening is changed. An automatic transmission control device characterized in that the degree of change is limited.
【請求項5】 請求項1から請求項4のいずれか1項に
記載の自動変速機制御装置において、変速期間中のスロ
ットル開度は、変速進行率に応じて制限することを特徴
とした自動変速機制御装置。
5. The automatic transmission control device according to claim 1, wherein the throttle opening during the shift period is limited according to a shift progress rate. Transmission control device.
JP11174931A 1999-06-22 1999-06-22 Automatic transmission control device Pending JP2001003776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11174931A JP2001003776A (en) 1999-06-22 1999-06-22 Automatic transmission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11174931A JP2001003776A (en) 1999-06-22 1999-06-22 Automatic transmission control device

Publications (1)

Publication Number Publication Date
JP2001003776A true JP2001003776A (en) 2001-01-09

Family

ID=15987234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11174931A Pending JP2001003776A (en) 1999-06-22 1999-06-22 Automatic transmission control device

Country Status (1)

Country Link
JP (1) JP2001003776A (en)

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198357A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Vehicle driving force control device
JP2009097445A (en) * 2007-10-17 2009-05-07 Toyota Motor Corp Transmission control device of stepped automatic transmission
WO2010100921A1 (en) 2009-03-04 2010-09-10 パナソニック株式会社 Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic device
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US8473077B2 (en) 2009-09-16 2013-06-25 Covidien Lp Perfused core dielectrically loaded dipole microwave antenna probe
US8480665B2 (en) 2007-09-07 2013-07-09 Covidien Lp Cool tip junction
US8480666B2 (en) 2007-01-31 2013-07-09 Covidien Lp Thermal feedback systems and methods of using the same
US8486057B2 (en) 2009-05-19 2013-07-16 Covidien Lp Tissue impedance measurement using a secondary frequency
US8491580B2 (en) 2007-11-27 2013-07-23 Covidien Lp Targeted cooling of deployable microwave antenna and methods of use
US8512329B2 (en) 2008-08-25 2013-08-20 Covidien Lp Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US8523854B2 (en) 2008-08-28 2013-09-03 Covidien Lp Microwave antenna
US8568407B2 (en) 2009-08-17 2013-10-29 Covidien Lp Surface ablation antenna with dielectric loading
US8628527B2 (en) 2009-08-05 2014-01-14 Covidien Lp Directive window ablation antenna with dielectric loading
US8667674B2 (en) 2008-06-09 2014-03-11 Covidien Lp Surface ablation process with electrode cooling methods
US8679108B2 (en) 2009-02-20 2014-03-25 Covidien Lp Leaky-wave antennas for medical applications
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
US8745854B2 (en) 2009-09-09 2014-06-10 Covidien Lp Method for constructing a dipole antenna
US8747402B2 (en) 2007-01-19 2014-06-10 Covidien Lp Electrical conductivity probes for measuring attributes of tissue
US8801709B2 (en) 2008-02-07 2014-08-12 Covidien Lp Endoscopic instrument for tissue identification
US8832927B2 (en) 2009-03-10 2014-09-16 Covidien Lp Method of manufacturing surgical antennas
US8847830B2 (en) 2009-06-19 2014-09-30 Covidien Lp Microwave ablation antenna radiation detector
US8852180B2 (en) 2009-10-28 2014-10-07 Covidien Lp System and method for monitoring ablation size
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US8894640B2 (en) 2009-09-24 2014-11-25 Covidien Lp Optical detection of interrupted fluid flow to ablation probe
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US8945113B2 (en) 2012-04-05 2015-02-03 Covidien Lp Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US8968300B2 (en) 2009-08-05 2015-03-03 Covidien Lp Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US8969722B2 (en) 2008-01-23 2015-03-03 Covidien Lp Thermally tuned coaxial cable for microwave antennas
US9017328B2 (en) 2008-01-29 2015-04-28 Covidien Lp Polyp encapsulation system and method
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US9023026B2 (en) 2008-01-31 2015-05-05 Covidien Lp Articulating ablation device and method
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9044254B2 (en) 2012-08-07 2015-06-02 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
US9113888B2 (en) 2004-10-08 2015-08-25 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9121774B2 (en) 2012-06-22 2015-09-01 Covidien Lp Microwave thermometry for microwave ablation systems
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9168178B2 (en) 2012-05-22 2015-10-27 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US9192426B2 (en) 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9192437B2 (en) 2009-05-27 2015-11-24 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US9192439B2 (en) 2012-06-29 2015-11-24 Covidien Lp Method of manufacturing a surgical instrument
US9192308B2 (en) 2012-03-27 2015-11-24 Covidien Lp Microwave-shielded tissue sensor probe
US9276367B2 (en) 2009-11-17 2016-03-01 Covidien Lp Method of manurfacturing an electromagnetic energy delivery device
US9271791B2 (en) 2009-10-28 2016-03-01 Covidien Lp System and method for monitoring ablation size
US9271792B2 (en) 2012-05-04 2016-03-01 Covidien Lp Peripheral switching device for microwave energy platforms
US9271788B2 (en) 2010-03-26 2016-03-01 Cividien LP Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US9332959B2 (en) 2012-06-26 2016-05-10 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9358067B2 (en) 2010-02-26 2016-06-07 Covidien Lp Tissue ablation system with internal and external radiation sources
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9370399B2 (en) 2009-09-29 2016-06-21 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US9370392B2 (en) 2012-10-02 2016-06-21 Covidien Lp Heat-sensitive optical probes
US9375252B2 (en) 2012-08-02 2016-06-28 Covidien Lp Adjustable length and/or exposure electrodes
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9439712B2 (en) 2012-07-12 2016-09-13 Covidien Lp Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US9522033B2 (en) 2012-10-02 2016-12-20 Covidien Lp Devices and methods for optical detection of tissue contact
US9526568B2 (en) 2012-05-31 2016-12-27 Covidien Lp Drug-delivery device for use with ablation device
US9610122B2 (en) 2013-03-29 2017-04-04 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
USRE46362E1 (en) 2009-11-16 2017-04-11 Covidien Lp Twin sealing chamber hub
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
US9867665B2 (en) 2013-09-06 2018-01-16 Covidien Lp Microwave ablation catheter, handle, and system
US9867670B2 (en) 2009-04-01 2018-01-16 Covidien Lp Microwave ablation system and user-controlled ablation size and method of use
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
US9993283B2 (en) 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device
US10039602B2 (en) 2002-04-16 2018-08-07 Covidien Lp Electrosurgical energy channel splitters and systems for delivering electrosurgical energy
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US10080600B2 (en) 2015-01-21 2018-09-25 Covidien Lp Monopolar electrode with suction ability for CABG surgery
US10130416B2 (en) 2012-04-30 2018-11-20 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
US10363094B2 (en) 2011-04-08 2019-07-30 Covidien Lp Flexible microwave catheters for natural or artificial lumens
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
CN111433066A (en) * 2017-12-04 2020-07-17 三菱自动车工业株式会社 Clutch control device
US10716619B2 (en) 2017-06-19 2020-07-21 Covidien Lp Microwave and radiofrequency energy-transmitting tissue ablation systems
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US10814128B2 (en) 2016-11-21 2020-10-27 Covidien Lp Electroporation catheter
US11000332B2 (en) 2016-08-02 2021-05-11 Covidien Lp Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11147621B2 (en) 2017-11-02 2021-10-19 Covidien Lp Systems and methods for ablating tissue
US11160600B2 (en) 2018-03-01 2021-11-02 Covidien Lp Monopolar return electrode grasper with return electrode monitoring
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same

Cited By (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10039602B2 (en) 2002-04-16 2018-08-07 Covidien Lp Electrosurgical energy channel splitters and systems for delivering electrosurgical energy
US11045253B2 (en) 2002-04-16 2021-06-29 Covidien Lp Electrosurgical energy channel splitters and systems for delivering electrosurgical energy
US9113888B2 (en) 2004-10-08 2015-08-25 Covidien Ag Electrosurgical system employing multiple electrodes and method thereof
JP4725337B2 (en) * 2006-01-30 2011-07-13 トヨタ自動車株式会社 Vehicle driving force control device
JP2007198357A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Vehicle driving force control device
US8747402B2 (en) 2007-01-19 2014-06-10 Covidien Lp Electrical conductivity probes for measuring attributes of tissue
US8568402B2 (en) 2007-01-31 2013-10-29 Covidien Lp Thermal feedback systems and methods of using the same
US8480666B2 (en) 2007-01-31 2013-07-09 Covidien Lp Thermal feedback systems and methods of using the same
US8956350B2 (en) 2007-01-31 2015-02-17 Covidien Lp Thermal feedback systems and methods of using the same
US9833287B2 (en) 2007-01-31 2017-12-05 Covidien Lp Thermal feedback systems and methods of using the same
US8480665B2 (en) 2007-09-07 2013-07-09 Covidien Lp Cool tip junction
JP2009097445A (en) * 2007-10-17 2009-05-07 Toyota Motor Corp Transmission control device of stepped automatic transmission
US8491580B2 (en) 2007-11-27 2013-07-23 Covidien Lp Targeted cooling of deployable microwave antenna and methods of use
US8655454B2 (en) 2007-11-27 2014-02-18 Covidien Lp Targeted cooling of deployable microwave antenna with cooling chamber
US8969722B2 (en) 2008-01-23 2015-03-03 Covidien Lp Thermally tuned coaxial cable for microwave antennas
US9305682B2 (en) 2008-01-23 2016-04-05 Covidien Lp Thermally tuned coaxial cable for microwave antennas
US9017328B2 (en) 2008-01-29 2015-04-28 Covidien Lp Polyp encapsulation system and method
US9023026B2 (en) 2008-01-31 2015-05-05 Covidien Lp Articulating ablation device and method
US9370314B2 (en) 2008-02-07 2016-06-21 Covidien Lp Endoscopic instrument for tissue identification
US10045814B2 (en) 2008-02-07 2018-08-14 Covidien Lp Endoscopic instrument for tissue identification
US10631922B2 (en) 2008-02-07 2020-04-28 Covidien Lp Endoscopic instrument for tissue identification
US8801709B2 (en) 2008-02-07 2014-08-12 Covidien Lp Endoscopic instrument for tissue identification
US11540873B2 (en) 2008-02-07 2023-01-03 Covidien Lp Surgical instrument for tissue identification
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
US8667674B2 (en) 2008-06-09 2014-03-11 Covidien Lp Surface ablation process with electrode cooling methods
US8512329B2 (en) 2008-08-25 2013-08-20 Covidien Lp Microwave antenna assembly having a dielectric body portion with radial partitions of dielectric material
US9198725B2 (en) 2008-08-28 2015-12-01 Covidien Lp Microwave antenna with choke
US11147620B2 (en) 2008-08-28 2021-10-19 Covidien Lp Microwave antenna with cooled hub
US9707038B2 (en) 2008-08-28 2017-07-18 Covidien Lp Microwave antenna with cooled handle
US9375280B2 (en) 2008-08-28 2016-06-28 Covidien Lp Microwave antenna with cooling system
US9113932B1 (en) 2008-08-28 2015-08-25 Covidien Lp Microwave antenna with choke
US10022186B2 (en) 2008-08-28 2018-07-17 Covidien Lp Microwave antenna with cooled handle
US8523854B2 (en) 2008-08-28 2013-09-03 Covidien Lp Microwave antenna
US8795268B2 (en) 2008-08-28 2014-08-05 Covidien Lp Microwave antenna
US10080610B2 (en) 2009-02-20 2018-09-25 Covidien Lp Leaky-wave antennas for medical applications
US8679108B2 (en) 2009-02-20 2014-03-25 Covidien Lp Leaky-wave antennas for medical applications
US8968292B2 (en) 2009-02-20 2015-03-03 Covidien Lp Leaky-wave antennas for medical applications
WO2010100921A1 (en) 2009-03-04 2010-09-10 パナソニック株式会社 Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic device
US8832927B2 (en) 2009-03-10 2014-09-16 Covidien Lp Method of manufacturing surgical antennas
US9867670B2 (en) 2009-04-01 2018-01-16 Covidien Lp Microwave ablation system and user-controlled ablation size and method of use
US8486057B2 (en) 2009-05-19 2013-07-16 Covidien Lp Tissue impedance measurement using a secondary frequency
US9504524B2 (en) 2009-05-19 2016-11-29 Covidien Lp Tissue impedance measurement using a secondary frequency
US10675090B2 (en) 2009-05-19 2020-06-09 Covidien Lp Tissue impedance measurement using a secondary frequency
US9192437B2 (en) 2009-05-27 2015-11-24 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US9662172B2 (en) 2009-05-27 2017-05-30 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US10499989B2 (en) 2009-05-27 2019-12-10 Covidien Lp Narrow gauge high strength choked wet tip microwave ablation antenna
US8847830B2 (en) 2009-06-19 2014-09-30 Covidien Lp Microwave ablation antenna radiation detector
US9625395B2 (en) 2009-06-19 2017-04-18 Covidien Lp Microwave ablation antenna radiation detector
US8628527B2 (en) 2009-08-05 2014-01-14 Covidien Lp Directive window ablation antenna with dielectric loading
US8968300B2 (en) 2009-08-05 2015-03-03 Covidien Lp Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
US10213255B2 (en) 2009-08-05 2019-02-26 Covidien Lp Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure and method of manufacturing same
US8568407B2 (en) 2009-08-17 2013-10-29 Covidien Lp Surface ablation antenna with dielectric loading
US8745854B2 (en) 2009-09-09 2014-06-10 Covidien Lp Method for constructing a dipole antenna
US9379444B2 (en) 2009-09-09 2016-06-28 Covidien Lp Method for constructing a dipole antenna
US10363096B2 (en) 2009-09-09 2019-07-30 Covidien Lp Method for constructing a dipole antenna
US8473077B2 (en) 2009-09-16 2013-06-25 Covidien Lp Perfused core dielectrically loaded dipole microwave antenna probe
US8894640B2 (en) 2009-09-24 2014-11-25 Covidien Lp Optical detection of interrupted fluid flow to ablation probe
US9370399B2 (en) 2009-09-29 2016-06-21 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US9572625B2 (en) 2009-09-29 2017-02-21 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US10182866B2 (en) 2009-09-29 2019-01-22 Covidien Lp Flow rate monitor for fluid cooled microwave ablation probe
US8852180B2 (en) 2009-10-28 2014-10-07 Covidien Lp System and method for monitoring ablation size
US9271791B2 (en) 2009-10-28 2016-03-01 Covidien Lp System and method for monitoring ablation size
US10213256B2 (en) 2009-10-28 2019-02-26 Covidien Lp System and method for monitoring ablation size
USRE46362E1 (en) 2009-11-16 2017-04-11 Covidien Lp Twin sealing chamber hub
US9276367B2 (en) 2009-11-17 2016-03-01 Covidien Lp Method of manurfacturing an electromagnetic energy delivery device
US9358067B2 (en) 2010-02-26 2016-06-07 Covidien Lp Tissue ablation system with internal and external radiation sources
US9271788B2 (en) 2010-03-26 2016-03-01 Cividien LP Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US10271901B2 (en) 2010-03-26 2019-04-30 Covidien Lp Ablation devices with adjustable radiating section lengths, electrosurgical systems including same, and methods of adjusting ablation fields using same
US10363094B2 (en) 2011-04-08 2019-07-30 Covidien Lp Flexible microwave catheters for natural or artificial lumens
US9113891B2 (en) 2011-07-15 2015-08-25 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US10869674B2 (en) 2011-07-15 2020-12-22 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US8888771B2 (en) 2011-07-15 2014-11-18 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US9808259B2 (en) 2011-07-15 2017-11-07 Covidien Lp Clip-over disposable assembly for use with hemostat-style surgical instrument and methods of manufacturing same
US9028482B2 (en) 2011-07-19 2015-05-12 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US9192422B2 (en) 2011-07-19 2015-11-24 Covidien Lp System and method of matching impedances of an electrosurgical generator and/or a microwave generator
US8968297B2 (en) 2011-07-19 2015-03-03 Covidien Lp Microwave and RF ablation system and related method for dynamic impedance matching
US10675091B2 (en) 2011-08-09 2020-06-09 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US9724158B2 (en) 2011-08-09 2017-08-08 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US8745846B2 (en) 2011-09-20 2014-06-10 Covidien Lp Method of manufacturing handheld medical devices including microwave amplifier unit
US9247994B2 (en) 2012-01-05 2016-02-02 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9848951B2 (en) 2012-01-05 2017-12-26 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9375274B2 (en) 2012-01-05 2016-06-28 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9925005B2 (en) 2012-01-05 2018-03-27 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9113930B2 (en) 2012-01-05 2015-08-25 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9522042B2 (en) 2012-01-05 2016-12-20 Covidien Lp Ablation systems, probes, and methods for reducing radiation from an ablation probe into the environment
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
US10271902B2 (en) 2012-01-06 2019-04-30 Covidien Lp System and method for treating tissue using an expandable antenna
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US9681916B2 (en) 2012-01-06 2017-06-20 Covidien Lp System and method for treating tissue using an expandable antenna
US9693823B2 (en) 2012-01-06 2017-07-04 Covidien Lp System and method for treating tissue using an expandable antenna
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9192308B2 (en) 2012-03-27 2015-11-24 Covidien Lp Microwave-shielded tissue sensor probe
US9597151B2 (en) 2012-04-05 2017-03-21 Covidien Lp Electrosurgical tissue ablation systems and methods capable of detecting excessive bending of a probe and alerting a user
US8945113B2 (en) 2012-04-05 2015-02-03 Covidien Lp Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
US10130416B2 (en) 2012-04-30 2018-11-20 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9700370B2 (en) 2012-04-30 2017-07-11 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9943359B2 (en) 2012-04-30 2018-04-17 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9364278B2 (en) 2012-04-30 2016-06-14 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US10405918B2 (en) 2012-04-30 2019-09-10 Covidien Lp Limited reuse ablation needles and ablation devices for use therewith
US9271792B2 (en) 2012-05-04 2016-03-01 Covidien Lp Peripheral switching device for microwave energy platforms
US9693824B2 (en) 2012-05-04 2017-07-04 Covidien Lp Peripheral switching device for microwave energy platforms
US9198721B2 (en) 2012-05-22 2015-12-01 Covidien Lp Electrosurgical instrument
US8906008B2 (en) 2012-05-22 2014-12-09 Covidien Lp Electrosurgical instrument
US9974606B2 (en) 2012-05-22 2018-05-22 Covidien Lp Electrosurgical instrument
US9597232B2 (en) 2012-05-22 2017-03-21 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US9526569B2 (en) 2012-05-22 2016-12-27 Covidien Lp Electrosurgical instrument
US9168178B2 (en) 2012-05-22 2015-10-27 Covidien Lp Energy-delivery system and method for controlling blood loss from wounds
US9526568B2 (en) 2012-05-31 2016-12-27 Covidien Lp Drug-delivery device for use with ablation device
US9127989B2 (en) 2012-06-22 2015-09-08 Covidien Lp Microwave thermometry for microwave ablation systems
US9121774B2 (en) 2012-06-22 2015-09-01 Covidien Lp Microwave thermometry for microwave ablation systems
US9743986B2 (en) 2012-06-22 2017-08-29 Covidien Lp Microwave thermometry for microwave ablation systems
US9151680B2 (en) 2012-06-22 2015-10-06 Covidien Lp Microwave thermometry for microwave ablation systems
US10363095B2 (en) 2012-06-22 2019-07-30 Covidien Lp Microwave thermometry for microwave ablation systems
US9833288B2 (en) 2012-06-26 2017-12-05 Covidien Lp Methods and systems for enhancing ultrasonic visibilty of energy-delivery devices within tissue
US9192426B2 (en) 2012-06-26 2015-11-24 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9066681B2 (en) 2012-06-26 2015-06-30 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9375198B2 (en) 2012-06-26 2016-06-28 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9566111B2 (en) 2012-06-26 2017-02-14 Covidien Lp Ablation device having an expandable chamber for anchoring the ablation device to tissue
US9332959B2 (en) 2012-06-26 2016-05-10 Covidien Lp Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
US9901398B2 (en) 2012-06-29 2018-02-27 Covidien Lp Microwave antenna probes
US9192439B2 (en) 2012-06-29 2015-11-24 Covidien Lp Method of manufacturing a surgical instrument
US11510732B2 (en) 2012-06-29 2022-11-29 Covidien Lp Microwave antenna probes
US9439712B2 (en) 2012-07-12 2016-09-13 Covidien Lp Heat-distribution indicators, thermal zone indicators, electrosurgical systems including same and methods of directing energy to tissue using same
US9375252B2 (en) 2012-08-02 2016-06-28 Covidien Lp Adjustable length and/or exposure electrodes
US9247993B2 (en) 2012-08-07 2016-02-02 Covidien, LP Microwave ablation catheter and method of utilizing the same
US9993296B2 (en) 2012-08-07 2018-06-12 Covidien Lp Microwave ablation catheter and method of utilizing the same
US11678934B2 (en) 2012-08-07 2023-06-20 Covidien Lp Microwave ablation system
US9370398B2 (en) 2012-08-07 2016-06-21 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9993295B2 (en) 2012-08-07 2018-06-12 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9044254B2 (en) 2012-08-07 2015-06-02 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9259269B2 (en) 2012-08-07 2016-02-16 Covidien Lp Microwave ablation catheter and method of utilizing the same
US10213257B2 (en) 2012-10-02 2019-02-26 Covidien Lp Devices and methods for optical detection of tissue contact
US10080603B2 (en) 2012-10-02 2018-09-25 Covidien Lp Devices and methods for optical detection of tissue contact
US9522033B2 (en) 2012-10-02 2016-12-20 Covidien Lp Devices and methods for optical detection of tissue contact
US9993283B2 (en) 2012-10-02 2018-06-12 Covidien Lp Selectively deformable ablation device
US10271829B2 (en) 2012-10-02 2019-04-30 Covidien Lp Heat-sensitive optical probes
US9743975B2 (en) 2012-10-02 2017-08-29 Covidien Lp Thermal ablation probe for a medical device
US9668802B2 (en) 2012-10-02 2017-06-06 Covidien Lp Devices and methods for optical detection of tissue contact
US9662165B2 (en) 2012-10-02 2017-05-30 Covidien Lp Device and method for heat-sensitive agent application
US9370392B2 (en) 2012-10-02 2016-06-21 Covidien Lp Heat-sensitive optical probes
US9901399B2 (en) 2012-12-17 2018-02-27 Covidien Lp Ablation probe with tissue sensing configuration
US10828102B2 (en) 2012-12-17 2020-11-10 Covidien Lp Ablation probe with tissue sensing configuration
US9610122B2 (en) 2013-03-29 2017-04-04 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US10383688B2 (en) 2013-03-29 2019-08-20 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US11382692B2 (en) 2013-03-29 2022-07-12 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US9987087B2 (en) 2013-03-29 2018-06-05 Covidien Lp Step-down coaxial microwave ablation applicators and methods for manufacturing same
US9814844B2 (en) 2013-08-27 2017-11-14 Covidien Lp Drug-delivery cannula assembly
US9867665B2 (en) 2013-09-06 2018-01-16 Covidien Lp Microwave ablation catheter, handle, and system
US11864829B2 (en) 2013-09-06 2024-01-09 Covidien Lp Microwave ablation catheter, handle, and system
US10201265B2 (en) 2013-09-06 2019-02-12 Covidien Lp Microwave ablation catheter, handle, and system
US11324551B2 (en) 2013-09-06 2022-05-10 Covidien Lp Microwave ablation catheter, handle, and system
US10561463B2 (en) 2013-09-06 2020-02-18 Covidien Lp Microwave ablation catheter, handle, and system
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US11241272B2 (en) 2013-09-30 2022-02-08 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US11839426B2 (en) 2014-10-01 2023-12-12 Covidien Lp Miniaturized microwave ablation assembly
US10080600B2 (en) 2015-01-21 2018-09-25 Covidien Lp Monopolar electrode with suction ability for CABG surgery
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11000332B2 (en) 2016-08-02 2021-05-11 Covidien Lp Ablation cable assemblies having a large diameter coaxial feed cable reduced to a small diameter at intended site
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10814128B2 (en) 2016-11-21 2020-10-27 Covidien Lp Electroporation catheter
US10716619B2 (en) 2017-06-19 2020-07-21 Covidien Lp Microwave and radiofrequency energy-transmitting tissue ablation systems
US11147621B2 (en) 2017-11-02 2021-10-19 Covidien Lp Systems and methods for ablating tissue
CN111433066A (en) * 2017-12-04 2020-07-17 三菱自动车工业株式会社 Clutch control device
US11160600B2 (en) 2018-03-01 2021-11-02 Covidien Lp Monopolar return electrode grasper with return electrode monitoring

Similar Documents

Publication Publication Date Title
JP2001003776A (en) Automatic transmission control device
JP5278590B2 (en) Vehicle control system and vehicle control method
JP2008101742A (en) Vehicle control system, control method, program for realizing this control method by computer, and recording medium with this program recorded
JP3577315B2 (en) Method for controlling a vehicle power transmission path including a continuously variable transmission
JP2623972B2 (en) Control device for vehicle-mounted internal combustion engine
JP2002031224A (en) Control method and control device for automatic transmission
JP2868641B2 (en) Transmission control device for automatic transmission
JPH09163509A (en) Vehicle driver
JP5245519B2 (en) Engine bench system
JP3577950B2 (en) Automatic transmission shift control device and automatic transmission kickdown estimation method
JP3052218B2 (en) Creep control device for automatic transmission for vehicles
JPH0854031A (en) Starting control method
JP3915393B2 (en) Shift control device for continuously variable transmission
JP2848076B2 (en) Control device for vehicles with automatic transmission
JP2006022913A (en) Engine brake controller by continuously variable transmission
JPH11241764A (en) Shift control device for automatic transmission
JPH1059022A (en) Gear change controller of automatic transmission
JP2546985B2 (en) Shift control method for automatic transmission
JP2002130466A (en) Shift control method for automatic transmission
JPH01113531A (en) Start control device for vehicle incorporating automatic transmission
JP2004124973A (en) Device and method of controlling travelling of vehicle
JPH065253Y2 (en) Engine controller
JPH0574744B2 (en)
JP2001280485A (en) Creep strength control device for transmission for vehicle.
JP3303703B2 (en) Anti-creep device for automatic transmission

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308