JP2001002494A - Method for epitaxial growth - Google Patents

Method for epitaxial growth

Info

Publication number
JP2001002494A
JP2001002494A JP11172410A JP17241099A JP2001002494A JP 2001002494 A JP2001002494 A JP 2001002494A JP 11172410 A JP11172410 A JP 11172410A JP 17241099 A JP17241099 A JP 17241099A JP 2001002494 A JP2001002494 A JP 2001002494A
Authority
JP
Japan
Prior art keywords
substrate
heat
concave portion
epitaxial growth
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11172410A
Other languages
Japanese (ja)
Inventor
Kazuto Takano
和人 高野
Tadaitsu Tsuchiya
忠厳 土屋
Harunori Sakaguchi
春典 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11172410A priority Critical patent/JP2001002494A/en
Publication of JP2001002494A publication Critical patent/JP2001002494A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for epitaxially growing, by which lowering of the temp. at the peripheral part of a substrate is suppressed when the substrate is heated, thereby the temp. distribution in the substrate can be kept uniform, and the thermal decomposition of the source gas and the growing of a thin film are uniformly executed over the whole surface of the crystal substrate when the crystal is grown, while preventing the constitution from becoming complicated and expensive. SOLUTION: In an epitaxial growing method, in which a gaseous starting material 15 is fed into a growing chamber 4 and a thin film crystal is grown on a substrate of a semiconductor or an insulative material, the substrate 1 is heated while allowing the amount of the heat given to the substrate 1 to have an inclination such that the amount of heat to be given to the peripheral part of the substrate is lager than the amount of heat to be given to the center part of substrate. The substrate 1 is heated by the radiant heat of a radiation-type heater 5 through a soaking control plate 6 having a spherical recessed part and an annular projecting part at the periphery of the recessed part. The substrate 1 is heated in such a manner that the amount of heat used for heating the center part of the substrate is given through the spherical recessed part and the amount of the heat used for heating the periphery of the substrate is given through the annular projecting part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エピタキシャル
法、特に容器内に原料ガスを送り込んで反応気体によ
り、半導体あるいは絶縁体の基板の表面に薄膜結晶を成
長させるエピタキシャル成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epitaxial method, and more particularly to an epitaxial growth method in which a raw material gas is fed into a container and a reactive gas is used to grow a thin film crystal on the surface of a semiconductor or insulator substrate.

【0002】[0002]

【従来の技術】結晶基板上に、化合物半導体の薄膜結晶
を成長させる方法としては、一般的にエピタキシャル成
長法がある。例えば、MOCVD(Metalorganic Chemic
al Vapour Deposition)法の装置では、反応炉内におい
て、支持台に乗せられた加熱状態にある結晶基板に、キ
ャリアーガスで希釈された複数の原料ガスを送り込み、
これらの原料ガスを結晶基板上で熱分解させて結晶を成
長させている。
2. Description of the Related Art In general, as a method of growing a compound semiconductor thin film crystal on a crystal substrate, there is an epitaxial growth method. For example, MOCVD (Metalorganic Chemic
al Vapor Deposition) apparatus, in a reaction furnace, a plurality of source gases diluted with a carrier gas are sent to a heated crystal substrate placed on a support,
These source gases are thermally decomposed on a crystal substrate to grow crystals.

【0003】従来の成長方法によると、基板口径が3イ
ンチ以内の小さい結晶基板までは結晶が旨く成長して良
好な製品が得られているのに対し、3インチを超える大
口径の基板に結晶を成長させると、結晶基板の周辺部の
温度が低下して成長にばらつきが生じる。これは、基板
の口径が3インチ超える大口径の基板になると、支持台
に乗せて加熱されている基板の周辺部からの放熱量が、
中心部に比して著しく多くなって基板の周辺に行くほど
温度が低下してしまい、同心円状に異なる熱分布になる
ためである。基板面内の中心部と周辺部の温度が異なる
と、原料ガスの熱分解の程度も基板面内で差異が生じ、
基板の中心部と周辺部の面内で薄膜の成長特性にばらつ
きが生じる。最近は、4インチや6インチなど、基板の
大口径化が進むにつれて、基板の周辺部の温度低下が製
法上の問題になっている。この温度分布の影響は、原料
の熱分解の温度依存性が大きい原料を使った結晶成長法
に於いて特に顕著に現われる。
According to the conventional growth method, a crystal is successfully grown up to a small crystal substrate having a substrate diameter of 3 inches or less, and a good product is obtained. When the crystal is grown, the temperature at the peripheral portion of the crystal substrate is lowered, and the growth varies. This means that when a substrate with a large diameter exceeds 3 inches, the amount of heat radiated from the periphery of the substrate, which is heated on the support,
This is because the temperature is remarkably increased as compared with the central portion, and the temperature decreases as it goes to the periphery of the substrate, resulting in concentrically different heat distributions. If the temperature of the central part and the peripheral part in the substrate surface are different, the degree of thermal decomposition of the source gas also differs in the substrate surface,
Variations occur in the growth characteristics of the thin film in the central part and the peripheral part of the substrate. Recently, as the diameter of a substrate has become larger, such as 4 inches or 6 inches, a decrease in the temperature of the peripheral portion of the substrate has become a problem in the manufacturing method. The influence of the temperature distribution is particularly remarkable in a crystal growth method using a raw material having a large temperature dependency of thermal decomposition of the raw material.

【0004】図5は、従来の気相成長方法により成長さ
せたn―GaInp薄膜のキャリア濃度の分布を示して
いる。このn―GaInp薄膜は、4インチ基板上に成
長させたときのもので、キャリア濃度の面内分布は、ば
らつき±4.8%であった。このように、従来の気相成
長方法によると、直径4インチ基板に成長させた薄膜
は、基板の中心部と周辺部の面内でバラツキが山形状を
呈しており、大サイズ薄膜の成長特性に大きなばらつき
が生じる。基板の加熱温度分布を均一にして成長のばら
つきを防止するために、基板の周辺部を加熱するヒータ
ーなどを取り付けすることが考えられる。
FIG. 5 shows a distribution of carrier concentration of an n-GaInp thin film grown by a conventional vapor phase growth method. This n-GaInp thin film was grown on a 4-inch substrate, and the in-plane distribution of carrier concentration was ± 4.8%. As described above, according to the conventional vapor deposition method, the thin film grown on the 4-inch diameter substrate has a mountain-like variation in the planes of the central portion and the peripheral portion of the substrate. Causes large variations in In order to make the heating temperature distribution of the substrate uniform and prevent variations in growth, it is conceivable to attach a heater or the like for heating the peripheral portion of the substrate.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の気相成
長方法によると、基板の周辺部を加熱するヒーターを設
けなければならないため、構成が複雑化し、コスト高に
なる。
However, according to the conventional vapor phase growth method, a heater for heating the peripheral portion of the substrate must be provided, which complicates the structure and increases the cost.

【0006】それ故、本発明の目的は、構成の複雑化と
コスト高を抑えながら、基板の加熱に際し、基板の周辺
部の温度低下を防止して、基板面内の温度分布を均一に
保持することができ、結晶成長のときの原料ガスの熱分
解と薄膜の成長を、結晶基板の全面に亙って均一に行な
うことができるエピタキシャル成長方法を提供すること
にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to prevent the temperature of the peripheral portion of the substrate from dropping when heating the substrate and keep the temperature distribution in the substrate surface uniform while suppressing the complexity and cost of the structure. An object of the present invention is to provide an epitaxial growth method capable of uniformly performing the thermal decomposition of a source gas and the growth of a thin film during crystal growth over the entire surface of a crystal substrate.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
実現するため、成長容器内に原料ガスを送り込んで半導
体あるいは絶縁体の基板上に薄膜結晶を成長させるエピ
タキシャル成長方法において、前記基板に与えられる熱
量が前記基板の中心より前記基板の周囲が大きくなるよ
うに傾斜を持たせて前記基板を加熱することを特徴とす
るエピタキシャル成長方法を提供する。また、本発明
は、上記の目的を実現するため、前記基板の加熱は、前
記基板のエピタキシャル成長面の裏面に中心より周囲の
熱伝達係数が大きい均熱調整板を配置し、前記均熱調整
板を輻射型ヒーター等の熱源によって加熱するように
し、前記均熱調整板の配置は、前記均熱調整板の中心に
凹部を形成するとともに周囲に環状の凸部を形成し、前
記環状の凸部を前記基板の前記裏面に接触させることを
特徴とするエピタキシャル成長方法を提供し、前記均熱
調整板の中心の凹部の形成は、球面状の凹部、円錐状の
凹部、階段状の凹部、および円筒状の凹部から選択され
た1つの凹部を形成することを特徴とするエピタキシャ
ル成長方法を提供する。
In order to achieve the above object, the present invention provides an epitaxial growth method for feeding a raw material gas into a growth vessel to grow a thin film crystal on a semiconductor or insulator substrate. An epitaxial growth method is provided, wherein the substrate is heated with a slope such that a given amount of heat is greater at the periphery of the substrate than at the center of the substrate. Further, in order to achieve the above object, the present invention provides a method for heating the substrate, comprising: arranging a heat equalization adjustment plate having a larger heat transfer coefficient around the center than the center on the back surface of the epitaxial growth surface of the substrate; Is heated by a heat source such as a radiant heater, and the arrangement of the heat equalizing adjustment plate is such that a concave portion is formed at the center of the heat equalizing adjusting plate and an annular convex portion is formed around the same, and the annular convex portion is formed. Is provided in contact with the back surface of the substrate, wherein the center recess of the heat equalizing adjustment plate is formed by a spherical recess, a conical recess, a step-like recess, and a cylinder. The present invention provides an epitaxial growth method characterized in that one concave portion selected from a plurality of concave portions is formed.

【0008】[0008]

【発明の実施の形態】図1は、本発明の実施の形態のエ
ピタキシャル成長方法の概要を示している。エピタキシ
ャルの成長容器4は、基板1の加熱源として発熱体の輻
射型ヒーター5と、基板1の温度分布を均一にする均熱
調整板6を有し、さらに基板1と均熱調整板6を保持す
るためのカーボンサセプター10と、成長容器4の内に
複数の原料ガス15を送り込むためのガス供給口12、
ガス排気口13、および反応ガス通路14を備えてい
る。
FIG. 1 shows the outline of an epitaxial growth method according to an embodiment of the present invention. The epitaxial growth vessel 4 has a radiant heater 5 of a heating element as a heating source of the substrate 1 and a heat equalization adjusting plate 6 for making the temperature distribution of the substrate 1 uniform. A carbon susceptor 10 for holding, a gas supply port 12 for sending a plurality of source gases 15 into the growth vessel 4,
A gas exhaust port 13 and a reaction gas passage 14 are provided.

【0009】図2は、成長容器4内の平面的な配置関係
を示し、輻射型ヒーター5、カーボンサセプター10に
保持された均熱調整板6、均熱調整板6の裏側に基板
1、ガス供給口12とガス排気口13と反応ガス通路1
4の位置が示されている。この実施の形態では、4枚の
均熱調整板6と4枚の基板1が、カーボンサセプター1
0に保持されている。
FIG. 2 shows a planar arrangement in the growth vessel 4. The radiation heater 5, the soaking plate 6 held by the carbon susceptor 10, the substrate 1 on the back side of the soaking plate 6, and the gas Supply port 12, gas exhaust port 13, and reaction gas passage 1
The position of 4 is shown. In this embodiment, four heat equalizing adjustment plates 6 and four substrates 1 are used as carbon susceptors 1.
It is held at 0.

【0010】図3、図4は、均熱調整板6を示してお
り、中央の面に円筒状の凹部7、円筒状の凹部7の周囲
に環状の凸部8を有している。また、半導体ウエハの作
成時に方向を定めるためのオリエンテーション9を有す
る。
FIGS. 3 and 4 show the heat equalizing adjusting plate 6, which has a cylindrical concave portion 7 on the center surface and an annular convex portion 8 around the cylindrical concave portion 7. FIG. Further, the semiconductor wafer has an orientation 9 for determining a direction when the semiconductor wafer is formed.

【0011】図1、図2において、発熱体である輻射型
ヒーター5から均熱調整板6を介して熱量を基板1に与
えるには、図3、図4に示した均熱調整板6の中央の面
に形成されている円筒状の凹部7と、円筒状の凹部7の
周囲に形成されている環状の凸部8を経て与えるように
する。この場合、基板1は、例えば590℃に加熱され
るように輻射型ヒーター5、および均熱調整板6が設定
される。そして、基板1の中心の加熱は中央の面の円筒
状の凹部7を通して行われ、基板1の周囲の加熱は環状
の凸部8を通して行われる。
In FIG. 1 and FIG. 2, in order to apply heat to the substrate 1 from the radiant heater 5 which is a heating element via the heat equalizing adjustment plate 6, the heat equalizing adjustment plate 6 shown in FIG. It is provided through a cylindrical concave portion 7 formed on the central surface and an annular convex portion 8 formed around the cylindrical concave portion 7. In this case, the radiant heater 5 and the soaking control plate 6 are set so that the substrate 1 is heated to, for example, 590 ° C. Heating of the center of the substrate 1 is performed through a cylindrical concave portion 7 on the central surface, and heating around the substrate 1 is performed through an annular convex portion 8.

【0012】この実施の形態によると、結晶基板1を加
熱するための輻射型ヒーター5の熱は、均熱調整板6を
介して基板1に与えられる。その場合、結晶基板1のエ
ピタキシャル成長面の裏面に配置された均熱調整板6
は、中心の凹部7よりも周囲の環状の凸部8の方の熱伝
達係数が大きいから、基板1の中心に向ける熱量は、中
央の面に設けた円筒状の凹部7の空洞を通して伝達が調
整され、基板1の周囲に向ける熱量は、環状の凸部8の
面を通して伝達が調整される。これによって、基板1に
与えられる熱量は、基板1の中心より基板1の周囲が大
きくなり、基板1に与えられる熱量に傾斜を持たせて基
板1を加熱することが実現される。この結果、基板1の
中心の温度と基板1の周辺の温度は同一に保持されるよ
うになる。
According to this embodiment, the heat of the radiant heater 5 for heating the crystal substrate 1 is given to the substrate 1 via the heat equalizing adjustment plate 6. In this case, the heat equalizing adjustment plate 6 arranged on the back surface of the epitaxial growth surface of the crystal substrate 1
Since the heat transfer coefficient of the surrounding annular convex portion 8 is larger than that of the central concave portion 7, the amount of heat directed to the center of the substrate 1 is transmitted through the cavity of the cylindrical concave portion 7 provided on the central surface. The amount of heat that is adjusted and directed to the periphery of the substrate 1 is adjusted through the surface of the annular projection 8. As a result, the amount of heat applied to the substrate 1 becomes larger around the substrate 1 than at the center of the substrate 1, and the substrate 1 is heated while the amount of heat applied to the substrate 1 is inclined. As a result, the temperature at the center of the substrate 1 and the temperature around the substrate 1 are kept the same.

【0013】図1、図2に示した本発明の実施の形態の
エピタキシャル成長方法によると、1個のカーボンサセ
プター10に保持された4枚の基板1は、エピタキシャ
ル成長面の背面から4枚の均熱調整板6を介して輻射型
ヒーター5の輻射熱により全面が均一に加熱されてい
る。一方、4枚の基板1の表の面は、それぞれ、反応ガ
ス通路14に面して露出している。しかも、4枚の基板
1の反応ガス通路14には、ガス供給口12から送り込
まれた複数の原料ガス15による反応ガス16が充満し
ているから、反応ガス16は、全面が同一温度に加熱さ
れ、露出している4枚の基板1の表面に接触して、反応
ガス16による薄膜の結晶を成長させることができる。
使用済の反応ガスは、ガス排気口13から排出される。
According to the epitaxial growth method of the embodiment of the present invention shown in FIG. 1 and FIG. 2, four substrates 1 held by one carbon susceptor 10 are heated so as to be four sheets from the back of the epitaxial growth surface. The entire surface is uniformly heated by the radiation heat of the radiation heater 5 via the adjustment plate 6. On the other hand, the front surfaces of the four substrates 1 are exposed facing the reaction gas passages 14, respectively. Moreover, since the reaction gas passages 14 of the four substrates 1 are filled with the reaction gas 16 from the plurality of source gases 15 sent from the gas supply ports 12, the reaction gas 16 is heated to the same temperature over the entire surface. Then, the crystal of the thin film can be grown by the reaction gas 16 by contacting the exposed surfaces of the four substrates 1.
The used reaction gas is exhausted from the gas exhaust port 13.

【0014】図5は、本発明の実施の形態のエピタキシ
ャル成長方法により成長させたn―GaInP薄膜のキ
ャリア濃度分布を示している。このn―GaInP薄膜
は、III ―V族化合物半導体の減圧成長方法により成長
させるものであり、成長方法の実施の形態の例を説明す
る。(なお、判り易くするため、説明は、図1、図2の
符号を用いた)。石英の成長容器4の中央上部壁に、カ
ーボンサセプター10が設置されており、カーボンサセ
プター10の下面に4インチのガリウム砒素基板1が下
向きに取り付けられている。ガリウム砒素基板1は、エ
ピタキシャル成長面の裏面から均熱調整板6を介して輻
射型ヒーター5の幅射熱により、例えば590℃に加熱
される。反応ガス通路14に露出しているガリウム砒素
基板1の表面には、反応ガス16によって化合物半導体
の薄膜を成長させることができる。
FIG. 5 shows a carrier concentration distribution of the n-GaInP thin film grown by the epitaxial growth method according to the embodiment of the present invention. This n-GaInP thin film is grown by a method of growing a III-V compound semiconductor under reduced pressure, and an example of an embodiment of the growing method will be described. (Note that the description uses the reference numerals in FIGS. 1 and 2 for easy understanding.) A carbon susceptor 10 is provided on a central upper wall of the quartz growth container 4, and a 4-inch gallium arsenide substrate 1 is mounted on a lower surface of the carbon susceptor 10 in a downward direction. The gallium arsenide substrate 1 is heated to, for example, 590 ° C. from the back surface of the epitaxial growth surface via the heat equalization adjusting plate 6 by the radiation heat of the radiant heater 5. A compound semiconductor thin film can be grown on the surface of the gallium arsenide substrate 1 exposed in the reaction gas passage 14 by the reaction gas 16.

【0015】成長させる化合物半導体の薄膜は、ガリウ
ムインジウム燐(GaInP)である。GaInPのII
I 族原料としてトリメチルインジウム(TMI)とトリ
エチルガリウム(TEG)を、V族原料としてホスフィ
ン(PH3 )を、n型ドーパントにジシラン(Si2
6 )をそれぞれ使用した。原料を希釈するキャリアーガ
スは水素(H2 )を使用した。この4インチガリウム砒
素基板上に成長させた実施の形態によると、n―GaI
nP薄膜のキャリア濃度の面内分布は、ばらつき±1.
6%(図5参照)という均一な分布の特性値が得られ
た。図5からも明らかなように、基板を加熱する場合、
熱源からの熱量が、熱放散の少ない基板の中心よりも、
熱放散が大きい基板の周辺部が大きくなるように傾斜を
持たせるという本発明のエピタキシャル成長方法が、全
体として基板面内の温度分布を均一に保持させて、薄膜
の成長を基板全面に亙って平均化させることができ、そ
の結果、n―GaInP薄膜のキャリア濃度の面内分布
のばらつき低減に極めて効果的であることが判る。
The compound semiconductor thin film to be grown is gallium indium phosphide (GaInP). GaInP II
Trimethyl indium (TMI) and triethyl gallium (TEG) are used as Group I materials, phosphine (PH 3 ) is used as Group V materials, and disilane (Si 2 H) is used as an n-type dopant.
6 ) was used for each. Hydrogen (H 2 ) was used as a carrier gas for diluting the raw material. According to the embodiment grown on this 4-inch gallium arsenide substrate, n-GaI
The in-plane distribution of the carrier concentration of the nP thin film has a variation of ± 1.
A characteristic value of a uniform distribution of 6% (see FIG. 5) was obtained. As is clear from FIG. 5, when heating the substrate,
The amount of heat from the heat source is lower than the center of the substrate where heat dissipation is small.
The epitaxial growth method of the present invention in which the peripheral portion of the substrate having a large heat dissipation is inclined so as to be large, the temperature distribution in the substrate surface is uniformly maintained as a whole, and the thin film is grown over the entire surface of the substrate. It can be understood that the average can be averaged, and as a result, it is extremely effective in reducing the variation in the in-plane distribution of the carrier concentration of the n-GaInP thin film.

【0016】図1と図2に示した本発明の実施の形態に
おいて、エピタキシャル成長方法に用いられる薄膜結晶
としては、GaInPの他に、例えば、ガリウム砒素
(GaAs)、アルミニウムガリウム硫素(AIGaA
s)、ガリウムナイトライド(GaN)、ガリウムイン
ジウム砒素(GaInAs)などの化合物半導体材料を
使用することができ、さらに広く他の半導体材料にも適
応が可能である。また、本発明のエピタキシャル成長方
法に用いられる複数の原料ガスも、実施の形態のものに
限定されるものではなく、エピタキシャル成長方法の薄
膜結晶の成長に広く用いられる原料ガスを使用すること
が可能であり、キャリアーガスで複数の原料ガスを希釈
して送り込むことができる。
In the embodiment of the present invention shown in FIGS. 1 and 2, the thin film crystal used in the epitaxial growth method is, for example, gallium arsenide (GaAs) or aluminum gallium sulphate (AIGaA) in addition to GaInP.
s), gallium nitride (GaN), gallium indium arsenide (GaInAs), and other compound semiconductor materials can be used, and can be widely applied to other semiconductor materials. Also, the plurality of source gases used in the epitaxial growth method of the present invention are not limited to those of the embodiment, and a source gas widely used for growing a thin film crystal in the epitaxial growth method can be used. A plurality of source gases can be diluted with a carrier gas and sent.

【0017】本発明の実施の形態において、エピタキシ
ャル成長方法の基板に熱量を与える加熱源としては、例
えば輻射型ヒーターの場合、ヒーター側面が平坦な形状
のもの、段差をつけた形状のもの、カーブを持たせた形
状のもの等、輻射型ヒーターの幅射熱を均熱調整板を介
して基板に向けたときに、熱量による基板の温度分布が
適正に調整することができる形状の熱源を選択すること
ができる。
In the embodiment of the present invention, as a heating source for applying heat to the substrate in the epitaxial growth method, for example, in the case of a radiant heater, a heater having a flat side surface, a stepped shape, or a curve is used. Select a heat source with a shape such that the temperature distribution of the substrate due to the amount of heat can be appropriately adjusted when the width radiant heat of the radiant heater is directed to the substrate via the uniform heat adjusting plate, such as the one having the shape provided. be able to.

【0018】また、本発明のエピタキシャル成長方法の
実施の形態において、基板の加熱は、基板のエピタキシ
ャル成長面の裏面に中心より周囲の熱伝達係数が大きい
均熱調整板を配置して行われ、均熱調整板は輻射型ヒー
ター等の熱源によって加熱されているから、均熱調整板
の材質としてはグラファイトが適している。
Further, in the embodiment of the epitaxial growth method of the present invention, the substrate is heated by disposing a heat equalizing adjustment plate having a larger heat transfer coefficient around the center than the center on the back surface of the epitaxial growth surface of the substrate. Since the adjusting plate is heated by a heat source such as a radiant heater, graphite is suitable as a material of the soaking adjusting plate.

【0019】本発明の実施の形態において、均熱調整板
の配置は、均熱調整板の中心に凹部を形成するととも
に、凹部の周囲に環状の凸部を形成し、環状の凸部を基
板の裏面に接触させることにより、基板の加熱が行われ
る。また、均熱調整板の中心の凹部の形成は、球面状の
凹部、円錐状の凹部、階段状の凹部、および円筒状の凹
部の中から、選択された1つの凹部の形成によって行わ
れる。そして凹部の形成にあたっては、凹部に熱伝導性
の低い耐熱材を充填することができる。
In the embodiment of the present invention, the heat equalizing adjusting plate is arranged such that a concave portion is formed at the center of the heat equalizing adjusting plate, an annular convex portion is formed around the concave portion, and the annular convex portion is formed on the substrate. The substrate is heated by contacting the back surface of the substrate. The central concave portion of the heat equalizing adjusting plate is formed by forming one concave portion selected from a spherical concave portion, a conical concave portion, a stepped concave portion, and a cylindrical concave portion. When forming the recess, the recess can be filled with a heat-resistant material having low thermal conductivity.

【0020】本発明の実施の形態において、基板を保持
するカーボンサセプターと、中央の面に凹部を有し凹部
の周囲に環状の凸部を有する均熱調整板は、基板と均熱
調整板の最初の取り付けと、薄膜結晶を成長させた後の
基板の取り外しが容易な形状に構成されているなら、例
えば、両者を組立式の一体構成に形成することができ
る。そして、基板のサセプターと均熱調整板は、共にグ
ラファイトにより構成することもできる。
In the embodiment of the present invention, the carbon susceptor for holding the substrate and the heat equalizing adjustment plate having a concave portion on the central surface and having an annular convex portion around the concave portion are formed of the substrate and the heat equalizing adjusting plate. If the initial mounting and the removal of the substrate after growing the thin-film crystal are configured to be easy, for example, both can be formed into an integrated structure of an assembly type. The susceptor of the substrate and the soaking plate can both be made of graphite.

【0021】本発明のエピタキシャル成長方法の実施の
形態において、基板の加熱は、輻射型ヒーターなどの熱
源と、中央の面に凹部を有し凹部の周囲に環状の凸部を
有する均熱調整板により行われる。均熱調整板は、基板
の温度分布が均一になるように熱量を与えるために、例
えば、つぎのような形態の凹部と、環状の凸部を組み合
わせて均熱調整板が構成される。 (1)中心が最も深く、中心から周辺に向かって緩やか
に浅くなるカーブを描くような球面状の凹部と、凹部の
周囲の環状の凸部を有する均熱調整板。 (2)中心が最も深く、中心から周辺に向かって勾配状
に浅くなる円錐状の凹部と、凹部の周囲の環状の凸部を
有する均熱調整板。 (3)中心が最も深く、中心から周辺に向かって緩やか
に浅くなる同心円の階段状の凹部と、凹部の周囲の環状
の凸部を有する均熱調整板。 (4)同じ深さの円筒状の凹部と、凹部の周囲の環状の
凸部を有する均熱調整板。 (5)中央の面の凹部と、凹部に充填した熱伝導性の低
い耐熱材と、耐熱材の周辺の環状の凸部を有する均熱調
整板。(なお、中央の面の凹部に充填する耐熱材は、均
熱調整板の材質とは熱容量の異なる材質の耐熱材を詰め
る。これにより、基板に向ける熱量を減らして基板面内
の温度分布を調整することが可能になる。)
In the embodiment of the epitaxial growth method of the present invention, the substrate is heated by a heat source such as a radiant heater, and a uniform heat adjusting plate having a concave portion on the central surface and an annular convex portion around the concave portion. Done. In order to apply heat so that the temperature distribution of the substrate becomes uniform, for example, the heat equalizing adjustment plate is configured by combining a concave portion having the following configuration and an annular convex portion. (1) A heat equalizing plate having a spherical concave portion having a deepest center and a curve gradually decreasing from the center to the periphery, and an annular convex portion surrounding the concave portion. (2) A heat equalization adjusting plate having a conical concave portion whose center is deepest and gradually becomes shallower from the center to the periphery, and an annular convex portion around the concave portion. (3) A soaking control plate having a concentric stepped concave portion whose center is deepest and gradually becomes shallower from the center to the periphery, and an annular convex portion around the concave portion. (4) A heat equalization adjusting plate having a cylindrical concave portion having the same depth and an annular convex portion surrounding the concave portion. (5) A heat equalizing adjustment plate having a concave portion on the central surface, a heat-resistant material with low thermal conductivity filled in the concave portion, and an annular convex portion around the heat-resistant material. (Note that the heat-resistant material to be filled in the concave portion on the center surface is filled with a heat-resistant material having a different heat capacity from the material of the heat equalizing adjustment plate. This reduces the amount of heat directed to the substrate and reduces the temperature distribution in the substrate surface. Can be adjusted.)

【0022】本発明の実施の形態において、基板を加熱
する輻射型ヒーターなどの熱源の熱量は、中心に凹部を
有し凹部の周囲に環状の凸部を有する均熱調整板を介し
て基板に与えられる。基板の温度分布が均一になるよう
に適性な熱量を伝達するための中心の凹部の直径として
は、例えば、加熱される基板の直径100mmに対し
て、10mm〜90mmの範囲の直径の凹部を有するこ
とが望まれる。ここで中心に凹部を有する均熱調整板と
は、例えば、つぎのような形態の凹部を指しており、こ
の凹部と環状の凸部を組み合わせて均熱調整板が構成さ
れる。 (1)中心が最も深く、中心から周辺に向かって緩やか
に浅くなるカーブを描くような球面状の凹部。 (2)中心が最も深く中心から周辺に向かって勾配状に
浅くなる円錐状の凹部。 (3)中心が最も深く中心から周辺に向かって緩やかに
浅くなる同心円の階段状の凹部。 (4)中央の面の同じ深さの円筒状の凹部。 (5)中央に凹部を有し、この凹部に熱伝導性の低い耐
熱材を充填した凹部。
In the embodiment of the present invention, the amount of heat of a heat source such as a radiant heater for heating the substrate is supplied to the substrate via a heat equalizing adjusting plate having a concave portion at the center and an annular convex portion around the concave portion. Given. As the diameter of the central concave portion for transmitting an appropriate amount of heat so that the temperature distribution of the substrate becomes uniform, for example, a concave portion having a diameter in the range of 10 mm to 90 mm with respect to the diameter of the heated substrate of 100 mm is used. It is desired. Here, the heat equalization adjusting plate having a concave portion at the center refers to, for example, a concave portion having the following form, and the concave portion and the annular convex portion are combined to form a heat equalizing adjusting plate. (1) A spherical concave portion that has the deepest center and gradually curves from the center to the periphery. (2) A conical concave portion whose center is deepest and gradually becomes shallower from the center toward the periphery. (3) Concentric stepped concave portions whose center is deepest and gradually shallows from the center to the periphery. (4) A cylindrical recess of the same depth in the center plane. (5) A concave portion having a concave portion in the center and filled with a heat-resistant material having low thermal conductivity.

【0023】また、本発明の実施の形態において、輻射
型ヒーターなどの熱源と、中央の面に凹部を有し凹部の
周囲に環状の凸部を有する均熱調整板によって基板を加
熱する場合、基板の温度分布が均一になるように適性な
熱量を伝達するための中心の凹部の深さとしては、例え
ば、加熱される基板の直径100mmに対して、つぎの
ような凹部の深さの形態が望まれる。 (1)中心が最も深く、中心から周辺に向かって緩やか
に浅くなる球面状の凹部、円錐状の凹部、あるいは階段
状の凹部を有する均熱調整板の場合については、中央の
面の最も深い凹部の位置で深さ約10mmの凹部、周囲
の環状の凸部に近い最も浅い凹部の位置で深さ0.lm
m以上の凹部が望まれる。 (2)中央の面に同じ深さの円筒状の凹部を有する均熱
調整板の場合は、0.lmm以上ないし10mm以下の
範囲の深さの凹部にすることが望まれる。勿論、加熱さ
れる基板の直径が120mmとか、130mmに変更さ
れる場合は、凹部の深さはそれらに適する数値の実施の
形態に変更される。
In the embodiment of the present invention, when the substrate is heated by a heat source such as a radiant heater and a heat equalizing adjusting plate having a concave portion on the center surface and an annular convex portion around the concave portion, As the depth of the central concave portion for transmitting an appropriate amount of heat so that the temperature distribution of the substrate becomes uniform, for example, for a diameter of 100 mm of the substrate to be heated, the following concave portion depth Is desired. (1) In the case of a heat equalizing plate having a spherical concave portion, a conical concave portion, or a stepped concave portion whose center is deepest and gradually becomes shallower from the center to the periphery, the deepest portion of the central surface is provided. A concave portion having a depth of about 10 mm at the position of the concave portion, and a depth of 0. lm
m or more concave portions are desired. (2) In the case of a heat equalization adjusting plate having a cylindrical concave portion of the same depth on the center surface, the temperature is set to 0. It is desired that the concave portion has a depth in the range of 1 mm to 10 mm. Of course, when the diameter of the substrate to be heated is changed to 120 mm or 130 mm, the depth of the concave portion is changed to an embodiment of a numerical value suitable for them.

【0024】本発明の実施の形態のエピタキシャル成長
方法において、基板面内に均一な特性をもつ薄膜結晶を
成長させるための均熱調整板のサイズ構成は、基板の種
類、基板の大きさ、成長させる薄膜結晶の種類、原料の
種類、さらには成長方法に使用される装置の構成などに
よって大きく左右される。したがって、それら異なる個
々の成長条件に合わせて、最適な成長条件を求めて、均
熱調整板のサイズ構成を適正に設定することが有効であ
る。例えば、図3、図4に示した均熱調整板の場合、板
の直径約100mm.板の厚さ9mm.中央の面の円筒
状の凹部の内径約70mm.凹部の深さ0.5mm.周
囲の環状の凸部の幅15mmというように設定すること
ができる。
In the epitaxial growth method according to the embodiment of the present invention, the size configuration of the heat equalizing adjustment plate for growing a thin film crystal having uniform characteristics on the substrate surface is determined by the type of the substrate, the size of the substrate, and the size of the substrate. It largely depends on the type of the thin film crystal, the type of the raw material, and the configuration of the apparatus used for the growth method. Therefore, it is effective to determine the optimum growth condition in accordance with the different individual growth conditions and to appropriately set the size configuration of the heat equalizing adjustment plate. For example, in the case of the heat equalizing adjustment plate shown in FIGS. Plate thickness 9 mm. The inner diameter of the cylindrical concave portion on the center surface is about 70 mm. The depth of the concave portion is 0.5 mm. The width of the peripheral annular convex portion can be set to 15 mm.

【0025】[0025]

【発明の効果】本発明のエピタキシャル成長方法による
と、熱放散が大きい基板の周辺部の加熱温度は、均熱調
整板の周囲に有する環状の凸部の面を経て与えられる熱
量により所定の温度分布に維持される。また、熱放散が
少ない基板の中央部の加熱温度は、均熱調整板の中央の
面の円い凹部を経て与えられる熱量により所定の温度分
布に維持される。このため、基板を加熱したときの基板
の周辺部の温度低下は全くなくなり、全体として基板面
内の加熱温度分布は均一に保持されるという効果が得ら
れる。
According to the epitaxial growth method of the present invention, the heating temperature of the peripheral portion of the substrate having large heat dissipation is controlled by a predetermined temperature distribution by the amount of heat given through the surface of the annular convex portion provided around the heat equalizing adjusting plate. Is maintained. Further, the heating temperature at the central portion of the substrate where heat dissipation is small is maintained at a predetermined temperature distribution by the amount of heat given through the circular concave portion on the central surface of the uniform heat adjusting plate. Therefore, there is no drop in the temperature of the peripheral portion of the substrate when the substrate is heated, and the effect of uniformly maintaining the heating temperature distribution in the substrate surface as a whole can be obtained.

【0026】また、本発明のエピタキシャル成長方法に
よると、基板面内の加熱温度分布が均一に保持されるこ
とにより、結晶成長のときの原料ガスの熱分解と薄膜の
成長は、基板の全面に亙って均一に行われるいう効果が
ある。この結果、得られた結晶薄膜の品質特性もウエハ
面内で均一化されているという効果がある。しかも、成
長方法の装置は、新設、改造、いずれも安価に実施でき
る利点がある。
According to the epitaxial growth method of the present invention, since the heating temperature distribution in the substrate surface is kept uniform, the thermal decomposition of the source gas and the growth of the thin film during the crystal growth can be performed over the entire surface of the substrate. Thus, there is an effect that the operation is performed uniformly. As a result, there is an effect that the quality characteristics of the obtained crystal thin film are also made uniform within the wafer surface. Moreover, the apparatus of the growth method has an advantage that it can be implemented at a low cost, both in new construction and in remodeling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態によるエピタキシャル成長
方法の概要を示す断面説明図である。
FIG. 1 is an explanatory cross-sectional view showing an outline of an epitaxial growth method according to an embodiment of the present invention.

【図2】本発明の実施の形態によるエピタキシャル成長
方法の概要を示す平面説明図である。
FIG. 2 is an explanatory plan view showing an outline of an epitaxial growth method according to an embodiment of the present invention.

【図3】本発明の実施の形態によるエピタキシャル成長
方法に用いられる均熱調整板の断面図である。
FIG. 3 is a cross-sectional view of a heat equalization adjusting plate used in the epitaxial growth method according to the embodiment of the present invention.

【図4】本発明の実施の形態によるエピタキシャル成長
方法に用いられる均熱調整板の平面図である。
FIG. 4 is a plan view of a heat equalization adjusting plate used in the epitaxial growth method according to the embodiment of the present invention.

【図5】本発明の実施の形態によるエピタキシャル成長
方法により成長させたn―GaInP薄膜のキャリア濃
度を示す分布図である。
FIG. 5 is a distribution diagram showing a carrier concentration of an n-GaInP thin film grown by an epitaxial growth method according to an embodiment of the present invention.

【図6】従来の気相成長方法により成長させたn―Ga
InP薄膜のキャリア濃度を示す分布図である。
FIG. 6 shows n-Ga grown by a conventional vapor phase growth method.
FIG. 4 is a distribution diagram showing a carrier concentration of an InP thin film.

【符号の説明】[Explanation of symbols]

1 基板 4 成長容器 5 輻射型ヒーター 6 均熱調整板 7 円筒状の凹部 8 環状の凸部 9 オリエンテーション 10 カーボンサセプター 11 加熱源支持部 12 ガス供給口 13 ガス排気口 14 反応ガス通路 15 原料ガス 16 反応ガス DESCRIPTION OF SYMBOLS 1 Substrate 4 Growth vessel 5 Radiation type heater 6 Heat equalizing adjustment plate 7 Cylindrical concave part 8 Annular convex part 9 Orientation 10 Carbon susceptor 11 Heat source support part 12 Gas supply port 13 Gas exhaust port 14 Reaction gas passage 15 Source gas 16 Reaction gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂口 春典 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 Fターム(参考) 4G077 AA03 BE47 DB21 TE01 TE05 TK04 5F045 AA04 AB14 AB17 AC07 AC19 AF04 BB04 DP14 EK07 EK21 EM02 EM09  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Harunori Sakaguchi 3550 Kida Yomachi, Tsuchiura-shi, Ibaraki F-term in Advanced Research Center, Hitachi Cable, Ltd. 4G077 AA03 BE47 DB21 TE01 TE05 TK04 5F045 AA04 AB14 AB17 AC07 AC19 AF04 BB04 DP14 EK07 EK21 EM02 EM09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】成長容器内に原料ガスを送り込んで半導体
あるいは絶縁体の基板上に薄膜結晶を成長させるエピタ
キシャル成長方法において、 前記基板に与えられる熱量が前記基板の中心より前記基
板の周囲が大きくなるように傾斜を持たせて前記基板を
加熱することを特徴とするエピタキシャル成長方法。
1. An epitaxial growth method for feeding a source gas into a growth vessel to grow a thin film crystal on a semiconductor or insulator substrate, wherein the amount of heat applied to the substrate is greater at the periphery of the substrate than at the center of the substrate. And heating the substrate with an inclination as described above.
【請求項2】前記基板の加熱は、前記基板のエピタキシ
ャル成長面の裏面に中心より周囲の熱伝達係数が大きい
均熱調整板を配置し、前記均熱調整板を輻射型ヒーター
等の熱源によって加熱することを特徴とする請求項1記
載のエピタキシャル成長方法。
2. The heating of the substrate includes disposing a soaking plate having a larger heat transfer coefficient around the center than the center on the back surface of the epitaxial growth surface of the substrate, and heating the soaking plate by a heat source such as a radiant heater. The epitaxial growth method according to claim 1, wherein
【請求項3】前記均熱調整板の配置は、前記均熱調整板
の中心に凹部を形成するとともに周囲に環状の凸部を形
成し、前記環状の凸部を前記基板の前記裏面に接触させ
ることを特徴とする請求項2記載のエピタキシャル成長
方法。
3. The arrangement of the heat equalizing adjusting plate is such that a concave portion is formed at the center of the heat equalizing adjusting plate, an annular convex portion is formed around the concave portion, and the annular convex portion contacts the rear surface of the substrate. 3. The epitaxial growth method according to claim 2, wherein the epitaxial growth is performed.
【請求項4】前記均熱調整板の中心の凹部の形成は、球
面状の凹部、円錐状の凹部、階段状の凹部、および円筒
状の凹部から選択された1つの凹部を形成することを特
徴とする請求項3記載のエピタキシャル成長方法。
4. The method according to claim 1, wherein the step of forming the central recess of the heat equalizing adjustment plate comprises forming one recess selected from a spherical recess, a conical recess, a stepped recess, and a cylindrical recess. The epitaxial growth method according to claim 3, wherein:
【請求項5】前記1つの凹部の形成は、凹部に熱伝導性
の低い耐熱材を充填することを特徴とする請求項4記載
のエピタキシャル成長方法。
5. The epitaxial growth method according to claim 4, wherein said one concave portion is formed by filling the concave portion with a heat-resistant material having low thermal conductivity.
JP11172410A 1999-06-18 1999-06-18 Method for epitaxial growth Pending JP2001002494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11172410A JP2001002494A (en) 1999-06-18 1999-06-18 Method for epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11172410A JP2001002494A (en) 1999-06-18 1999-06-18 Method for epitaxial growth

Publications (1)

Publication Number Publication Date
JP2001002494A true JP2001002494A (en) 2001-01-09

Family

ID=15941451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11172410A Pending JP2001002494A (en) 1999-06-18 1999-06-18 Method for epitaxial growth

Country Status (1)

Country Link
JP (1) JP2001002494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238967A (en) * 2006-03-03 2007-09-20 Sharp Corp Vapor deposition system, vapor deposition method, substrate heating device and substrate heating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238967A (en) * 2006-03-03 2007-09-20 Sharp Corp Vapor deposition system, vapor deposition method, substrate heating device and substrate heating method

Similar Documents

Publication Publication Date Title
EP2037485B1 (en) Fabrication apparatus and fabrication method of semiconductor device produced by heating a substrate
US5704985A (en) Device and a method for epitaxially growing objects by CVD
US9487862B2 (en) Semiconductor growing apparatus
JP5412759B2 (en) Epitaxial wafer holder and method for manufacturing the wafer
US7699604B2 (en) Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device
US20100273320A1 (en) Device and method for selectively depositing crystalline layers using mocvd or hvpe
JP4647595B2 (en) Vapor growth equipment
US20040060518A1 (en) Apparatus for inverted multi-wafer MOCVD fabrication
JP5910430B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JPH07176482A (en) Method and apparatus for epitaxial growth
US6030661A (en) Device and a method for epitaxially growing objects by CVD
US20120227667A1 (en) Substrate carrier with multiple emissivity coefficients for thin film processing
JP2008091615A (en) Processed treatment substrate, its manufacturing method, and its processing method
JP2001002494A (en) Method for epitaxial growth
US6916373B2 (en) Semiconductor manufacturing method
JP3772621B2 (en) Vapor phase growth method and vapor phase growth apparatus
JPH1154437A (en) Method of forming compound semiconductor film
JP2007173417A (en) Compound semiconductor manufacturing apparatus
JP2004207545A (en) Semiconductor vapor phase growth system
JP2002217121A (en) Organic metal vapor deposition apparatus and its deposition method
JPS60165714A (en) Vapor growth method and apparatus thereof
CN113488374A (en) Preparation method of gallium nitride and gallium nitride-based device
KR20120051968A (en) Susceptor and apparatus for chemical vapor deposition having the same
JPS6358916A (en) Molecular beam epitaxy equipment
JPH11214314A (en) Method and apparatus for vapor-phase epitaxial growth