JP2001003167A - Method for measuring resistance value of metallic vapor deposition film - Google Patents

Method for measuring resistance value of metallic vapor deposition film

Info

Publication number
JP2001003167A
JP2001003167A JP11175011A JP17501199A JP2001003167A JP 2001003167 A JP2001003167 A JP 2001003167A JP 11175011 A JP11175011 A JP 11175011A JP 17501199 A JP17501199 A JP 17501199A JP 2001003167 A JP2001003167 A JP 2001003167A
Authority
JP
Japan
Prior art keywords
film
deposited
resistance value
eddy current
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11175011A
Other languages
Japanese (ja)
Inventor
Osamu Yasuda
修 安田
Toshio Adachi
稔雄 安達
Michiyasu Moriwaki
道泰 森脇
Shinichi Kato
新一 加藤
Mikio Ishida
幹生 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11175011A priority Critical patent/JP2001003167A/en
Publication of JP2001003167A publication Critical patent/JP2001003167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring each of resistance value of the surface and back face in a both side vapor deposition film without forming non-vapor deposited parts in an online system with the improved precision at the time of measuring the resistance value of the film. SOLUTION: This is a method for measuring the resistance value of a metallic vapor deposition film in which the film resistance value R of a metallic vapor deposition film is measured, where the film is obtd. by laminating a conductor metallic layer 7 on a belt like film 4 to be vapor-deposited by vapor- depositing a conductor metal on one side of the film 4 to be vapor-deposited running so as to be supplied from a raw sheet film roll 1 toward a take-up roll 9 in the process of its running, in which, by eddy current type coil sensors 5 and 8, the eddy current generated on the conductor metallic layer 7 is measured and is transformed into voltage V, and by the voltage V, the resistance value R of the metallic vapor deposition film is measured by the following approximate expression: R=a/V2+b/V+c [where (a), (b) and (c) are constants].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属蒸着フィルム
の抵抗値の測定方法であって、より詳細には、渦電流式
コイルセンサーおよび近似式を用いることにより、走行
する金属蒸着フィルムの抵抗値Rを測定する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring the resistance of a metal-deposited film, and more particularly, to the method of measuring the resistance of a running metal-deposited film by using an eddy current coil sensor and an approximate expression. It relates to a method for measuring R.

【0002】[0002]

【従来の技術】プラスチックフィルム、ガラスシート等
の蒸着基材上に、金属または金属酸化物を積層させる方
法として、蒸着基材上に金属等を真空下で蒸着させる真
空蒸着法が広く用いられている。この真空蒸着法によ
り、装飾用、電気用等の各種蒸着製品が製造されてい
る。
2. Description of the Related Art As a method of laminating a metal or a metal oxide on a deposition substrate such as a plastic film or a glass sheet, a vacuum deposition method of depositing a metal or the like under a vacuum on a deposition substrate is widely used. I have. Various vapor deposition products for decoration, electric use, etc. are manufactured by this vacuum vapor deposition method.

【0003】蒸着製品の代表例としてコンデンサー用金
属蒸着フィルム(以下、単に「金属蒸着フィルム」とい
う)が挙げられる。真空蒸着法を用いて金属蒸着フィル
ムを作製した後には、金属蒸着フィルムの抵抗値を測定
する必要がある場合があるが、オフライン、すなわち、
金属蒸着フィルム作製後にフィルムが静止した状態でそ
の抵抗値を測定する方法については、様々な測定方法が
既に確立している。
A typical example of a vapor-deposited product is a metal vapor-deposited film for a capacitor (hereinafter, simply referred to as "metal-deposited film"). After preparing a metal deposited film using a vacuum deposition method, it may be necessary to measure the resistance value of the metal deposited film, but offline, that is,
Various methods have already been established for measuring the resistance value of the metal-evaporated film after the film has been stationary while the film is stationary.

【0004】また、通常、このようなフィルムは原反フ
ィルムロールから繰り出され、途中で金属を蒸着されて
巻き取りロールに巻き取られながら作製されるのである
が、オンライン、すなわち、金属蒸着フィルムを作製中
(すなわち走行中)にフィルムの抵抗値を測定する方法
としては、光透過方式(レーザー透過方式を含む)、渦
電流方式等の方法が考案され、実用化されており、一般
的なコンデンサー用金属蒸着フィルムの製造装置にも広
く採用されている。
Usually, such a film is unwound from a raw film roll, metal is vapor-deposited on the way, and is produced while being wound up by a take-up roll. As a method of measuring the resistance value of the film during production (that is, during running), a method such as a light transmission method (including a laser transmission method) and an eddy current method have been devised and put into practical use, and a general capacitor is used. Is widely used in metal vapor deposition film manufacturing equipment.

【0005】ここで、渦電流方式に用いられる渦電流コ
イルセンサーについて簡単に説明する。図5に示すよう
に、コイルに交流電流i1を流すと、交流磁界ができ
る。電流i1が流れるコイルの先に金属薄膜がある場合
には、この交流磁界により、その金属薄膜に渦電流i2
が発生する。発生する電流は、オームの法則により、抵
抗値Rに反比例する。また、この渦電流i2により元の
磁界を妨げる方向に磁界が発生し、コイルの電流i1
変化する。渦電流コイルセンサーは、このコイルの電流
変化を電圧Vに変換して出力する。
Here, an eddy current coil sensor used in the eddy current method will be briefly described. As shown in FIG. 5, when an alternating current is supplied i 1 to the coil, it is an alternating magnetic field. When there is a metal thin film at the end of the coil through which the current i 1 flows, the eddy current i 2
Occurs. The generated current is inversely proportional to the resistance value R according to Ohm's law. Further, the by eddy current i 2 magnetic field is generated in a direction to prevent the original magnetic field, the current i 1 of the coil changes. The eddy current coil sensor converts a change in the current of the coil into a voltage V and outputs the voltage.

【0006】[0006]

【発明が解決しようとする課題】しかし、渦電流方式を
用いて金属蒸着フィルムの抵抗値を測定する場合、従来
から渦電流式の電圧から抵抗値への変換においては、理
論的には以下の(数1)の関係が成立するが、プラスチ
ックフィルム上に真空蒸着法により金属等を蒸着させた
金属蒸着フィルムにおいては成立していない。すなわ
ち、金属蒸着フィルムに以下の(数1)をそのまま適用
した場合、誤差が大きいという問題がある; (数1) R=a/V (ここで、Rは抵抗値、Vは渦電流コイルセンサーから
の出力電圧、aは定数である)
However, when measuring the resistance value of a metal-deposited film using the eddy current method, conventionally, in the conversion from the voltage of the eddy current method to the resistance value, the following is theoretically required. The relationship of (Equation 1) holds, but does not hold for a metal-deposited film in which a metal or the like is deposited on a plastic film by a vacuum deposition method. That is, when the following (Equation 1) is directly applied to a metal deposition film, there is a problem that an error is large; (Equation 1) R = a / V (where R is a resistance value, and V is an eddy current coil sensor. Output voltage from a is a constant)

【0007】ところで、金属蒸着フィルムの片面にのみ
金属等を蒸着させた片面蒸着フィルムの場合には、光透
過方式または渦電流方式でも容易にかつ安価に走行中に
金属蒸着フィルムの抵抗値を測定できる。しかし、金属
蒸着フィルムの両面に金属等を蒸着させた両面蒸着フィ
ルムの場合には、表面または裏面それぞれの抵抗値を走
行中に同時に測定することはできない。
[0007] In the case of a single-sided vapor deposition film in which metal or the like is vapor-deposited only on one side of the metal vapor deposition film, the resistance value of the metal vapor deposition film can be measured easily and inexpensively by the light transmission method or the eddy current method. it can. However, in the case of a double-sided vapor-deposited film in which a metal or the like is vapor-deposited on both sides of a metal-deposited film, it is impossible to simultaneously measure the resistance value of each of the front surface and the rear surface during running.

【0008】そのため、両面蒸着フィルムの表面または
裏面の抵抗値を測定する場合には、両面蒸着フィルムの
片面の一部に金属等を蒸着させない非蒸着部を設定し、
その非蒸着部に対して光透過方式または渦電流方式の測
定方法を適用している。しかし、これでは、非蒸着部を
設定する必要があるため、フィルムにロス部分が発生し
製品の歩留まり低下による生産性悪化が発生してしま
う。
Therefore, when measuring the resistance value of the front or back surface of the double-sided vapor-deposited film, a non-vapor-deposited portion where metal or the like is not vapor-deposited on a part of one side of the double-sided vapor-deposited film is set.
A light transmission method or an eddy current measurement method is applied to the non-evaporated portion. However, in this case, since it is necessary to set a non-evaporated portion, a loss portion occurs in the film, and productivity is deteriorated due to a decrease in product yield.

【0009】さらに、最近では、アルミ箔の代わりとし
て両面非蒸着部なし蒸着フィルムが使用されるなどの工
法が拡大しつつあるため蒸着時に非蒸着部の存在しない
蒸着フィルムが増加している。このような非蒸着部が存
在しない蒸着フィルムの抵抗値を渦電流方式を用いて測
定する場合には、わざわざ非蒸着部を設定する必要があ
るので、ロス金額が多大となってしまう。
[0009] Furthermore, recently, since a method of using a vapor deposition film without a non-vapor deposition portion on both sides instead of an aluminum foil is expanding, vapor deposition films having no vapor deposition portion during vapor deposition are increasing. When measuring the resistance value of a vapor-deposited film having no such non-vapor-deposited portion using the eddy current method, it is necessary to set the non-vapor-deposited portion separately, so that the loss amount becomes large.

【0010】非蒸着部を形成せず、直接両面蒸着フィル
ムの抵抗値を光透過方式によって測定する方法も考えら
れるが、片面蒸着フィルムですらその光透過率は約0.
3%とわずかであるので、両面蒸着フィルムの光透過率
は約0.0003%となり、実用的ではない。
A method of directly measuring the resistance value of a double-sided deposited film by a light transmission method without forming a non-deposited portion is also conceivable. However, even a single-sided deposited film has a light transmittance of about 0.1.
Since it is only 3%, the light transmittance of the double-sided evaporated film is about 0.0003%, which is not practical.

【0011】本発明は上記課題を解決するためになさ
れ、その目的とするところは、フィルムの抵抗値を測定
する際の精度を向上させること、およびオンライン方式
において、非蒸着部を形成せずに両面蒸着フィルムの表
面および裏面のそれぞれの抵抗値を測定する方法を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to improve the accuracy in measuring the resistance value of a film and to form an on-line method without forming a non-deposited portion. It is an object of the present invention to provide a method for measuring the respective resistance values of the front and back surfaces of a double-sided evaporated film.

【0012】[0012]

【課題を解決するための手段】上記課題を解決する、本
発明に係る金属蒸着フィルムの抵抗値の測定方法は、原
反フィルムロール1から巻き取りロール9に向けて繰り
出されて走行する帯状の被蒸着フィルム4の一面に導体
金属を蒸着することにより、被蒸着フィルム4上に導体
金属層7を積層した金属蒸着フィルムの膜抵抗値Rを走
行中に測定する金属蒸着フィルムの抵抗値の測定方法で
あって、渦電流式コイルセンサー5、8によって、導体
金属層7に発生した渦電流を測定して電圧Vに変換し、
電圧Vにより金属蒸着フィルムの抵抗値Rを近似式(R
=a/V2+b/V+c(ここで、a,bおよびcは定
数である)。)により測定する方法である。
According to the present invention, there is provided a method for measuring a resistance value of a metal-deposited film according to the present invention, which comprises a belt-like film which is fed from a raw film roll 1 toward a take-up roll 9 and travels. Measurement of the resistance R of the metal-deposited film in which the conductive metal is deposited on one surface of the film-deposited film 4 to measure the film resistance R of the metal-deposited film obtained by laminating the conductive metal layer 7 on the film-deposited film 4 during running. A eddy current generated in the conductive metal layer 7 by the eddy current type coil sensors 5 and 8 and converted into a voltage V,
The resistance value R of the metallized film is approximated by the voltage
= A / V 2 + b / V + c (where a, b and c are constants). ).

【0013】上記課題を解決する、本発明に係る他の金
属蒸着フィルムの抵抗値の測定方法は、原反フィルムロ
ール1から巻き取りロール9に向けて繰り出されて走行
する帯状の被蒸着フィルム4の両面に導体金属を蒸着す
ることにより、被蒸着フィルム4の両面に導体金属層7
を積層した金属蒸着フィルムの裏面の抵抗値R2を走行
中に測定する金属蒸着フィルムの抵抗値の測定方法であ
って、被蒸着フィルム4の表面に導体金属を蒸着した後
に、渦電流式コイルセンサー5によって、表面側の導体
金属層7に発生した渦電流を測定して電圧V1に変換
し、電圧V1により金属蒸着フィルムの表面の抵抗値R1
を近似式(R1=a/V1 2+b/V1+c、ここで、a,
bおよびcは定数である)により算出する工程、被蒸着
フィルム4の裏面にも導体金属を蒸着した後に、渦電流
式コイルセンサー8によって、両面の導体金属層7に発
生した渦電流を測定して電圧V1+2に変換し、電圧V1+2
により金属蒸着フィルムの両面合成抵抗値R1+2を近似
式(R1+ 2=a/(V1+22+b/V1+2+c、ここで、
a,bおよびcは定数である)により算出する工程、お
よび表面の抵抗値R1と両面合成抵抗値R1+2とから、裏
面の抵抗値R2を式(R2=(R1+2−R1)/(R1+2
1))から算出する工程、を包含する。
Another gold according to the present invention that solves the above-mentioned problems.
The method for measuring the resistance of metallized films is
Roll 1 to take-up roll 9
Conductive metal is deposited on both sides of the strip-shaped film 4 to be deposited.
Thus, the conductor metal layers 7 are formed on both surfaces of the film 4 to be deposited.
Resistance R on the back surface of a metallized film on whichTwoTraveling
This is a method for measuring the resistance value of a metallized film measured during
After depositing a conductive metal on the surface of the film 4
In addition, the eddy current type coil sensor 5 causes the conductor on the surface side
The eddy current generated in the metal layer 7 is measured and the voltage V1Conversion to
And the voltage V1The resistance R of the surface of the metallized film1
To the approximate expression (R1= A / V1 Two+ B / V1+ C, where a,
b and c are constants)
After depositing a conductive metal on the back surface of the film 4,
With the coil sensor 8, the conductor metal layers 7 on both sides are emitted.
Measure the generated eddy current and measure the voltage V1 + 2To the voltage V1 + 2
The composite resistance value R on both sides of the metallized film1 + 2Approximate
The formula (R1+ Two= A / (V1 + 2)Two+ B / V1 + 2+ C, where
a, b and c are constants)
And surface resistance R1And double-sided combined resistance value R1 + 2From the back
Surface resistance RTwoBy the formula (RTwo= (R1 + 2-R1) / (R1 + 2
R1)).

【0014】[0014]

【発明の実施の形態】以下、本発明をその実施例および
図面と共に詳細に説明する。第1図に示したような半連
続式真空蒸着装置を用い、ポリエチレンテレフタレート
フィルム4(厚み4μm、幅500mm、長さ3000
0m、以下単に「フィルム」という)の両面にアルミニ
ウムを蒸着する。まず、原反フィルムロール1から繰り
出されたフィルム4は、冷却ローラーキャン2の外周に
沿いながら、蒸着源3aからその表面にアルミニウムを
蒸着され、このようにしてフィルム4の表面上に導体金
属層7aが積層される。導体金属層7aの厚みは約30
nmであり、蒸着時の温度は約1000℃、圧力は約1
×10-4Pa程度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments and drawings. Using a semi-continuous vacuum evaporation apparatus as shown in FIG. 1, a polyethylene terephthalate film 4 (thickness 4 μm, width 500 mm, length 3000)
0 m, hereinafter simply referred to as “film”). First, aluminum is vapor-deposited on the surface of the film 4 fed from the film roll 1 from the vapor deposition source 3a along the outer periphery of the cooling roller can 2, and thus the conductive metal layer is formed on the surface of the film 4. 7a are stacked. The thickness of the conductive metal layer 7a is about 30
nm, the temperature during deposition is about 1000 ° C., and the pressure is about 1
It is about × 10 −4 Pa.

【0015】表面にアルミニウムを蒸着されて導体金属
層7aが積層されたフィルム4は、蒸着源3aの後方に
配置された渦電流コイルセンサー5によって、その表面
の抵抗値R1を測定される。段落番号0005において
説明したように、交流電流i1が流れる渦電流コイルセ
ンサー5の先に導体金属層7があるので、導体金属層7
aに抵抗値R1に反比例する渦電流i2が発生する。この
渦電流i2は元の磁界を妨げる方向に磁界を発生させる
ため、渦電流コイルセンサー5に流れる交流電流が変化
し、この電流の変化量を電圧V1に変換して出力する。
The resistance value R 1 of the surface of the film 4 on which aluminum is vapor-deposited and on which the conductor metal layer 7a is laminated is measured by an eddy current coil sensor 5 disposed behind the vapor deposition source 3a. As described in paragraph number 0005, since the previous eddy current coil sensor 5 an alternating current i 1 flows have conductive metal layer 7, the conductive metal layer 7
eddy current i 2 which is inversely proportional to the resistance R 1 in a occurs. Therefore eddy current i 2 is for generating a magnetic field in a direction that prevents the original magnetic field, change the alternating current flowing in the eddy current coil sensor 5 and converts the amount of change the current into a voltage V 1.

【0016】本発明においては、上記電圧V1から抵抗
値R1を求める際に、以下の数式を用いる; (数2) R1=a/V1 2+b/V1+c(ここで、a,bおよびc
は定数である)。 この数式により、(数1)により求めた抵抗値と比較し
て、抵抗値R1をオフライン等によって精密に求めた抵
抗値により近づけることができ、抵抗値R1の測定精度
を向上させることができる。また、本発明においては渦
電流コイルセンサー5を用いて上記のように抵抗値R1
を求めることができ、非蒸着部を形成することなく、導
体金属層7が形成されたフィルム4の抵抗値を走行中に
測定することができる。
In the present invention, when determining the resistance value R 1 from the voltage V 1, using the following formulas; (number 2) R 1 = a / V 1 2 + b / V 1 + c ( where, a , B and c
Is a constant). According to this formula, the resistance value R 1 can be made closer to the resistance value precisely obtained by off-line or the like as compared with the resistance value obtained by (Equation 1), and the measurement accuracy of the resistance value R 1 can be improved. it can. In the present invention, the resistance value R 1 is determined using the eddy current coil sensor 5 as described above.
And the resistance value of the film 4 on which the conductive metal layer 7 is formed can be measured during running without forming a non-evaporated portion.

【0017】数2の定数a,bおよびcは、フィルムの
材質、密度等によって変化するが、およそaは約−0.
02以上0以下であり、bは約0以上1.0以下、cは
約−0.1以上0以下である。
The constants a, b and c in the equation (2) vary depending on the material, density and the like of the film.
02 or more and 0 or less, b is about 0 or more and 1.0 or less, and c is about -0.1 or more and 0 or less.

【0018】渦電流コイルセンサー5は、図4に示すよ
うに、3つのコイルセンサーから構成されている。実際
の抵抗値の測定では、フィルムの幅方向に抵抗値が異な
る(ばらつきがある)ため、3つのコイルセンサーから
それぞれ得られた電圧の平均値を電圧V1としている。
もちろん幅方向全幅にわたってのセンサーからフィルム
ギャップ距離の一定化を精度よく実施することで、1個
のセンサーの幅方向スキャンニング方式での幅方向分布
計測が計測可能である。
The eddy current coil sensor 5 is composed of three coil sensors as shown in FIG. In the measurement of the actual resistance value, (there are variations) widthwise to the resistance value is different from the film for, and the voltages V 1 and the average value of the obtained voltage from each of the three coils sensor.
Of course, by accurately stabilizing the film gap distance from the sensor over the entire width in the width direction, it is possible to measure the width distribution measurement by the width scanning method of one sensor.

【0019】このようにして表面の抵抗値R1を測定さ
れたフィルム4は、次いでその裏面に、表面と同様に冷
却ローラキャン6の外周に沿いながら蒸着源3bによっ
てアルミニウムを蒸着され、フィルム4の裏面上に導体
金属層7bが形成される。裏面にもアルミニウムを蒸着
されて導体金属層7bが積層されたフィルム4は、蒸着
源3bの後方に配置された渦電流コイルセンサー8によ
って、その両面の合成抵抗値R1+2を測定される。この
両面の合成抵抗値R1+2を測定する際にも、段落番号0
016において説明した数式(数2)を用いる。渦電流
コイルセンサー8によってその両面の合成抵抗値R1+2
を測定された後、フィルム4は巻き取りロール9に巻き
取られる。
The film 4 whose surface resistance R 1 has been measured in this manner is then vapor-deposited with aluminum on the rear surface thereof along the outer periphery of the cooling roller can 6 by the vapor deposition source 3b in the same manner as the front surface. Conductive metal layer 7b is formed on the back surface of the substrate. The combined resistance R 1 + 2 on both surfaces of the film 4 on which the conductor metal layer 7b is laminated by depositing aluminum on the back surface is measured by the eddy current coil sensor 8 disposed behind the deposition source 3b. . When measuring the combined resistance R 1 + 2 of both sides, the paragraph number 0
The equation (Equation 2) described in 016 is used. The combined resistance R 1 + 2 on both sides of the eddy current coil sensor 8
Is measured, the film 4 is taken up by a take-up roll 9.

【0020】また、上記のようにして求められた表面の
抵抗値R1および両面の合成抵抗値R1+2から、裏面の抵
抗値R2を以下の数式によって算出する; (数3) (R2=(R1+2−R1)/(R1+2・R1))。
Further, the combined resistance value R 1 + 2 of the resistance value R 1 and both sides of the surface obtained as described above, the back surface of the resistance value R 2 is calculated by the following formulas; (Equation 3) ( R 2 = (R 1 + 2 −R 1 ) / (R 1 + 2 · R 1 )).

【0021】ここで数2から得られた各抵抗値R1およ
びR1+2と、数1から得られた抵抗値と、接触式により
実際に求めた抵抗値との相関関係を図3に示す。図3か
ら理解されるように、接触式により実際に求めた抵抗値
(図3では白抜きの○、「生データ」と記載)と、数2
から得られた抵抗値(補正近似有、破線)との間の差は
高々0.25Ω/cm2であった。なお、接触式により実
際に求めた抵抗値のばらつきは±0.25Ω/cm2であ
った。一方、接触式により実際に求めた抵抗値と、数1
から得られた抵抗値(補正近似無、実線)との間の差
は、大きいところでは0.75Ω/cm2もあった。
FIG. 3 shows the correlation between the resistance values R 1 and R 1 + 2 obtained from Expression 2 , the resistance values obtained from Expression 1, and the resistance values actually obtained by the contact equation. Show. As can be understood from FIG. 3, the resistance value actually obtained by the contact method (in FIG. 3, white circles and “raw data”) and Equation 2
Was at most 0.25 Ω / cm 2 . The variation in the resistance value actually obtained by the contact method was ± 0.25Ω / cm 2 . On the other hand, the resistance value actually obtained by the contact method and
Was as large as 0.75 Ω / cm 2 at a large value.

【0022】なお、本発明のように、渦電流コイルセン
サーを用いて抵抗値の測定を行う場合には、基材となる
フィルムが充分に薄ければ、表面および裏面の合計蒸着
厚みの測定値と、それに相当する厚みの片面蒸着の測定
値との間には有意差がないことがわかった。さらにフィ
ルム厚みが50μm以内であれば十分な精度が得られる
ことがわかった。
When the resistance value is measured using an eddy current coil sensor as in the present invention, if the base film is sufficiently thin, the measured value of the total vapor deposition thickness on the front and back surfaces is obtained. It was found that there was no significant difference between the measured value and the measured value of single-sided deposition having a thickness corresponding thereto. Further, it was found that sufficient accuracy could be obtained if the film thickness was within 50 μm.

【0023】なお、いうまでもないが、フィルム4の厚
み、幅等の数値は一例にすぎない。また、上記の説明で
は先に表面、後に裏面の蒸着を行ったが、この「表面」
「裏面」の用語は説明を容易にするためのものであり、
先に裏面、後に表面の蒸着をしてもよい。
Needless to say, the numerical values such as the thickness and width of the film 4 are merely examples. Further, in the above description, vapor deposition was performed on the front surface and then on the rear surface.
The term "backside" is intended to facilitate explanation,
The back surface may be deposited first, and then the front surface may be deposited later.

【0024】[0024]

【発明の効果】上述のように、本発明により、原反フィ
ルムロール1から繰り出されて走行するフィルム4に真
空蒸着法により導体金属層7を両面に積層して金属蒸着
フィルムを作製する方法において、非蒸着部を作成する
ことなく、走行中の金属蒸着フィルム4の表面および裏
面の抵抗値、並びに表面および裏面の合成抵抗値を簡単
に測定することが蒸着膜厚抵抗が測定可能となった。こ
れにより、抵抗値の管理、制御レベルを向上することが
でき、さらに非蒸着部を廃棄することがなくなるため、
ロスの低減化が図れ、金属蒸着フィルムの生産性を顕著
に向上させることができる。また、本発明は、コンデン
サ用フィルムの抵抗値の測定に顕著な効果が得られる
が、装飾材料、包装材料、フィルター等の蒸着膜を必要
とする製品における抵抗値の測定にも好適である。
As described above, according to the present invention, there is provided a method for producing a metal-deposited film by laminating a conductive metal layer 7 on both sides of a film 4 which is fed from a raw film roll 1 and travels by a vacuum deposition method. In addition, it is possible to easily measure the resistance value of the front and back surfaces of the running metal-deposited film 4 and the combined resistance value of the front surface and the back surface without forming a non-deposited portion, so that the deposited film thickness resistance can be measured. . As a result, the management of the resistance value, the control level can be improved, and the non-evaporated portion is not discarded.
The loss can be reduced, and the productivity of the metal-deposited film can be significantly improved. The present invention has a remarkable effect on the measurement of the resistance value of a film for a capacitor, but is also suitable for measuring the resistance value of a product requiring a vapor deposition film such as a decorative material, a packaging material, and a filter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】真空蒸着によるコンデンサ用フィルムの製造装
置の内部正面図
FIG. 1 is an internal front view of an apparatus for manufacturing a capacitor film by vacuum evaporation.

【図2】金属蒸着フィルムの断面図FIG. 2 is a sectional view of a metal-deposited film.

【図3】抵抗値Rと電圧Vとの相関図FIG. 3 is a correlation diagram between a resistance value R and a voltage V;

【図4】渦電流コイルセンサー5の配置図FIG. 4 is a layout diagram of the eddy current coil sensor 5.

【図5】渦電流コイルセンサーによる測定の概念を表す
説明図
FIG. 5 is an explanatory diagram showing a concept of measurement by an eddy current coil sensor.

【符号の説明】[Explanation of symbols]

1 原反フィルムロール 2 冷却ローラーキャン(表面蒸着) 3 蒸発源(表面蒸着) 4 被蒸着フィルム(ポリエチレンテレフタラートフィ
ルム) 5 渦電流コイルセンサー(表面抵抗値測定) 6 冷却ローラーキャン(裏面蒸着) 7 蒸着金属層 8 渦電流コイルセンサー(両面合成抵抗値測定) 9 巻き取りロール
REFERENCE SIGNS LIST 1 raw film roll 2 cooling roller can (surface evaporation) 3 evaporation source (surface evaporation) 4 film to be evaporated (polyethylene terephthalate film) 5 eddy current coil sensor (surface resistance measurement) 6 cooling roller can (back surface evaporation) 7 Deposited metal layer 8 Eddy current coil sensor (both sides combined resistance measurement) 9 Take-up roll

フロントページの続き (72)発明者 森脇 道泰 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 加藤 新一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 石田 幹生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G028 AA01 AA02 BC02 CG02 DH04 FK01 GL11 HN15 2G053 AA24 AB21 BA16 BB03 BC02 CA03 CA17 CA18 DA01 4F006 AA35 AB73 BA07 CA08 DA01 4K029 AA11 AA25 BA03 BB04 BD00 EA00 Continuing on the front page (72) Inventor Michiyasu Moriwaki 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Shinichi Kato 1006 Okadoma Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co. ) Inventor Mikio Ishida 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (reference) AA11 AA25 BA03 BB04 BD00 EA00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原反フィルムロール(1)から巻き取りロ
ール(9)に向けて繰り出されて走行する帯状の被蒸着
フィルム(4)の一面に導体金属を蒸着することによ
り、前記被蒸着フィルム(4)上に導体金属層(7)を
積層した金属蒸着フィルムの膜抵抗値Rを前記走行中に
測定する金属蒸着フィルムの抵抗値の測定方法であっ
て、 渦電流式コイルセンサー(5;8)によって、前記導体
金属層(7)に発生した渦電流を測定して電圧Vに変換
し、前記電圧Vにより前記金属蒸着フィルムの抵抗値R
を以下の近似式により測定する、金属蒸着フィルムの抵
抗値の測定方法: R=a/V2+b/V+c (ここで、a,bおよびcは定数である)。
The present invention is characterized in that a conductive metal is vapor-deposited on one surface of a strip-shaped deposition film (4) which is fed from a raw film roll (1) toward a take-up roll (9) and runs, thereby forming the deposition film. (4) A method for measuring the resistance value of a metal-deposited film, wherein the film resistance value R of the metal-deposited film having a conductive metal layer (7) laminated thereon is measured during the traveling, wherein the eddy-current coil sensor (5; 8), the eddy current generated in the conductive metal layer (7) is measured and converted into a voltage V, and the resistance value R of the metal-deposited film is calculated by the voltage V.
Is measured according to the following approximate formula: R = a / V 2 + b / V + c (where a, b and c are constants).
【請求項2】原反フィルムロール(1)から巻き取りロ
ール(9)に向けて繰り出されて走行する帯状の被蒸着
フィルム(4)の両面に導体金属を蒸着することによ
り、前記被蒸着フィルム(4)の両面に導体金属層
(7)を積層した金属蒸着フィルムの裏面の抵抗値R2
を前記走行中に測定する金属蒸着フィルムの抵抗値の測
定方法であって、 前記被蒸着フィルム(4)の表面に導体金属を蒸着した
後に、渦電流式コイルセンサー(5)によって、前記表
面側の導体金属層(7)に発生した渦電流を測定して電
圧V1に変換し、前記電圧V1により前記金属蒸着フィル
ムの表面の抵抗値R1を近似式(R1=a/V1 2+b/V
1+c、ここで、a,bおよびcは定数である)により
算出する工程、 前記被蒸着フィルム(4)の裏面にも導体金属を蒸着し
た後に、渦電流式コイルセンサー(8)によって、両面
の導体金属層(7)に発生した渦電流を測定して電圧V
1+2に変換し、前記電圧V1+2により前記金属蒸着フィル
ムの両面合成抵抗値R1+2を近似式(R1+2=a/(V
1+22+b/V1+2+c、ここで、a,bおよびcは定
数である)により算出する工程、および前記表面の抵抗
値R1と両面合成抵抗値R1+2とから、裏面の抵抗値R2
を式(R2=(R1+2−R1)/(R1+2・R1))から算
出する工程、を包含する、金属蒸着フィルムの抵抗値の
測定方法。
2. A film to be deposited by depositing a conductive metal on both sides of a strip-shaped film to be deposited (4) which is fed from a raw film roll (1) toward a take-up roll (9) and runs. The resistance value R 2 of the back surface of the metal deposition film in which the conductor metal layer (7) is laminated on both surfaces of (4).
Is a method of measuring the resistance value of a metal-deposited film during the traveling, wherein a conductive metal is deposited on the surface of the film-to-be-deposited (4), and then the eddy-current coil sensor (5) is used to measure the resistance of the surface. the conductive metal layer eddy current generated in the (7) was converted to voltages V 1 and measuring, approximating the resistance value R 1 of the surface of the metallized film by the voltages V 1 formula (R 1 = a / V 1 2 + b / V
1 + c, where a, b, and c are constants). A conductive metal is also deposited on the back surface of the film to be deposited (4), and then both sides are detected by an eddy current coil sensor (8). The eddy current generated in the conductive metal layer (7) is measured and the voltage V
1 + 2 , and the combined resistance value R 1 + 2 of both sides of the metal-deposited film is approximated by the voltage V 1 + 2 (R 1 + 2 = a / (V
1 + 2 ) 2 + b / V 1 + 2 + c, where a, b and c are constants), and from the surface resistance R 1 and the double-sided combined resistance R 1 + 2. , Back surface resistance R 2
From the formula (R 2 = (R 1 + 2 −R 1 ) / (R 1 + 2 · R 1 )).
JP11175011A 1999-06-22 1999-06-22 Method for measuring resistance value of metallic vapor deposition film Pending JP2001003167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11175011A JP2001003167A (en) 1999-06-22 1999-06-22 Method for measuring resistance value of metallic vapor deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11175011A JP2001003167A (en) 1999-06-22 1999-06-22 Method for measuring resistance value of metallic vapor deposition film

Publications (1)

Publication Number Publication Date
JP2001003167A true JP2001003167A (en) 2001-01-09

Family

ID=15988664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11175011A Pending JP2001003167A (en) 1999-06-22 1999-06-22 Method for measuring resistance value of metallic vapor deposition film

Country Status (1)

Country Link
JP (1) JP2001003167A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175919A (en) * 2011-01-28 2011-09-07 上海宏力半导体制造有限公司 Method for extracting resistance model of metal silicide film
JP2012073132A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Surface resistance measurement device
JP2012517692A (en) * 2009-02-10 2012-08-02 ショット アクチエンゲゼルシャフト Capacitor and manufacturing method thereof
CN111936662A (en) * 2018-03-27 2020-11-13 日东电工株式会社 Film manufacturing apparatus and method for manufacturing double-sided laminated film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517692A (en) * 2009-02-10 2012-08-02 ショット アクチエンゲゼルシャフト Capacitor and manufacturing method thereof
US8867191B2 (en) 2009-02-10 2014-10-21 Schott Ag Capacitor and method of making same
US9236183B2 (en) 2009-02-10 2016-01-12 Schott Ag Capacitor and method of making same
JP2012073132A (en) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd Surface resistance measurement device
CN102175919A (en) * 2011-01-28 2011-09-07 上海宏力半导体制造有限公司 Method for extracting resistance model of metal silicide film
CN111936662A (en) * 2018-03-27 2020-11-13 日东电工株式会社 Film manufacturing apparatus and method for manufacturing double-sided laminated film
KR20200135362A (en) 2018-03-27 2020-12-02 닛토덴코 가부시키가이샤 Film manufacturing apparatus and manufacturing method of double-sided laminated film
KR102414971B1 (en) 2018-03-27 2022-07-01 닛토덴코 가부시키가이샤 Film manufacturing apparatus and manufacturing method of double-sided laminated film
US11384424B2 (en) 2018-03-27 2022-07-12 Nitto Denko Corporation Film manufacturing apparatus and manufacturing method of double-sided laminated film
TWI784118B (en) * 2018-03-27 2022-11-21 日商日東電工股份有限公司 Film manufacturing device and method for manufacturing double-layer film

Similar Documents

Publication Publication Date Title
US20090194505A1 (en) Vacuum coating techniques
JP6082885B2 (en) Method and apparatus for manufacturing battery electrode sheet
WO2003001539A1 (en) Transparent conductive film roll and production method thereof, touch panel using it, and non-contact surface resistance measuring device
TW201942582A (en) Resistance measurement device, film manufacturing device, and conductive film manufacturing method
JP2001003167A (en) Method for measuring resistance value of metallic vapor deposition film
CN118792623A (en) Method for forming multilayer film
CN110691697A (en) Metal clad laminate and method for manufacturing the same
SE454630B (en) WIRED CONDENSOR AND SET AND APPARATUS FOR PREPARING THE SAME
JP2007201313A (en) Metal deposited film
CN217598070U (en) Solvent-free three-in-one compound equipment based on double-sided coating of middle layer
JP2020011168A (en) Die head and coating device
JP2007141853A (en) Transparent conductive film roll and touch panel
JP6970637B2 (en) Film manufacturing equipment and double-sided laminated film manufacturing method
JP2016140832A (en) Coating applicator of continuum and production method of base material with coating film
JP5182578B2 (en) Film slip detecting device and film transporting type conductive film forming apparatus provided with film slip detecting device
JP3293618B2 (en) Transparent vapor-deposited film and method for producing the same
US4841411A (en) Electrical capacitors having low capacitance tolerances and method for the manufacture thereof
JP2004273082A (en) Method for manufacturing magnetic recording medium and apparatus for manufacturing magnetic recording medium
JP2007197167A (en) Manufacturing method for cut web and slitter device for web
TWI255251B (en) Method for positioning and transferring at least two different patterns from a supply strip
JP2004346386A (en) Vacuum film-forming apparatus and transparent gas-barrier film
JPS60202502A (en) Magnetic head
JP2000167974A (en) Roll film
JP6023627B2 (en) Manufacturing method and manufacturing apparatus for film with inorganic thin film
CN112111725A (en) Device and method for measuring Plasma temperature of winding film coating machine